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1 Introduction

The discovery of Hawking radiation and its associated information paradox has led to a

deeper understanding of quantum gravity, and formed a basis for the development of holog-

raphy and the AdS/CFT correspondence [2–4]. Recently, there have been many attempts

to use holography to further our understanding of Hawking radiation. In particular, while

Hawking radiation is mostly understood for free fields on black hole backgrounds, the au-

thors of [5–7] apply AdS/CFT to the study of Hawking radiation when these fields are

strongly interacting.

The AdS/CFT correspondence conjectures the equivalence between a large-N gauge

theory at strong coupling to a classical theory of gravity in one higher dimension. The cor-

respondence gives us the freedom to choose a fixed, non-dynamical background spacetime

for the gauge theory, which translates to a conformal boundary condition on the gravity

side. For a gauge theory background B in D − 1 dimensions, this amounts to solving the

D-dimensional Einstein’s equations with a negative cosmological constant

Rµν =
2Λ

D − 2
gµν , Λ = −(D − 1)(D − 2)

2`2
, (1.1)

with a boundary that is conformal to B.

For the moment, let us consider the case where B is an asymptotically flat black hole

of size R and temperature TBH. Let’s also suppose that far from the black hole, the field

theory has a temperature T∞. The authors of [5] conjectured two families of solutions that

describe the gravity dual. They argue that in the bulk gravity dual, the thermal state far

from the boundary black hole is described in the gravity side by a planar black hole, while
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Figure 1. Sketches for black funnels (left) and black droplets (right).

the horizon of the boundary black hole must extend into a horizon in the bulk. These

two horizons are either connected, yielding a black funnel or disconnected, yielding a black

droplet. These are illustrated in figure 1.

In the field theory, the difference between these families is manifest in the way the

black hole couples to the thermal bath at infinity. The connected funnel horizon implies

that the field theory black hole readily exchanges heat with infinity. On the other hand,

the disconnected droplet horizons suggest that the coupling between the boundary black

hole and the heat bath at infinity is suppressed by O(1/N2). Indeed, unless TBH = T∞,

the funnel solutions would exhibit a “flowing” geometry.1 The droplet solutions, however,

are necessarily static for a static boundary black hole.

A phase transition between these two families would resemble a “jamming” transition

in which a system moves between a more fluid-like phase and a phase with more rigid

behaviour. Based on gravitational intuition for the stability of the bulk solution, it was

conjectured in [5] that funnel phases should be preferred for large RT∞, while droplets

should be preferred for small RT∞.

In order to test these conjectures, one would need to construct corresponding droplet

and funnel solutions. Droplet solutions are simpler to construct when T∞ = 0. In this

case, the planar horizon in the droplets becomes the AdS Poincaré horizon. Such droplet

solutions were constructed in [8] for a Schwarzschild boundary, and in [9, 10] for a boundary

that is equal-angular momentum Myers-Perry in 5 dimensions. There is also an analytic

droplet based on the C-metric with a three-dimensional boundary black hole [11]. Static

funnel solutions (that is, with TBH = T∞ 6= 0) were constructed in [1], for a Schwarzschild

boundary and for a class of 3-dimensional boundary black holes.

Unfortunately, none of these solutions can be directly compared with each other. The

T∞ = 0 droplets will compete with a funnel that flows to zero temperature, and the static

funnels compete with a droplet solution with equal temperature horizons. Neither of these

solutions have been constructed.

In this paper, we shed light on the droplet and funnel transition by numerically con-

structing new black droplet solutions with T∞ 6= 0. As in [1, 8], our boundary metric is

Schwarzschild. We find that there can be two black droplet solutions for a given T∞/TBH.

These merge in a turning point around T∞/TBH ∼ 0.93, which suggests that Schwarzschild

black droplets in equilibrium do not exist.

1These flowing funnels would be stationary solutions with non-killing horizons.
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We use a novel numerical method to construct these geometries. It joins three existing

numerical tools: transfinite interpolation on a Chebyshev grid, patching, and the DeTurck

method. This method is not only useful for the construction of the solutions detailed

here, but can be used in a broader sense with modest computational resources - see for

instance [12] where this method was used to construct black rings in higher dimensions. In

particular, the fact that we use transfinite interpolation on a Chebyshev grid means we do

not require overlapping grids for the patching procedure,2 which in turn not only simplifies

the coding of the problem but also decreases the need for larger computational resources.

