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1 Introduction and summary

Recently there has been a breakthrough in understanding M2-branes in M-theory. It was

found by Aharony, Bergman, Jafferis and Maldacena [1] that the worldvolume theory of

N multiple M2-branes on C
4/Zk is described by the N = 6 Chern-Simons-matter theory

with gauge group U(N)×U(N) and levels k and −k. Prior to this important discovery, the

program of finding the worldvolume theory of multiple M2-branes by supersymmetrizing

the three-dimensional Chern-Simons theory dates back to the pioneering studies in [2].

Up to N = 3, supersymmetric Chern-Simons-matter theories were constructed for any

gauge group and any representation [3–5]. For N = 4, one of the interesting realizations

is the quiver gauge theory with gauge group being [U(N) × U(N)]r (r ∈ N) and levels k

and −k appearing alternatively [6, 7]. Especially, if we consider the case of r = 1, the

supersymmetry is enhanced to N = 6 and this is nothing but the ABJM theory. The

quiver diagram of the ABJM theory is the Dynkin diagram of the affine Lie algebra Â1,

while that of the N = 4 theory is the Dynkin diagram of Â2r−1 (see figure 1). Also,

the gravity dual of the ABJM theory is AdS4 × S7/Zk, while that of the N = 4 theory

is AdS4 × S7/(Zr × Zkr). Since the gravity dual of this theory was identified to be the

orbifold of the ABJM theory [8–11], let us call this theory orbifold ABJM theory.

For the ABJM case, the partition function and the vacuum expectation values of the

supersymmetric Wilson loops were extensively studied in [12–30]. First, using the localiza-

tion technique [31], the infinite-dimensional path integral used in defining the expectation
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(a) (b)

Figure 1. The quiver diagrams of the ABJM theory (a) and the orbifold ABJM theory (b). The

orbifold ABJM theory is the Chern-Simons-matter theory with gauge group [U(N) × U(N)]r and

alternating levels k and −k. Each node represents the U(N) vector multiplet, while each line

represents the bi-fundamental hypermultiplet.

values of supersymmetric quantities in general N ≥ 2 supersymmetric gauge theories on S3

is reduced to a finite-dimensional matrix integral [12, 13, 32–34]. After the standard matrix

model analyses in the ’t Hooft limit [12–17], the partition function for a general N ≥ 3

necklace quiver Chern-Simons-matter theory was rewritten into that of an ideal Fermi gas

system [19], which is more suitable to access the M-theory regime (see also [18, 35]). This

formalism further enables us to continue to study instanton effects in the ABJM theory [22–

26, 28–30], where an infinite cancellation of divergences between worldsheet instantons and

membrane instantons was found [24]. Finally it turned out [28] that the instanton effects

in the ABJM theory are described by certain limits of the refined topological string on the

dual geometry, local P1 × P
1.

The aim of this paper is to study how the interesting instanton calculus of the su-

persymmetric quantities in the ABJM theory is generalized to a larger class of theories.

Particularly, as a first step, we shall study the partition function of the N = 4 orbifold

ABJM theory on S3, which is expected to be the simplest one compared with other N = 3

Chern-Simons-matter theories. For the studies in the M-theory limit, of other gauge groups

or other quiver diagrams which are expected to have interesting M-theory interpretations,

see e.g. [36–44] and see [45–48] for those in the ’t Hooft limit.

Before explaining our work, let us briefly overview the ABJM partition function. After

the study of the large N behavior in the ’t Hooft limit in a seminal paper [14], it was found

in [17] that all the perturbative corrections are summed up into the Airy function

Z1(N) ∼ C−1/3Ai
[
C−1/3N

]
=

∫ ∞i

−∞i

dµ

2πi
e

C
3
µ3−µN , (1.1)

with a coefficient C. This integral expression is reminiscent of the statistical mechanics.

Namely, if we consider the grand potential

eĴ1(µ) =
∞∑

N=0

eµNZ1(N), (1.2)

– 2 –
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by regarding N , the rank of the gauge group, as the number of particles and introducing

a chemical potential µ, we find that the inverse transformation given by

Z1(N) =

∫ πi

−πi

dµ

2πi
eĴ1(µ)−µN , (1.3)

looks very similar to the expression of the Airy function (1.1). Hence, we are led to the

grand canonical ensemble naturally.

However, note that there are also some discrepancies. First, the grand potential defined

in (1.2) is invariant under the shift of µ by 2πi, while the cubic polynomial in (1.1) is of

course not. Secondly, the integration domain is [−πi, πi) in the inverse transformation (1.3),

while it is the whole imaginary axis for the Airy function (1.1).

