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1 Introduction

Nearly thirty years after their inception [1, 2], heterotic strings compactified on Calabi-

Yau threefolds continue to be a framework of choice for constructing MSSM or GUT-like

perturbative string vacua. However, despite this phenomenological appeal, a complete

description of the low-energy effective theory of such compactifications is still missing so

far. This is due in part to the difficulty in understanding the gauge bundle moduli space,

but also to the subtle nature of the B-field in heterotic string theory [3, 4]. Indeed,

anomaly cancellation requires that B transforms non-trivially under diffeomorphisms and

gauge transformations, so that the gauge invariant field strength (with α′ = 1)

H = dB +
1

4
(ωG − ωL) (1.1)

involves a contribution from the Chern-Simons forms ωG and ωL, for the gauge group G

(E8×E8 or SO(32)) and the Lorentz group SO(1, 9), respectively. The equation of motion

and Bianchi identity

d ⋆g H = 0 , dH =
1

4
(TrF ∧ F − TrR ∧R) , (1.2)

imply that B cannot be expanded on a basis of harmonic forms, except in the special case

of the standard embedding, where the r.h.s. of the Bianchi identity vanishes point wise.
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Furthermore, supersymmetry requires additional higher-derivative couplings in the D = 10

supergravity Lagrangian [5], which greatly complicate the Kaluza-Klein reduction.

Even in the simpler case of heterotic strings compactified on K3, preserving N =

1 supersymmetries in 6 dimensions (or equivalently, for heterotic strings on K3 × T 2,

preserving N = 2 supersymmetries in 4 dimensions), the knowledge of the hypermultiplet

moduli space MH describing metrics g, gauge bundles F and B-fields on K3 is incomplete.

In principle it is entirely determined within the (0, 4) worldsheet SCFT at tree-level, by the

usual decoupling argument between hypermultiplets and vector multiplets, which include

the heterotic dilaton together with the metric and gauge bundle moduli on T 2 [6]. The

metric onMH has however remained largely unknown, aside from the ‘standard embedding’

locus where the SCFT has enhanced (4, 4) supersymmetry. This ignorance, along with an

incomplete understanding of non-perturbative effects in type II Calabi-Yau vacua, has

prevented detailed tests of heterotic/type II duality [7, 8] in the hypermultiplet sector,

beyond the early attempts in [9–11]. The situation on the type II side has considerably

improved in recent years (see [12, 13] for recent reviews), and it is therefore natural to

strive for a similar improvement on the heterotic side. Although N = 2 vacua are not

phenomenologically relevant, the lessons learned in this process will likely be useful for

heterotic compactifications on Calabi-Yau threefolds as well [14].

The Kaluza-Klein reduction of the ten-dimensional heterotic supergravity on K3 in-

cluding bundle and B-field moduli was discussed recently in [15], building on earlier

work [16, 17]. While the contribution of the gauge Chern-Simons form ωG to the equation of

motion was included, the reduction did not include the Lorentz Chern-Simons form ωL, nor

the R2 couplings related to it by supersymmetry. As a result, the low-energy effective ac-

tion was not supersymmetric, in particular the metric on hypermultiplet moduli space was

not quaternion-Kähler (QK). One of the general lessons from [15], however, was that, unlike

what has been often stated or implicitly assumed in the literature, the hypermultiplet mod-

uli space MH is definitely not a bundle of hyperkähler (HK) spaces MF (g, V ), parametriz-

ing the bundle, over the moduli space of the (4,4) SCFT, corresponding to the HK metric g

on K3 along with the B-field moduli. Rather, it must have a two-stage fibration structure

MB(g, F ) → MH

↓
MF (g) → Mg,F

↓
Mg

(1.3)

where the B-field moduli MB(g, F ) live in a torus bundle, fibered over both the metric

moduli Mg and the bundle moduli MF (g), the latter being fibered over Mg as well. As

we discuss in section 2, this structure is an immediate consequence of the Bianchi iden-

tity (1.2), as recognized early on in [4]. The main goal of this paper is to investigate the

structure of this two-stage fibration and to understand how it can be compatible with the

quaternion-Kähler (QK) property of the total hypermultiplet moduli space MH, which is

a necessary requirement for supersymmetry [18].
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For this purpose, our strategy will be to assume that heterotic/type II duality holds, use

our knowledge of the hypermultiplet moduli space on the type IIB side in a suitable limit,

and find a change of coordinates (or duality map) which displays the two-stage fibration

structure (1.3). In order for heterotic/type II duality to apply, we assume that the K3

manifold S on the heterotic side is elliptically fibered, while the Calabi-Yau three-fold on

the type IIB side is K3-fibered [19]. Furthermore, we are interested in the limit where one

can ignore gs-corrections on the type IIB side and α′-corrections on the heterotic side. To

this end, we assume that the type IIB ten-dimensional string coupling is weak (so that, on

the heterotic side, the area of the elliptic fiber is much smaller than the base), and that

the volume of S is large in heterotic string units (so that, on the type IIB side, the area

of the base of the K3 fibration is also large in type II string units). In this regime, and in

the special case of heterotic compactifications with a rigid bundle, a suitable duality map

was constructed in [19, 20], which identifies the hypermultiplet moduli space on the type

IIB side (parametrizing the string coupling, Neveu-Schwarz axion, Kähler structures and

associated RR-potentials) with the heterotic hypermultiplet moduli space.

In this paper, we extend this duality map to the case of heterotic K3 compactifications

with non-rigid bundles. As in [19], we identify the heterotic bundle moduli with the

Kähler moduli associated to reducible singular fibers on the type IIB side, along with the

corresponding RR moduli.1 Retaining the first subleading correction to the holomorphic

prepotential in the limit where the area of the base of the K3 fibration is large, see (3.3),

we find that the type IIB hypermultiplet space, translated into heterotic variables, neatly

displays the double fibration structure (1.3). In particular, the HK metric on the bundle

moduli space MF (g) is obtained by the rigid c-map construction from the prepotential

f(ti, tα) appearing as the subleading correction in (3.3). This is partially expected since for

elliptic K3’s the bundle moduli space has the structure of a complex integrable system [22],

with a semi-flat metric in the limit where the area of the elliptic fiber is much smaller than

the base. It is however worth noting that the metric on MF (g) could have been in the more

general class of hyperkähler metrics on cotangent bundles of Kähler manifolds constructed

in [23]. Another feature of the metric on MH which can be extracted from the dual type II

description is the topology of the torus fiber MB(g, F ) over bundle moduli space. We find

that the curvature of the Levi-Civita connection on this torus bundle is in nice agreement

with the Bianchi identity (1.2). In addition, the classical hypermultiplet metric predicts a

precise fibration structure over metric moduli and various volume-suppressed corrections to

the moduli space metric, which are necessary for the quaternion-Kähler property. We leave

it as an open problem to derive these corrections by reducing 10D heterotic supergravity

(including the higher order derivative corrections required by supersymmetry [5]) on S.