In the following section, we detail our numerical construction of these solutions. In

section 3, we investigate these solutions by computing embedding diagrams and the holo-

graphic stress tensor and matching our results to perturbation theory. We make a few

concluding remarks in section 4.

2 Constructing black droplets over planar black holes

2.1 Choosing a reference metric

We opt to use the DeTurck method which was first introduced in [13] and studied in great

detail in [8]. This method alleviates issues of gauge fixing and guarantees the ellipticity of

our equations of motion. The method first requires a choice of reference metric ḡ that is

compatible with the boundary conditions. One then solves the Einstein-DeTurck equation

Rµν =
2Λ

d− 2
gµν +∇(µξν) , (2.1)

where ξµ = gαβ
(

Γµαβ + Γ̄µαβ

)
, and Γ̄µαβ is the Levi-Civita connection for ḡ. For the kinds

of solutions we are seeking, a maximal principle guarantees that any solution to (2.1) has

DeTurck vector ξ = 0, and is therefore also a solution to Einstein’s equations [8].

To find a black droplet suspended over a planar black hole, the chosen reference metric

must have a planar horizon, a droplet horizon, a symmetry axis, and a conformal boundary

metric. Furthermore, the reference metric must approach the planar black hole metric in

the right limit. Thus, the integration domain is schematically a pentagon. Most numerical

methods for PDEs use grids that lie on rectangular domains, but these methods can be

extended to a pentagonal domain by patching two grids together. Because of the differ-

ence in geometry between the two horizons, we will patch together two grids in different

coordinate systems, each adapted to one of the horizons.

To motivate our choice of reference metric, let us first begin with AdSD in Poincaré

coordinates

ds2AdS =
`2

z2

[
− dt2 + (dz2 + dr2) + r2dΩ2

D−3

]
. (2.2)

Notice that fixing the time and angular coordinates gives us a two-dimensional space that

is confomally flat. This two-dimensional space in the line element (2.2) is written in

Cartesian coordinates that can be adapted to a planar horizon. We can also move to

2Overlapping grids are essential for patching using finite differences.
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polar coordinates which are more suitable for a droplet horizon. Therefore, we now search

for a reference metric with a conformally flat subspace that also contains a droplet horizon

and a planar horizon.

To do this, let us first write the planar black hole in conformal coordinates. We begin

with the usual line element for the planar black hole solution in D bulk dimensions:

ds2planar =
`2

Z2

−(1− ZD−1

ZD−10

)
dt2 +

dZ2

1− ZD−1

ZD−1
0

+ dr2 + r2dΩ2
D−3

 . (2.3)

Now let

dz2 =
dZ2

1− Zd−1

Zd−1
0

, (2.4)

which gives us a line element of the form

ds2planar =
`2

z2g̃(z)

[
−f̃(z)(1− λ̃2z2)2dt2 + dz2 + dr2 + r2dΩ2

D−3

]
, (2.5)

for some functions g̃, f̃ , and constant λ̃. This line element has our desired conformal

subspace. For a boundary metric that is conformal to Schwarzschild, we find it numerically

desirable to redefine the coordinates to

z2 = y , r =
x

1− x
, (2.6)

which yields

ds2planar =
`2

y g(y)

[
−fy(y) dt2 +

dy2

4y
+

dx2

(1− x)4
+

x2

(1− x)2
dΩ2

2

]
, (2.7)

with

fy(y) = f(y)(1− λy)2 . (2.8)

The planar horizon is located at the hyperslice y = 1/λ. The constant λ (or λ̃) sets the

temperature of the black hole and can be related to Z0 in (2.3). The functions f and g

(or f̃ and g̃) are smooth, positive definite, and depend on the temperature. They can be

determined by integrating (2.4) and inverting the resulting Hypergeometric function.3 To

determine the integration constant, we choose g(0) = f(0) = 1.