These two discrepancies can be resolved simultaneously [24]. Namely, to restore the

2πi shift symmetry, let us consider a quantity J1(µ) and express the total grand potential

Ĵ1(µ) by infinite replicas of it,

eĴ1(µ) =
∞∑

n=−∞

eJ1(µ+2πin). (1.4)

If we use this quantity J1(µ), we can extend the integral domain to the whole imaginary

axis by substituting (1.4) into (1.3) and connecting various intervals of integral domains

[−πi+ 2πin, πi+ 2πin) with different n,

Z1(N) =

∫ ∞i

−∞i

dµ

2πi
eJ1(µ)−µN . (1.5)

Note that this argument should be handled with care. We have implicitly assumed the

analyticity of J1(µ), though generally it may contain branch cuts,1 which invalidate the

above argument of substituting complex-valued chemical potentials into J1(µ) in (1.4).

This assumption is supported by our numerical studies later in section 6.

If we expand the total grand potential into2

Ĵ1(µ) = J1(µ) + J̃1(µ), (1.6)

we find that the n 6= 0 terms

J̃1(µ) = log

[
1 +

1

eJ1(µ)

∑

n 6=0

eJ1(µ+2πin)

]
, (1.7)

give an oscillatory behavior [24]. On the contrary, the n = 0 term J1(µ) does not contain

any oscillations depending on µ. Even though the integration domain in (1.5) is different

from the original inverse transformation (1.3), the extra oscillation J̃1(µ) in (1.7) is com-

pletely determined by the quantity J1(µ). Hence, we consider the n = 0 term J1(µ) as a

1Indeed the result of small k expansion [19] contains a branch cut in the eµ-plane at (−∞,−4].
2For suitability and simplicity, we have changed the notation slightly from section 3 in [24]: [Ĵ(µ)]here =

[J(µ)]HMO, [J(µ)]here = [Jnaive(µ)]HMO, [J̃(µ)]here = [Josc(µ)]HMO.
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naive but primary term while regard the extra n 6= 0 terms contributing to the oscillatory

behavior J̃1(µ) as subsidiary. Note that if we just wanted to restore the shift symmetry

µ ∼ µ + 2πi, at the first sight, we could define the naive term with n 6= 0 as well, though

this is not the case. The n = 0 term is characterized by the property that it does not

contain any complex phases depending on µ.

The relation to the statistical mechanics was observed and fully incardinated in [19] by

identifying the partition function of the ABJM theory as that of an ideal Fermi gas system

and expressing the grand potential in terms of the Fredholm determinant using the density

matrix ρ1 of the Fermi gas system,

eĴ1(µ) = det(1 + eµρ1). (1.8)

Then, combining the results from the topological string theory [13, 14, 16, 17, 24, 28],

the ’t Hooft expansion [14, 16, 17], the WKB expansion of the Fermi gas system [19,

25], numerical studies [20, 24, 26] and the infinite divergence cancellation between the

worldsheet instantons and the membrane instantons [24–26, 28], we finally end up with

an exact expression, where J1(µ) consists of the perturbative part Jpert
1 (µ) and the non-

perturbative part Jnp
1 (µ),

J1(µ) = Jpert
1 (µ) + Jnp

1 (µ), (1.9)

where each part is given explicitly by

Jpert
1 (µ) =

C

3
µ3 +Bµ+A, Jnp

1 (µ) =
∞∑

ℓ,m=0
(ℓ,m) 6=(0,0)

fℓ,m(µ) exp

[
−
(
2ℓ+

4m

k

)
µ

]
. (1.10)

The perturbative coefficients C,B and A are constants depending only on k, while the

non-perturbative coefficient fℓ,m(µ) is a polynomial of µ, whose explicit form can be found,

for example, in [28]. The exponentially suppressed corrections e−2µ and e−
4µ
k correspond

to D2-branes wrapping a Lagrangian submanifold RP
3 in CP

3 and fundamental strings

wrapping a holomorphic cycle CP
1 in it, respectively [16, 19, 49], where CP

3 is obtained

from S7/Zk in the type IIA string theory limit k → ∞.

Let us summarize our main result in this paper. Here we study the partition function

Zr(N) of the orbifold ABJM theory on S3, which, as explained above, is realized by the

necklace quiver [U(N) × U(N)]r with the alternating levels k and −k and is expected to

be dual to M-theory on AdS4 × S7/(Zr × Zkr). Similarly to the ABJM matrix model, let

us introduce the grand potential

eĴr(µ) =
∞∑

N=0

eµNZr(N). (1.11)

Again, in order to preserve the 2πi periodicity of µ, we expect the grand potential Ĵr(µ)

to be expressed as

eĴr(µ) =
∞∑

n=−∞

eJr(µ+2πin), (1.12)
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and we shall concentrate on the primary non-oscillatory term Jr(µ). As in the ABJM case,

we can rewrite this as the Fredholm determinant [19],

eĴr(µ) = det(1 + eµρr), (1.13)

with a density matrix ρr. As we will see later in section 3, one can show that ρr is given

by the r-th power of the ABJM density matrix ρ1, namely,

ρr = ρr1. (1.14)