The outline of this work is as follows. In section 2, we discuss the general structure of

the hypermultiplet moduli space in heterotic strings compactified on ellipticK3 with a non-

rigid bundle. In section 3, we recall basic aspects of heterotic/type II duality and translate

the classical type IIB hypermultiplet metric in heterotic variables. We read off the two-stage

1This identification is analogous to the standard identification between bundle moduli on T 2 and complex

structure moduli associated to singular K3 fibers of the CY 3-fold on the type IIA side [11, 21].
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fibration (1.3) and compare with expectations from the Kaluza-Klein reduction of tree-level

supergravity on the heterotic side. We conclude in section 4 with a discussion of open issues.

2 Generalities on heterotic moduli spaces

In this section, we discuss qualitative aspects of the hypermultiplet moduli space in com-

pactifications of the heterotic string on a K3 surface S. The same hypermultiplet moduli

space appears in compactifications on K3 × T 2 down to 4 dimensions, as the additional

scalar fields coming from the metric and gauge bundle on T 2 all lie in vector multiplets.

For concreteness, we restrict our analysis to elliptically fibered K3 surfaces and the gauge

group G = E8×E8, so that heterotic/type II duality applies, but most of the considerations

below hold more generally. Our notations follow [20].

As mentioned in the introduction, vacua with unbroken N = 2 supersymmetry are

characterized by a hyperkähler metric g on S, a bundle F on S with second Chern class

c2(F ) = χ(S) = 24 (as follows from the Bianchi identity (1.2)) equipped with an anti-self

dual connection A such that2 F = dA + A ∧ A, and a two-form B on S satisfying the

equation of motion (1.2). The metric on the resulting moduli space turns out to be given

by a sum of three terms corresponding to the three types of the moduli (see (2.34) below).

In the following we discuss each of these contributions separately.

2.1 Metric moduli

For what concerns the metric degrees of freedom, it is well known that the moduli space

of smooth HK metrics on S is (up to global identifications) the homogeneous space

Mg = R
+
ρ ×

[
SO(3, n− 1)

SO(3)× SO(n− 1)

]

γx
I

(2.1)

with n = 20 (see e.g. [24]). The first factor corresponds to the volume V = e−ρ in heterotic

string units, whereas the second factor is parametrized by periods of the triplet of HK

forms J x, x = 1, 2, 3, along a basis τI (I = 1, . . . , n+ 2) of H2(S,Z),

γxI = eρ/2
∫

τI

J x , ηIJγxI γ
y
J = 2δxy , (2.2)

where ηIJ is the inverse of the intersection matrix on H2(S,Z). The periods γxI may be

organized into a SO(3, n− 1) symmetric matrix

MIJ =

∫

S

ωI ∧ ⋆ωJ = −ηIJ + γxI γ
x
J , (2.3)

where ωI is a 2-form dual to τI , satisfying the following property

(M−1)IJ = ηIKηJLMKL ≡M IJ . (2.4)

2We abuse notation and denote by the same letter F the bundle and its curvature.
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The matrix MIJ parametrizes the conformal class of the HK metric on S. In terms of this

matrix and the volume coordinate ρ, the SO(3, n− 1) invariant metric on Mg reads

ds2g =
1

2
dρ2 − 1

4
dMIJdM

IJ . (2.5)

For singular K3’s with k shrinking cycles the moduli space has the same structure as above,

with τI running over a basis of n+ 2 = 22− k unobstructed cycles.

For elliptically fibered K3, the description given above can be further refined. Let us

denote by B the base of the elliptic fibration, E the elliptic fiber, and τA a basis of the

transcendental lattice on S. Here the index A is running over a set of cardinality n, and

we choose the basis of H2(S,Z) to be given by τI = (B + E , E , τA) with {I} = {1, 2, A}.
Furthermore, we can fix the SO(3) rotation symmetry among the three complex structures

by choosing a complex structure adapted to the elliptic fibration, i.e.
∫
E J = 0 where

J = J 1 + iJ 2 is the holomorphic 2-form in this complex structure. In this setup the

intersection form ηIJ is given by

ηIJ =




0 1 0

1 0 0

0 0 ηAB


 , (2.6)

where ηAB is the intersection form on the transcendental lattice, and the periods γxI can

be parametrized as

γ1 = −ηABγAvB, γ2 = 0, γA =
XA√

ηBCXBX̄C

,

γ31 = e−R/2 − v2

2
eR/2, γ32 = eR/2, γ3A = eR/2vA

(2.7)

with γI = 1
2(γ

1
I + iγ2I ). The complex structure moduli XA are subject to the constraint

XAηABX
B = 0 following from the orthogonality relation (2.2), while the vA’s are the

(real) Kähler moduli. The complex structure moduli are conveniently organized into a

SO(2, n− 2) symmetric matrix

MAB = −ηAB + 2XAB , XAB =
XAX̄B + X̄AXB

ηCDXCX̄D
, (2.8)

which allows to rewrite the metric (2.5) on Mg as follows

ds2g =
1

2
dρ2 +

1

2
dR2 − 1

4
dMABdM

AB + eRMABdv
AdvB , (2.9)

where the third term may be equivalently written as

− 1

4
dMABdM

AB = 4
dXAdX̄B

ηCDXCX̄D
(XAB − ηAB) . (2.10)

This implies that the second factor in (2.1) has the following bundle structure

R
2,n−2
vA

−→
[

SO(3, n− 1)

SO(3)× SO(n− 1)

]

γx
I

↓
R
+
R ×

[
SO(2, n− 2)

SO(2)× SO(n− 2)

]

XA

,

(2.11)
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where the fiber parametrizes the Kähler structure while the base parametrizes the complex

structure compatible with the elliptic fibration.