Now let us write down a line element (not necessarily a solution of Einstein’s equations)

that has a single droplet horizon in conformal coordinates. We search for something of

the form

ds2droplet =
`2

z2

[
−f̃ρ(

√
z2 + r2)dt2 + dz2 + dr2 + r2dΩ2

D−3

]
, (2.9)

where we have chosen f̃ρ to be a function of
√
z2 + r2 in anticipation of moving to polar

coordinates. The function f̃ρ is determined by a choice of conformal boundary metric ds2∂ .

At the boundary z = 0, we must have

− f̃ρ(r)dt2 + dr2 + r2dΩ2 = ω2(r)ds2∂ , (2.10)

3Actually, we find it more convenient to determine f and g numerically by solving a set of ODEs rather

than inverting the Hypergeometric.
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for some conformal factor ω. For a boundary metric that is conformal to Schwarzschild,

ds2∂ = −
(

1− R0

R

)
dτ2 +

dR2

1− R0
R

+R2dΩ2
2, (2.11)

(2.10) implies

f̃ρ(r)dt
2 =

16
(
1− R0

r

)2(
1 + R0

r

)6 dτ2 . (2.12)

We find that it is convenient to set t = 4τ . This then uniquely specifies the function

f̃ρ, which together with (2.9) gives us our droplet line element in conformal coordinates.

Switching to the polar coordinates

z =
R0

ρ

√
1− ξ2 , r =

R0ξ

ρ
(2.13)

gives us

ds2droplet =
`2

1− ξ2

[
− ρ

2

R2
0

fρ(ρ)dt2 +
dρ2

ρ2
+

dξ2

1− ξ2
+ ξ2dΩ2

2

]
, (2.14)

with

fρ(ρ) =
(1− ρ)2

(1 + ρ)6
. (2.15)

By construction, the droplet horizon is at ρ = 1 and its temperature (with respect to the

time coordinate τ) matches the temperature of the boundary Schwarzschild black hole.

Additionally, the line element (2.14) can be used as a reference metric to reproduce the

results of the solution in [8].

Now we can attempt to combine the planar and droplet line elements to create our

desired reference metric. Guided by the similarities between (2.5) and (2.9), the reference

metric we have chosen is

ds2ref =
`2

y g

[
− fyfρ
fy + fρ − fyfρ

dt2 +
dy2

4y
+

dx2

(1− x)4
+

x2

(1− x)2
dΩ2

2

]
(2.16a)

=
`2

(1− ξ2) g

[
− ρ

2

R2
0

fyfρ
fy + fρ − fyfρ

dt2 +
dρ2

ρ2
+

dξ2

1− ξ2
+ ξ2dΩ2

2

]
, (2.16b)

where we treat g and fy as functions of the coordinate y, and fρ as a function of the

coordinate ρ. The x, y coordinates are related to the ρ, ξ coordinates through (2.6)

and (2.13):

x =
ξ

ξ + ρ/R0
, y =

R2
0

ρ2
(1− ξ2) , (2.17a)

ρ2

R2
0

=
(1− x)2

x2 + (1− x)2y
, ξ2 =

x2

x2 + (1− x)2y
. (2.17b)

The reference metric (2.16) has a regular planar horizon at y = 1/λ, a regular droplet

horizon at ρ = 1, and an axis at x = 0 (or ξ = 0). Near x = 1, we recover the planar black
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hole metric as written in (2.7). Since g(0) = f(0) = 1, near y = 0 or ξ = 1 we have (in the

ρ, ξ coordinate system)

ds2ref →
`2

1− ξ2

[
dξ2

1− ξ2
+
R2

0(1 + ρ)4

16ρ2
ds2∂

]
, (2.18)

where

ds2∂ = − (1− ρ)2

16(1 + ρ)2
dt2 +

R2
0(1 + ρ)4dρ2

16ρ4
+

R2
0

16ρ2
(1 + ρ)4dΩ2

2 . (2.19)

We can see that this is equivalent to Schwarzschild (2.11) by performing the coordinate

transformation

t = 4τ , r = −1 + 2
R

R0

(
1−

√
1− R0

R

)
. (2.20)

We have thus found a reference metric that is compatible with our desired boundary

conditions. By construction, this reference metric can be written in two orthogonal coor-

dinate systems, with all boundaries in our domain being a constant hyperslice in at least

one of these two coordinate systems. Furthermore, in the λ→ 0 limit, our reference metric

becomes the droplet metric (2.14), which is an appropriate reference metric for a droplet

without a planar black hole.