This structure leads us to the following decomposition

eĴr(µ) =

r−1
2∏

j=− r−1
2

eĴ1(
µ+2πij

r
), (1.15)

where the index j in the product runs with step 1. Thus, in terms of the primary grand

potentials in (1.4) and (1.12), the relation (1.15) is translated into

∞∑

n=−∞

eJr(µ+2πin) =

r−1
2∏

j=− r−1
2

∞∑

nj=−∞

eJ1(
µ+2πij

r
+2πinj). (1.16)

We would like to extract Jr(µ) out of this expression. In section 4, we will prove that the

explicit form of Jr(µ) is given by

eJr(µ) =
∑

∑
j nj=0

r−1
2∏

j=− r−1
2

eJ1(
µ+2πij

r
+2πinj), (1.17)

where the summation symbol denotes that the summation of r variables
{
nj

} r−1
2

j=− r−1
2

over

all integers is performed with the constraint
∑

j nj = 0. In the original ABJM theory,

we have noticed that the n 6= 0 replicas play only subsidiary roles. This identity shows

that the subsidiary oscillatory replicas of the ABJM grand potential also contribute to the

non-oscillatory primary term of Ĵr(µ), as long as the combination of the replicas satisfies

the condition
∑

j nj = 0.

Let us draw the physical implications of this result in section 5. After substituting the

ABJM grand potential (1.10) into the grand potential of the orbifold theory (1.17), we find

that the perturbative part of the grand potential Jr(µ) is given by3

Jpert
r (µ) =

C

3r2
µ3 +

(
B − π2C(r2 − 1)

3r2

)
µ+ rA, (1.18)

while for the non-perturbative corrections the grand potential Jr(µ) contains the following

three types of non-perturbative instanton effects,

exp

(
−2µ

r

)
, exp

(
−4µ

kr

)
, exp

(
− 4µ

kr2

)
. (1.19)

3It was found in [19] that the grand potential of a general N ≥ 3 necklace quiver Chern-Simons-matter

theory is given by a cubic polynomial. Our result (1.18) agrees with this general claim.

– 5 –
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(a) (b)

Figure 2. A general quiver Chern-Simons-matter theory (b) constructed repetitively from a more

fundamental one (a) with levels satisfying
∑

i
ki = 0.

It is surprising to find that the last non-perturbative term in (1.19) originally comes from

the perturbative part,

exp

(
−2π2Cµ

r2

)
, (1.20)

which reduces to the last one in (1.19) after we plug in the perturbative coefficient C =

2/(π2k) for the ABJM matrix model.

Let us note that, in the language of the canonical partition function, the perturbative

part is given by

Zpert
r (N) =

(
C

r2

)−1/3

erAAi

[(
C

r2

)−1/3(
N −B +

π2C(r2 − 1)

3r2

)]
, (1.21)

while the non-perturbative effects are described by

exp
(
−π

√
2kN

)
, exp

(
−2π

√
2N

k

)
, exp

(
−2π

r

√
2N

k

)
, (1.22)

in the large N limit. As we will see later, both the perturbative part and the non-

perturbative effects match well with the gravity dual. Especially, these non-perturbative in-

stanton corrections correspond to D2-branes wrapping RP
3/Zr, fundamental strings wrap-

ping CP
1 and CP

1/Zr, respectively. Note that the last instanton effect arises from a new

cycle compared with the original ABJM theory.

Although we start with the ABJM theory and consider its orbifold theory, we stress

that our computation is applicable to a more general setup. Namely, even if we start with a

more general N = 3 necklace quiver Chern-Simons-matter theory having the same expres-

sion of the grand potential (1.10) with different coefficients and consider its cousin with

repetitive levels, the expression for the grand potential (1.17), the perturbative sum (1.18)

and the consequent instanton effect (1.20) are still valid. For example, if we have the

grand potential for the necklace quiver Â2 with levels (k1, k2, k3) (k1 + k2 + k3 = 0), we

can easily find the grand potential for the necklace quiver Â3r−1 with the repetitive levels

(k1, k2, k3, k1, k2, · · · , k3). See figure 2 for another case of r = 3, constructed out of the Â4

quiver Chern-Simons-matter theory.

– 6 –
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In the following section, we briefly review the gravity dual and discuss various possible

instanton effects from it. Then, we explain the relation (1.14) of the density matrices

between the orbifold ABJM theory and the original theory in section 3, and show the

relation (1.17) between the grand potentials in section 4. In section 5 we proceed to study

the physical implications. After presenting a few examples of our result in section 6, we

conclude with some further directions in the final section.

