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1 Introduction

The measurement of particle properties in events with missing energy at hadron colliders

is a challenging problem which has been receiving increased attention as of late (see [1]

and [2] for reviews on mass and spin measurement methods, respectively). The difficulty

arises because in most new physics models with dark matter candidates, some conserved,

often Z2, parity is needed to make the dark matter stable. Particles which are charged with

respect to this parity are pair produced; each such event contains at least two invisible (dark

matter) particles whose energy and momenta are not measured. It is precisely this lack of

information which makes the straightforward application of standard mass reconstruction

techniques impossible.

In order to deal with the lack of knowledge about the invisible particle momenta, the

following three approaches have been suggested:
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• Use variables built from measured momenta only.

The best known example is the invariant mass of (sets of) visible particles observed

in the detector. The measurement of kinematic endpoints in various invariant mass

distributions is the classic method for mass determination in supersymmetry [3–8].

Other recently proposed variables include the contransverse mass variable MCT [9,

10] and its variants MCT⊥ and MCT‖ [11], the ratio of visible transverse energies [12,

13], and the energy itself [14–16].

Of course, while the individual invisible momenta are unknown, the sum of their

transverse components is measured as the missing transverse momentum /~P T of the

event. Thus one could also consider variables which are functions of the visible

momenta and /~P T , e.g., the transverse mass [17, 18], the effective mass Meff [3, 19], the

minimum partonic center-of-mass energy
√
ŝmin [20–22], the razor variables [23, 24],

etc. Such variables provide a good global characterization of the event, and are useful

for discriminating signal from background, measuring an overall scale, or determining

a signal rate. However, since they are not very sensitive to the particular details of

the event, they are far from ideal for the purposes of precision studies of the signal.

• Calculate exactly the unknown individual momenta of the invisible particles.

This is generally done by assuming a specific event topology and imposing a sufficient

number of on-shell constraints [25–28]. If applicable, this method is very powerful,

since the event kinematics is fully determined and one can easily move on to precision

studies [29]. The main disadvantage of exact reconstruction techniques is that they

require sufficiently long decay chains in order to provide the required number of mass-

shell constraints. Otherwise, the system is underconstrained, and mass measurements

are only possible on a statistical basis, by testing for consistency over the whole

ensemble of signal events [30, 31].

• Use a compromise approach.

The third approach is a compromise between the previous two — one still constructs

kinematic variables which depend on the invisible momenta, but one gives up on

trying to determine those momenta exactly on an event-per-event basis. Instead,

some kind of ansatz is used to assign values (consistent with the measured /~P T ) to

the individual momenta of the invisible particles in each event. The most celebrated

variable of this class is the Cambridge MT2 variable [32, 33], which is calculated by

fixing the transverse momenta of the invisible particles to minimize the resulting

transverse mass of the (larger of the two) parent particles. The idea of fixing the

unknown invisible momenta by minimizing a suitable mass function is very powerful,

and many of the kinematic variables proposed in the literature can be reinterpreted

that way [34]. The MT2 approach is very well developed by now — analytical formulas

exist for the calculation of MT2 in a given event and for the interpretation of its

endpoint [35–41]. Since the original MT2 proposal [32, 33], several other related

variables have been suggested as well, e.g. MT2⊥ and MT2‖ [42], the asymmetric

MT2 [43, 44], MCT2 [45, 46], and Mapprox
T2 [47].
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Note that the MT2 prescription determines only the transverse components of the

invisible momenta. In order to fix the longitudinal components, one could rely on

additional measurements or assumptions. For example, in the MT2-assisted on-shell

(MAOS) reconstruction method, one uses the measured MT2 kinematic endpoint and

enforces the on-shell condition for the mother particle, which allows one to solve for

the longitudinal momenta [48, 49]. (The idea behind the M2C variable [50, 51] is

very similar.) A variation of this method arises if the invisible particles are neutrinos

from W (or τ) decays — then one can use the known W -boson (or τ -lepton) mass as

a constraint and again solve for the longitudinal momenta [52–57]. Since the on-shell

constraints are nonlinear functions, the MAOS approach typically yields multiple

solutions for the longitudinal momentum components, so one must also specify a

prescription for handling this multiplicity.

An alternative approach to MAOS, which may avoid this ambiguity, was outlined in

ref. [34], which pointed out that the MT2 variable and its friends allow a 3+1 dimen-

sional formulation, in which one always deals with the actual instead of the transverse

masses. The corresponding 3+1 dimensional analogue of MT2 was denoted simply as

M2, omitting the transverse index.1 The actual mass, being 3+1 dimensional, already

carries dependence on both transverse and longitudinal momentum components, thus

the minimization procedure required to obtain M2 is expected to automatically as-

sign unique values for all momentum components of each individual invisible particle.

Since much of our discussion below will make crucial use of this property, we will dis-

cuss carefully the minimization procedure for the different M2-type variables and the

uniqueness of the resulting solutions for the invisible momenta in section 3.

An important benefit from extending the transverse MT2 formalism to the 3+1-dimen-

sional M2 language was recently emphasized in [41]. In many practical applications of

MT2 and similar kinematic variables, one has in mind a very specific signal topology,

which in turn implies additional kinematic constraints on the (unknown) individual invisible

momenta. For example, SUSY decay chains often proceed through intermediate on-shell

resonances, the classic example being the decay of a heavy gluino through a lighter on-shell

intermediate squark. While the mass of the intermediate resonance is a priori unknown, in

symmetric event topologies the two decay chains are identical, so one may still impose the

condition that the mass of the intermediate resonance (whatever its value) ends up being

equal in the two decay chains [41] (for specific applications to H → τ+τ− and H → WW

decay, see [54] and [56], respectively). Adding such on-shell constraints further restricts

the allowed domain of values for the components of the individual invisible momenta and

in general leads to a different outcome from the minimization procedure, resulting in a new

set of kinematic variables.2

In this paper we shall extend the discussion from [41], which focused only on interme-

diate resonances, i.e., particles appearing in the decay chain in between the decaying parent

1Supersymmetry aficionados should not confuse M2 with the wino mass parameter.
2Note that it is not possible to add such constraints in the case of transverse variables like MT , MT2,

MCT , etc.

– 3 –



J
H
E
P
0
8
(
2
0
1
4
)
0
7
0

and the corresponding daughter. In particular, we shall allow ourselves to also consider

resonances which appear “outside” the parent-daughter system, e.g., progenitor particles

upstream from the parents, or descendant particles downstream from the daughters. The

benefits from this generalization will become clear in the physics examples studied below.

In the paper, we study the mathematical properties of these on-shell constrained M2

kinematic variables and propose several novel techniques for mass measurements and for

disambiguating alternative event topologies. Our main results are:

• We find that differential distributions of the constrained M2 variables exhibit sharper

kinematic endpoints, making them easier to measure in the presence of backgrounds.

This is because, as expected, the addition of on-shell kinematic constraints generally

increases the value of the corresponding M2 variable, thus providing a more stringent

lower bound on the mass of the parent. The sharper endpoints would ultimately lead

to an improvement in the precision with which the parent masses can be determined

experimentally.

• We propose a new method for measuring the mass of a heavy resonance in a SUSY

decay chain, by using the invisible momenta found during the M2 minimization.

The standard procedure so far has been to treat that resonance as a parent particle

in a suitably defined subsystem of the event [39], then measure the upper kinematic

endpoint of the corresponding MT2 distribution. Instead, here we treat the resonance

as an on-shell constraint to be applied during the minimization process while calcu-

lating the M2 variable for a suitably defined subsystem (which may or may not extend

over the resonance itself). Since the M2 minimization procedure selects a unique con-

figuration for the individual invisible momenta, one has all the information required

to reconstruct the mass of this hypothetical resonance directly. The key observation,

supported in our examples in section 4.2 below, is that the peak of that mass dis-

tribution is very well correlated with the true mass of the resonance. The spirit of

our method is similar to MAOS reconstruction [48, 49, 52, 53, 57, 63] and the M2C

approach [50]. The difference is that we do not rely on preliminary measurements of

kinematic endpoints; the measurement is instead done from first principles.

• We find that this new method, in combination with other standard techniques, can be

used to determine the mass of the invisible (dark matter) particles.

An interesting feature of the method just described is that the result exhibits a differ-

ent functional dependence on the test daughter mass than the results from analogous

methods based on MT2 or invariant mass kinematic endpoints. This means that one

is able to obtain the true daughter mass by simply putting together the functional

parent-daughter mass relationship obtained from our method and from the other

canonical methods in the literature — the true answer is given by the crossing point

of the different curves. This technique is complementary to the MT2 “kink” method

where one looks for a kink instead of a crossing point [35–38, 43] (other techniques

for measuring the absolute daughter mass are described in [11, 42, 58–60]).
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A2 B2 C2

a1 b1

a2 b2

(a)

A1 C1

A2 C2

a1 b1

a2 b2

(b)

Figure 1. The decay topologies under consideration in this paper. In diagram (a), each parent

particle, Ai, (i = 1, 2) decays to two visible particles, ai and bi, and an invisible daughter particle,

Ci, through an intermediate on-shell resonance, Bi. In diagram (b), the intermediate state, Bi, is

absent (or very heavy) and the Ai → aibiCi decay is a three body process.

• We propose methods for identifying the event topology and resolving combinatorial

ambiguities.

The large variety of on-shell constrained M2 variables allows us to address a long

standing problem in SUSY phenomenology, namely, the question of identifying the

correct event topology. There are two aspects of the problem — first, resolving the

combinatorial ambiguities in assigning the observed final state particles to the hy-

pothesized event topology [61–63], and second, validation of the hypothesized event

topology itself, e.g., the partitioning into two decay chains [64, 65], the number of

invisible particles [65–68], the number of intermediate on-shell resonances [64, 65],

etc. We can use the fact that the different versions of our on-shell constrained M2

variables have different assumptions about the underlying event topology built in.

Thus, by comparing results obtained with different M2 variables, we can test those

assumptions, for example:

1. In section 5.1 we design a method which tests for the presence of intermedi-

ate on-shell resonances in the SUSY decay chain, i.e., distinguishes between a

sequence of two 2-body decays and a single 3-body decay.

2. In section 5.2 we address the question of the proper sequence in which the visible

particles get emitted along a SUSY decay chain. We use the invisible particle

momenta selected by the M2 minimization procedure to construct Dalitz-type

plots involving invariant masses of suitable particle pairs. The correct ordering

of the visible particle is then determined by comparing the characteristic shapes

of those plots.

3. A similar idea, illustrated in section 5.3, can be used to test whether the events

are symmetric, i.e., whether the two decay chains are the same [44].
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The paper is organized as follows. In section 2, we specify the process studied (de-

picted in figure 1) and introduce our conventions and terminology. We then proceed to

define all possible on-shell constrained M2 variables for that process (a total of 12 vari-

ables altogether, listed in table 2). However, not all of those variables are independent

— section 3 discusses the existing relationships among them, including the connection to

the Cambridge MT2 variable.3 The subsequent sections demonstrate the utility of those

variables for practical applications: mass measurements from kinematic endpoints (sec-

tion 4.1), mass measurements from M2-assisted peak reconstruction (section 4.2), and

topology disambiguation (section 5). Section 6 is reserved for our conclusions.