We have two parameters given by λ and R0, which determine the temperatures T∞
and TBH, respectively. This system, however, only has one dimensionless parameter given

by the ratio T∞/TBH, so we have one remaining gauge degree of freedom which we can

choose for numerical convenience.

2.2 Ansatz and boundary conditions

With a reference metric in hand, we can now write down a metric ansatz:

ds2 =
`2

y g

{
− fyfρ
fy + fρ − fyfρ

Tc dt2 +
Ac dy2

4y

+
Bc

(1− x)4

[
dx+

x(1− x)3Fc
x2 + (1− x)2y

dy

]2
+

x2Sc
(1− x)2

dΩ2
2

}
(2.21a)

=
`2

(1− ξ2) g

{
− ρ2

R2
0

fyfρ
fy + fρ − fyfρ

Tp dt2 +
Ap dρ2

ρ2

+
Bp

1− ξ2

[
dξ +

ξ

ρ
(1− ξ2)Fp dρ

]2
+ ξ2dΩ2

2

}
, (2.21b)

where Tc, Ac, Bc, Fc, and Sc are functions of the Cartesian coordinates x and y, and Tp, Ap,

Bp, Fp, and Sp are functions of the polar coordinates ρ and ξ. Since we must demand that

the metric is equivalent between these two coordinate systems, the functions are related to

each other via

Tc = Tp , Sc = Sp , Ac =
ApBp

Apξ2 +Bp(1− ξ2)(1− Fpξ2)2
,

Bc = Apξ
2 +Bp(1− ξ2)(1− Fpξ2)2 , Fc =

Ap −Bp(1− Fpξ2)(1 + Fp(1− ξ2))
2(Apξ2 +Bp(1− ξ2)(1− Fpξ2)2)

, (2.22)

where we used the coordinate transformations (2.17).
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Now let us discuss boundary conditions. At the boundary y = 0 or ξ = 1, we must

recover a metric conformal to Schwarzchild. This was already done in the reference metric,

so we choose

Tc|y=0 = Ac|y=0 = Bc|y=0 = Sc|y=0 = 1 , Fc|y=0 = 0 , (2.23a)

Tp|ξ=0 = Ap|ξ=0 = Bp|ξ=0 = Sp|ξ=0 = 1 , Fp|ξ=0 = 0 . (2.23b)

Similarly, we must recover the planar black hole at x = 1 and impose

Tc|x=1 = Ac|x=1 = Bc|x=1 = Sc|x=1 = 1 , Fc|x=1 = 0 . (2.24)

The remaining boundary conditions are determined by regularity. At the planar horizon

y = 1/λ, we need

Tc|y=1/λ = Ac|y=1/λ , Fc|y=1/λ = 0 ,

∂yTc|y=1/λ = ∂yAc|y=1/λ = ∂yBc|y=1/λ = ∂ySc|y=1/λ = 0 . (2.25)

At the axis, x = 0 or ξ = 0, we require

Bc|x=0 = Sc|x=0 , ∂xTc|x=0 = ∂xAc|x=0 = ∂xBc|x=0 = ∂xSc|x=0 = ∂xFc|x=0 = 0 ,

(2.26a)

Bp|ξ=0 = Sp|ξ=0 , ∂ξTp|ξ=0 = ∂ξAp|ξ=0 = ∂ξBp|ξ=0 = ∂ξSp|ξ=0 = ∂ξFp|ξ=0 = 0 .