2 Gravity dual

Before starting our study of the partition function of the N = 4 necklace quiver Chern-

Simons-matter theory with the alternating levels, we shall first review its gravity dual [1] in

this section. We also argue that we expect three types of instanton effects from the gravity

dual. It has been expected that this N = 4 theory describes the low-energy effective theory

of M2-branes on C
4 ∋ (z1, z2, z3, z4) divided by the following three orbifold actions [8–10],

φA : (z1, z2, z3, z4) 7→ (e
2πi
r z1, e

− 2πi
r z2, z3, z4),

φB : (z1, z2, z3, z4) 7→ (z1, z2, e
2πi
r z3, e

− 2πi
r z4),

φC : (z1, z2, z3, z4) 7→ (e
2πi
kr z1, e

− 2πi
kr z2, e

2πi
kr z3, e

− 2πi
kr z4). (2.1)

Since φB is not an independent action due to the relation φAφB = φk
C , the moduli space is

C
4/(Zr × Zkr). Thus the gravity dual background of this theory is described by

ds211 =
R2

4
ds2AdS4

+R2ds2S7/(Zr×Zkr)
, (2.2)

where the radius R is given by

R = (32π2kr2N)
1
6 lp, (2.3)

with the Planck length lp. If we identify the direction of M-theory circle ϕ with that

orbifolded by Zkr,

ds2S7/(Zr×Zkr)
=

1

(kr)2
(dϕ+ · · · )2 + ds2

CP
3/Zr

, (2.4)

the radius of the M-theory circle in the unit of the Planck length lp, the radius of the

covering space CP
3 in the unit of the type IIA string length ls and the string coupling are

given respectively by

R11

lp
=

R

krlp
=

(
32π2N

k5r4

) 1
6

,
R

CP
3

ls
=

R

ls
=

(
32π2N

k

) 1
4

, g2s =

(
32π2N

k5r4

) 1
2

. (2.5)

Therefore, the eleven-dimensional supergravity picture is valid for k5r4 ≪ N , while the

type IIA supergravity is good for k ≪ N ≪ k5r4.

In the eleven-dimensional supergravity on AdS4 ×X7 with the boundary S3, the free

energy obeys the famous N3/2-law [50] given by (see e.g. [51] for a derivation)

logZsupergravity = −
√

2π6

27 vol(X7)
N3/2, (2.6)

– 7 –
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which relates the free energy of the current theory to that of the ABJM theory

logZS7/(Zr×Zkr) = r logZS7/Zk
. (2.7)

There are several non-trivial cycles in this geometry CP
3/Zr. If we consider the sub-

space z1 = z2 = 0, we find that the only independent action is φC . Since the direction of

Zkr is identified as the M-theory circle, we do not have any further orbifold actions. Hence,

the subspace is a holomorphic cycle CP
1. If we consider the subspace z1 = z3 = 0, both of

the actions φA and φC remain and we should consider the subspace as CP1/Zr. Similarly,

we have a Lagrangian submanifold RP
3/Zr.

Since D2-branes can wrap RP
3/Zr, we expect the D2-brane instanton effects,

exp
(
−TD2Vol(RP

3/Zr)
)
= exp

(
− 1

(2π)2l3sgs
·
π2R3

CP
3

r

)
= exp

(
−π

√
2kN

)
. (2.8)

Also, fundamental strings can wrap CP
1 or CP

1/Zr in this geometry and we expect two

kinds of worldsheet instanton effects given by

exp
(
−TF1Vol(CP

1)
)
= exp

(
− 1

2πl2s
· πR2

CP
3

)
= exp

(
−2π

√
2N

k

)
,

exp
(
−TF1Vol(CP

1/Zr)
)
= exp

(
−2π

r

√
2N

k

)
. (2.9)

In section 5, we shall reproduce these expected results of the perturbative part (2.7) and

the non-perturbative part (2.8) and (2.9). Before that in the subsequent sections, we shall

first justify (1.14) and (1.17). Since the gravity dual of this N = 4 theory is the orbifold of

the ABJM theory, hereafter we shall call the corresponding quiver Chern-Simons-matter

theory the orbifold ABJM theory.

