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1 Introduction

Higher dimensional theories have been at the center of interest in recent decades. They

emerge as necessary ingredients of string theory and when utilized with branes and warped

compactification, provide great phenomenological implications such as hierarchy problem

in field theories [1–3] or cosmological constant problem in gravitational theories [4, 5].

Embedding our 4-dimensional world as a brane in a higher dimensional spacetime brings

us more chance to capture higher dimensions in accessible energy scales in high energy

accelerators such as LHC.

For a long time, the Salam-Sezgin supergravity in 6-dimension [6–9] has attracted

attentions as a relatively simple model to study the warp compactifications [10–16]. It

has the advantage that can be derived from string theory and has a consistent bosonic

truncation [17]. The bosonic part of the model contains graviton, dilaton, a 2-form F , and a

3-form H field. In most of brane-world scenarios, based on the Salam-Sezgin model, H field

was set to zero and a 4-dimensional Lorentz symmetric compactification was presented [10–

16, 18–24]. The perturbation around this symmetric background and modification to the

Newtonian gravity was studied in [25, 26].

Including H field was firstly done in [27] where a static model obtained and searching

for a dynamical metric was followed in [28, 29]. In [27] an axially symmetric internal space

was introduced, where the radial direction was cut by two 4-branes which wrapped over

the azimuthal circle. Smeared 3-branes and zero-branes were also introduced to satisfy

Israel junction conditions.

Since H is a 3-form, turning it on presumably violates the Lorentz symmetry. Indeed

in the presence of the H field, an asymmetry shows up in the metric as the warp factors

for time and space are different. This asymmetric warping had been studied before in

different models, sometimes known as time warp [30–46]. However, it was shown that the

warp factor can be made to be symmetric at the physical brane which restores the Lorentz
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symmetry on the brane. This is interesting for standard model fields which are confined

on the brane, but doesn’t save the Lorentz invariance for gravity modes which inherently

propagate in all directions including off the brane. The Lorentz violation is claimed to

be one of the most efficient way to explore new physics and important to those who are

curious in the relation of gravitational and quantum phenomena [47].

On the other hand, the importance of the model in [27] is bypassing a no-go theorem

originated from the null energy condition [39, 46, 48]. The no-go theorem states that

the internal space for any asymmetric warp compactification in D 6= 6, indeed can not be

compact, unless the null energy condition violated. So any Lorentz violation scenario based

on higher dimensional gravity is restricted by the no-go theorem [48]. The silence of the

no-go theorem in D = 6 dimension makes the model [27] a candidate for the gravitational

Lorentz violation in higher dimensions without violating the null energy condition.

In this article, we follow H field model in [27], consider the spatial tensor perturbation

of metric and derive gravitational wave equation. The equation is accompanied by bound-

ary conditions at branes. Since it is too complicated to be solved analytically, we perform

numerical analysis to find a solution. Results involve the graviton spectrum including a

massless mode with a mass gap for higher modes. Positive definiteness of the spectrum

indicates the stability of the model as long as tensorial perturbation is concerned. Phe-

nomenologically, finding a massless state with a mass gap is interesting and shows that the

effective four dimensional gravity can be obtained in this model. As expected, the graviton

propagation generates an energy-momentum dispersion relation which violates the Lorentz

symmetry. Our numerical results show that the phase velocity as c = E/P in some range of

energy exceeds the limit 1. This says that while the electromagnetic wave speed is already

1 on the brane-world, the gravitational wave speed limit is over 1 due to the asymmetric

warp factor. This is an explicit example of gravitational Lorentz violation while the null

energy condition is satisfied.