2 Notations and setup

2.1 The physics process

In this paper we shall consider the generic processes depicted in figure 1. We assume the

pair production of two heavy particles, A1 and A2, which decay in a similar fashion:

Ai → aibiCi, (i = 1, 2). (2.1)

The process (2.1) may occur either through on-shell intermediate resonances, Bi, as in

figure 1(a), or as a genuine three-body decay, as in figure 1(b). The particles, Ci, are

invisible in the detector — in realistic models, their role is typically played by some dark

matter candidate, e.g., the lightest supersymmetric particle (LSP) in supersymmetry. The

particles, ai and bi, are SM particles which are visible in the detector, thus their 4-momenta

pµa1 , pµb1 , pµa2 , and pµb2 are measured known quantities. In contrast, the 4-momenta of the

Ci, which we shall denote by qµi , are a priori unknown,4 and are only constrained by the
/~P T measurement:

~q1T + ~q2T = /~P T . (2.2)

The masses of the particles along the red dashed lines in figure 1 are denoted by mA1 ,

mB1 , · · · , mC2 . The process (2.1) depicted in figure 1 covers a large class of physically

interesting and motivated scenarios, including dilepton events from top pair production

and decay, stop decays in supersymmetry (t̃→ b`ν̃`), and many more.

In what follows, we shall assume that all four visible particles ai and bi in figure 1 are

distinguishable. As already mentioned in the introduction, depending on the nature of the

visible particles ai and bi, various combinatorial issues may arise, e.g.:

1. Should the four visible particles be partitioned as 2+2, 1+3, or 0+4? This question

can be answered relatively easily by studying suitable invariant mass distributions of

the visible particles [64].

3Readers who are mostly interested in the practical applications of the M2 variables and wish to skip

over the math are invited to jump straight to section 3.4, where they will find a summary of the main

results from section 3.
4Note that in our notation, the letter “p” is used for measured momenta, while the letter “q” refers to

the unknown momenta of invisible particles. Since for the process of figure 1 there are only two invisible

particles in the final state, we simplify the notation by using ~qi instead of the clumsier ~qCi .
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1

a
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2

(a)

(b)

(ab)

Figure 2. The decay process from figure 1(a) with the corresponding subsystems explicitly delin-

eated. The blue dotted, green dot-dashed, and black solid lines indicate the subsystems (a), (b),

and (ab), respectively.

2. Another question is, which visible particles belong to the first decay chain (a1, b1)

and which belong to the second (a2, b2). Two possible approaches have been pursued:

first, by applying suitable cuts, one could try to increase the chances of picking the

correct pairwise assignment [61–63]. Alternatively, one could consider all possible

assignments and then try to subtract out the contributions from wrong assignments

(e.g., by the mixed event subtraction technique [3]).

3. Finally, when ai is distinguishable from bi, one could also ask which of these two

particles was emitted first and which came second. The answer to this question will

be the subject of section 5.2.

2.2 M2 subsystems and the particle family tree

As first discussed in the context of the MT2 variable [39], one can proliferate the number

of useful measurements by considering different subsystems within the original event. The

subsystems are defined by the sets of visible particles which are used to construct an MT2

variable (see figure 2):

• The (ab) subsystem, indicated by the solid black box in figure 2. Here one uses both

types of visible particles, ai and bi, treating Ai as parent particles and Ci as daughter

particles.

• The (a) subsystem, shown by the blue dotted box in figure 2. Now one uses only the

visible particles, ai, but not bi. The Ai particles are again treated as parents, but the

daughters are now the Bi particles.

• The (b) subsystem, depicted by the green dot-dashed box in figure 2. Now the visible

particles, bi, are used, but not ai. The parents are the Bi particles and the daughters

are the Ci particles.
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Subsystem Parents Pi Daughters Di Relatives Ri

(ab) Ai Ci Bi

(a) Ai Bi Ci

(b) Bi Ci Ai

Table 1. The roles played by different particles depending on the subsystem under consideration.

In this paper, the MT2 variables corresponding to these three subsystems will be denoted

as5 MT2(ab), MT2(a), and MT2(b); the same convention will be used for the M2 variables

defined below.

We see that, depending on our choice of subsystem, each particle from figure 1(a) can

be classified into one of the following three categories (summarized also in table 1):

• Parents. These are the two particles at the top of the decay chains in a given

subsystem. In the following, we shall denote the parents by Pi, (i = 1, 2) and their

masses by MPi . The M2 kinematic variables in section 2.3 below will be defined by

a suitable minimization of the parent masses, MPi , over the unknown components of

the invisible momenta [34].

• Daughters. These are the two particles at the end of the decay chains in a given

subsystem. They may or may not be LSPs; see table 1. The daughters will be

denoted by Di and their masses by MDi . Each parent mass, MPi , is a function

of the corresponding daughter mass, MDi , which is a priori unknown. Thus when

calculating parent masses, one must always specify a test daughter mass parameter,

which will be denoted by m̃ throughout this paper. For the most part, we shall be

considering “symmetric” events, i.e., events in which the two decay chains are the

same, and thus there is a single test mass m̃. The generalization to the asymmetric

case is straightforward [44] — one simply needs to introduce separate test masses,

m̃i, for the upper and the lower decay chains in figure 1.

• Relatives. These are particles which are neither parents nor daughters; see table 1.

The relatives will be denoted by Ri and their masses by MRi . Since the decay

chains in figure 1(a) involve only 3 new particles, there is always only one possible

relative, which may appear upstream (as in the case of subsystem (b)), downstream

(as in the case of subsystem (a)), or midstream (as in the case of subsystem (ab)).

In other words, for the simple example of figure 1(a), the identity of the relative

is uniquely fixed once we specify the subsystem under consideration, so we do not

need to introduce any additional notation regarding the relatives. However, in more

complicated examples with longer decay chains, there will be several relatives, and

one would have to invent some notation to distinguish among them.

5Contrast this to the superscript notation previously used in [39, 69]: M220
T2 , M221

T2 , and M210
T2 .
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2.3 Definition of the on-shell constrained M2 variables

We start by reviewing the standard definition of the canonical MT2 variable [32]. Consider

the transverse masses MTPi(~qiT , m̃) of the two parent particles and then minimize the larger

of them with respect to the transverse6 components of the invisible momenta, subject to

the /~P T constraint, (2.2):

MT2(m̃) ≡ min
~q1T ,~q2T

{max [MTP1(~q1T , m̃), MTP2(~q2T , m̃)]} . (2.3)

~q1T + ~q2T = /~P T

Following [34], one could instead start with the actual parent masses, MPi , and define

the 3+1-dimensional analogue of (2.3) as

M2(m̃) ≡ min
~q1,~q2
{max [MP1(~q1, m̃), MP2(~q2, m̃)]} , (2.4)

~q1T + ~q2T = /~P T

where the minimization is performed over the 3-component momentum vectors ~q1 and ~q2.

As stated in [34, 50], the two definitions (2.3) and (2.4) are equivalent, in the sense that

the resulting two variables, MT2 and M2, will have the same numerical value (a proof of

this claim can be found in section 3.1 below). Nevertheless, for our purposes here, the

definition (2.4) is much more convenient, for the following reasons:

• The minimization in (2.4) is done over the full 3-momentum vectors ~q1 and ~q2, and

thus it also selects their longitudinal components q1z and q2z. This completely fixes

the kinematics of the event.

• The 3+1-dimensional language of eq. (2.4) makes it very easy to impose the additional

on-shell constraints that arise in specific event topologies [41].

Given that here we are interested in the specific event topology of figure 1(a), it makes

sense to consider additionally constrained versions of (2.4). There are two7 additional

assumptions one can make: that the parents Pi are the same (or, more generally, that they

have the same mass)

MP1 = MP2 , (2.5)

or that the relatives have the same mass

MR1 = MR2 . (2.6)

Of course, one could also impose (2.5) and (2.6) simultaneously, giving us a total of 4

possibilities. We choose to enumerate these 4 cases by adding two additional subscripts

6The longitudinal components q1z and q2z are irrelevant since they do not enter the definition of the

transverse masses MTPi .
7Recall that throughout this paper we are already making the assumption that the daughters are the

same.
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on the M2 variable to indicate whether the constraints (2.5) and (2.6) were imposed dur-

ing the minimization or not. The first subscript always refers to the parents and their

constraint, (2.5), while the second subscript always refers to the relatives and their con-

straint, (2.6). The value of the subscript will be “C” if the corresponding constraint is

imposed and “X” otherwise. Altogether, we have the following four types of variables:

M2XX ≡ min
~q1,~q2
{max [MP1(~q1, m̃), MP2(~q2, m̃)]} , (2.7)

~q1T + ~q2T = /~P T

M2CX ≡ min
~q1,~q2
{max [MP1(~q1, m̃), MP2(~q2, m̃)]} , (2.8)

~q1T + ~q2T = /~P T

MP1 = MP2

M2XC ≡ min
~q1,~q2
{max [MP1(~q1, m̃), MP2(~q2, m̃)]} , (2.9)

~q1T + ~q2T = /~P T

M2
R1

= M2
R2

M2CC ≡ min
~q1,~q2
{max [MP1(~q1, m̃), MP2(~q2, m̃)]} . (2.10)

~q1T + ~q2T = /~P T

MP1 = MP2

M2
R1

= M2
R2

A few comments are in order. In the equations above, the masses of the parents, MPi ,

and the masses of the relatives, MRi , are always understood to be functions of the invisible

3-momenta ~qi. Thus the constraints MP1 = MP2 and MR1 = MR2 simply further restrict

the allowed values for those momenta (in addition to the missing transverse momentum

constraint, (2.2)). Obviously, the unrestricted variable M2XX is nothing but the variable

defined in (2.4), so in this sense the pair of indices “XX” may seem redundant. Nevertheless,

given the existence of the other three choices (2.8)–(2.10), it seems wise to indicate explicitly

the absence of any on-shell constraints in that case.

We note that while a parent mass squared is always positive, there is one case when the

mass squared of a relative can be negative — for subsystem (a), the relative particle is Ci
and its mass squared is M2

Ri
= (pBi−pbi)2 (see figure 1(a)). Each of the 4-momenta pµBi

and

pµbi is time-like, but their difference may be time-like or space-like. Thus, in that situation,

one has the option of additionally requiring positivity of the masses squared of relative

particles. In this paper we shall not do that; we shall allow the relative masses squared

obtained after the minimization to have either sign.8 This is why in eqs. (2.9) and (2.10),

the constraint for the relatives is written as M2
R1

= M2
R2

instead of simply as MR1 = MR2 .

Applying (2.7)–(2.10) to the three possible subsystems of figure 2, we obtain a total

of 12 on-shell constrained M2 variables which are listed in table 2. Some of these variables

8The reason is that the momenta obtained in the minimization do not necessarily have to correspond to

the momenta of any physical particles; as our reconstruction ansatz may not reflect the actual process. A

– 10 –
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Subsystem (ab) Subsystem (a) Subsystem (b)

variable constraints variable constraints variable constraints

M2XX(ab) — M2XX(a) — M2XX(b) —

M2CX(ab) M2
A1

= M2
A2

M2CX(a) M2
A1

= M2
A2

M2CX(b) M2
B1

= M2
B2

M2XC(ab) M2
B1

= M2
B2

M2XC(a) M2
C1

= M2
C2

M2XC(b) M2
A1

= M2
A2

M2CC(ab)
M2
A1

= M2
A2 M2CC(a)

M2
A1

= M2
A2 M2CC(b)

M2
B1

= M2
B2

M2
B1

= M2
B2

M2
C1

= M2
C2

M2
A1

= M2
A2

Table 2. A summary of the twelve M2 variables defined in the text. For each of the three

subsystems (ab), (a), and (b), one may choose to apply neither, one, or both of the constraints (2.5)

and (2.6). In each case, the trial daughter masses are assumed to be the same, m̃.