(2.26b)

Finally, at the droplet horizon ρ = 1,

Tp|ρ=1 = Ap|ρ=1 , Fp|ρ=1 = 0 ,

∂ρTp|ρ=1 = −2R2
0(1− ξ2)g′Ap(3BpSp +Ap(2Bp + Sp))

3gBpSp

∣∣∣∣
ρ=1

,

∂ρAp|ρ=1 = −2R2
0(1− ξ2)g′Ap(3BpSp + 2Ap(2Bp + Sp))

3gBpSp

∣∣∣∣
ρ=1

,

∂ρBp|ρ=1 = −2R2
0(1− ξ2)g′

g
Bp

∣∣∣∣
ρ=1

,

∂ρSp|ρ=1 = −2R2
0(1− ξ2)g′

g
Sp

∣∣∣∣
ρ=1

. (2.27)

2.3 Numerics

To solve the equations of motion numerically, we employ a standard Newton-Raphson

relaxation algorithm using pseudospectral collocation. To choose a suitable grid, we first

divide the entire integration domain into two patches, one in each coordinate system. We

then place a spectral grid on each patch using transfinite interpolation on a Chebyshev

grid. An example of such a grid is shown in figure figure 2. In addition to imposing

the boundary conditions, we require the smoothness of the metric across patches. This
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Figure 2. A grid for our computational domain formed by combining transfinite interpolation and

patching. We work with one patch in ‘polar’ coordinates and the other in the ‘cartesian’ coordinates

shown here.
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2

Figure 3. The maximum error in the deTurck norm as a function of the grid size (N +N)×N for

one of our droplet solutions. We see an exponential convergence down to machine error of ∼ 10−11.

amounts to requiring (2.22) and the equivalent expression for normal derivatives across

the patch boundary. We obtained our first solution by using the reference metric as a

Newton-Raphson seed.

Since it has been proven that the DeTurck vector ξ = 0 for any solution of (2.1)

satisfying boundary conditions such as those appearing here [8], we can use this quantity

to monitor our numerical error and test the convergence of our code. As seen in figure 3, the

maximum value of the norm of the Deturck vector converges exponentially with increasing

grid size, as predicted by pseudospectral methods. All of our results presented below have

|ξ|2 < 10−10. We have also verified that our results do not change when we vary the

location of our patch boundary or when we change λ and R0 while keeping T∞/TBH fixed.
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Figure 4. The proper length between the droplet and planar horizons along the axis of symmetry

as a function of the temperature ratio. For a given temperature ratio, there can be two droplet

solutions. The turning point occurs around T∞/TBH ∼ 0.93, which suggests that the equilibrium

solution does not exist.

3 Results

3.1 Embedding and distance between the horizons

To get a sense for the relationship between these two horizons, in figure 4 we plot the proper

distance between the horizons along the axis of symmetry as a function of temperature.

For small T∞/TBH, there are solutions with a large distance between the black droplet

and the planar black hole. These are solutions which are close to the T∞ = 0 solution

found in [8]. As we follow these solutions with increasing T∞/TBH, we find that the proper

distance decreases until T∞/TBH ∼ 0.93. At this value there is a turning point where the

proper distance continues to decrease only if we decrease T∞/TBH. These results suggest

that T∞/TBH ∼ 0.93 is a critical temperature above which only (possibly flowing) funnel

solutions exist. In particular, the equilibrium state would be the funnel solution found in [1].

To help us understand the geometry of the solutions, we embed the two horizons in

Euclidean hyperbolic space:

ds2H =
`2

z2
(
dz2 + dr2 + r2dΩ2

D−3
)
. (3.1)

Demanding that the pullback of hyperbolic space to a curve γ(x) = (z(x), r(x)) is equal to

the pullback of our solution to the horizon gives a system of ODEs in z(x) and r(x). We

solve these ODEs numerically to obtain our embedding diagram.

The embeddings of the droplet horizon and planar horizon are shown in figure 5. The

size of the droplets at the boundary is normalised to 1, and the location of the planar

black hole far from the droplet is also normalised to 1. Starting at small T∞/TBH, the

droplet horizon looks very similar to that of [8], and the planar horizon is approximately

flat. As we increase T∞/TBH, we see that even past the turning point, the droplet horizon

continues to lower itself deeper into the bulk and the centre of the planar horizon continues

– 9 –
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Figure 5. The embeddings of droplet horizons (left), and planar horizons (right) in hyperbolic

space (3.1). The droplet horizons are normalised to r = 1 at the boundary, and the planar horizons

are normalised to z = 1 at r → ∞. The blue curves are long droplet solutions and the red curves

are for short droplet solutions. The inset plot on the right is a zoomed in plot for two of the

long-droplet solutions.

to rise towards the boundary. Based on the shape of these solutions from the embedding

diagram, we call our two branches of droplet solutions long dropets and short droplets.