2 The set-up

In this section we give a brief introduction to the model in [27]. Let us begin by the bosonic

part of Salam-Sezgin Lagrangian as

L√
−g

=
1

2κ2
(−R− ∂Mφ∂Mφ)− 1

4
e−φFMNF

MN − 1

6
e−2φHMNPH

MNP − 2g2

κ2
eφ (2.1)

where φ, F and H are respectively dilaton, 2 and 3-form fields. The constant g may also

be recognized as the cosmological constant. Equation of motion governing each field is

obtained as follows,

−RMN = ∂Mφ∂Nφ+
g2

κ2
eφGMN +

1

2
κ2e−2φ

(
H2
MN −

1

6
H2GMN

)
+ κ2e−φ

(
F 2
MN −

1

8
F 2GMN

)
, (2.2a)

�φ+
κ2

6
e−2φHMNPH

MNP +
κ2

4
e−φFMNF

MN − 2g2

κ2
eφ = 0, (2.2b)
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DM (e−2φHMNP ) = 0, (2.2c)

DM (e−φFMN ) + e−2φHMNPFMP = 0. (2.2d)

We also take the space-time described by

ds2 = −e2w(η)dt2 + e2a(η)δijdx
idxj + e2v(η)dη2 + e2b(η)θ′2,

F = 0, eφ = eφ(η), H = h′(η)dt ∧ dθ′ ∧ dη. (2.3)

For later convenience we take z = η/lz and θ = θ′/lθ. Now (z, θ) are dimensionless

cylindrical coordinates and (lz, lθ) stand for compactification radii of extra dimensions.

Inserting the metric ansatz into field equations (2.2), a natural gauge condition for fixing

parameter z seems to be w′ + 3a′ − v′ + b′ = 0 that leads to following solution:

h′(z) = ±qe2x

w(z) =
y + x

4
+ (2λ3 + λ4)(|z|+ z3)

a(z) =
y − x

4
− λ3

3
(|z|+ z3)

v(z) =
5y − x

4
+ λ3(|z|+ z3)

b(z) =
y + x

4
− λ4(|z|+ z3)

φ(z) =
y − x

4
− 2λ3(|z|+ z3) (2.4)

where q, λ3, λ4 and z3 are some constants, and auxiliary functions x and y satisfy

x′
2 − 2q̃2e2x = λ2,

y′
2

+ 4g̃2e2y = 1, (2.5)

with λ being another constant, q̃ = κq/lz and g̃ = glz/κ are now dimensionless. The

absolute value of extra dimension originates from the fact that to avoid any singularity,

one needs to cut the geometry, say between 0 and L, then double it to find a periodic

solution between −L and L. Finally we have a compactified space in (0, L) interval with

a Z2 symmetry and absolute values appear at boundaries. The topology of the internal

space would be a cylinder with two boundaries.

Before going on the boundary conditions and introducing branes, let us make some

comments on the solution and parameters involved. The general form of e−x from the

solution of first equation is one of sinh/sin or linear functions corresponding to the value of

λ2 to be positive/negative or zero, respectively. Here we take the positive sign and, without

loss of generality, assume that λ is positive as well. Equations (2.5) then read

e−x =

√
2q̃

λ
|sinh(λ(|z|+ z1))|

e−y = 2g̃ cosh(|z| − z2), (2.6)

– 3 –



J
H
E
P
0
8
(
2
0
1
4
)
0
7
6

where zi’s are integration constants. Notice that solutions to (2.5) in the limit q̃ and g̃ → 0

are x = ±λz+c1 and y = ±z+c2. However the hyperbolic functions in eqs. (2.6) could not

essentially reduce to these limiting solutions, unless the constants zi’s are chosen properly.

This can be done by rewriting, for example, e−x in (2.6) as

e−x =
q̃√
2|λ|

∣∣∣eλ(|z|+z1) − e−λ(|z|+z1)
∣∣∣ =

(
q̃eλz1√

2λ

)
eλ|z|

∣∣∣1− e−2λ(|z|+z1)
∣∣∣ ,

and then taking logarithm of both sides and let q̃√
2λ
eλz1 = 1, the limiting solution x =

±λz+c1 can be achieved as q̃ → 0. In the same way, g̃e−z2 = 1. The solutions to eqs. (2.5)

are therefore:

x = −λ|z| − ln
∣∣∣1− q̄2e−2λ|z|

∣∣∣ ,
y = |z| − ln

(
1 + g̃2e2|z|

)
, (2.7)

with q̄ = q̃/
√

2λ. Now inserting metric functions (2.4) into the zz−component of Einstein

equation, one finds the constraint

λ2 + 2(λ3 + λ4)2 +
16

3
λ2

3 = 1 (2.8)

that reduces number of independent constants by one.