(M2XX and M2CX) are simply 3+1 dimensional versions of MT2 [34, 41], while M2XC(ab)

and M2CC(ab) were mentioned in [41]. The remaining 4 variables M2XC(a), M2CC(a),

M2XC(b), and M2CC(b) are new. Notice that the meaning of a “C” index depends on both

its position (first or second) and on the chosen subsystem. For example, a “C” index sitting

in first position, M2CX(ab), implies equality of the parents: M2
A1

= M2
A2

, while when sitting

in second position, M2XC(ab), it indicates equality of the relatives: M2
B1

= M2
B2

. Similarly,

contrast analogous variables in the three subsystems: M2XC(ab) is calculated assuming

M2
B1

= M2
B2

; M2XC(a) is obtained with M2
C1

= M2
C2

; while M2XC(b) implies M2
A1

= M2
A2

.

At this point, it is instructive to consider a couple of specific examples, in order to

better familiarize the reader with our notation. Consider, for example, M2CC(ab). It

applies to the (ab) subsystem, where Ai are the parents, Ci are the daughters (with test

masses m̃) and Bi are the relatives. Both indices are “on”, so the constraints (2.5) and (2.6)

are applied. Explicitly, we have

M2
2CC(ab) ≡ min

~q1,~q2

{
max

[
(pa1 + pb1 + q1)2, (pa2 + pb2 + q2)2

]}
. (2.11)

q2
1 = m̃2

q2
2 = m̃2

~q1T + ~q2T = /~P T

(pa1 + pb1 + q1)2 = (pa2 + pb2 + q2)2

(pb1 + q1)2 = (pb2 + q2)2

As another example, consider M2XC(a). It applies to the (a) subsystem with Ai as

parents, Bi as daughters, and Ci as relatives. Note that the test mass, m̃, now refers to

mBi . The parents are not assumed to have equal masses, but the relatives are, thus

M2
2XC(a) ≡ min

~q1,~q2

{
max

[
(pa1 + pb1 + q1)2, (pa2 + pb2 + q2)2

]}
. (2.12)

(q1 + pb1)2 = m̃2

similar dilemma arises in the case of MT2, when some invisible momenta found by the minimization may

turn out to be anomalously large, well beyond the scale of the collider energy.
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(q2 + pb2)2 = m̃2

~q1T + ~q2T = /~P T

q2
1 = q2

2

Our final example is M2XC(b), which reads

M2
2XC(b) ≡ min

~q1,~q2

{
max

[
(pb1 + q1)2, (pb2 + q2)2

]}
. (2.13)

q2
1 = m̃2

q2
2 = m̃2

~q1T + ~q2T = /~P T

(pa1 + pb1 + q1)2 = (pa2 + pb2 + q2)2

If it wasn’t for the very last constraint, this would have been simply MT2(b), i.e., the MT2

variable for the (b) subsystem, in the presence of upstream momentum pa1 +pa2 . However,

the constraint for the relatives MA1 = MA2 is non-trivial and leads to a qualitatively new

result.

3 Relations among the M2 type variables and MT2

In this section, we examine the relations among the four M2 type variables defined in the

preceding section and compare them to the conventional MT2 variable. For concreteness,

we shall focus on the (ab) subsystem9 and consider the set

MT2(ab), M2XX(ab), M2CX(ab), M2XC(ab), M2CC(ab). (3.1)

We shall perform our study under the assumption that the intermediate particles, Bi, are

on-shell as in figure 1(a). The off-shell scenario of figure 1(b) will be discussed in section 5 in

the context of applications. In section 3.1, we first show that the three variables, M2XX(ab),

M2CX(ab), and MT2(ab), have the same value event-by-event. Informed by this discussion,

in section 3.2, we shall also discuss the question of the uniqueness of the invisible momen-

tum configurations found in the process of minimization. Then, in section 3.3, we shall

discuss the hierarchy among the three distinct variables on the list (3.1), namely M2CX(ab),

M2XC(ab), and M2CC(ab). In section 3.4, we summarize the main results from section 3.

3.1 Equivalence theorem among M2XX , M2CX , and MT2

Applying the general definition (2.3) to the (ab) subsystem, MT2(ab) can be expressed as

follows [32]:

M2
T2(ab) = min

~q1T ,~q2T

{
max

[
M2
TA1

(~q1T , m̃), M2
TA2

(~q2T , m̃)
]}

(3.2)

~q1T + ~q2T = /~P T

9However, our results will hold for the other two subsystems as well; see the summary in section 3.4.
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where

M2
TAi

(~qiT , m̃) = m̃2 +m2
vi + 2 [EviTEqiT − ~pviT · ~qiT ] , (3.3)

vi is the visible state ai + bi belonging to the i-th decay chain:

~pvi ≡ ~pai + ~pbi , (3.4)

and ET denotes the transverse energy:

EviT =
√
m2
vi + ~p 2

viT
; EqiT =

√
m̃2 + ~q 2

iT . (3.5)

Using (2.7), we can construct M2XX(ab) in a similar manner:

M2
2XX(ab) = min

~q1T ,~q2T
q1z ,q2z

{
max

[
M2
A1

(~q1T , q1z, m̃), M2
A2

(~q2T , q2z, m̃)
]}
. (3.6)

~q1T + ~q2T = /~P T

The invariant masses of A1 and A2 can be written as

M2
Ai

(~qiT , qiz, m̃) = m̃2 +m2
vi + 2 [EviTEqiT cosh(∆ηi)− ~pviT · ~qiT ] , (3.7)

where ∆ηi is the rapidity difference between the visible state vi and particle Ci. The

minimization of (3.6) over the transverse momenta, ~qiT , and the longitudinal momenta, qiz,

can in principle be done in any order, but it is much easier to minimize over qiz first, since

they do not enter the /~P T constraint. Furthermore, the longitudinal momenta are decoupled

from each other, and thus the two minimizations can be performed independently. We can

therefore rewrite (3.6) as

M2
2XX(ab) = min

~q1T ,~q2T

{
max

[
min
q1z

{
M2
A1

(~q1T , q1z, m̃)
}
, min

q2z

{
M2
A2

(~q2T , q2z, m̃)
}]}

. (3.8)

~q1T + ~q2T = /~P T

where we have switched the order of the minqiz{} and max{} operations. The minimization

over qiz is equivalent to minimization over ∆ηi. From (3.7) it is easy to see that the

minimum is obtained for ∆ηi = 0, which reduces (3.7) to (3.3), so that (3.8) becomes simply

M2
2XX(ab) = min

~q1T ,~q2T

{
max

[
M2
TA1

(~q1T , m̃), M2
TA2

(~q2T , m̃)
]}
. (3.9)

~q1T + ~q2T = /~P T

Comparing (3.9) with (3.2), we see that [34]

M2
2XX(ab) = M2

T2(ab). (3.10)

Moving our attention to M2CX(ab), we see that the proof of its equivalence to MT2(ab)

is not difficult either. A formal proof based on the method of Lagrange multipliers is

presented in appendix A, so here we shall give just the heuristic argument.
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Figure 3. Contour plots of the functions fT2(~q1T ) (left panel), f2XX(~q1T ) (middle panel),

and f2CX(~q1T ) (right panel) in the plane of ~q1T . The chosen event leads to an unbalanced

solution for MT2(ab). (The red dashed curve delineates the points with MTA1
= MTA2

.)

The red × symbol marks the global minimum of the function in each case. At the minimum,

MT2(ab) = M2XX(ab) = M2CX(ab) = 483.71 GeV, and the corresponding solution for ~q1T is given

by ~q×
1T = (66.09,−212.90) GeV.

Starting from eq. (3.10), without any loss of generality we can assume that M2
2XX(ab)

is obtained by minimizing M2
A1

, i.e., that in the neighborhood of the minimum, we have

M2
A2

< M2
A1

, and thus the max function in the definition (3.6) picks up M2
A1

for the

minimization. The parent constraint MA1 = MA2 is clearly not satisfied, but this can be

fixed without changing the value obtained in eq. (3.10). Keeping ~q1T , q1z, and ~q2T fixed to

their values at the M2
2XX(ab) minimum, we start varying q2z in the direction of increasing

MA2 . Eventually, we will find a value for q2z for which MA2 will reach MA1 and the parent

constraint MA1 = MA2 will be satisfied. In the meantime, nothing has changed regarding

the M2
A1

function: since ~q1T and q1z were kept the same as before, its value is still given

by (3.10).

This simple exercise shows that by adjusting the longitudinal invisible momenta, one

can always turn M2XX into M2CX :

M2
2CX(ab) = M2

2XX(ab). (3.11)

The main lesson is that this comes at a price — the invisible momentum configuration

selected by the M2XX minimization may be different from the configuration obtained in

the M2CX minimization. We shall have much more to say about this in section 3.2 below.

Combining (3.11) with (3.10), we also trivially obtain the relation [41]

M2
2CX(ab) = M2

T2(ab). (3.12)

In order to illustrate (3.10)–(3.12) pictorially, in figure 3 we plot the three functions

fT2(~q1T ) ≡ max
[
MTA1(~q1T , m̃), MTA2(/~P T − ~q1T , m̃)

]
, (3.13)

f2XX(~q1T ) ≡ min
q1z ,q2z

{
max

[
MA1(~q1T , q1z, m̃), MA2(/~P T − ~q1T , q2z, m̃)

]}
, (3.14)
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f2CX(~q1T ) ≡ min
q1z,q2z

MA1
=MA2

{
max

[
MA1(~q1T , q1z, m̃), MA2(/~P T − ~q1T , q2z, m̃)

]}
(3.15)

in the ~q1T plane. (~q2T is then determined from the /~P T constraint as ~q2T = /~P T − ~q1T .)

These are precisely the functions which need to be minimized over ~q1T in order to obtain

the variables MT2(ab), M2XX(ab), and M2CX(ab), respectively. Note that these functions

already contain different number of minimizations over longitudinal momenta: f2XX(~q1T )

has two, f2CX(~q1T ) has one (the other longitudinal degree of freedom is fixed by the MA1 =

MA2 constraint), while fT2(~q1T ) has none. The event chosen for figure 3 was selected such

that the associated MT2(ab) value comes from an unbalanced situation, i.e., the minimum

of fT2(~q1T ), marked with the red × symbol, is at MTA1 6= MTA2 .

Figure 3 demonstrates that the three functions (3.13)–(3.15) are identical, thus justify-

ing the identities (3.10)–(3.12). In other words, once the minimization over the longitudinal

components is done for the M2XX(ab) and M2CX(ab) variables, the remaining functions

f2XX(~q1T ) and f2CX(~q1T ) become identical to fT2(~q1T ), so the remaining minimization

over ~q1T will converge to the common point marked with the × symbol. This means that

all three variables M2XX(ab), M2CX(ab), and MT2(ab) not only have a common value, but

also select the same transverse components ~qiT for the invisible momenta at their respective

minima. However, this is not the case for the longitudinal invisible momenta, qiz, which

will be the subject of the next subsection.