2.2 Bundle moduli

We now turn to the gauge bundle moduli. For simplicity, we restrict to bundles whose

structure group lies in a subgroup H = SU(N) ⊂ G. This breaks the gauge symmetry from

G down to G0, where G0 is the commutant3 of H inside G. The Bianchi identity (1.2)

fixes the second Chern class to be c2(F ) = 24, while c1(F ) = 0 for SU(N) bundles.

Supersymmetry requires the connection A to be anti-self-dual, ⋆F = −F .
For fixed metric g on S and bundle topology, the space of gauge inequivalent anti-self-

dual connections is a finite-dimensional hyperkähler space MF (g) of quaternionic dimen-

sion [27]

m = c2(F )h(H)− dim(H) , (2.12)

where h(H) is the dual Coxeter number of H, equal to N for H = SU(N). The S2 family

of complex structures on MF (g) arises from the fact that the anti-self dual condition is

equivalent to the hermitian-Yang-Mills equations in any complex structure J on S [28],

F 2,0 = 0 , F ∧ J 3 = 0 . (2.13)

Solutions to (2.13) are in one-to-one correspondence with semi-stable holomorphic vector

bundles [29], thereby providing a complex structure on MF (g). The tangent space over a

given connection A0 is generated by hermitian one-forms â ∈ Ω1(EndhF ) such that

dA0
â ∈ Ω1,1(EndF ) ,

∫
J 3 ∧ dA0

â = 0 , d†A0
â = 0 , (2.14)

where dA0
â = dâ + [A0, â] and the last condition fixes the gauge. By using the complex

structure, we can split the connection A0 and its variation â into their (0,1) and (1,0) parts,

A0 = A0 +A†
0 , â = a+ a† , where A0, a ∈ Ω0,1(EndF ) . (2.15)

so that the tangent space over A0 is isomorphic to the space of ∂̄A0
-harmonic (0,1)-forms

with values in EndF , i.e. the cohomology groupH0,1(EndF ). Hence, its complex dimension

2m ≡ h0,1(EndF ) is equal to minus the index

χ(EndF ) =

∫

S

Td(S) ∧ ch(EndF ) = 2 rk(EndF ) + ch2(EndF ) , (2.16)

where Td(S) = 1+ 1
12c2(S) and ch = rk+c1+

1
2c

2
1−c2. For an SU(N) bundle, rk(EndF ) =

N2 − 1, c1(EndF ) = 0, c2(EndF ) = 2Nc2(F ), in agreement with (2.12). It is important

3At special points in moduli space, e.g. when the bundle becomes point-like, the gauge symmetry may

enhance and some additional charged matter may appear. This symmetry enhancement is most easily un-

derstood inD = 4, where it corresponds to standard unHiggsing. Going to the Coulomb branch of this gauge

theory typically leads to a new family of vacua with different bundle topology. In six dimensions the transi-

tion is more exotic and involves tensionless strings [25, 26]. In this paper we stay away from such transitions.
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to note that the metric on MF (g) depends on the metric g on S via the connection A0,

which is assumed to be anti-self-dual with respect to g.

We denote by ξk (k = 1, . . . , 2m) a system of complex coordinates on MF (g), and

choose a family of solutions A(y, ξk, gi) of the anti-self-duality equations which inter-

sects each gauge orbit once (here y denotes a set of coordinates on S, and gi denote

the metric moduli discussed in section 2.1). Of course, A(y, ξk, gi) is ambiguous mod-

ulo gauge transformations A → UAU−1 − ∂̄U U−1. In order to cancel this ambigu-

ity, one introduces an EndF -valued connection Λ = Λkdξ
k on MF (g) transforming as

Λk → U Λk U−1 − ∂ξkU U−1 in such a way that DξkA ≡ ∂ξkA − ∂̄Λk + [A,Λk] transforms

linearly, DξkA → U DξkAU−1 [14]. By construction, DξkA furnish a basis for H0,1(EndF ).

Similarly, we need covariant derivatives DgiA with respect to metric moduli, which can-

cel the gauge dependence of ordinary derivatives ∂giA (note that DgiA are in general not

(0,1) forms, since a variation of gi may change the complex structure). The fluctuation a

in (2.15) is then a linear combination

a = DξkA dξk +DgiA dgi (2.17)

of the covariant derivatives of A.

In order to compute the metric on the bundle moduli space MF (g), one should dimen-

sionally reduce the gauge kinetic term in D = 10 heterotic supergravity, assuming that the

gauge fields depend on non-compact directions x through the bundle and metric moduli,

ξk(x) and gi(x). The fluctuation (2.17) then represents the part of the gauge field strength

with one leg on S and one leg in the non-compact directions. This results in [14]

eρ/2ds2F = eρ Gkℓ̄(dξ
k + Ck

i dg
i) (dξ̄ℓ̄ + C̄ ℓ̄

jdg
j) , (2.18)

where

Gkℓ̄ =

∫

S

TrDξkA ∧ ⋆Dξ̄ℓA† , Ck
i = Gkℓ̄

∫

S

TrDξ̄ℓA† ∧ ⋆DgiA . (2.19)

By dimensional analysis, Gkℓ̄ scales with the square root of the volume of S, so that (2.18)

scales as eρ/2, justifying the notation on the l.h.s. For fixed geometric moduli, the metric

Gkℓ̄ is Kähler, with Kähler potential
∫
S
TrA ∧ ⋆A† [30].

The previous discussion only relied on the Hermitian Yang-Mills equations (2.13) in

a fixed complex structure, and produced a Kähler metric on bundle moduli space MF (g)

for any Calabi-Yau compactifications. For compactifications on a K3 surface S, the bun-

dle moduli space MF (g) carries additional structure. First, as already mentioned, the

equivalence with (2.13) holds for any complex structure on S, and produces a S2 worth

of complex structures on MF (g). In addition, MF (g) inherits a holomorphic symplectic

structure from the holomorphic symplectic structure on S [31]. The holomorphic symplec-

tic form on MF is given by the natural inner product on (EndF -valued) one-forms,

〈β1, β2〉 =
∫

S

Trβ1 ∧ ⋆β2 . (2.20)

Along with the Kähler form, the holomorphic symplectic form (2.20) provides a hyperkähler

structure on MF (g).