Introducing boundaries and including absolute value in the solution suggests some

branes as delta function singularities which arise as second derivative of absolute values.

A suitable configuration of branes in the closed interval [0, L] is [27]:

T brane
MN = −

[
(T4 + T̃3)gµνδ

µ
Mδ

ν
N + T4gθθδ

θ
Mδ

θ
N

]
lze
−vδ(z)

−
[
(TL4 + T̃L3)gµνδ

µ
Mδ

ν
N + T̃L0g00δ

0
Mδ

0
N + TL4gθθδ

θ
Mδ

θ
N

]
lze
−vδ(L− z) (2.9)

where Tp(TLp) stands for tension of p−brane located at z = 0(z = L) and tilde denotes

density of tension. In this configuration, 4-branes are boundaries of the space and 3 and

zero branes are smeared over 4-branes. Inclusion of 3 and zero branes is essential for

matching the energy-momentum and the Einstein tensors. The Israel junction conditions

then read1

[a′(z)− w′(z)]z=0+ = 0

[b′(z)− a′(z)]z=0+ = −κ2ev(0)T̃3

[3a′(z) + w′(z)]z=0+ = −κ2ev(0)T4

[a′(z)− w′(z)]z=L− = κ2ev(L)T̃L0

[b′(z)− a′(z)]z=L− = κ2ev(L)T̃L3

[3a′(z) + w′(z)]z=L− = κ2ev(L)TL4, (2.10)

1For technical details in various branes configurations consult with [49].
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from which brane tensions can be derived and [f(z)]z0 is defined as

[f(z)]z0 = lim
ε→0

(f(z0 + ε)− f(z0 − ε)) . (2.11)

Since metric functions are even function of z and we are working in the interval [0, L], then

on the boundary z = 0+(z = L−) one should replace, for example, a′(−ε) with −a′(ε) while

on the boundary z = L−, a′(L+) should be replaced with −a′(L−). The first condition of

eqs. (2.10) gives

14λ3 + 6λ4 = −3αλ (2.12)

where α = 1+κ2q̄2

1−κ2q̄2 . Using (2.8), we then get the following relations between (λ3, λ4) and

(λ, q):

λ±3 =
3

20
αλ± 3

40

√
20− 20λ2 − 6α2λ2,

λ±4 =
3

20
αλ∓ 7

40

√
20− 20λ2 − 6α2λ2. (2.13)

The only remaining constant to be noted is z3 in (2.4) that is essentially unimportant

and can be absorbed by rescaling coordinates. However, we keep this constant for further

simplification.

3 The null energy condition

Before study the gravitational perturbation in the above background, it is worth to pause

for a while and consider the null energy condition. This condition appears as a constraint

for a matter distribution to be physical in the context of classical general relativity. It

simply states that for any null vector ξM , the following inequality holds for the energy

momentum tensor,

TMNξ
MξN ≥ 0. (3.1)

Since ξ is a null vector using the Einstein equation one finds,

RMNξ
MξN ≥ 0. (3.2)

To be specific, let us choose ξM = (e−w, e−a, 0, 0, 0, 0), so (3.2) turns to −R0
0 + R1

1 ≥ 0.

This condition is satisfied in the bulk as in the following [27],

e2v(−R0
0 +R1

1) = w′′ − a′′ + (w′ − a′)2 + (b′ − v′)(w′ − a′) + 4a′(w′ − a′) ≥ 0

= w′′ − a′′ = x′′ ≥ 0 (3.3)

where the gauge condition is used. It is easy to verify that the last inequality x′′ ≥ 0 is

true.

However, this is not the whole story, since our model includes branes as boundaries.

To investigate the null energy condition at boundaries, we apply it directly to branes

energy-momentum tensor (2.9),

−T 0
0 + T 1

1 = +T̃L0lze
−vδ(L− z) ≥ 0 (3.4)
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This condition implies T̃L0 ≥ 0. For further constraint, consider the null vector in (3.1) to

be ξM = (e−w, 0, 0, 0, 0, e−b), then

−T 0
0 + T θθ = T̃3lze

−vδ(z) + (T̃L3 + T̃L0)lze
−vδ(L− z) ≥ 0 (3.5)

It gives T̃3 ≥ 0 and T̃L3 + T̃L0 ≥ 0.