3.2 Uniqueness of the longitudinal momenta found by M2XX and M2CX

As already mentioned in the Introduction, one of the main advantages of the M2-type

variables over purely transverse analogues like MT2, MCT2 etc., is that they supply values

for not just the transverse, but also the longitudinal components of the invisible parti-

cle momenta. The knowledge of the full 4-momentum of each invisible particle enables

us to reconstruct the mass of each particle along the decay chain, and in particular the

relative particles; see section 4.2. One should keep in mind that the momenta found by

the M2 minimization are not the actual momenta of the invisible particles in the event.

Nevertheless, the MAOS approach demonstrates that they can be successfully used for

reconstruction [48, 49, 57].

Let us now investigate the solutions for q1z and q2z more closely. Consider the starting

point of the M2XX calculation, the function

G2XX(~q1T , q1z, q2z) ≡ max
[
MA1(~q1T , q1z, m̃), MA2(/~P T − ~q1T , q2z, m̃)

]
. (3.16)

As we saw in section 3.1, its minimization along the transverse directions ~q1T results in

unique solutions; we call them ~q
(×)
1T . (See the red × symbols in figure 3). Therefore, for

the purposes of discussing the minimization over the longitudinal momentum components,

we can fix the transverse momenta, ~q1T = ~q
(×)
1T , and investigate the qiz dependence of the

function

g2XX(q1z, q2z) ≡ max
[
MA1(~q

(×)
1T , q1z, m̃), MA2(/~P T − ~q (×)

1T , q2z, m̃)
]
. (3.17)
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The unconstrained minimization of g2XX(q1z, q2z) over q1z and q2z yields the value of

M2XX , while minimizing (3.17) subject to the parent constraint, MA1 = MA2 , gives the

value of M2CX .

Let us first study the effect of the parent constraint10

(pa1 + pb1 + q1)2 = (pa2 + pb2 + q2)2, (3.18)

which can be solved for q2z in terms of q1z:

q2z =
pv2zK ± Ev2

√
K2 − E2

q2T
(E2

v2 − p2
v2z)

E2
v2 − p2

v2z

, (3.19)

where

K ≡
m2
v1 −m

2
v2

2
+ Eq1Ev1 − ~q1T · ~pv1T − q1zpv1z + ~q2T · ~pv2T . (3.20)

One can obtain an analogous expression for q1z in terms of q2z, by substituting v1 ↔ v2

and q1 ↔ q2 in eqs. (3.19) and (3.20).

A couple of observations can be made from these equations. First, one can easily

see from (3.19) that the q2z solution is not uniquely determined, i.e., q2z has a twofold

ambiguity for a fixed q1z, unless the expression inside the square root, the discriminant,

vanishes. The same argument can be made regarding the analogous expression giving q1z

in terms of q2z. Then the question becomes whether both q1z and q2z have double roots

for some ~q1T . This is where the second observation comes into play. It turns out that for

the value of q1z which minimizes the function (3.16), q
(min)
1z , the discriminant in eq. (3.19)

is proportional to the difference between the transverse masses of A1 and A2:

K2 − E2
q2T (E2

v2 − p
2
v2z)

∣∣
q
(min)
1z

∝
(
M2
TA1
−M2

TA2

)
. (3.21)

On the other hand, the discriminant that would appear in the expression analogous to (3.19)

giving q1z in terms of q2z, will be proportional to M2
TA2
−M2

TA1
, i.e., the difference of the

same squared transverse masses, only taken in opposite order. This suggests an interesting

complementarity, in which q1z and q2z do not suffer from twofold ambiguities simulta-

neously, i.e., if q2z has two solutions in eq. (3.19), then q1z is uniquely determined, and

vice versa. This observation also reveals the necessary condition for both q1z and q2z to

be uniquely determined simultaneously: the transverse masses of A1 and A2 must be the

same, MTA1 = MTA2 , see the red dashed curves in figure 3.

Figure 4, which was made for the same unbalanced event used in figure 3, pictorially

illustrates the above discussion. Let us call the two solutions of (3.19) q2z(low) (correspond-

ing to the “−” sign) and q2z(high) (corresponding to the “+” sign). They are plotted in the

lower two panels of figure 4 in the ~q1T plane. The remaining momenta are fixed as follows:

at each point of the plane, ~q2T is given by the /~P T condition (2.2), while q1z is chosen so

that it minimizes the function (3.16): q1z = q
(min)
1z . The upper two panels of figure 4 show

10Recall that throughout this section we have in mind the (ab) subsystem.
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Figure 4. The values of the longitudinal invisible momenta qiz(low) (left panels) and qiz(high) (right

panels) which solve the parent constraint, (3.18), in the ~q1T plane (~q2T is then given by the /~PT

condition (2.2)), for the same event shown in figure 3. The upper row shows q1z(low) and q1z(high)

for q2z = q
(min)
2z , while the lower row shows q2z(low) and q2z(high) for q1z = q

(min)
1z . (q

(min)
iz is always

found by minimizing (3.16).) The red dashed curves denote the contours where the solutions to

both q1z and q2z are unique.

the analogous plots where the roles of q1z and q2z are reversed — we find q2z by minimiz-

ing (3.16), q2z = q
(min)
2z , and then plot the two solutions for q1z, q1z(low) and q1z(high). The

red dashed lines delineate the points with balanced solutions for MT2, MTA1 = MTA2 .

Figure 4 confirms that the red dashed line is a watershed boundary — in the region

above and to the right of that line we always find two possible values for q1z, but a single

value for q2z. Conversely, in the area below and to the left of that line there is always a

unique solution for q1z, but two solutions for q2z instead. Now recall that the event depicted

in figures 3 and 4 was unbalanced, i.e., the true global minimum was obtained at the red ×
point, at which MTA1 6= MTA2 . This point also happens to be located in the region where
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Figure 5. Plot of the function (3.17) in the (q1z, q2z) plane, for a balanced event with

MTA1
= MTA2

at the minimum (top row) and an unbalanced event with MTA1
6= MTA2

at

the minimum (bottom row). The left panels are contour plots, while the right panels show the

corresponding 3-dimensional view. The black solid curves mark the points satisfying the parent

constraint, MA1
= MA2

.

the solution for q2z is unique, but the solution for q1z has a twofold ambiguity. On the

other hand, if we had chosen a balanced event, the global minimum would fall somewhere

on the red dashed line, and both q1z and q2z will be uniquely determined.

Having understood the minimization of M2CX(ab), it is easy to infer the corresponding

solutions for q1z and q2z in the case of M2XX(ab). The ambiguity problem is now even more

serious, because whenever qiz(low) 6= qiz(high), any value of qiz ∈
(
qiz(low), qiz(high)

)
is also

allowed, i.e., the ambiguity is not just twofold, instead there is a flat direction. However,

these ambiguities are present only for unbalanced events — for balanced events, qiz(low) =

qiz(high), and the solution for both q1z and q2z is unique. This is pictorially illustrated in

figure 5, which shows the function (3.17) as a function of q1z and q2z. Since ~q1T is already
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fixed to its correct value, ~q
(×)
1T , at the global minimum of (3.16), the global unconstrained

minimum of the function (3.17) seen in figure 5 corresponds to M2XX , while the constrained

minimization along the black solid lines with MA1 = MA2 yields the value of M2CX . The

two plots in the top row of figure 5 correspond to a balanced event, in which there is a single

global minimum, and thus the longitudinal momentum configuration at the minimum is

unique. Furthermore, the global minimum is at the intersection of the two black solid lines,

implying that the parent constraint, MA1 = MA2 , is satisfied and therefore M2XX = M2CX ,

in agreement with the theorem from section 3.1. On the other hand, the bottom two plots

show an unbalanced event, in which the unconstrained minimization reveals a flat direction

along q2z. Any value of q2z along the bottom of that valley is acceptable and will give the

correct value of M2XX . If we now consider the constrained minimization along the black

solid lines to obtain M2CX , we find two degenerate global minima — one on the upper black

solid curve and one on the lower black solid curve. Thus, as expected, there is a twofold

ambiguity — in this case in the value of q2z, while q1z is unique. Again, the values of M2XX

and M2CX are the same, since the function (3.17) is constant along the flat direction.

Since later on we shall be using the momenta found by the minimization for reconstruc-

tion purposes, the results from this subsection raise the question of how one should deal

with unbalanced events, for which (some of) the momentum components are not uniquely

determined. There can be several approaches:

• Restrict one’s attention to balanced events only, incurring some (minor) loss in sta-

tistical significance.

• Sum over all possible kinematic solutions (i.e., integrate over the flat direction in

figure 5), and enter the results in histograms with correspondingly reduced weights.

• Instead of obtaining the momenta from M2XX and M2CX , use the variables with

relative constraints, M2XC and M2CC , for which these ambiguities generally do not

arise, see section 3.3.

3.3 The variables M2XC and M2CC

Having seen in section 3.1 that M2XX(ab) and M2CX(ab) are equivalent to MT2(ab), we

now shift our focus to the new variables M2XC(ab) and M2CC(ab) and investigate their

relationship with the other variables.

First we argue that the result from minimization with respect to ~q1T will be different in

general when obtaining these new variables. For this purpose, let us assume the opposite,

i.e., consider the function (3.17) in which ~q1T has been fixed to the result ~q
(×)
1T found in the

~q1T minimization in figure 3. We then discuss its minimization in the (q1z, q2z) plane as

in figure 5. The new element here is the presence of the relative constraint, M2
B1

= M2
B2

,

which can be written as

(pb1 + q1)2 = (pb2 + q2)2, (3.22)
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Figure 6. The analogues of figure 3 (left panel) and figure 4 (middle and right panels) for

the case of M2XC . The cross symbols show the location of the global minimum for MXC ,

at which M2XC(ab) = 483.85 GeV, and the invisible momenta are given by (~q1T , q1z, q2z) =

(64.61, −202.37, −395.75, 19.07) GeV.

and which can be solved for q2z in analogy to (3.19):

q2z =
pb2zK

′ ± Eb2
√
K ′2 − E2

q2T
p2
b2T

p2
b2T

, (3.23)

where

K ′ ≡ Eq1Eb1 − ~q1T · ~pb1T − q1zpb1z + ~q2T · ~pb2T . (3.24)

A similar expression can be obtained for q1z in terms of q2z, with the replacements q2z ↔ q1z

and b1 ↔ b2 in (3.23), (3.24). Due to the “±” sign in (3.23), the relative constraint, (3.22),

again implies two branches in the (q1z, q2z) plane, analogous to the black solid curves in fig-

ure 5. If at least one of these two curves passes through the global minimum point11 found

previously for the case of M2XX , then M2XC will turn out to be the same as M2XX(ab).

However, the chances of a plane curve passing through a given point (or even a given finite

line segment) are minimal, therefore we expect that, in general, the solution found previ-

ously for M2XX will not obey the relative constraint, (3.22). This means that our choice of

~q1T = ~q
(×)
1T was wrong, and that the minimum for M2XC is obtained at a different value for

~q1T than the one found in figure 3. In particular, the constrained global minimum found

by M2XC will be higher than the corresponding unconstrained global minimum M2XX :

M2XC(ab) ≥M2XX(ab) = M2CX(ab) = MT2(ab). (3.25)

Figure 6 pictorially illustrates the above discussion. The left panel shows the function

to be minimized when calculating M2XC . As compared with the analogous figure 3 for the

case of M2XX , we see that the shape of the function is completely different, and as a result

the global minimum (marked with a red × symbol) is obtained at a different point in ~qT

11Recall from figure 5 that balanced events lead to a unique global minimum as shown in the top panels

while unbalanced events lead to a flat direction along a finite line segment as shown in the bottom panels.
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Figure 7. The same as figure 6, but for the case of M2CC(ab). At the global minimum (marked

with the red × symbol), M2CC(ab) = 487.86 GeV, and the solution for the invisible momenta is

given by (~q1T , q1z, q2z) = (60.11, −156.62, 121.35, 17.44) GeV. Within the white region, the

constraints (3.18) and (3.22) cannot be simultaneously satisfied.

space, ~q1T = (64.61,−202.37) GeV (as opposed to ~q×1T = (66.09,−212.90) GeV, which was

found in figure 3).