3 Orbifold ABJM theory as a Fermi gas

In this section we shall show the relation between the density matrix of the orbifold ABJM

theory and that of the original theory (1.14), which enables us to express the total grand

potential of the orbifold ABJM theory in terms of that of the original theory (1.15). By

using the localization method [32–34], the partition function of the orbifold ABJM theory

on S3 is given by (µ
(r+1)
i = µ

(1)
i )

Zr(N) =
1

(N !)2r

∫ r∏

a=1

N∏

i=1

Dµ
(a)
i Dν

(a)
i

r∏

a=1

∏
i<j

(
2 sinh

µ
(a)
i −µ

(a)
j

2

)2∏
i<j

(
2 sinh

ν
(a)
i −ν

(a)
j

2

)2

∏
i,j 2 cosh

µ
(a+1)
i −ν

(a)
j

2 · 2 cosh ν
(a)
j −µ

(a)
i

2

,

(3.1)

where we have introduced the same notation as in [29, 52],

Dµ
(a)
i =

dµ
(a)
i

2π
e

ik
4π

(µ
(a)
i )2 , Dν

(a)
i =

dν
(a)
i

2π
e−

ik
4π

(ν
(a)
i )2 . (3.2)

– 8 –
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Let us rewrite this into the Fermi gas formalism as in the ABJM case [19, 29]. Using the

Cauchy determinant formula

∏
i<j 2 sinh

xi−xj

2 · 2 sinh yi−yj
2∏

i,j 2 cosh
xi−yj

2

= deti,j
1

2 cosh
xi−yj

2

, (3.3)

we find that the partition function can be rewritten into

Zr(N) =
1

(N !)2r

∫ r∏

a=1

N∏

i=1

Dµ
(a)
i Dν

(a)
i

r∏

a=1

deti,j
1

2 cosh
µ
(a+1)
i −ν

(a)
j

2

detj,i
1

2 cosh
ν
(a)
j −µ

(a)
i

2

.

(3.4)

If we expand the determinants and trivialize the permutations except the one over µ
(1)
i , we

arrive at the following ideal Fermi gas representation

Zr(N) =
1

N !

∫ N∏

i=1

Dµ
(1)
i

∑

σ∈SN

(−1)σ
∏

i

ρr(µ
(1)
σ(i), µ

(1)
i ), (3.5)

where ρr is the density matrix defined by

ρr(µ
(1)
j , µ

(1)
i ) =

∫ r∏

a=2

Dµ(a)
r∏

a=1

Dν(a)
r∏

a=1

1

2 cosh µ(a+1)−ν(a)

2

1

2 cosh ν(a)−µ(a)

2

∣∣∣∣µ(r+1)→µ
(1)
j

µ(1)→µ
(1)
i

.

(3.6)

Then, it is more convenient to move to the grand canonical formalism,

eĴr(µ) =
∞∑

N=0

Zr(N)eµN = det(1 + eµρr). (3.7)

In the ABJM case (r = 1), the density matrix (3.6) is reduced to

ρ1(µj , µi) =

∫
Dν

1

2 cosh
µj−ν

2

1

2 cosh ν−µi

2

. (3.8)

If we define the matrix multiplication among ρ1’s with Dµ (3.2), then we easily see that

two density matrices are related by

ρr = ρr1. (3.9)

Hence in the present case, the total grand potential Ĵr(µ) can be rewritten as

eĴr(µ) = det(1 + eµρr1) =

r−1
2∏

j=− r−1
2

det(1 + e
2πij
r e

µ
r ρ1) =

r−1
2∏

j=− r−1
2

eĴ1(
µ+2πij

r
). (3.10)

4 Derivation of the grand potential

In this section we shall justify our expression of the grand potential (1.17). Namely, we

shall prove that
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• after summing over the replicas, the total grand potential of the orbifold theory

reproduces the product of the total grand potential of the original theory (3.10), i.e.,

the grand potential of the orbifold theory (1.17) satisfies the relation (1.16), and

• the
∑

j nj = 0 term does not contain oscillatory behaviors.

Namely, besides the condition (1.16), as we have noted below (1.7), the property that

characterizes the naive primary term is that it does not contain any oscillatory behavior

in µ. Hence, we should also confirm this property.

We shall prove these two facts in the following two subsections.

4.1 Summing over replicas

Let us show that (1.17) satisfies the relation (1.16), namely,

∞∑

n=−∞

[
∑

∑
j nj=0

r−1
2∏

j=− r−1
2

eJ1(
µ+2πij

r
+2πinj)

∣∣∣
µ→µ+2πin

]
=

r−1
2∏

j=− r−1
2

∞∑

nj=−∞

eJ1(
µ+2πij

r
+2πinj). (4.1)

For this purpose first let us redefine the variables in the summation or the product as

j′ ≡ j + n (mod r), n′
j = nj +

j + n− j′

r
, (4.2)

such that j′ runs over the same range as j, namely from −(r− 1)/2 to (r− 1)/2 with step

1. Then, we find that the argument of J1 becomes

J1

(
µ+ 2πij

r
+ 2πinj

)∣∣∣∣
µ→µ+2πin

= J1

(
µ+ 2πij′

r
+ 2πin′

j

)
. (4.3)

Since we have only shifted j by n in (4.2), it is clear that j′ runs over the same values as

j exactly once,
r−1
2∏

j=− r−1
2

· · · =
r−1
2∏

j′=− r−1
2

· · · . (4.4)

Note also from (4.2) that n′
j are all integers and the constraint

∑
j nj = 0 is translated into∑

n′
j = n. Hence the constraint in the summation is lifted,

∞∑

n=−∞

∑
∑

j nj=0

· · · =
∞∑

n=−∞

∑
∑

j n
′

j=n

· · · =
∞∑

n′

j=−∞

· · · . (4.5)

After removing the primes, this is nothing but the right-hand-side of (4.1).