Thus in any physical solution to satisfy the null energy condition, T̃3 should be negative

or zero, while T̃L0 and T̃L3 + T̃L0 should be non-negative. To translate these conditions

into some constraints on independent constants in the model, we firstly set T̃L0 ≥ 0 in

the fourth equation of eqs. (2.10). This, after a bit of algebra, gives e−2λL ≤ 1 that is

always true. Two conditions T̃3 ≥ 0 and T̃L0 + T̃L3 ≥ 0 simplify commonly to the following

inequality

±
√

20− 20λ2 − 6α2λ2 ≤ 3αλ, (3.6)

in which plus/minus signs originate from definitions of λ±3 and λ±4 in eq. (2.13). This

inequality is satisfied unconditionally if (λ3, λ4) = (λ−3 , λ
−
4 ) while the choice (λ3, λ4) =

(λ+
3 , λ

+
4 ) gives rise to the constraint λ2 ≥ 4/(4 + 3α2). We therefore adopt the choice

(λ3, λ4) = (λ−3 , λ
−
4 ) that is less sever.

4 Small space-time fluctuations

To understand behaviour of graviton in this space-time, we consider small fluctuations

around the background metric. Recalling the Palatini identity, the small fluctuation δgMN

implies a variation in Ricci tensor as, to leading order in δ,

− δRMN =
1

2
gAB∇A(∇MδgNB +∇NδgMB −∇BδgMN )− 1

2
∇M∇NδgAA. (4.1)

We take the tensorial fluctuations in the spatial sector on brane, i.e. δgMN = δgijδ
i
Mδ

j
N ,

and also adopt the conventional transverse-traceless gauge in which δgii = 0 and ∂iδg
i
k = 0.

The immediate consequence of this gauge is that the last term in (4.1) vanishes identically.

The other terms simply show that just the components δRzi and δRij may be non-zero.

Keeping in mind that the background metric depends only on z coordinate, δRzi is obtained

to be zero as well. The only remaining possibility is therefore

−δRij = −1

2
�δgij +

1

2
gkl∇k(∇iδgjl +∇jδgil)

= −1

2
�δgij + a′gzz(∂zδgij − 2a′δgij) (4.2)

where � ≡ gAB∇A∇B stands for the d’Alembert operator. We now consider the right-hand

side of the Einstein equation in (2.2) as

− δRMN = δSMN + δSbrane
MN (4.3)

where

SMN = TMN −
T

D − 2
gMN , (4.4)
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and then change the metric tensor as gMN → gMN + δgijδ
i
Mδ

j
N to give

δSMN =

(
g2

κ2
eφ − 1

12
κ2H2e−2φ

)
δgMN

= −a′′e−2vδgMN . (4.5)

in which we have used the (ii)−component of Einstein field equations. The only remaining

contribution to the energy-momentum tensor to be taken into account is that of branes.

Recalling Einstein equation in (2.2) and energy-momentum tensor on the branes (2.9), then

δSbrane
MN is obtained as

δSbrane
MN = κ2

(
δTMN −

δT

D − 2
gMN −

T

D − 2
δgMN

)
. (4.6)

Notice that TMN ∝ GMN which leads to δTMN ∝ δgMN = δgijδ
i
Mδ

j
N , and δT =

δ(GMNT
MN ) ∝ δgMM = 0 because of the tracless gauge. Two other terms can be derived

as follows,

T

D − 2
= − 1

D − 2

([
4(T4 + T̃3) + T4

]
e−vδ(z) +

[
4(TL4 + T̃L3) + TL4 + T̃L0

]
e−vδ(L− z)

)
δTMN = −(T4 + T̃3)e−vδgMNδ(z)− (TL4 + T̃L3)e−vδgMNδ(L− z). (4.7)

The branes contribution finally becomes

δSbrane
MN =

κ2

4

[
T4δ(z) + (T̃0 + T4)δ(L− z)