Another important lesson from the middle and right panels in figure 6 is that the

solutions for q1z and q2z are now unique, unlike in the case of M2XX and M2CX exhibited

in figure 4. We shall use this fact later on when reconstructing the mass of relative particles

and studying the event topology.

Finally, it remains to discuss the variable M2CC(ab), where the parent and relative

constraints, (3.18) and (3.22), are simultaneously applied. The analysis proceeds very

similarly to the case of M2XC(ab) and the corresponding results are displayed in figure 7.

Because of the additional constraint, the true global minimum for M2CC(ab) is now even

greater than M2XC(ab). We thus arrive at our final result relating the variables (3.1):

M2CC(ab) ≥M2XC(ab) ≥M2XX(ab) = M2CX(ab) = MT2(ab). (3.26)

Note that there are large regions in invisible momentum parameter space (the white ar-

eas in figure 7), for which the on-shell kinematic constraints (3.18) and (3.22) cannot be

simultaneously satisfied. As before, the red × symbol marks the solution for ~q1T , which

is found at a new location, ~q1T = (60.11,−156.62) GeV. The corresponding M2CC(ab)

value is 487.86 GeV, which is slightly larger than M2XC(ab) = 483.85 GeV, in agreement

with (3.26). The solutions for the longitudinal momenta are also unique (just as in the

case of M2XC(ab) in figure 6), and are found at (q1z, q2z) = (121.35, 17.44) GeV.

3.4 Summary of the properties of the on-shell constrained M2 variables

We now collect our main results from section 2 and section 3 before moving on to the

practical applications of the M2 variables in the next few sections.
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Balanced events Unbalanced events

Variable ~qiT qiz ~qiT qiz

MT2(ab) unique NA unique NA

M2XX(ab) unique unique unique flat direction

M2CX(ab) unique unique unique twofold ambiguity

M2XC(ab) unique unique unique unique

M2CC(ab) unique unique unique unique

Table 3. Table summarizing the uniqueness of the invisible momentum configurations correspond-

ing to the global minimum.

In section 2, we defined five different types of variables for each of the three subsystems

in figure 2 (see table 2). The hierarchy among those variables is12

M2CC(ab) ≥ M2XC(ab) ≥M2XX(ab) = M2CX(ab) = MT2(ab); (3.27)

M2CC(a) ≥ M2XC(a) ≥M2XX(a) = M2CX(a) = MT2(a); (3.28)

M2CC(b) ≥ M2XC(b) ≥M2XX(b) = M2CX(b) = MT2(b). (3.29)

Thus, out of the fifteen variables seen in (3.27)–(3.29), there are only nine which are

quantitatively different.

Each of the M2 variables in table 2 is calculated by minimizing a suitably defined mass

function in terms of the invisible momenta, see (2.7)–(2.10). The global minimum thus

selects a special configuration of the invisible momenta which can be used for kinematical

studies. In this section, we also investigated the uniqueness of the global minimum and

consequently, the uniqueness of the associated invisible momenta. Our results are summa-

rized in table 3. For completeness, in the table we also include the MT2 variable, which,

however, cannot determine the longitudinal components of the invisible momenta. In the

case of balanced events, all four M2 variables uniquely determine the invisible 3-momenta,

while for unbalanced events, only M2XC and M2CC do so. Note that the twofold ambiguity

in the case of M2CX and the flat direction in the case of M2XX are only with respect to

one of the qiz components, while the other qiz component is uniquely determined.

4 Mass measurements

We now discuss several physics examples illustrating the potential uses and advantages of

the M2 variables. In this section, we first consider the simpler scenario where we have

made the correct hypothesis about the true physics model and show how the use of M2

variables can improve the precision of the mass measurements (in section 4.1) and provide

a generalization of the MAOS technique [48] (in section 4.2). Then in section 5, we move

12Strictly speaking, in this section we only discussed the (ab) subsystem and the relations (3.27), but the

analysis leading to (3.28) and (3.29) is very similar.

– 22 –



J
H
E
P
0
8
(
2
0
1
4
)
0
7
0

to the case where we are uncertain about which new physics model is correct. We show

how one can then use the M2 variables to rule out the incorrect model assumptions and

hone in on the correct event topology.

The model to be studied in this section is the one depicted in figure 1(a), where the

two decay chains are assumed to be identical:

mA1 = mA2 ≡ mA, mB1 = mB2 ≡ mB, mC1 = mC2 ≡ mC . (4.1)

In order to avoid confusion, from here on we shall use lowercase letters as in (4.1) to denote

the true physical masses of the particles, reserving the corresponding uppercase letters MA,

MB, etc., for masses which are reconstructed using kinematic information from the visible

decay products in the event. Where necessary, input test masses (i.e., mass ansätze) will

be denoted with a tilde. Throughout the paper, for our simulations we shall use event

samples of ∼ 100, 000 events each, generated at threshold (
√
ŝ = mA1 +mA2) without any

spin correlations (i.e. we use pure “phase space” distributions).13

4.1 M2 kinematic endpoints and parent mass measurements

The relations (3.27)–(3.29) imply that the on-shell constrained variables M2XC and M2CC

can provide progressively better measurements of an upper kinematic endpoint, as com-

pared with the conventional variables MT2, M2XX , and M2CX . The reason is that the

shapes of the M2XC and M2CC distributions will be skewed to the right, thus better pop-

ulating the bins in the vicinity of the endpoint. This expectation is confirmed in figure 8,

where we compare the distributions of these five variables for the example of (4.1) with

mass spectrum (mA, mB, mC) = (500, 300, 200) GeV. For concreteness and simplicity,

we choose the input trial mass, m̃, to be the same as the actual daughter mass in each case.

Comparisons are made for each subsystem of figure 2: subsystem (ab) (upper left panel),

subsystem (ab) but using only balanced events (upper right panel), subsystem (a) (lower

left panel), and subsystem (b) (lower right panel). Although each panel shows results for

five variables, only three distributions (at most) can be seen, because the distributions of

MT2, M2XX , and M2CX are identical, in accordance with the equivalence theorem from

section 3.1. An interesting observation is that M2CC and M2CX also turn out to be the

same for balanced events (i.e., events in which the transverse masses of the parents end up

being equal for the momentum configuration obtained when minimizing the respective mass

function). This observation is supported by the upper right plot in figure 8, which uses only

events in which MT2(ab) is obtained from a balanced configuration,14 and by the two lower

plots in figure 8, in which MT2(a) and MT2(b) always come from balanced configurations.

In the case of subsystem (ab), the MT2 distribution is already very sharp near the

kinematic endpoint, and the improvement from replacingMT2 withM2XC orM2CC appears

13In general, depending on the details of the new physics model, the parents Ai will be produced with

some non-zero boost, i.e.,
√
ŝ > mA1 + mA2 . However, given the current LHC bounds, the parents Ai are

expected to be heavy, so that they should be predominantly produced near threshold. We have also tested

our methods below with more realistic event samples, including the effects from initial state radiation and

proton structure, and found that our conclusions remain unchanged.
14In our sample, 64% (36%) of the events have balanced (unbalanced) solutions for MT2(ab).
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Figure 8. Unit-normalized differential distributions of the variables MT2 (yellow shaded

histograms), M2XX (black solid line), M2CX (green dashed line), M2XC (blue hatched his-

tograms), and M2CC (red dashed line) for the process of figure 1(a) with mass spectrum

(mA, mB , mC) = (500, 300, 200) GeV. Results are shown for subsystem (ab) (upper left panel),

subsystem (ab) with balanced events only (upper right panel), subsystem (a) (lower left panel),

and subsystem (b) (lower right panel). The input trial mass is chosen to be the same as the true

mass of the relevant daughter particle.
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Figure 9. Reconstruction of the mass of the relative particle in the case of subsystem (ab) (left

panel), subsystem (a) (middle panel), and subsystem (b) (right panel). The ansatz for the invisible

particle momenta can be taken from the corresponding M2XX variable (yellow-shaded histogram),

M2CX variable (green histogram), M2XC variable (blue-shaded histogram), or M2CC variable (red

histogram). The true mass spectrum and trial masses are chosen as in figure 8. The vertical black

dashed line in each plot denotes the true mass of the associated relative particle. The middle panel

(for subsystem (a)) shows the mass squared of the relative particle, which can be negative at times.

marginal. However, the effect is very drastic in the case of subsystem (a) or subsystem (b)

(the lower two plots in figure 8), where the MT2 distribution (the yellow-shaded histogram)

has very few events near the kinematic endpoint. Now, using M2XC or M2CC in place of

MT2 completely changes the character of the distribution, and the bins near the endpoint

become the most populated ones. Notice the extremely sharp drop-off at the endpoint

of the M2XC(a) and M2XC(b) distributions (the blue-shaded histograms). This feature

should be easily observable over the background and would lead to more accurate endpoint

measurements and extraction of masses.

4.2 M2-assisted mass reconstruction of relative peaks

As explained in the introduction, an attractive feature of theMT2 variable is that it provides

an ansatz for the transverse momenta of the invisible particles. The M2 variables, being

3+1 dimensional extensions of MT2, take this one step further and extend the ansatz to

the full 4-momenta of the invisible particles. This allows us to apply the MAOS method

for mass reconstruction [48, 52, 53] in a pure form, i.e., without the need for additional

assumptions in order to solve for the longitudinal momenta of the invisible particles —

since those are already provided by the M2 minimization itself.15 As shown in section 3,

the variables M2CC and M2XC are somewhat better suited for our purpose (in comparison

to M2XX and M2CX), since they provide a unique ansatz for the invisible particle momenta

in the case of unbalanced events. Of course, for balanced events, any of our four types of

M2 variables can be used.

Figure 9 shows the results for the reconstruction of the masses of the relative particles

in each of the three subsystems from figure 2. In the left panel of figure 9, we use the

15Thus in our case, the MAOS abbreviation should perhaps be thought of as “M2-assisted on-shell”

reconstruction.
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invisible momenta obtained from various M2(ab)-type variables to reconstruct the mass,16

M̃B, of the relative particle, B, in subsystem (ab); in the middle panel we use the momenta

obtained from M2(a)-type variables to find the mass squared, M̃2
C , of the relative particle,

C, in subsystem (a); and finally, in the right panel, we use the momenta from M2(b)-type

variables to reconstruct the mass, M̃A, of the relative particle, A, in subsystem (b). Each

distribution in figure 9 is color coded according to the type of M2 variable supplying the

invisible momenta: yellow-shaded histograms for the case of M2XX , green histograms for

M2CX , blue-shaded histogram for M2XC , and red histograms for M2CC . The events are

generated with the mass spectrum from eq. (4.1) and the test mass was always chosen to

be the true mass of the relevant daughter particle: m̃ = mC for subsystem (ab) (left panel),

m̃ = mB for subsystem (a) (middle panel), and m̃ = mC for subsystem (b) (right panel).