4.2 No oscillations

Next let us check that Jr(µ) does not give any oscillatory behavior. Namely, we see that

there is no imaginary µ dependence in the exponents.
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Let us first rewrite (1.17) as

Jr(µ) =

r−1
2∑

j=− r−1
2

J1

(
µ+ 2πij

r

)
+ log

[
1 +

∑
∑

j nj=0

(∃j)(nj 6=0)

r−1
2∏

j=− r−1
2

eJ1(
µ+2πij

r
+2πinj)

eJ1(
µ+2πij

r
)

]
. (4.6)

The first term coming from the sector with nj = 0 for all j apparently contains no oscillatory

terms. For the exponents in the parenthesis coming from the sector with nj 6= 0 for some

j, it is useful to introduce a polynomial gℓ,m(µ) determined explicitly by fℓ,m(µ) in (1.10)

and express the grand potential as

eJ1(µ) = eJ
pert
1 (µ)

[
1 +

∞∑

ℓ,m=0
(ℓ,m) 6=(0,0)

gℓ,m(µ)e−(2ℓ+ 4m
k

)µ

]
. (4.7)

Then, the exponents become

r−1
2∏

j=− r−1
2

eJ1(
µ+2πij

r
+2πinj)

eJ1(
µ+2πij

r
)

=

[ r−1
2∏

j=− r−1
2

eJ
pert
1 (µ+2πij

r
+2πinj)

eJ
pert
1 (µ+2πij

r
)

][
1+

∞∑

ℓ,m=0
(ℓ,m) 6=(0,0)

hℓ,m(µ; {nj})e−(2ℓ+ 4m
k

)µ
r

]
,

(4.8)

for a polynomial hℓ,m(µ; {nj}), which also depends on nj . If we substitute the perturbative

part (1.10) into the first factor, we find

Jpert
1

(
µ+ 2πij

r
+ 2πinj

)
− Jpert

1

(
µ+ 2πij

r

)
(4.9)

=
2πiCnj

r2
µ2 − (2π)2C

r
nj

(
nj +

2j

r

)
µ+ 2πinj

(
B − (2π)2C

3

(
n2
j + 3

njj

r
+ 3

j2

r2

))
.

After summing over j and using the condition
∑

j nj = 0, we find the imaginary quadratic

term vanishing, while the linear term is real. Hence, we find that there is no oscillatory

contribution.

5 Physical implications

In the previous section, we have justified our proposal (1.17). In the argument of no

oscillations, we have fully utilized the relation (4.9). Here we shall see that actually this

relation has further physical implications on the perturbative part and the non-perturbative

instanton corrections.

5.1 Perturbative part

Let us look more carefully into the relation (4.9) in the previous section. Since 2j satisfies

−(r−1) ≤ 2j ≤ r−1, it is not difficult to find that the coefficient of the linear term satisfies

nj

(
nj +

2j

r

)
≥ 0, (5.1)

– 11 –
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where the equality holds only when nj = 0. Therefore, sectors with nj 6= 0 for some j

always contain an exponentially decaying factor and do not contribute to the perturbative

part of the orbifold theory. Namely, the perturbative part has only contributions from the

sector with nj = 0 for all j,

Jpert
r (µ) =

r−1
2∑

j=− r−1
2

Jpert
1

(
µ+ 2πij

r

)
. (5.2)

After plugging in the expression (1.10), we arrive at the expressions for Jpert
r (µ) (1.18) and

Zpert
r (N) (1.21). In the large N limit with k and r fixed, the partition function Zpert

r (N)

is expanded as

logZpert
r (N) = −2

3
rC−1/2N3/2+rC−1/2

(
B− π2C(r2 − 1)

3r2

)
N1/2− 1

4
logN +O(1). (5.3)

The first term reproduces the result (2.7) of the classical eleven-dimensional supergrav-

ity. The logarithmic behavior in the third term also agrees with the 1-loop supergravity

analysis in [53].

5.2 Instanton corrections

As we have seen in section 2, we expect the three kinds of the instanton effects (2.8)

and (2.9) from the gravity dual. Here we discuss that these instanton effects can be

naturally understood as exponentially suppressed corrections in the grand potential Jr(µ).