]
e−vδgMN

= −1

2

[
(3a′ + w′)(0+)δ(z)− 4a′(L−)δ(L− z)

]
e−2vδgMN

= −2
[
a′(0+)δ(z)− a′(L−)δ(L− z)

]
e−2vδgMN (4.8)

where we used eqs. (2.10) and definition (2.11). We now gather eqs. (4.2), (4.5) and (4.8)

to get the equation governing fluctuations:

gzz�δgij − 2a′∂zδgij + (4a′
2 − 2a′′)δgij = 4[a′(0+)δ(z)− a′(L−)δ(L− z)]δgij . (4.9)

Notice that the function a′′ here should be written as a′′sign(z)+2a′δ(z) because of absolute

value in its argument. Since we have previously chosen the gauge ∂z(g
zz√−g) = 0 in fixing

coordinate z, the d’Alembertian operator reduces to gMN∂M∂N which simplifies (4.9). To

recast this equation in the form of a Schrödinger-like one, we perform the transformation

δg̃ij = δgije
−a and take the Fourier decomposition of the form δg̃ij = exp(iηµν p̃

µxν)ψ(z)

to get

d2ψ

dz2
+
[
3a′

2 − a′′sign(z) + e2v−2w(E2 − c2p2)
]
ψ

= 6[a′(0+)δ(z)− a′(L+)δ(L− z)]ψ. (4.10)

where we used gzz = l2ze
2v and defined dimensionless energy E := Ẽlz and momentum

p := p̃lz. Also, c(z) := ew−a that is, in terms of metric functions (2.4),

c(z)2 =
eλ[αz3+(α−1)|z|]

1− q̄2e−2λ|z| . (4.11)
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We now fix z3 such that c(0)2 = 1 implying eαλz3 = 1 − q̄2. This choice also imposes a

restriction on q̄2 to be smaller than unity for which c2(z) > 0. Then we rewrite c2(z) as,

c(z)2 =
(1− q̄2)e(α−1)λ|z|

1− q̄2e−2λ|z| . (4.12)

In eq. (4.10), a factor e2(λ3+λ4)z3 is included in the function e2v−2w that can be absorbed

in E and p by rescaling.

To find boundary conditions, we integrate eq. (4.10) over a small neighbor around bound-

aries at z = 0 and z = L. The resulting conditions are

ψ′(0+) = 3a′(0+)ψ(0),

ψ′(L−) = 3a′(L−)ψ(L). (4.13)

Having found boundary conditions we now proceed to find a solution in the bulk. However,

the complication in the potential of (4.10) leads us to numerical methods.

Before restricting ourselves to any special values of constants, it is worth to make sense of

dispersion relation by rewrite eq. (4.10) in the bulk as

− ψ′′ + q̂(z)ψ = λ̂ŵ(z)ψ, (4.14)

where we have defined the eigenvalue λ̂ = E2, weight function ŵ(z) = e2v−2w > 0, and

q̂(z) = p2c2ŵ + a′′ − 3a′2. The weight function suggests to adopt the normalization of

wave function as
∫ L

0 ψ?ŵψdz = 1, and consequently define the expectation value of a given

function f(z) as 〈f〉 :=
∫ L

0 ŵψ?fψdz. We now multiply eq. (4.14) by ψ?, complex conjugate

of wave function, and integrate the result from z = 0 to L to obtain the well-known Green’s

first identity

λ̂

∫ L

0
ŵψψ? dz =

∫ L

0
ψ?(Lψ) dz = ψ′ψ?|0L +

∫ L

0
(ψ′ψ?′ + q̂ψψ?) dz. (4.15)

Inserting corresponding quantities and functions in this identity, one finds

E2 = p2
〈
c2
〉

+
〈
ŵ−1(a′′ − 3a′

2
)
〉

+ ψ′ψ?|0L +

∫ L

0
ψ′ψ?′ dz. (4.16)

This is an energy-momentum dispersion relation for which the group velocity vg = dE/dp

times the phase velocity vph = E/p reads as,

E

p

dE

dp
=
〈
c2
〉
. (4.17)

On the brane localized at z = 0 we have c(0) = 1, so this equality reduces to the familiar

relation vphvg = 1. However, c in the r.h.s. of this equality is no longer constant in the

bulk which leads to a superluminal behaviour of graviton in this model.