The most interesting feature of the plots in figure 9 is that the distributions always

peak close to the true mass of the relative particle (denoted by the vertical black dashed

line in each plot). This suggests a new technique for measuring the mass of a relative

particle — by using the location of the peak of the reconstructed relative mass distribution

as shown in figure 9. A closer inspection of figure 9 reveals another advantage of the

M2 variables that incorporate on-shell kinematic constraints for relative particles in their

definition. Note that in each panel, all four distributions peak near the true relative mass,

but in the case of M2XC and (especially) M2CC , the peak is much more narrow, and, more

importantly, the peak location is very close to the true value of the mass of the respective

relative particle. We therefore anticipate that the precision of the new technique will be

much better when using M2CC (and M2XC) as opposed to M2CX or M2XX .

This technique is in principle independent of (and complementary to) the previous

methods in which masses are measured from upper kinematic endpoints. For example, con-

sider particle B (the intermediate particle in the decay chains of figure 1). It is known that

its mass can be measured (as a function of m̃ ≡ m̃C) from the upper kinematic endpoint

Mmax
T2 (b) of the MT2(b) distribution in subsystem b, where Bi is treated as a parent [33, 39]

m̃B(m̃C) = Mmax
T2 (b)(m̃C). (4.2)

Using the correct value for the daughter particle mass, mC , in (4.2) yields the correct value

of the parent mass, mB:

mB = Mmax
T2 (b)(mC). (4.3)

We now propose to consider subsystem (ab) instead, where Bi is treated as a relative,

and extract m̃B(m̃C) from the location of the peak M̃peak
B of one of the M̃B distributions in

the left panel of figure 9, e.g., the one where the invisible momenta are fixed by M2CC(ab):

m̃B(m̃C) = M̃peak
B (ab)(m̃C). (4.4)

The procedure is pictorially illustrated in figure 10. The M̃B distribution from figure 9

can now be re-obtained without the “cheat” of fixing m̃ = mC . Instead, we can now

simply vary the input test mass, m̃C , and read off the location of the M̃B peak for each

16From here on, a tilde over a quantity implies that it is a function of the test mass m̃.
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Figure 10. Unit-normalized distributions of the reconstructed mass, M̃B , of the relative particle

in subsystem (ab), using invisible momenta from M2CC(ab), and picking a series of different values

for the input test mass, m̃C , from m̃C = 0 (blue histogram) to m̃C = 2.6mC (green histogram).

The red shaded distribution corresponds to the true value, m̃C = mC , and is the same as the

red histogram in the left panel of figure 9. The vertical black dashed line marks the true mass,

mB = 300 GeV, in our example.

m̃C value, thus experimentally determining the function (4.4). This method relies on the

fact demonstrated by the red shaded histogram in figure 10 — that for the correct value,

mC , of the test daughter mass the peak of the M̃B distribution matches the correct value,

mB, of the mass for the relative particle:17

mB = M̃peak
B (ab)(mC). (4.5)

Notice the analogy between the relationships (4.2) and (4.4) — they both relate the mass of

particleBi with the mass of particle Ci. The difference is that the correlation (4.2) is derived

from a kinematic endpoint in subsystem (b), while the correlation (4.4) is derived from the

peak of a distribution within subsystem (ab). Also one should keep in mind that while (4.3)

is a mathematical identity, the relation (4.5) at this point is a conjecture supported by the

numerical results from figures 9 and 10. (Compare to the similar conjecture relating the

peak of the
√
ŝmin distribution to the mass of the corresponding parents [20].)

17The careful reader might notice some other interesting features of the red-shaded histogram in figure 10

— it appears to be the most localized distribution and, correspondingly, has the highest peak among all

distributions shown in figure 10. However, we do not pursue further this observation, since figure 12 below

provides a counterexample in which the highest peak is obtained for the wrong value of the test mass.
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Figure 11. The same as figure 10, this time reconstructing the mass, M̃A, of the relative particle

in subsystem (b) for several values of m̃C , using invisible momenta from M2CC(b). The red shaded

distribution corresponds to the true value, m̃C = mC , and is the same as the red histogram in the

right panel of figure 9. The vertical black dashed line marks the true mass, mA = 500 GeV, in our

example.

Similar logic can be applied to particle A. It is known that its mass can be measured

from the upper kinematic endpoint of the MT2(ab) distribution in subsystem (ab), as a

function of the input test mass, m̃C , in complete analogy to (4.2) [35, 38]:

m̃A(m̃C) = Mmax
T2 (ab)(m̃C). (4.6)

Alternatively, it can be measured from the upper kinematic endpoint of the MT2(a) distri-

bution in subsystem (a), this time as a function of the test mass, m̃B [33, 38, 39]:

m̃A(m̃B) = Mmax
T2 (a)(m̃B). (4.7)

We now propose a third way of measuring the mass of Ai, by treating it as a relative

particle in subsystem (b): using the invisible momenta from the M2CC(b) calculation, we

can reconstruct the mass of the relative, M̃A, and read off the location of the peak, M̃peak
A ,

in analogy to (4.4)

m̃A(m̃C) = M̃peak
A (b)(m̃C). (4.8)

The function, (4.8), can be experimentally derived as shown in figure 11 — one varies

the test mass, m̃C , and forms a series of M̃A distributions. The location of the peak of

each distribution represents the value of m̃A for the given hypothesized value of m̃C . The
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Figure 12. The same as figure 10, this time reconstructing the mass squared, M̃2
C , of the relative

particle in subsystem (a) for several values of m̃B , using invisible momenta from M2CC(a). The red

shaded distribution corresponds to the true value, m̃B = mB , and is the same as the red histogram

in the middle panel of figure 9. The vertical black dashed line marks the value of the true mass

squared, m2
C = 40, 000 GeV2, in our example.

red shaded histogram in figure 11 corresponds to the true value of m̃C = mC and again

peaks at the correct value of the mass, mA, of the relative particle:

mA = M̃peak
A (b)(mC). (4.9)

Finally, one may also consider the subsystem (a) and study the distributions of the

reconstructed relative mass, M̃C , shown in the middle panel of figure 9. This establishes

the relation

m̃C(m̃B) = M̃peak
C (a)(m̃B). (4.10)

The procedure is illustrated in figure 12, where we have used M2CC(a) to fix the

momenta of the invisible particles before computing M̃2
C . A peculiar feature of figure 12

is that for low enough values of the test mass, m̃B, the peak of the distribution is found

at negative values of M̃2
C , which is why we do not take a square root and instead use the

mass squared in the plot. Nevertheless, the important feature of figure 12 is that, just like

in figures 10 and 11, for the correct choice of the test mass, m̃B = mB (see red histogram),

the peak reveals the true value, mC , of the relative particle (in this case Ci).

Before concluding, in figure 13 we summarize the different mass determination meth-

ods discussed in this section. The existing method relies on measuring MT2 kinematic end-

points in the three subsystems of figure 2, establishing the three relationships (4.2), (4.6),
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Figure 13. A summary of the different mass correlation methods discussed in the text: (4.11)

is represented by a blue dashed line, (4.12) is given by a red dashed line, (4.15) is shown by the

red open circles, (4.16) is denoted by the blue open circles, while (4.17) is marked by the blue

triangles. The red dotted line represents the relationship between m̃A and m̃C which is obtained by

eliminating m̃B from (4.13) and (4.14), while the blue dotted line shows the orthogonal relationship

among m̃B and m̃C resulting from eliminating m̃A from (4.13) and (4.14).

and (4.7). In section 4.1, we proposed to measure the sharper M2CC kinematic endpoints

instead, resulting in three analogous relations

m̃B(m̃C) = Mmax
2 (b)(m̃C), (4.11)

m̃A(m̃C) = Mmax
2 (ab)(m̃C), (4.12)

m̃A(m̃B) = Mmax
2 (a)(m̃B). (4.13)

These can be supplemented with the classic measurement of the kinematic endpoint of the

invariant mass, Mab, of the two visible particles, ai and bi, in each decay chain

Mmax
ab =

√
(m̃2

A − m̃2
B)(m̃2

B − m̃2
C)

m̃2
B

, (4.14)

which provides a constraint among all three masses m̃A, m̃B, and m̃C . The four measure-

ments (4.11)–(4.14) are already sufficient to determine the three unknowns m̃A, m̃B, and

m̃C [39]. The new measurements proposed in section 4.2 are the peak determinations

m̃A(m̃C) = M̃peak
A (b)(m̃C), (4.15)

m̃B(m̃C) = M̃peak
B (ab)(m̃C), (4.16)
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Figure 14. The four benchmark decay topologies studied in section 5.

m̃C(m̃B) = M̃peak
C (a)(m̃B). (4.17)

The seven relations (4.11)–(4.17) are pictorially illustrated in figure 13. In order to

display all seven relations on the same plot, we first plot (4.11)–(4.12) and (4.15)–(4.17)

directly, then from the remaining two relations (4.13) and (4.14) we either eliminate m̃B

to obtain m̃A as a function of m̃C (red dotted line), or eliminate m̃A to obtain m̃B as a

function of m̃C (blue dotted line). All seven correlations (4.11)–(4.17) agree for the correct

values for mA, mB and mC , marked with the black dotted lines in figure 13. What is more

interesting is that they disagree for the wrong values of the test input mass, m̃C . This

is particularly noticeable in the region m̃C < mC . Figure 13 suggests that by combining

the results from all the different methods (4.11)–(4.17) one can determine the true value

of mC as the location of the crossing point of the different curves shown in the figure. Our

method is complementary to other methods in the literature for determining the absolute

value of mC [11, 13, 35–38, 42, 43, 58–60, 70].

5 Using M2 variables for topology disambiguation

Up to this point, we have been studying events under the correct assumption about the

event topology. However, in a real experiment, there is no prior indication as to what the

correct event topology is for any given observed final state, and one should consider (and

test for) all possible alternatives. This is exactly what we set out to do in this section.
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Given our observed final state of two visible a particles, two visible b particles and missing

transverse momentum, a number of event topologies are possible; four of which are shown

in figure 14. Figure 14(a) shows our nominal scenario, (4.1), considered so far, in which

there is an on-shell Bi resonance in each chain and furthermore, the two B resonances

are the same: B1 = B2 ≡ B. Figure 14(b) represents the off-shell scenario in which the

intermediate B resonance is very heavy and the decays are three-body. Figure 14(c) is the

same as figure 14(a), but with a slight modification — now the two intermediate resonances,

Bi, are different: B1 6= B2. Finally, figure 14(d) is the analogue of figure 14(a) in which

the visible particles, a and b, are switched, i.e., the decay to b takes place first, followed by

the decay to a.

In this section, we shall design several tests which discriminate among the alternative

possibilities depicted in figure 14. The tests make crucial use of the constrainedM2 variables

introduced in section 2.

5.1 Endpoint test

We first design a test to distinguish among the three event topologies shown in figure 14(a),

figure 14(b), and figure 14(c). (This test will not be able to discriminate among figure 14(a)

and figure 14(d).) The basic idea is very simple. Recall that the M2XC(ab) and M2CC(ab)

variables from section 2 were defined under the assumption of a common relative particle.

I.e.,

• there is an intermediate Bi resonance in each decay chain, and

• the two Bi particles are the same, so that mB1 = mB2 .