Similar behaviour has been observed for black droplets in global AdS [14].

Eventually, our numerics break down and we are unable to continue the long droplets

any further. We can only conjecture a number of possibilities. One scenario is that the

long droplets continue to exist down to T∞ = 0, these solutions may join with the AdS

black string. In this case, one might reinterpret the naked singularity of the string as a

degenerate droplet/funnel merger point.

Another possibility is that the two horizons merge at some finite temperature ratio

towards a funnel. This situation might be similar to the approximate solutions found

in [15, 16]. At the merger, they would reach a conical transition. Since the two horizons

are not at the same temperature, this would mean a transition between a static solution

to a stationary one with some amount of flow. But going a small amount across a conical

merger should not change the geometry far from the cone significantly, so the amount

of heat flux at infinity should be small. If this picture is correct, this would mean that

there are two types of flowing funnel solutions, one with a narrow neck and small flow,

and one with a wider neck with larger flow. Though, like the caged black holes [17], it is

also possible that there is no stationary solution on the funnel side of the merger, and the

solution necessarily becomes dynamical and possibly evolves into a wide flowing funnel.

3.2 Stress tensor

Now we compute the boundary stress tensor. The procedure we use is similar to those

of [18]. We expand the equations of motion off of the boundary in a Fefferman-Graham

expansion, choosing a conformal frame that gives Schwarzschild on the boundary. We can

– 10 –
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Figure 6. Components for the stress tensor with T∞/TBH = 0.15. The dashed black line is the

value of the stress tensor for the planar black hole. The insets are log-log plots with this asymptotic

value subtracted (the kinks appear because of the absolute value).
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Figure 7. Components for the stress tensor with T∞/TBH = 0.89 (same scheme as figure 6). The

larger red curve is the short droplet while the smaller blue curve is the long droplet.

then read off the stress tensor from one of the higher order terms in the expansion. There

is no conformal anomaly in our case because we have chosen a boundary metric that is

Ricci flat.

Representative stress tensors of our solutions are plotted in figures 6, and 7. Far from

the boundary black hole, the stress tensor fits the form

〈Tµν〉 ∼ k0 +
k1
R

+O

(
1

R2

)
, (3.2)

where k0 is the boundary stress tensor for a bulk planar black hole. This R−1 behaviour

was also found for the funnel solutions in [1].

In the insets of figures 6, and 7, we subtract k0 from the stress tensor, take an absolute

value, and plot the result using a Log-Log scale. Note that there are clearly two power-law

– 11 –



J
H
E
P
0
8
(
2
0
1
4
)
0
7
2

regimes. Far from the black hole, we see a R−1 power law, similar to that of a funnel. Closer

to the black hole, we see a R−5 power law, similar to that of the droplets found in [8].

This dual power-law can be explained from the bulk perspective. The presence of the

droplet warps the planar horizon, making it funnel-like far away. This is most easily seen

in our embedding diagrams in figure 5. This funnel-like behaviour gives the stress tensor a

R−1 power law. Closer to the droplet, the physics near the boundary is dominated by the

hotter droplet horizon rather than the planar horizon, giving a R−5 droplet behaviour. As

the distance between the horizons decreases, this R−5 behaviour becomes more obscured.

In figure 7 we can see that both long and short droplets have the same large R be-

haviour, suggesting that this is universal. Indeed, we shall match this behaviour with

perturbation theory in the next section.

3.3 Matching with perturbation theory

Far away from the axis of symmetry of the droplet, i.e. close to x = 1 in eq. (2.21a), pertur-

bation theory should be valid. This region can solely be studied using standard perturbation

theory techniques around the planar black hole line element (2.3). For concreteness, we will

take D = 5, even though our procedure admits a straightforward extension to arbitrary D.