Although
〈
c2
〉

cannot be determined unless we have the exact form of wave function in

hand, it is possible to estimate upper and lower bounds to this quantity. The expectation

value
〈
c2
〉

is in fact weighted average of function c2(z) with the (normalized positive)

– 8 –
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measure ŵ|ψ|2, probability density function. Based on the fact that average of any function

over an interval lies between its extrema in that interval, we can write min{c2(z)} ≤
〈
c2
〉
≤

max{c2(z)} for z ∈ [0, L]. The equal sign occurs when the function c(z) is constant over

the interval that is not the case we are considering. We then can write

min{c2} ≤ E

p

dE

dp
≤ max{c2}. (4.18)

To find extrema of c2(z) defined by (4.12), we notice that this function is strictly increasing

meaning that its derivative is positive for all z in the domain 0 ≤ z ≤ L. This observa-

tion ensures us that the extrema occur at endpoints z = 0 or z = L. We therefore can

safely write min{c2} = c2(0) = 1 and max{c2} = c2(L). Inserting these values in the

inequality (4.18), it becomes

1 ≤ E

p

dE

dp
≤
(

1− q̄2

1− q̄2e−2λL

)
e(α−1)λL, (4.19)

The constants q̄ and λ here refer to contributions of electric H field and dilation to the

dispersion relation while the effect of cosmological constant does not appear explicitly.

This relation determines the most speed violation from speed of light for a given set of

constants. In particular, the problem becomes non-dispersive if either q̄ = 0 or λ = 0, and

the r.h.s. approaches to infinity for large L limit.

We can now solve the equation (4.10) for dimensionless quantities (z, E, p) and there-

after interpret them as (η/lz, Ẽlz, p̃lz). To find 6D Planck mass, we integrate over extra

dimensions of the action (2.1) as

S6 = M4
(6)

∫ √
−GR(6)d6x

= M4
(6)

∫
d4x
√
−g
(
−R(4)

00

∫
dθ′dη

√
Ge−2w + δikR

(4)
ik

∫
dθ′dη

√
Ge−2a

)
(4.20)

where M4
(6) = 1

2κ26
, g and G are respectively determinants of 4D flat metric and 6D

metric. Since e−2w = c2e−2a, two integrals in r.h.s. are approximately equal for suffi-

ciently small violation of speed from unity, say ε := c − 1. In this regime, one can define

V2 :=
∫
dθ′dη

√
Ge−2w as the volume of 2D compactified space and obtain

S6 = M4
(6)V2

∫ √
−gR(4)d4x ≡M2

(4)

∫ √
−gR(4)d4x (4.21)

with M2
(4) := 1

2κ24
. As a result of this relation, the 6D Planck mass is obtained as M4

(6) =

M2
(4)/V2 with M(4) = 2× 1018GeV. We use this relation in the next section.

5 Numerical results

To solve equation (4.10) numerically, we firstly study the constraints on constants involved.

The charge q and coupling constant g seem to be arbitrary everywhere, as expected from

a physical point of view. Returning to metric functions (2.4), one finds that a real metric
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tensor implies that both of λ3 and λ4 in (2.13) are real. This condition imposes a constraint

on λ as

λ ≤

√(
1 +

3

10
α2

)−1

. (5.1)

The final constant to be specified is the distance separating the branes, L. Notice that L is

not fixed in this model. Instead it is chosen phenomenologically to fit experimental bounds

as explained below. It is possible to study this radial mode and its spectrum as well. Since

the radion field propagates in the bulk, we expect that its massless mode, if any, violates

the Lorentz symmetry. However in this article we focus on the tensorial perturbation and

postpone the radial one for future works.

Once the set of constants (λ, q̃, g̃, L) is fixed, for every value of momentum p, boundary

conditions are satisfied just for some special values of energy E. Then the mass spectrum

of graviton can be obtained by finding energies correspond to zero momentum limit. Es-

pecially, the massless graviton is of great interest and it does exist provided the smallest

energy approaches to zero when momentum does so. This statement may be considered as

a criteria for fixing either L or λ, given other constants.