– 7 –
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In addition, when S is an elliptic fibration E → S → B, MF (g) is in fact a complex

integrable system [22]. This can be seen from spectral cover construction of bundles on

elliptic fibrations [32, 33] (see e.g. [34] for a non-technical discussion). The restriction of

the SU(N) bundle on the elliptic fibers produces an N : 1 covering C of the base B known

as the spectral (or cameral) curve. Using the isomorphism between E and its Jacobian, C
can be viewed as an effective curve inside S homologous to kE+NB, where k = c2(F ) [22].

To recover the full bundle on S, it is necessary to specify a degree g−1−N line bundle on

C, where g = N(k−N) + 1 is the genus of the curve C [35]. The choice of spectral cover is

parametrized by a complex projective space Pg (the linear system associated to the divisor

kE + NB), while the choice of line bundle is parametrized by the Jacobian torus of C, of
complex dimension g. This realizes the complex integrable system mentioned earlier. In

practice, one can decompose the complex coordinates ξk into (complex) action and angle

variables (tα, wα) such that the holomorphic symplectic form is dtα∧dwα, while the metric

(at fixed metric moduli) becomes

eρ/2ds2F = e
1
2 (ρ−R)γαβdt

αdt̄β + e
1
2 (ρ+R)γ̃αβ(dwα +Wα)(dw̄β + W̄α). (2.21)

The exponential factor in front of the first term corresponds to the inverse volume of the

elliptic fiber E . In the limit R → −∞, the volume of the base B is given by e−
1
2 (ρ+R)

(the inverse of the exponential factor in front of the second term) and is much larger than

the fiber volume. When this happens, the metrics γαβ , γ̃
αβ and the connection Wα are

expected to depend only on the spectral curve moduli tα, so that the metric is flat along

the torus fibers. In this case, both γ̃αβ and Wα are fixed from the Kähler metric γαβ by

requiring the total space to be hyperkähler (see [23] for a construction of the semi-flat

hyperkähler metric on the cotangent bundle of a Kähler manifold).

2.3 Kalb-Ramond moduli

Finally, we consider the B-field moduli. For given fixed metric and gauge bundle, they

parametrize solutions of the field equations

d ⋆g dB +
1

4
d ⋆g (ωG − ωL) = 0. (2.22)

To compute the metric on the B-moduli space, it is convenient to first dualize the

ten-dimensional Kalb-Ramond two-form B into a 6-form potential C6, which leads to the

following action

S10 =

∫

R6×S

[
−1

2
dC6 ∧ ⋆dC6 +

1

4
dC6 ∧ (ωG − ωL)

]
. (2.23)

The Kaluza-Klein reduction on S proceeds by decomposing C6 = ωI ∧ CI
4 where CI

4 are

4-forms in the six non-compact dimensions (indices are raised and lowered using ηIJ). In

the six-dimensional Einstein frame, the resulting action reads

S6 =

∫

R6

[
−1

2
e−ρMIJ dC

I
4 ∧ ⋆dCJ

4 +
1

4
dCI

4 ∧
∫

S

ωI ∧ (ωG − ωL)

]
, (2.24)

– 8 –
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where we used (2.3). The integral in the last term turns the 5-form ωI ∧ (ωG − ωL) on

R
6 ×S into a one-form VI on R

6. Dualizing the 4-forms CI
4 into compact scalars bI in 6

dimensions leads finally to a metric

eρ ds2B = eρM IJ (dbI + VI)(dbJ + VJ). (2.25)

It describes a torus bundle of rank n+ 2, with constant metric along the torus action but

non-trivial curvature over the space of metric and bundle moduli. Denoting this curvature

by c1(bI), one finds

c1(bI) = dVI =
1

4

∫

S

ωI ∧ (TrF ∧ F − TrR ∧R) . (2.26)

The fact that the coordinates bI are compact with period one requires that the curvatures

c1(bI) should have integer periods on any non-contractible two-cycle inside the moduli

space Mg,F over which the torus Tn+2 parametrized by bI is fibered.

This description was used in [4] to argue that the hypermultiplet moduli space near an

A1 singularity, in the limit where gravity decouples, is the moduli space of SU(2), charge

one instantons, also known as the Atiyah-Hitchin manifold. The flatness of the metric

along Tn+2 holds only in the large volume limit, since worldsheet instantons wrapping

genus zero curves in S depend non-trivially on the B-moduli. The metricMIJ may as well

receive perturbative α′ corrections at finite volume. The connection VI , however, is fixed

by the Chern-Simons coupling in 10 dimensions and related to the chiral anomaly on the

heterotic worldsheet [36], so is expected to be exact.

Let us now extract the component of the curvature (2.26) along the bundle moduli

space MF (g). The relevant part of the field strength F that contributes to (2.26) is

∂xA+ c.c., where the derivative is along the non-compact directions, leading to

c1(bI)|MF (g) = −2MI,k̄ℓ dξ̄
k̄ ∧ dξℓ −

(
NI,kℓ dξ

k ∧ dξℓ + c.c.
)
, (2.27)

where

MI,k̄ℓ =
1

4

∫

S

ωI ∧ TrDξ̄k̄A† ∧DξℓA , NI,kℓ =
1

4

∫

S

ωI ∧ TrDξkA ∧DξℓA . (2.28)

Notice that TrDξkA∧DξℓA and TrDξ̄k̄A† ∧DξℓA are well defined standard (closed) two-

forms (i.e. they are singlets with respect to the gauge group), respectively of degree (0, 2)

and (1, 1). The former will then be proportional to the only (0, 2) form, i.e. the complex

conjugate of the holomorphic two-form J , while the latter will have a component along

the Kähler form J 3 and one piece orthogonal to it. In particular

TrDξ̄k̄A† ∧DξℓA =

(∫
S
J 3 ∧ TrDξ̄k̄A† ∧DξℓA∫

S
J 3 ∧ J 3

)
J 3 + TrDξ̄k̄A† ∧DξℓA

∣∣∣
⊥

=
i

2
eρ Gk̄ℓJ 3 + TrDξ̄k̄A† ∧DξℓA

∣∣∣
⊥
,

(2.29)
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where TrDξ̄k̄A† ∧DξℓA
∣∣∣
⊥
is the component orthogonal to J 3. In the second line we have

used the fact that Hodge duality on a one-form α on S acts as ⋆α = −iJ 3 ∧ α, so that