First it is obvious that we have the following two corrections

exp

(
−2µ

r

)
, exp

(
−4µ

kr

)
, (5.4)

which come from substituting µ/r + · · · into J1(µ) as in (4.6). Besides it, from the linear

term in (4.9) we find another kind of exponentially suppressed correction

exp

(
−n

2π2Cµ

r2

)
, (5.5)

with the positive integer n given by

n = 2

r−1
2∑

j=− r−1
2

nj(njr + 2j). (5.6)

After plugging in the ABJM value C = 2/π2k and setting the instanton number n to be

1, this becomes

exp

(
− 4µ

kr2

)
. (5.7)

Using (4.8), we find that the sectors with nj 6= 0 for some j can be expressed as

∑
∑

j nj=0

(∃j)(nj 6=0)

r−1
2∏

j=− r−1
2

eJ1(
µ+2πij

r
+2πinj)

eJ1(
µ+2πij

r
)

=
∞∑

ℓ,m,n=0
n 6=0

gℓ,m,n(µ)e
−( 2ℓ

r
+ 4m

kr
+ 4n

kr2
)µ, (5.8)
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generally with a polynomial gℓ,m,n(µ). Thus, finally we conclude that the non-perturbative

part of Jr(µ) takes the following form

Jnp
r (µ) =

∞∑

ℓ,m,n=0
(ℓ,m,n) 6=(0,0,0)

fℓ,m,n(µ) exp

[
−
(
2ℓ

r
+

4m

kr
+

4n

kr2

)
µ

]
, (5.9)

with a polynomial fℓ,m,n(µ).

For comparison with our result in (2.8) and (2.9), let us return to the canonical partition

function. In the large N limit, the integration over the chemical potential µ is dominated

by the saddle point µ∗ related to N by

∂Jr(µ)

∂µ

∣∣∣∣
µ=µ∗

= N, µ∗ = πr

√
kN

2
. (5.10)

Hence, the exponentially suppressed corrections (5.4) and (5.7) on the gauge theory side

are translated to (1.22)

exp
(
−π

√
2kN

)
, exp

(
−2π

√
2N

k

)
, exp

(
−2π

r

√
2N

k

)
,

which are exactly the same instanton effects found from the gravity side in (2.8) and (2.9).

For finite N , these instanton effects contribute to Zr(N) by a superposition of

Ai

[(
C

r2

)−1/3(
N −B +

π2C(r2 − 1)

3r2
+

2ℓ

r
+

4m

kr
+

4n

kr2

)]
(5.11)

and their derivatives.

Note that unlike the original instanton effects, n obeys an interesting selection rule

and only takes a discrete set of integers (5.6). For example, n always has to be an even

number and the smallest instanton number is n = 4 which comes from the combination of

nj with its non-zero components given by

n− r−1
2

= 1, n r−1
2

= −1. (5.12)

6 Examples

Let us use our formula (1.17) to write down several terms explicitly. Note that once we

have a general formula, all these results can be obtained very easily from [24, 26]. One

purpose of this section is to see a rough structure, which would be useful in the future study

of more general N = 3 Chern-Simons-matter theories. In the following we will show the

non-perturbative part of the grand potential Jnp
r,k(µ) for the case of k = 2. The reason we

choose this case is because of its novel behavior, though we can study for any r and any k.

Jnp
2,2(µ) =

[
−2µ2 + 2µ+ 2

π2
+ 2

]
e−µ +

[
−52µ2 + 2µ+ 9

4π2
+ 18

]
e−2µ

+

[
−368µ2 − 304µ/3 + 308/9

3π2
+

608

3

]
e−3µ

– 13 –
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+

[
−2701µ2 − 13949µ/12 + 11291/48

2π2
+ 2514

]
e−4µ +O(e−5µ), (6.1)

Jnp
3,2(µ) =

[
−4(4µ+ 3)

3
√
3π

+
16

9

]
e−

2
3
µ + e−

8
9
µ +

[
−104µ+ 3

3
√
3π

− 104

9

]
e−

4
3
µ

+

[
4(4µ+ 3)√

3π
+

16

3

]
e−

14
9
µ +O(e−

16
9
µ), (6.2)

Jnp
4,2(µ) =

[
−2µ+ 2

π
+ 1

]
e−

1
2
µ +

[
13µ2 + µ+ 9

2π2
+

8(µ+ 1)

π
− 43

]
e−µ

+

[
32(µ+ 1)2

π2
+

344µ− 376/3

3π
− 152

3

]
e−

3
2
µ

+

[
256(µ+1)3

3π3
− 2957µ2−10877µ/6+14363/12

4π2
− 2720µ+2528/3

3π
+5754

]
e−2µ

+O(e−
5
2
µ). (6.3)

Note that for the case of r = 2 the coefficients are very similar to the (k,M) = (4, 1) case

of the ABJ theory [52], which is the N = 6 Chern-Simons-matter theory with gauge group

U(N)×U(N +M) and levels k and −k [54, 55]. For the case of r = 3, the novel instanton

term e−
16µ

kr2 discussed previously does not mix with other contributions. For the case of

r = 4, the coefficient polynomials of instantons are not necessarily quadratic any more.