If either of these two assumptions is incorrect, the definition of M2XC(ab) and M2CC(ab)

loses its physical meaning, and as a result something will go wrong. Therefore, by test-

ing for the consistency of M2XC(ab) and M2CC(ab) with another, topology-independent,

variable like M2XX(ab), we can verify the above two assumptions. Note that relaxing the

first assumption leads to the event topology of figure 14(b), while dropping the second

assumption leads to the event topology of figure 14(c).

How can one test for the consistency of M2XC(ab) and M2CC(ab)? Recall that the

basic property of all M2 variables is that they provide a lower bound on the mass of the

corresponding parent, and their upper kinematic endpoints saturate that bound, revealing

the mass of the parent (as a function of the test daughter mass). Now consider the rele-

vant variables (3.1) for subsystem (ab). They bound the mass of the same parent A, the

only difference is that they have various assumptions about the event topology built in.

Therefore, if all those assumptions are correct, the kinematic endpoints of all the variables

should agree as well:18

Mmax
T2 = Mmax

2XX = Mmax
2CX = Mmax

2XC = Mmax
2CC . (5.1)

18Of course, due to the equivalence theorem discussed in section 3.1, the first two equalities in eq. (5.1)

are trivially satisfied, so that the actual test involves only the last two equalities in eq. (5.1).
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Figure 15. The same as the upper left panel of figure 8, but using events from three dif-

ferent scenarios. The left panel shows the nominal event topology from figure 14(a) with

(mA, mB , mC) = (500, 300, 200) GeV. The middle panel corresponds to the off-shell case of

figure 14(b) with (mA, mC) = (500, 200) GeV. The right panel represents the asymmetric event

topology from figure 14(c) with (mA, mB2 , mB1 , mC) = (500, 400, 300, 200) GeV. The test mass

was always chosen to be m̃C = 200 GeV.

Conversely, if some of the assumptions are not satisfied, (5.1) will be violated — there will

be a certain number of events in which the values of M2XC(ab) and M2CC(ab) will violate

the upper kinematic endpoint Mmax
2XX of the topology-independent variable M2XX(ab).

The test is performed in figure 15, where we compare the distributions of the five

variables in the (ab) subsystem, as in the upper left panel of figure 8. In the left panel of

figure 15, we first consider the case of our nominal event topology from figure 14(a) with

the mass spectrum from (4.1). As already observed in figure 8, the distributions may have

slightly different shapes, but their endpoints are exactly the same. Therefore, this case

passes the endpoint test, (5.1), as expected.

We next consider the off-shell case of figure 14(b) with (mA, mC) = (500, 200) GeV

and plot the results in the middle panel of figure 15. In accordance with the equivalence

theorem from section 3.1, the distributions of MT2, M2XX , and M2CX are identical, and

their common endpoint provides a reference value, Mmax
2XX , to be compared against the

endpoints of M2XC and M2CC . The plot clearly shows that the distributions of M2XC and

M2CC develop long tails beyond Mmax
2XX , thus violating (5.1) and failing the endpoint test.

The violation is more severe in the case of M2CC (the red histograms in figure 15), where

a larger number of events have migrated beyond the anticipated endpoint Mmax
2XX . The

reason for this violation is easy to understand — in the off-shell case of figure 14(b) there

are no intermediate resonances, B1 and B2. Thus when we enforce the relative constraint,

MB1 = MB2 , in constructing the M2XC and M2CC variables, we unnecessarily restrict the

range of allowed values of the invisible momenta during the minimization, and thus arrive

at an unphysical global minimum. Based on the results from the middle panel of figure 15,

we can therefore safely rule out the on-shell event topology of figure 14(a) as being the

source of these events.

The right panel in figure 15 shows the case of the asymmetric event topology from fig-

ure 14(c) with (mA, mB2 , mB1 , mC) = (500, 400, 300, 200) GeV. This time, the interme-
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diate resonances, B1 and B2, are present, but their masses are not equal: mB1 = 300 GeV,

while mB2 = 400 GeV. Thus applying the relative constraint, MB1 = MB2 , during the min-

imization for M2XC and M2CC once again leads to an unphysical situation. As a result, the

M2XC and M2CC distributions again develop tails beyond Mmax
2XX , failing the test (5.1) and

ruling out the on-shell event topology of figure 14(a) as being the source of these events.

Note that in the last two cases, when the endpoint test failed, it simply told us which

event topology is wrong, but it did not specify the correct answer. For this, we must

develop further tests as in the next two subsections. However, notice the distinctive shape

of the distributions in the right panel of figure 15 in comparison with the middle panel. One

might hope to use this shape difference to further discriminate among the event topologies

of figure 14(b) and figure 14(c). However, such detailed shape analysis is beyond the scope

of this paper.

Note that the ability to discriminate among two alternative event topologies suggests

an interesting application of the constrained M2 variables in discriminating the signal from

irreducible backgrounds [71]. The SM backgrounds have known event topologies, for which

the corresponding on-shell constraints can be readily applied; the resulting distributions

will still have the same endpoint. With a suitably chosen cut above this expected SM

endpoint, one would be able to remove most, if not all, background events. On the other

hand, the signal event topology is generally different, and the signal events will migrate to

higher values of M2 once the kinematic constraints are imposed, leading to a higher signal

efficiency when using M2 in place of MT2.

Before concluding this subsection we comment on the applicability of our method in the

presence of backgrounds (either from Standard Model processes resulting in the same final

state, or from signal combinatorial backgrounds). First, one should keep in mind that pre-

cision kinematic measurements like the ones discussed in this paper will be attempted long

after the initial discovery, when large statistics samples with large signal to background ra-

tios are available. (Reducible backgrounds can be easily suppressed by other cuts unrelated

to the M2 variables.) Unfortunately, the background cannot be eliminated completely. In

particular, some background events might populate the region above the M2 endpoints for

a number of reasons, e.g., a different event topology, smearing, or combinatorics ambigu-

ities. Thus one may wonder if the failure of the endpoint test can be attributed to such

background contamination. We believe that this is unlikely to be the case, since only a

(small) fraction of the background events are actually affecting the endpoint test. Indeed,

the background events fall into three categories. The first19 contains background events

whose M2XX , M2XC and M2CC values are all below the observed signal M2 endpoint. Such

events will remain in the bulk of the M2 distributions and will not have any impact on the

endpoint test. The second category contains background events for which all three vari-

ables M2XX , M2XC and M2CC exceed the observed signal M2 endpoint. In spite of such

endpoint violations, these events also have no relevance to the endpoint test, since they

will be recognized as background already from the M2XX distribution alone. It is only the

19In practice, this is the most populous of the three categories, because for the signal mass spectra of

interest, the M2 endpoint for the background is typically below the M2 endpoint for the signal.
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third category of background events which could be problematic — those are the events

where M2XX is below the signal M2 endpoint, while M2XC and M2CC happen to migrate

above the signal M2 endpoint. The expected number of such events for SM background

events can be estimated from Monte Carlo and therefore will not bias the test. Given that

this third category encompasses only a small fraction of all background events (which are

themselves assumed to be small compared to the total number of signal events), we do not

expect that such background migration would invalidate the proposed endpoint test.

5.2 Dalitz plot test

In this subsection, we develop a Dalitz plot test which enables us to discriminate the event

topology in figure 14(a) from those in 14(b) and 14(d). The idea is to use the invisible

momenta obtained in the M2 minimization to form invariant mass combinations involving

the final state invisible particles, Ci.

To see how the method works, let us assume that the signal comes from the event

topology of figure 14(a). First consider the ideal case when we have exact knowledge of

the four momenta of the invisible particles, Ci. Since there are three particles in the final

state of each decay chain, ai, bi, and Ci, and we know their 4-momenta, we can form three

invariant mass combinations, Mab, MbC , and MaC . Since particles bi and Ci originate

from the same mother particle, Bi, MbC simply equals the mass, mB, of that mother

particle, regardless of the value of Mab. Therefore, the Dalitz plot in the (M2
bC ,M

2
ab) plane

is characterized by a single vertical line:

M2
bC = m2

B for any M2
ab ∈ [0, (Mmax

ab )2], (5.2)

with Mmax
ab given by (4.14). On the other hand, M2

aC takes values within a given range

consistent with the sum rule

M2
aC = m2

A −m2
B +m2

C −M2
ab for any M2

ab ∈ [0, (Mmax
ab )2], (5.3)

which is nothing but a straight line with a negative slope in the plane of (M2
aC ,M

2
ab). The

predictions (5.2) and (5.3) in this idealized case are illustrated in the upper left panel of fig-

ure 16, where the vertical line corresponds to (5.2), and the slanted line corresponds to (5.3).

We are now ready to consider the more realistic case in which we do not have exact

knowledge of the individual momenta of the invisible particles, Ci, but instead obtain them

from the M2CC ansatz. The corresponding results are shown in the remaining two plots in

the top row of figure 16 — the middle panel shows a scatter plot in the (M2
aC ,M

2
ab) plane,

while the right panel shows a scatter plot in the (M2
bC ,M

2
ab) plane. Since the invisible

momenta are only approximated, the correlations are not exactly linear, but nevertheless

they tend to follow the general trends given by (5.2) and (5.3).

Let us now move on to the event topology of figure 14(b). This case is illustrated

in the middle row of figure 16. Since the intermediate Bi resonance is absent, the visible

particles, ai and bi, arise from the same vertex and are on equal footing. Thus, we expect

the associated Dalitz plots in the (M2
aC ,M

2
ab), and (M2

bC ,M
2
ab) planes to be very similar,

and indeed this is what we observe by comparing the middle and right panels of the middle
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Figure 16. Dalitz plots for the event topologies of figure 14(a) (top row), figure 14(b) (middle row),

and figure 14(d) (bottom row). Using the invisible particle momenta obtained from M2CC(ab), we

show scatter plots of M̃2
aC versus M2

ab (middle column) and M̃2
bC versus M2

ab (right column). The

left column shows the corresponding results in the ideal case when we use the true momenta of the

invisible particles in the event. The mass spectrum is fixed as in (4.1).

row. We therefore conclude that the similarity between the two Dalitz plots is an indication

of an off-shell scenario as in figure 14(b).

Finally, the bottom row in figure 16 represents the case of the event topology from

figure 14(d), which again has a pair of identical intermediate resonances, Bi, only now

the visible particles, ai and bi, are emitted in the opposite order — bi comes first and ai
comes second.20 Comparing this to the decay topology of figure 14(a), we see that the only

20In this way we are trying to resolve the combinatorial ambiguity associated with the assignment of

visible particles within a given decay chain.
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difference is that the roles of the visible particles, ai and bi, are reversed. Therefore our

previous analysis leading up to eqs. (5.2) and (5.3) still applies, only now the two trends

are interchanged — the correlation in the (M2
aC ,M

2
ab) plane is expected to be a vertical

straight line, while the correlation in the (M2
bC ,M

2
ab) plane is expected to be a slanted

straight line. This ideal case with perfect knowledge of the invisible momenta is shown in

the left bottom panel of figure 16. The more realistic case, in which the invisible momenta

are taken from the M2CC(ab) minimization, is presented in the middle and right bottom

panels of figure 16. As expected, the behavior is exactly the opposite of what we observed

in the corresponding plots in the upper row of figure 16. Our conclusion, therefore, is that

whenever the two scatter plots are different, the visible particle in the scatter plot with

the vertical correlation is the one which is emitted second, while the visible particle in the

slanted scatter plot is the one which is emitted first.