∫

S

J 3 ∧ TrDξ̄k̄A† ∧DξℓA = i

∫

S

Tr
(
⋆Dξ̄k̄A†

)
∧DξℓA = iGk̄ℓ . (2.30)

These relations allow to write the coefficients MI,k̄ℓ and NI,kℓ as

MI,k̄ℓ =
i

8
eρ Gk̄ℓ

∫

S

ωI ∧ J 3 + M̃I,k̄ℓ with M̃I,k̄ℓ γ
I
x = 0 , (2.31)

NI,kℓ =
1

4
ekℓ

∫

S

ωI ∧ J̄ =
1

4
e−ρ/2γ̄Iekℓ . (2.32)

In particular, the results (2.31) imply that the curvatures MI
k̄ℓ

satisfy

γIMI
k̄ℓ = 0, γ3IMI

k̄ℓ =
i

4
eρ/2 Gk̄ℓ. (2.33)

2.4 Two-stage fibration and standard embedding locus

The upshot of this discussion is that in the limit where the volume V = e−ρ of S is large,

the metric on the hypermultiplet moduli space MH takes the form

ds2 = ds2g + eρ/2ds2F + eρds2B (2.34)

exhibiting a two-stage fibration structure

Tn+2 −→ MH

↓
MF (g) −→ Mg,F

↓
R
+ × SO(3,n−1)

SO(3)×SO(n−1)

(2.35)

Here, MF (g) is a hyperkähler space parametrizing anti-self dual connections (of fixed

topological type) on S with fixed metric g, of quaternionic dimension m given in (2.12),

while the torus Tn+2 parametrizes the B-field. The metric along the bundle moduli MF (g)

scales like eρ/2 and shrinks in the large volume limit ρ → −∞, while the metric along the

B-field moduli scales like eρ and is even smaller. When S is elliptically fibered, with a base

much larger than the fiber, the moduli space MF (g) acquires the structure of a complex

integrable model, with a semi-flat hyperkähler metric. The torus Tn+2 is non-trivially

fibered over the moduli space Mg,F of metrics and bundles, with curvature given by (2.26),

while the bundle moduli space MF (g) is non-trivially fibered over the metric moduli space.

It is important to note that the metric (2.34) was obtained by reducing tree-level super-

gravity in 10 dimensions, which is not by itself supersymmetric. Thus, it is not expected

to be QK. To obtain a metric consistent with supersymmetry, one should perform the

Kaluza-Klein reduction of the fully supersymmetric, R2-corrected supergravity action [5],

a daunting task that we leave for future work.
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A special class of anti-self dual connections is provided by deformations of the spin con-

nection for the HK metric on S. This leads to bundles with c2(F )=24 and structure group

SU(2), whose commutant inside E8×E8 is E7×E8. The bundle moduli space has dimension

m = 45, leading to a 65-dimensional hypermultiplet space MH of the type above, with n =

20. Inside this space, there exists a submanifold corresponding to the locus where the gauge

connection is equal (up to gauge transformation) to the spin connection. Since the world-

sheet SCFT has enhanced (4, 4) supersymmetry at this point, its moduli space is entirely de-

termined to be the symmetric space SO(4, 20)/SO(4)×SO(20) [37]. This requires a delicate

cancellation between the connection terms appearing in the metric onMF (g), which will re-

main after freezing the bundle moduli, against perturbative corrections in the sigma model.

3 Two-stage fibration from heterotic/type II duality

In this section, we use heterotic/type II duality to get insight into the structure of the

two-stage fibration (2.35), in particular into the fibration of the Kalb-Ramond torus Tn+2

over the bundle and metric moduli. The key idea is that the large volume limit ρ→ −∞ on

the heterotic side (combined with R→ −∞ with |R| ≪ |ρ|) corresponds to weak coupling

on the type IIB side. In this limit, the hypermultiplet metric is obtained by the c-map

procedure [38] from the moduli space of Kähler structure deformations. Our aim is to

express the c-map metric in terms of heterotic variables, expose the fibration structure and

read off the corresponding connections.

3.1 Heterotic/type II duality in hypermultiplet sector

We first recall the basic features of heterotic/type II duality in the hypermultiplet sector [9–

11, 19, 20].4 According to this duality, E8 × E8 heterotic string theory compactified on

S× T 2 is equivalent to type IIA string theory compactified on a Calabi-Yau threefold Y,

or to type IIB string theory compactified on the mirror CY threefold Ŷ. The topology of

Y and Ŷ depends on the topology of the gauge bundle on the heterotic side, but a general

fact is that both Y and Ŷ must admit a K3 fibration [19, 21, 39]. We shall focus on the

type IIB description and denote by Σ the fiber in the K3 fibration Σ → Ŷ → P.

In general, the HM moduli space in type IIB string theory compactified on Ŷ is

parametrized by the four-dimensional string coupling g(4) ≡ 1/
√
r, the Kähler moduli

za, the periods ζΛ, ζ̃Λ of the Ramond-Ramond potentials on Heven(Ŷ,Z) and the Neveu-

Schwarz axion σ, dual to the Kalb-Ramond two-form in 4 dimensions. The duality identi-

fies [19, 20]

r =
1

2
e−

1
2 (ρ+R) , Re s = e−

1
2 (ρ−R) , (3.1)

where Re s is the area of the base P of the K3 fibration, so the large volume limit ρ→ −∞
on the heterotic side corresponds to g(4) → 0 and Re s → +∞ on the type IIB side. The

4Since the hypermultiplet moduli space is independent of the T 2 moduli, one may as well work in 6

dimensions, and use heterotic/F-theory duality, where F-theory is compactified on the same CY threefold Ŷ.
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ten-dimensional string coupling is however finite in this limit [20],

1

gs
= 4

√
r eK/2 =

|X0| e−R/2

√
ηABXAX̄B

. (3.2)

Thus, in order for all quantum corrections on the type IIB side to be exponentially sup-

pressed, one should further take R → −∞, with |R| ≪ |ρ| so that that Re s remains very

large.