We first note that the planar black hole can be written as

ds2planar =
`2

Z2

−(1− Z4

Z4
0

)
dt2 +

dZ2

1− Z4

Z4
0

+ dE2
3

 , (3.3)

where dE2
3 is the line element of three dimensional Euclidean space. Following [19], we can

decompose our perturbations according to how they transform under diffeomorphisms of

E3. These can be decomposed as tensors, vectors or scalar derived perturbations. Here,

we are primarily interested in scalar perturbations. Its basic building block are the scalar

harmonics on E3, which satisfy the following simple equation

�E3S + α2S = 0 .

Furthermore, we are interested in perturbations that do not break the 2−sphere inside E3,

so we only have radial dependence in S. These can be computed and we find

S(r) = C1
sin(αR)

R
+ C2

cos(αR)

R
.

A general perturbation can be decomposed as

hab = fab(t, Z)S, haI = fa(t, Z)∇IS

hIJ = HL(t, Z)gIJ +HT (t, Z)

(
∇I∇JS + α2 gIJ

3
S
)
, (3.4)

where lower case latin indices run over {t, Z} and upper case latin indices run over coordi-

nates in E3. In addition, we are interested in non-normalizable perturbations that are time

independent. This means we can set ftZ = ft = 0. We are thus left with two gauge degrees
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of freedom, corresponding to reparametrizations of Z and R. We fix this by demanding

fZ = 0 and HT = 0. We are thus left with three variables: ftt(Z), fZZ(Z) and HL(Z).

The Einstein equations automatically fix fZZ as an algebraic function of ftt and HL:

fZZ =
ftt(

1− Z4

Z4
0

)2 − HL(
1− Z4

Z4
0

) .
The remaining Einstein equations reduce to two first order equations in HL and ftt, which

we reduce to a single second order equation in ftt:

f ′′tt(w) +
4α2w2

0w
3−6w4+w4

0(6+4α2w)
w[3w4+2w2

0w
2(3−2α2w)+w4

0(3+4α2w)]
f ′tt(w) (3.5)

+
24w5 − w3w2

0

(
96 + α2w

)
+ α2w6

0

(
15 + 4α2w

)
− 2ww4

0

[
α2w

(
9 + 2α2w

)
− 36

]
4w
(
w2 − w2

0

) [
3w4 + 2w2

0w
2 (3− 2α2w) + w4

0 (3 + 4α2w)
] ftt(w) = 0 ,

where we performed the coordinate transformation Z2 = w and defined Z2
0 = w0. Before

proceeding to determine the solution, let us first discuss the boundary conditions. Recall

that at the boundary we need to recover the Schwarzschild line element (2.11) expanded

at large values of R. This is equivalent to demanding:

lim
Z→0

htt(Z,R) =
`2

Z2

R0

R
. (3.6)

This boundary condition picks α = 0, and without loss of generality we take C2 = `2. For

this choice, eq. (3.6) admits a simple analytic solution:

ftt(Z) = B
(
Z4 + Z4

0

)
+A

(
Z4
0

Z2
+ Z2

)
, (3.7)

where A and B are constants to be chosen in what follows. Regularity at the black hole

horizon and the boundary condition (3.6) demand A = R0/Z
4
0 and B = −R0/Z

6
0 .

The full metric perturbation can be reconstructed from eq. (3.7) and is given by:

hµν =
`2

Z2



−R0(Z2−Z2
0)(Z4+Z4

0)
RZ6

0
0 0 0 0

0
2Z2R0Z4

0

R(Z2−Z2
0)(Z2+Z2

0)
2 0 0 0

0 0
R0(Z2+Z2

0)
RZ2

0
0 0

0 0 0
RR0(Z2+Z2

0)
Z2
0

0

0 0 0 0
RR0(Z2+Z2

0)
Z2
0

sin2 θ


,

(3.8)

where we parametrize the 2−sphere in the standard way dΩ2
2 = dθ2+sin2 θdφ2. This metric

perturbation does not seem to have a boundary metric perturbation that approaches the

large R behavior of the Schwarzschild line element (2.11). However, this is an illusion of the

gauge we choose to work in. If we perform a gauge transformation with gauge parameter
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ξ = −`2R0/(2Z
2) dR, we bring the metric perturbation (3.8) to

hFµν ≡ hµν + 2∇(µξν) (3.9)