Among all possible configurations, we are interested in the case that all tensions are

non-negative. As said before, the choice (λ3, λ4) = (λ−3 , λ
−
4 ) guarantees that TL0, TL3 and

T3 are non-negative and consequently null energy conditions are satisfied. Furthermore,

the inequality T4 ≥ 0 reads the following condition

1− 4

5
αλ− 1

10

√
20− 20λ2 − 6α2λ2 ≥ 2

1 + g̃2
(5.2)

which imposes a lower bound on g̃2, provided the left-hand side itself is non-negative that

is so if

λ ≤
8α−

√
8(α2 − 2)

2 + 7α2
. (5.3)

This inequality now implies that α ≥
√

2 or q̄2 ≥ 0.17. We now have two conditions (5.1)

and (5.3) on λ that reduces to (5.3). Therefore, the constant λ can be written as

λ = µ

(
8α−

√
8(α2 − 2)

2 + 7α2

)
(5.4)

for 0 < µ < 1 being a fine-tuned parameter satisfying the criteria above. Finally TL4 can

be checked easily to be non-negative where T4 does so. In this manner we firstly fix q̄2

and put g̃2 twice of that obtained from equality sign of (5.2) and then search for suitable

µ in (5.4). This strategy leaves L unconstrained and the violation of speed from unity, ε,

may take every value due to inequality (4.19).

However, there have been reported some constraint on the size of violation of graviton’s

propagation speed by general relativity tests in solar system and binary pulsar [50] that

is about ε ≤ 10−6. Recalling equation (4.19), this upper bound of ε is translated as a

constraint on λL. It is easy to check that for small λL� 1, this equation reads c2(λL) =

1 + O(λ2L2) + . . ., in which the ellipses indicates higher orders of λL. Here we change
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Figure 1. Speed of graviton versus momentum in log scale. Cross/asterisk symbols denote chosen

momenta. The curve indicates that in a wide range of momenta, the graviton violates the speed

limit.

both λ and L under the criteria that massless graviton does exist and the upper bound

λL ≈ 10−3 that gives ε ≈ 10−6.

Two set of constants obtained in this way are (q̄2, g̃2, L, λ) = (0.3, 5.322, 1.258, 4.38 ×
10−3) and (q̄2, g̃2, L, λ) = (0.7, 5.315, 1.257, 1.32 × 10−3). We will refer to each set of

constants by its q̄2-value. Inserting these values, we chose momentum in the interval

[0, 7 × 105] and changed energy, by the increment δE, from zero to the value satisfying

boundary conditions. To be more accurate, the energy increment was chosen in two regimes:

δE = 10−8 for p ∈ [0, 1], δE = 10−6 for remaining part of interval. Since momentum varies

in a wide range of, we used logarithmic scale for momentum. For each set of constants, the

violation from speed of light
(
E
p − 1

)
is shown in figure 1.

As we can see, the graviton has a similar behaviour in both examples: it begins with

the speed of light for small momenta and then its velocity increases to a maximum. For

a wide range of momenta, the velocity remains nearly constant at this maximum and

thereafter falls off to unity asymptotically. The maximum value of c2(z) in the r.h.s. of

inequality (4.19) is obtained c2(L)−1 = 1.847×10−5 for the first set of constants (q̄2 = 0.3),

and c2(L) − 1 = 2.112 × 10−5 for the other set. For a massless particle (vph = vg), this

inequality implies that vg|q̄2=0.3 − 1 < 1.847 × 10−5 and vg|q̄2=0.7 < 2.112 × 10−5 that is

verified by figure 1. The tension of each brane is also shown in the table 1 which ensures us

that null energy conditions are satisfied. Similar to the case of Randall-Sundrum model,

the positive T4 guarantees that Newtonian gravity can be recovered on the 4−brane located

at z = 0. It is also worth to find the mass gap between zero mode and some lowest massive

modes that are listed in the following table 2.