In this limit, the hypermultiplet moduli space on the type IIB side is obtained by

the (local) c-map procedure from the Kähler moduli space of Ŷ [38, 40]. In the limit

Re s→ +∞, the prepotential takes the form

F (ZΛ) = −Z
sηijZ

iZj

2Z0
+ f(Z0, Zi, Zα) +O(e2πiZ

s/Z0

) , (3.3)

where Zs/Z0 = is is the complex Kähler modulus associated to the base while Zi/Z0 =

iti are complex Kähler moduli for two-cycles γi in the K3 fiber Σ, with ηij being their

intersection matrix. The remaining variables Zα/Z0 = itα are complex Kähler moduli

for the remaining two-cycles γα in H2(Ŷ,Z), dual to reducible singular fibers of the K3

fibration [19]. These singular fibers do not intersect the section, hence the corresponding

Kähler moduli tα do not appear in the leading term in (3.3). In contrast, the next-to-

leading order term f(Z0, Zi, Zα) = (Z0)2f(1, iti, itα) does depend on all Kähler moduli

except s, and includes effects of all worldsheet instantons wrapping the two-cycles γi, γα,

in addition to the classical cubic contribution, because the Kähler moduli ti, tα stay finite

in the large volume limit ρ→ −∞ on the heterotic side.

In [19, 20], it was shown that in the absence of reducible singular fibers, the QK metric

derived from the leading term (3.3) describes the symmetric space SO(4, n)/SO(4)×SO(n),

reproducing the expected hypermultiplet moduli space for heterotic strings compactified

on K3 equipped with a rigid gauge bundle. Under this identification, the heterotic and

type II variables were related by (3.1) supplemented by

Re (is) = B2, cA = vA, c̃A = BA −B2vA, σ = −2B1 − vABA, (3.4)

where cA, c̃A are related to ζA, ζ̃A by a symplectic rotation (Zs, Fs) 7→ (Fs,−Zs), whereas

the moduli ti are related to the complex structure moduliXA on the heterotic side via (3.10)

below. Here the index A runs over the n values (0, s, i) so that Λ = (A,α). The additional

moduli tα and cα, c̃α associated with reducible bad fibers can be identified with bundle

moduli on the heterotic side [9, 11]. The leading contribution to the metric along these

directions comes from the second term in (3.3), which can no longer be ignored. As we

shall now demonstrate, the QK space obtained by the c-map procedure from the prepoten-

tial (3.3), keeping only the first two terms,5 has the two-stage fibration structure (2.35).

Furthermore, the metric on the HK fiber MF (g) is the rigid c-map space [40] derived from

the prepotential f(Z0, Zi, Zα) for fixed Z0, Zi.

5All other corrections to the prepotential correspond to the worldsheet instantons wrapped on the base

P of the K3 fibration and are exponentially suppressed in our scaling limit. Thus, f is the only relevant

correction.
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3.2 c-map in heterotic variables

The QK metric obtained by the c-map procedure from a special Kähler manifold with

holomorphic symplectic section Ω(za) = (ZΛ, FΛ) takes the form

ds2 =
1

r2
dr2 − 1

2r
( ImN )ΛΣ

(
dζ̃Λ −NΛΛ′dζΛ

′

)(
dζ̃Σ − N̄ΣΣ′dζΣ

′

)

+
1

16r2

(
dσ + ζ̃Λdζ

Λ − ζΛdζ̃Λ

)2
+ 4Kab̄ dz

adz̄b̄,

(3.5)

where Kab̄ is the Kähler metric on the special Kähler manifold,

Kab̄ = ∂za∂z̄bK, K = − log
[
i
(
Z̄ΛFΛ − ZΛF̄Λ

)]
, (3.6)

and NΛΣ is a symmetric complex matrix with negative definite imaginary part, determined

by the conditions [41, 42]

FΛ = NΛΣZ
Σ , DaFΛ = N̄ΛΣDaZ

Σ , (3.7)

where Da = ∂a + ∂aK is the Kähler covariant derivative. When Ω(za) derives from a

homogeneous prepotential F (ZΛ), i.e. FΛ ≡ ∂ZΛF , the matrix NΛΣ is given in terms of the

second derivative FΛΣ = ∂ZΛ∂ZΣF via

NΛΣ = F̄ΛΣ + 2i
ImFΛΛ′ZΛ′

ImFΣΣ′ZΣ′

ZΞ ImFΞΞ′ZΞ′
. (3.8)

However, for the purposes of heterotic/type II duality, it is more convenient to work

in a different symplectic basis where the prepotential does not exist [41, 43]. The section

(XΛ, GΛ) in this new basis is related to the section (ZΛ, FΛ) in which (3.3) applies by the

symplectic transformation on the symplectic plane associated to the Kähler modulus s

Xs = Fs, Gs = −Zs. (3.9)

We denote by cΛ, c̃Λ the coordinates ζΛ, ζ̃Λ in this new basis. The new symplectic section

is given by

XΛ = X0

(
1,

1

2
ηijt

itj , iti, itα
)
, GΛ = −isXΛ + fΛ, (3.10)

where fΛ = (∂Z0 , 0, ∂Zi , ∂Zα)f and XΛ = ηΛΣX
Σ with ηΛΣ the degenerate symmetric

matrix

ηΛΣ =

(
ηAB 0

0 0

)
, ηAB =




0 1 0

1 0 0

0 0 ηij


 . (3.11)

Note that XA satisfy the same constraint XAηABX
B = 0 as in section 2.1 upon identifi-

cation of ηAB with the intersection form of 2-cycles on K3.