=
`2

Z2



−R0(Z2−Z2
0)(Z4+Z4

0)
RZ6

0
0 0 0 0

0
2Z2R0Z4

0

R(Z2−Z2
0)(Z2+Z2

0)2
0 0 0

0 0
Z2R0

(
1

Z2
0
+ 1

Z2

)
R 0 0

0 0 0 RZ2R0

Z2
0

0

0 0 0 0 RZ2R0

Z2
0

sin2 θ


,

which manifestly exhibits the boundary metric we desire.

It is now a simple exercise to determine the perturbed stress energy tensor in terms of

the boundary black hole temperature TBH and planar temperature T∞:

16πGR0
4〈δT tt〉 = − 3

256

(
T∞
TBH

)4(
1 +

2R0

R
+ . . .

)
, (3.10a)

〈δTRR〉 = 〈δT θθ〉 = 〈δT φφ〉 = −1

3
〈δT tt〉 . (3.10b)

This should be the leading asymptotic behavior of the holographic stress energy tensor

of the droplet solution as we approach R→ +∞. This is partially confirmed by [1] where

the stress energy tensor is found to be consistent with (3.10) if T∞ = TBH = TSchwarzschild.

A linear fit of our log-log plots agrees with (3.10) to less than 0.1%.

The next correction should appear at O(R−2) and can be computed using a similar

approach, albeit with a more tedious calculation. Based on our solution at smaller R, we

expect the first undetermined coefficient in the R = +∞ expansion to appear at O(R−5).

In particular, the difference between droplet and funnel holographic stress energy tensors

should only appear at O(R−5).

4 Discussion

To summarise our findings, we have numerically constructed Schwarzschild black droplet

solutions suspended over a planar black hole. These solutions are dual to the “jammed”

phase of a large N strongly coupled CFT. We find two branches of droplets: long and thin,

and that these solutions only exist below a critical temperature T∞/TBH ∼ 0.93. We have

computed their stress tensor and find generically two power-law regions corresponding to

a droplet-like falloff of R−5 and a funnel-like falloff of R−1.

It would be interesting to study the stability of these droplet solutions. The short

droplet with T∞ = 0 were argued to be stable in [8]. If they are, then it seems likely that

short droplets for small temperature ratios are also stable. The long droplets, on the other

hand, may be unstable to forming a flowing funnel, or perhaps a short droplet.

If all of our short droplets remain stable, then the critical temperature might be in-

terpreted as a “melting” or “freezing” point. Consider a short droplet at small T∞/TBH.

Keeping the boundary black hole fixed, suppose we slowly increase the temperature T∞. If
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we do this slowly enough, the dynamical solution should remain close to the static solution.

Eventually, these static droplets no longer exist, so the system must become fully dynam-

ical, perhaps evolving into a flowing funnel. The rigid behaviour of the droplet transitions

into the more fluid behaviour of a funnel.

Unfortunately, we cannot directly compare the long and short droplets to each other.

These solutions are not at equilibrium, so their free energy is not well-defined. One can in

principle still compare their entropies and energies. These quantities are formally infinite,

but can be regulated by subtracting the large R behaviour obtained via perturbation

theory. Unfortunately, these quantities are finite only after subtracting down to an O(R−4)

behaviour, which is beyond our numerical control.

To complete our understanding of solutions with a Schwarzschild boundary, the flow-

ing funnels need to be constructed. These solutions would require non-Killing horizons,

such as those in [20–22]. Additionally, in our solutions, the droplet horizon has the same

temperature as the boundary black hole. It is possible to detune these temperatures so

that they are not equal [21].

In our study, we have focused on boundary black holes that correspond to four-

dimensional Schwarzschild. These boundary black holes do not need to satisfy any field

equations, so we are free to choose any metric. It would be interesting to see what changes

as we vary the boundary black hole. For instance, equilibrium droplets or droplets with

T∞/TBH > 1 may exist, particularly for boundary black holes that are small relative to

their temperature.
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