5.3 Resonance scatter plot test

Finally, we describe a test aimed at detecting and identifying any intermediate resonances,

Bi. In particular, we shall revisit the event topologies from figures 14(a), 14(b), and 14(c)

and attempt to answer the questions:

• Is there an intermediate Bi resonance in each decay chain?

• If so, are the two Bi particles the same or not?

Once again, the idea is to use the invisible momenta found by one of the M2-type mini-

mizations and then reconstruct the masses of the hypothesized Bi resonances. As already

discussed in section 3, the novel advantage of the M2-type variables (e.g., over transverse

variables like MT2) is that they supply the full 3-momenta of the invisible particles, in-

cluding the longitudinal components. Thus, it becomes possible to carry out the direct

reconstruction of any heavy particles along the decay chain. In our case, to form the mass

of particle Bi, we simply use the measured 4-momentum of bi and the momentum of Ci
obtained in the minimization of M2CX(ab).21 In order to avoid the two-fold ambiguity

discussed in section 3.2, we use only “balanced” events, for which the invisible momentum

configuration is unique.

Since each event contains two decay chains, we will obtain two reconstructed values

per event, M̃B1 and M̃B2 , which we order as usual as

M̃>
B = max

{
M̃B1 , M̃B2

}
, (5.4)

M̃<
B = min

{
M̃B1 , M̃B2

}
. (5.5)

We then investigate the resonance structure of the corresponding scatter plot in the

(M̃>
B , M̃

<
B ) plane, as shown in figure 17.

The left panel in figure 17 represents the case of the event topology from figure 14(a),

which has two identical intermediate resonances, B1 and B2. Correspondingly, the scatter

21Here we prefer to avoid any bias from using momenta from M2XC(ab) or M2CC(ab), which assume the

presence of identical intermediate resonances from the outset.
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Figure 17. Scatter plots of the reconstructed masses of the two intermediate resonances, M̃B1

and M̃B2
, for the three scenarios from figure 15, with invisible momenta taken from the M2CX(ab)

minimization. The larger of the two reconstructed masses, M̃>
B , is plotted on the x-axis, while the

smaller of the two reconstructed masses, M̃<
B , is plotted on the y-axis. The vertical and horizontal

black dashed lines denote the true masses of the associated relative particles.

plot exhibits a distinct clustering of events near the diagonal line (M̃>
B = M̃<

B ), indicating

the presence of such identical resonances. Furthermore, we can also roughly read the mass

scale as MBi ∼ 300 GeV (compare with the true values marked with the black dashed

lines). Now contrast this situation with the case of the event topology from figure 14(c),

which is shown in the rightmost panel of figure 17. Again, we find a narrow clustering of

points, indicating the presence of intermediate Bi resonances. Now, however, the cluster

lies significantly far from the diagonal line, implying that the intermediate resonances are

different. The location of the cluster is also consistent with the input mass spectrum

(mB1 = 300 GeV, mB2 = 400 GeV, as indicated with the black dashed lines).

The third example, shown in the middle panel of figure 17, is the event topology from

figure 14(b). The two decay chains are the same, so we expect most of the events to end up

near the diagonal line M̃>
B = M̃<

B . However, since there are no intermediate resonances, we

do not expect a significant clustering in any particular location and instead would expect

a broader distribution that in the previous two resonant cases. These expectations are

confirmed in figure 17 — the middle panel exhibits a large population near the diagonal

line whose structure differs from that in the left panel, allowing us to distinguish the

topology of figure 14(b) from the topology of figure 14(a). Again, we defer a more detailed

shape analysis to future work.

6 Conclusions and outlook

The main goal of this paper is to advocate a wider use of the 3+1-dimensional M2-type

variables, which so far have been used only sporadically [34, 41, 50, 51]. In contrast,

transverse mass variables like MT , MT2, MCT , etc. have found widespread application in

both precision measurements [69, 72] and in searches for new physics [73, 74]. There are

two main advantages of the 3+1-dimensional formulation in terms of M2:

1. It is very easy to impose various additional assumptions about the underlying event

topology [41]. In this paper we illustrated this feature with the addition of on-shell
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constraints for the relative particles, which led us to two new variables, M2XC and

M2CC . The benefits from M2XC and M2CC are twofold — first, the solution for the

longitudinal invisible momenta is unique, as discussed in section 3.3, and second,

their distributions exhibit much sharper endpoints, as demonstrated in section 4.1.

2. The minimization procedure required to calculate the value of M2 fixes all compo-

nents of the invisible particle momenta, including the longitudinal components. This

gives an event with fully determined kinematics, opening the door for a number of

precision reconstruction studies. As an illustration, in section 4.2, we reconstructed

the mass of the relative particle and showed that the peak of the resulting distribution

is nicely correlated with the true mass of the relative particle. This provides a new

technique for mass measurements in missing energy events, which is complementary

to the existing methods based on measuring kinematic endpoints.

It is interesting to note that even for a process as simple as the one studied here (see

figure 1), we were able to define a relatively large number of M2-type variables, summarized

in table 2. While the casual reader might feel intimidated by this proliferation of kinematic

mass variables, we emphasize that there is a great benefit in having such a large arsenal of

kinematic variables at one’s disposal. The main reason why there are so many variables is

that each involves different levels of assumptions. Thus, by testing for consistency of the

results obtained with two different variables, we are essentially checking the validity of the

assumptions that are present in one of the variables but not the other.

Following this idea, we developed several tests for distinguishing among the alternative

event topologies of figure 14, which lead to the same final state:

• Endpoint test. In section 5.1, we proposed a test which compares the endpoints

of the distributions of M2 variables with and without relative constraints. If the

constraints are satisfied in the event sample, the kinematic endpoints would match

(even though the shapes of the distributions are generally different). Conversely,

if the mass constraints are not satisfied, the endpoints will be different, which is

an indication that our hypothesis regarding the event topology is wrong. We have

checked that this test is applicable even when one does not have precise knowledge

of the daughter mass.

• Dalitz plot test. In section 5.2, we used the fact that the computation of the M2

variables supplies values for the 4-momenta of the invisible particles and proposed

to build Dalitz-type plots of invariant mass combinations which include the invisible

particles themselves (see figure 16). We showed that the distinctive shape of the

Dalitz scatter plots can be used to ascertain the presence of intermediate resonances

and to resolve the combinatorial ambiguity related to the ordering of the visible final

state particles along the decay chain.

• Resonance scatter plot test. The invisible momenta supplied by M2 found another

application in section 5.3, where we were able to test for the symmetry of the events,

i.e., whether the two decay chains are the same or not (see figure 17).
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These are just a few of the many potential applications of the M2 variables — for example,

one could imagine spin measurements along the lines of [29, 48, 57], using the invisible

particle momenta supplied by the M2 minimizations. It is also possible to further extend

the set of variables from table 2 to more complicated event topologies — e.g., decay chains

with more than one relative particle, decay chains with relatives of known mass, etc. One

technical problem which will need to be addressed in the near future is the lack of a public

code for the calculation of the on-shell constrained M2 variables. The availability of such

code would certainly encourage more experimentalists to make use of these variables whose

benefits seem undeniable.
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A Proof that MT2 = M2CX with the method of Lagrange multipliers

In this appendix, we show the equivalence between MT2 and M2CX using the method of La-

grange multipliers. For concreteness, the formal proof is presented for the (ab) subsystem,

but the same argument can be applied to the other subsystems, (a) and (b), as well.

In order to calculate M2
2CX(ab), we must perform the minimization of the function

max
[
M2
A1

(~q1T , ∆η1; m̃), M2
A2

(~q2T , ∆η2; m̃)
]
, (A.1)

subject to the two constraints

M2
A1

(~q1T , ∆η1; m̃) = M2
A2

(~q2T , ∆η2; m̃), (A.2)

~q1T + ~q2T = /~P T . (A.3)

Here we have already assumed that the hypothesized masses of the daughter particles, Ci,

are the same, so that there is a single input test mass, m̃. We have also expressed the

parent masses, MAi , as functions of ∆ηi instead of qiz, as in (3.7).

We can use the method of Lagrange multipliers to reformulate the problem as the

unconstrained minimization of a new target function

f(~q1T , ~q2T ,∆η1,∆η2, ~λT , λη; m̃)

=
1

2
{Ev1TEq1T cosh ∆η1 − ~pv1T · ~q1T + Ev2TEq2T cosh ∆η2 − ~pv2T · ~q2T }

+λη {Ev1TEq1T cosh ∆η1 − ~pv1T · ~q1T − Ev2TEq2T cosh ∆η2 + ~pv2T · ~q2T }
+~λT · (~q1T + ~q2T − /~P T ), (A.4)

which needs to be minimized over all of its arguments: ~q1T , ~q2T , ∆η1, ∆η2, ~λT , and

λη. The constraint (A.2) is implemented through the Lagrange multiplier λη, while the
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constraint (A.3) is incorporated through the Lagrange multiplier ~λT . In view of the con-

straint (A.2) in the first term we have replaced (A.1) with the average of M2
A1

and M2
A2

.

The extremum conditions for ~qiT and ∆ηi read:

~Oq1T f =

(
1

2
+ λη

)(
Ev1T
Eq1T

cosh ∆η1~q1T − ~pv1T
)

+ ~λT = 0, (A.5)

~Oq2T f =

(
1

2
− λη

)(
Ev2T
Eq2T

cosh ∆η2~q2T − ~pv2T
)

+ ~λT = 0, (A.6)

∂f

∂∆η1
=

(
1

2
+ λη

)
Ev1TEq1T sinh ∆η1 = 0, (A.7)

∂f

∂∆η2
=

(
1

2
− λη

)
Ev2TEq2T sinh ∆η2 = 0. (A.8)

There are two cases which can be considered separately: i) λη = 1/2 (or λη = −1/2), and

ii) λη 6= ±1/2.

i) λη = 1/2: since λη = 1/2, (A.8) is automatically solved, so ∆η2 remains arbitrary.

Then (A.6) implies ~λT = 0, and from (A.7) it follows that ∆η1 = 0. Finally, (A.5) leads to

~q1T =
Eq1T

Ev1T
~pv1T . Substituting these results into (A.4), we get

f = Ev1TEq1T − ~pv1T · ~q1T = M2
TA1

(ab), (A.9)

which is nothing but the transverse mass of A1 as given in (3.3). This implies that mini-

mizing f is equivalent to minimizing the transverse mass of A1.

The same logic can be applied to the case λη = −1/2, where one finds that the problem

reduces to the minimization of the transverse mass of A2. Thus we conclude that these

two cases with |λ| = 1
2 simply correspond to the unbalanced configuration of the MT2(ab)

variable.

ii) λη 6= ±1/2: since λη 6= ±1/2, the only way to satisfy eqs. (A.7) and (A.8) is to have

∆ηi = 0. This reduces the function (A.4) to

f =
1

2
(M2

TA1
(ab) +M2

TA2
(ab)) + λη(M

2
TA1

(ab)−M2
TA2

(ab))

+~λT · (~q1T + ~q2T − /~P T ), (A.10)

which is nothing but the Lagrange function associated with the balanced solution of the

corresponding MT2 variable.

From i) and ii) we see that M2CX(ab) includes both the balanced and the unbalanced

configurations of MT2(ab), thus it follows that M2CX(ab) = MT2(ab).
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