The Kähler potential and period matrix read

K =− log (Re s− f)− log |t+ t̄|2 − log |X0|2,
NΛΣ = is̄ ηΛΣ − i(s+ s̄)XΛΣ + f̄ΛΣ

+ 2i
X̄ΛX

Ξ Im fΣΞ + X̄ΣX
Ξ Im fΛΞ

ηCDXCX̄D
− 2i

X̄ΛX̄Σ(
ηCDXCX̄D

)2 X
ΞXΘ Im fΞΘ,

(3.12)
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where |t+ t̄|2 = ηij(t
i + t̄i)(tj + t̄j) and we introduced

f =
1

2
XΛΣ Im fΛΣ , XΛΣ =

XΛX̄Σ + X̄ΛXΣ

ηCDXCX̄D
, (3.13)

while indices on XΛΣ are lowered using (3.11). The function f, a real function of ti, tα,

will play an important role below. It determines the order O(1/Re s) correction to the

Kähler potential K in the limit Re s → +∞. The matrix XΛΣ generalizes XAB in (2.8).

Splitting the index Λ into A,α, the inverse of the imaginary part of the matrix NΛΣ can

be computed to be

ImNAB =
(
δAC −XA

C

)
V CD

(
δBD −XD

B
)
− XAB

Re s− f
,

ImNAα = −
(
δAC −XA

C

)
V CD

(
δBD −XD

B
)
νBβµ

αβ − XAα

Re s− f
, (3.14)

ImNαβ = −µαβ + µαγνAγ

(
δAC −XA

C

)
V CD

(
δBD −XD

B
)
νBδµ

δβ − Xαβ

Re s− f
,

where we introduced the following notations:

µαβ = Im fαβ , νAα = Im fAα, λAB = Im fAB,

VAB = Re s ηAB −
(
δCA −XA

C
) (
λCD − νCαµ

αβνDβ

) (
δDB −XD

B

)
,

(3.15)

and µαβ , V AB are the inverse of µαβ and VAB, respectively.

We now apply the same duality map (3.4) and (3.1), except for a minor change in the

definition of the coordinates ρ,R involving the function f,

r =
1

2
e−

1
2 (ρ+R), Re s = e−

1
2 (ρ−R) + f, (3.16)

Re (is) = B2, cA = vA, c̃A = BA −B2vA, σ = −2B1 − vABA. (3.17)

Guided by similar definitions in the absence of bundle moduli tα [19, 20], we further define

the symmetric matrix

MAB =MAB + e
1

2
(ρ−R)

(
δCA −XA

C
) (
λCD − νCαµ

αβνDβ − f ηCD

) (
δDB −XD

B

)
(3.18)

with MAB from (2.8), in such a way that its inverse MAB satisfies MAB =

−e 1

2
(R−ρ) ImNAB. MAB reduces to MAB in the limit ρ → −∞, but in general is not

an element of SO(2, n− 2). We also introduce a symmetric matrix

MIJ =




eR −v2

2 e
R eRvB

−v2

2 e
R v4

4 e
R + e−R +MABvAvB −v2

2 e
RvB −MBCvC

eRvA −v2

2 e
RvA −MACvC eRvAvB +MAB


 (3.19)

which reduces to the inverse of the matrix M IJ from (2.3) in the limit ρ→ −∞, but is in

general not an element of SO(3, n− 1), except when MAB is an element of SO(2, n− 2).
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With these definitions, the c-map metric (3.5) associated to the prepotential (3.3)

(retaining only the first two terms, and assuming no special property of f(Z0, Zi, Zα) other

than independence on Zs and homogeneity) can be written as a sum of three contributions,

ds2 = ds2g + eρ/2ds2F + eρds2B , (3.20)

matching the expected form (2.34) of the hypermultiplet metric moduli space on the het-

erotic side. In the following we discuss each contribution in turn.

3.2.1 Metric moduli

The first term

ds2g =
1

2
dρ2 +

1

2
dR2 − 1

4
dMABdM

AB + eRMABdv
AdvB (3.21)

generalizes the SO(3, n− 1) invariant metric (2.9) on the moduli space Mg of HK metrics

on S. It reduces to this invariant metric in the large volume limit ρ → −∞, but contains

in addition power-suppressed corrections due to the difference between MAB and MAB.

3.2.2 Bundle moduli

The second term is given by

ds2F = 4e−R/2∂∂̄f+ eR/2µαβDc
αDcβ + eR/2µαβ(Dc̃α − Re fαα′dcα

′

)(Dc̃β − Re fββ′dcβ
′

),

(3.22)

where

∂∂̄f=
µαβDX

αDX̄β

ηCDXCX̄D
+
(
δCA−XA

C
) (
λCD−νCαµ

αβνDβ−f ηCD

) (
δDB−XD

B

) dXAdX̄B

ηCDXCX̄D
.

(3.23)

It contains kinetic terms for the bundle moduli6 tα, cα and c̃α, with specific connections

with respect to the metric moduli,

DXα = dXα − Γα
AdX

A, Dcα = dcα − Γα
Adv

A, Dc̃α = dc̃α − ReNαAdv
A, (3.24)

where

Γα
A = µαβ ImNAβ = XA

α −
(
δBA −XA

B
)
νBβµ

αβ . (3.25)

Setting these connection terms to zero, i.e. fixing the HK metric on S, the metric (3.22)

reduces to

ds2F
∣∣
g
= 8 e−R/2 µαβdt

αdt̄β

|t+ t̄|2 + eR/2µαβ (dwα +Wα) (dw̄β + W̄β), (3.26)

where we denoted

wα = c̃α − fαβc
β, Wα = −1

2
µγλ(wλ − w̄λ)fαβγdt

β . (3.27)

6It also contains a contribution to the kinetic term for the metric moduli ti generated by the second

term in (3.23), which is however suppressed with respect to the leading contribution from ds2g.
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We recognize in this expression the rigid c-map metric [40] associated to the prepotential

f(Z0, Zi, Zα) for fixed Z0, Zi with (tα, wα) being holomorphic Darboux coordinates for

the holomorphic symplectic form (2.20) on MF (g). Eq. (3.26) is in agreement with the

expected form of the metric (2.21) in coordinates adapted to the spectral cover construction.

In particular, the real function f defined in (3.13) provides, up to an overall factor 4e−R/2, a

Kähler potential for the Kähler metric on the moduli space Pg of spectral covers mentioned

above (2.21). It is somewhat unexpected that the metric (3.22) on bundle moduli space

should belong to the class of rigid c-map metrics, rather than the more general class of

semi-flat HK metrics on cotangent bundles of Kähler manifolds constructed in [23].