The appearance of a mass gap would be interesting phenomenologically. To make

sense of order of magnitude of energy levels, we notice that the dimensionless factor E
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Tension(×κ−2eλ3z3) T̄3 T4 TL0 T̄L3 TL4

q̄2 = 0.3 19.712 5.039 0.004 118.526 68.065

q̄2 = 0.7 24.317 6.225 0.005 146.080 84.003

Table 1. Tension of branes for each set of constants

Mass spectrum E0 E1 E2 E3 E4

q̄2 = 0.3 0 42.842 79.061 115.802 152.879

q̄2 = 0.7 0 65.391 120.653 176.725 233.307

Table 2. Mass spectrum of graviton in dimensionless variable E = Ẽlz. Taking lz ∼ TeV−1 turns

the mass spectrum into TeV units.

here is in fact Ẽlz. Hence, the energies are of order l−1
z . Taking lz ∼ TeV−1 turns the

mass spectrum into TeV units, so phenomenologically consistent with observation bounds

on massive gravitons. Notice that we have ignored the θ-direction KK modes of graviton

in equation (4.10), so we expect lθ to be much smaller than lz.

As the last quantity we consider 6D Planck mass. The graviton contribution to the

Loop corrections to standard model particles gives a bound on the graviton dispersion

relation [51]. This loop correction bound depends on M(6) and would be stronger than

ε ≤ 10−6 by the solar system observation, only if M(6) is not far above TeV scale.

Calculation of the 6D Planck mass gives M(6) = Γ(q̄, g̃, L, λ)
√
l−1
z l−1

θ , with Γ(q̄, g̃, L, λ)

comes from the volume of compactified 2D space, V2, in (4.20) that is Γ(q̄2 = 0.3) =

1.765× 10−3 and Γ(q̄2 = 0.7) = 1.675× 10−3. Now assuming
√
l−1
z l−1

θ ∼ 104TeV−1, we get

to M(6) ∼ 10TeV that is in the order of magnitude not to impose stronger graviton loop

correction bound than ε ≤ 10−6 [51].

6 Conclusion

We have considered the dispersion relation for gravitational wave in the six-dimensional

space compactified to 4D, in the presence of dilaton and an electric H field. The dispersion

relation seems to depend on the charge and the dilaton coupling constant as well as an

additional integration constant to be fine-tuned in the model. We have determined the

constant under the condition that the model contains a massless graviton, beside massive

modes which are high enough to satisfy experimental bounds. The compactified lengths

order of magnitude were chosen such that the graviton dispersion relation to be consistent

with direct observations bounds as well as its contribution to the standard model particle

propagator loop corrections. Any radial perturbation of the background which may fix

the separation of two branes and presumably show a Lorentz violating behavior is left for

future studies.

We take two numerical examples and found that the graviton moves at speed of unity

for small momenta. As the momentum increases the speed experiences a rapid change and

get to a maximum greater than unity, the speed of light. For a large interval of momenta,
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the speed remains approximately constant at the maximum, and finally it approaches to

unity asymptotically. On the other hand, since standard model fields are confined on the

brane at z = 0 where c = 1, they don’t expertise any Lorentz violating dispersion relation.

This model provides an example of asymmetric time warp compactification which

presents Lorentz violation for gravitational waves while the standard model fields well

behaved with Lorentz symmetry. This is achieved despite of a no-go theorem according to

which in D 6= 6, no compactification with asymmetric time warping exists unless violates

the null energy condition. Hereby we presented a model in which the null energy condition

is satisfied and the speed limit is exceeded 1 for gravitational waves as a sign of gravitational

Lorentz violation. This model can be an example (or candidate) for any situation where

the Lorentz violation is interesting either theoretically or experimentally.
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[15] G.W. Gibbons, R. Güven and C.N. Pope, 3-branes and uniqueness of the Salam-Sezgin

vacuum, Phys. Lett. B 595 (2004) 498 [hep-th/0307238] [INSPIRE].

[16] C.P. Burgess, F. Quevedo, G. Tasinato and I. Zavala, General axisymmetric solutions and

self-tuning in 6D chiral gauged supergravity, JHEP 11 (2004) 069 [hep-th/0408109]

[INSPIRE].
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