Forgetting about the result (1.17), we have also checked (6.1)–(6.3) numerically by

the same method used in [24]. Namely, using the exact values of the partition function

Zr(N) in the orbifold ABJM theory obtained from those in the original theory with the

relation (1.14), we try to find out the exact coefficients of the primary grand potential

Jr(µ) numerically using the inverse transformation

Zr(N) =

∫ ∞i

−∞i

dµ

2πi
eJr(µ)−µN . (6.4)

We find that the coefficients match well with those in (6.1)–(6.3) within about 1% errors.

Since we have less exact values (with the number divided by r) and relatively milder de-

caying factors in the instanton effects (especially for the r = 3 case due to the intermediate

new instanton effect (5.7)), it is difficult to check with high precision to high instanton

corrections. However, we believe that at least it is safe to claim that we have detected the

appearance of the new instanton numerically.4

7 Discussions

We have studied the partition function of the orbifold ABJM theory via the grand canonical

formalism. We have found the explicit formula (1.17) for the grand potential in terms

of the grand potential of the ABJM theory. It is surprising to find that the subsidiary

oscillatory terms of the original theory lead to the primary non-oscillatory term of the

orbifold theory and the perturbative part in the original theory results in the new non-

perturbative instanton effect (1.20) in the orbifold theory. We have identified this instanton

4We are grateful to Y. Hatsuda for valuable discussions.
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effect as the string worldsheet wrapping the cycle CP1/Zr in C
4/(Zr×Zkr). Let us discuss

some future directions.

As we have explained in section 1, there are several methods to study the matrix

model. We would like to detect the new instanton effect from complementary methods.

For example, since the density matrix of the orbifold theory is related directly to that of

the ABJM theory (1.14), it is great to see how the grand potential is also derived from

the exact quantization as in [30]. Also, we expect that the new instanton effects can be

reproduced from the genus 1 analysis in the ’t Hooft limit as in [14].

It has been found that the new instanton effect obeys the interesting selection rule (5.6).

It is important to understand the origin of the selection rule both from the direct field

theoretical study and from the gravity dual [8–10].

The result that the perturbative part in the original theory results in the non-

perturbative effect in the orbifold theory (1.20) may look less surprising in view of the

following interpretation from the gravity dual.5 Since this non-perturbative effect corre-

sponds to the string worldsheet wrapping the cycle CP
1/Zr which is not present in the

original AdS4 × S7/Zk background, they can only have a perturbative origin. We hope to

understand it from the field theoretical study as well.

In the context of resurgence theory, it was found [58–60] that the perturbative asymp-

totic expansion contains the information of the non-perturbative effects. In extended super-

symmetric theories [61], even though there are no ambiguities in the asymptotic expansion,

our result still shows that the perturbative coefficient appears in the non-perturbative ef-

fects (1.20). It would be great to understand more extensively also from the viewpoint of

the resurgence theory.

We have often substituted the complex values of the chemical potential µ into the

primary non-oscillatory grand potential of the ABJM theory as in (1.17). However, the

original expression is only literally valid for large real chemical potential µ. This is allowed

only when they are in the same Stokes sector. Our numerical check in section 6 is a crucial

support for this assumption, though we hope to study the analytical structure of the grand

potential carefully.

Our result on the orbifold ABJM theory (1.17) has been obtained based on the result

of the ABJM theory. We hope that there is a more direct expression with topological

invariants on a certain dual geometry of the orbifold ABJM theory.

As we have noted in section 1, our expression of the grand potential (1.17) including

the perturbative sum (1.18) and the new instanton effect (1.20) are very general. Namely,

they are applicable to any necklace quiver Chern-Simons-matter theory as long as the

quiver diagram is repetitive as in figure 2. We hope to study more general theories using

these results. For the ABJ theory [54, 55], in the Fermi gas formalism of [56, 57], the grand

potential is expressed in a similar manner. This means that our result is also applicable to

these cases, though this fact is not so obvious from the formalism of [52].

The meaning of various sectors with different combinations of nj is not very clear. In

some sense, the sector with nj = 0 for all j is similar to the untwisted sector in the string

5We are grateful to the referee for valuable comments.
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orbifold theory, while the others are similar to the twisted ones. We hope to clarify the

physical meaning of these sectors.
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