3.2.3 Kalb-Ramond moduli

Finally,

ds2B = MIJ (dBI + VI) (dBJ + VJ) (3.28)

reproduces the flat metric on the torus fiber Tn+2 of the two-stage bundle (2.35). The

kinetic termMIJ is in agreement with (2.25) in the large volume limit, while the connection

reads7

V1 =
v2

2
V2 − vAVA +

1

2
(cαdc̃α − c̃αdc

α) ,

V2 = − i(∂ − ∂̄)f,

VA =− ivA(∂ − ∂̄)f+ Γα
Adc̃α − (ReNAβ + Γα

AReNαβ) dc
β

− (ReNAB +B2 ηAB + Γα
AReNαB) dv

B.

(3.29)

We shall be particularly interested in the restriction of the curvatures dVI along the bundle

moduli directions (i.e. for fixed metric g on S), which can be decomposed into their (1,1)

and (2,0) components,

dVI |g = −2MI,k̄ℓdξ̄
k̄ ∧ dξℓ −

(
NI,kℓdξ

k ∧ dξℓ + c.c.
)
, (3.30)

where ξk = (tα, wα) denote the holomorphic bundle moduli. Denoting also

φαAβ =
1

4

(
δBA −XA

B
)
µαγ

(
fβγλµ

λδ Im fBδ − fBβγ

)
, (3.31)

ψα
β =

i

8
fβγλµ

αγµλδ(wδ − w̄δ), (3.32)

one finds

M1,k̄ℓ =

(
− iv2µαβ

|t+t̄|2
+ 4ivAµγγ′

(
φ̄γAαψ

γ′

β + φγAβψ̄
γ′

α

)
+ 4iµγγ′ψ̄γ

αψ
γ′

β vAφ̄βAα + ψ̄β
α

−vAφαAβ − ψα
β

i
4 µ

αβ

)
,

M2,k̄ℓ =

(
2iµαβ

|t+t̄|2
0

0 0

)
,

MA,k̄ℓ =

(
2ivAµαβ

|t+t̄|2
− 4iµγγ′

(
φ̄γAαψ

γ′

β + φγAβψ̄
γ′

α

)
−φ̄βAα

φαAβ 0

)
(3.33)

7The term B2 ηAB in the last term of VA cancels the dependence on the B-field introduced by ReNAB .
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and

NI,kℓ =
iγ̄I√
2|t+ t̄|

(
0 −δβα
δαβ 0

)
. (3.34)

In particular, it is easily checked that NI,kℓ agrees with (2.32) given that tα and wα are

Darboux coordinates for the symplectic matrix ekℓ, whereas MI,k̄ℓ satisfies (2.33) with

Gk̄ℓ = e
1

2
(R−ρ)

(
8e−Rµαβ

|t+t̄|2
+ 16µγγ′ψ̄γ

αψ
γ′

β −4iψ̄β
α

4iψα
β µαβ

)
(3.35)

being (up to an overall factor of eρ/2) the metric on bundle moduli space read off from (3.26).

Thus, heterotic/type II duality predicts the values of the integrals (2.28), in terms of the

holomorphic prepotential f(ti, tα) which governs the hyperkähler metric on bundle moduli

space. It would be very interesting to compute the integrals (2.28) independently and

extract the prepotential.

4 Discussion

In this work we have used heterotic/type II duality to shed light on the hypermultiplet

moduli space in heterotic string theory compactified on an elliptically fibered K3 surface,

in the limit where the volume is very large and the base is much larger than the fiber. On

the type IIA side, this corresponds to a limit where the string coupling vanishes while the

size of the base of the K3 fibration becomes infinite. In this limit, the classical cubic term

in the prepotential (3.3) dominates the kinetic terms of the metric and B-field moduli,

while the bundle moduli metric is determined by the subleading term in (3.3). The latter

in general contains worldsheet instanton corrections wrapping two-cycles on the K3 fiber

and/or singular reducible fibers. By identifying the Kähler moduli tα and the corresponding

Ramond-Ramond moduli cα, c̃α associated to these singular fibers with the bundle moduli

ξk on the heterotic side, and using the slightly modified duality map of [19, 20] for the

remaining moduli, we have found that the resulting moduli space has the two-stage fibration

structure (2.35) expected on the heterotic side. In particular, the bundle moduli space

MF (g) is a torus bundle over a Kähler space equipped with a semi-flat hyperkähler metric,

as appropriate for a complex integrable system. The HK metric is obtained by the rigid

c-map from the subleading term f(Z0, Zi, Zα) in the prepotential (3.3) (at fixed Z0, Zi), a

special case of the class of semi-flat HK metrics on cotangent bundles of Kähler manifolds

constructed in [23]. It would be interesting to compare this prediction with a first principle

computation of the metric on the moduli space of spectral covers.

In addition, the B-field moduli live in a torus Tn+2 with flat metric along the torus

action, and with non-trivial curvature over both the bundle moduli and the metric moduli.

Remarkably, the component of the curvature along the bundle moduli are determined by

the same holomorphic prepotential f(Z0, Zi, Zα) — a non-trivial prediction for the inte-

grals appearing in (2.28). The metric on the torus Tn+2, given by the matrix MIJ (3.19),

also receives corrections suppressed by inverse powers of the volume. These corrections are

necessary for the metric to be QK, and we expect that they could be derived by performing
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a careful Kaluza-Klein reduction of the fully supersymmetric, R2-corrected heterotic super-

gravity in ten dimensions [5]. Before tackling this daunting task however, a basic problem is

to construct a set of gauge-invariant coordinates on bundle and B-field moduli space. While

the first issue requires a deeper understanding of the spectral cover construction, the second

problem may be usefully circumvented by dualizing the Kalb-Ramond field to a six-form po-

tential, as discussed in section 2.3, and dualize back the resulting four-forms after reduction.

Finally, it is worth reiterating that the above difficulties arise just as well in the more

phenomenologically appealing heterotic compactifications on Calabi-Yau threefolds. We

hope that the insights gained through the present study can stimulate progress on N = 1

heterotic string vacua.
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