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1 Introduction

One of the most ubiquitous manifestations of the fundamental degrees of freedom of Quan-

tum Chromodynamics (QCD), quark and gluons, are the collimated bunches of hadrons

(“jets”) produced in high-energy particle collisions. The evolution of a parton into a final

distribution of hadrons is driven by perturbative dynamics dominated by soft and collinear

gluon bremsstrahlung [1, 2] followed by the final conversion of the radiated partons into

hadrons at non-perturbative scales approaching ΛQCD ≈ 0.2GeV. The quantitative de-

scription of the distribution of hadrons of type h in a jet is encoded in a (dimensionless)

fragmentation function (FF) which can be experimentally obtained, e.g. in e+e− collisions

at c.m. energy
√
s, via

Dh(ln(1/x), s) =
dσ(ee → hX)

σtot d ln(1/x)
,

where x = 2 ph/
√
s is the scaled momentum of hadron h, and σtot the total e+e− hadronic

cross section. Its integral over x gives the average hadron multiplicity in jets. Writing
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the FF as a function of the (log of the) inverse of x, ξ = ln(1/x), emphasises the region

of relatively low momenta that dominates the spectrum of hadrons inside a jet. Indeed,

the emission of successive gluons inside a jet follows a parton cascade where the emission

angles decrease as the jet evolves towards the hadronisation stage, the so-called “angular

ordering” [1, 3–5]. Thus, due to QCD colour coherence and interference of gluon radiation,

not the softest partons but those with intermediate energies (Eh ∝ E0.3
jet ) multiply most ef-

fectively in QCD cascades [4, 5]. As a result, the energy spectrum of hadrons as a function

of ξ takes a typical “hump-backed plateau” (HBP) shape [4–6], confirmed by jet measure-

ments at LEP [7] and Tevatron [8] colliders, that can be written to first approximation in

a Gaussian form of peak ξ̄ and width σ:

Dch(ln(1/x), Q) ≃ exp

[

− 1

2σ2
(ξ − ξ̄)2

]

, ξ̄ = ln(1/xmax) →
1

2
ln

(

Q

Q0

)

, (1.1)

where Q0 is the collinear cut-off parameter of the perturbative expansion which can be

pushed down to the value of ΛQCD (the so-called “limiting spectrum”). Both the HBP

peak and width evolve approximately logarithmically with the energy of the jet: the hadron

distribution peaks at ξ̄ ≈ 2 (5) GeV with a dispersion of σ ≈ 0.7 (1.4) GeV, for a parton

with Ejet = 10GeV (1TeV).

The measured fragmentation function (1) corresponds to the sum of contributions from

the fragmentation Dh
i of different primary partons i = u, d, · · · , g:

Dh(ln(1/x), s) =
∑

i

∫ 1

0

dz

z
Ci(s; z, αs)D

h
i (x/z, s),

and, although one cannot compute from perturbation theory the final parton-to-hadron

transition encoded in Dh
i , the evolution of the “intermediate” functions Dbc

a describing

the branching of a parton of type a into partons of type b,c can be indeed theoretically

predicted. The relevant kinematical variables in the parton splitting process are shown in

figure 1 for the splitting a(k) → b(k1)+c(k2), such that b and c carry the energy-momentum

fractions z and (1 − z) of a respectively. The Sudakov parametrisation for k1 and k2, the

four-momentum of partons b and c, can be written as

kµ1 = zkµ − kµ⊥ +
~k2 + k21

z

nµ

n · k , kµ2 = (1− z)kµ + kµ⊥ +
~k2 + k22
1− z

nµ

2n · k , (1.2)

with the light-like vector n2 = 0, and time-like transverse momentum k2⊥ > 0 such that,

k · k⊥ = n · k⊥ = 0. Then, the scalar product k1 · k2 reads:

k2⊥ = 2z(1− z)k1 · k2. (1.3)

Writing now the 4-momenta k =
(

E,~k
)

, k1 =
(

zE,~k1

)

, k2 =
(

(1− z)E,~k2

)

one has,

| ~k1 |= zE, | ~k2 |= (1 − z)E for on-shell and massless partons k2i ≈ 0. From energy-

momentum conservation:

k2 = 2k1 · k2 = 2z(1− z)E2(1− cos θ) (1.4)

– 2 –



J
H
E
P
0
8
(
2
0
1
4
)
0
6
8

b

h

θ
θ

c

’E

zE

(1 − z)E

 xE

a = (q, g)
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Figure 1. Relevant kinematical variables in the parton splitting process a → bc: E is the energy

of the leading quark or gluon of virtuality Q = Eθ, z and (1 − z) are the energy fractions of the

intermediate offsprings b and c which finally fragment (at virtualities Q0) into hadrons carrying a

fraction x of the parent parton momentum.

such that, replacing eq. (1.4) in (1.3), one finally obtains:

k⊥ = 2z(1− z)E sin
θ

2
. (1.5)

In the collinear limit, one is left with k⊥ ≈ z(1− z)Q, where Q = Eθ is the jet virtuality,

or transverse momentum of the jet.

The calculation of the evolution ofDbc
a inside a jet suffers from two types of singularities

at each order in the strong coupling αs: collinear ln θ-singularities when the gluon emission

angle is very small (θ → 0), and infrared ln(1/z)-singularities when the emitted gluon

takes a very small fraction z of the energy of the parent parton. Various perturbative

resummation schemes have been developed to deal with such singularities: (i) the Leading

Logarithmic Approximation (LLA) resums single logs of the type
[

αs ln
(

k2⊥/µ
2
)]n

where

k⊥ is the transverse momentum of the emitted gluon with respect to the parent parton, (ii)

the Double Logarithmic Approximation (DLA) resums soft-collinear and infrared gluons,

g → gg and q(q̄) → gq(q̄), for small values of x and θ [αs ln(1/z) ln θ]
n ∼ O(1) [9, 10], (iii)

Single Logarithms (SL) [4, 5, 11] account for the emission of hard collinear gluons (θ → 0),

[αs ln θ]
n ∼ O(

√
αs), and (iv) the Modified Leading Logarithmic Approximation (MLLA)

provides a SL correction to the DLA, resumming terms of order [αs ln(1/z) ln θ + αs ln θ]
n ∼

[O(1)+(O(
√
αs)] [4, 5]. While the DLA resummation scheme [11] is known to overestimate

the cascading process, as it neglects the recoil of the parent parton with respect to its

offspring after radiation [10], the MLLA approximation reproduces very well the e+e− data,

although Tevatron jet results require further (next-to-MLLA, or NMLLA) refinements [12,

13]. The MLLA [4, 5], partially restores the energy-momentum balance by including SL

corrections of order O
(√
αs

)

coming from the emission of hard-collinear gluons and quarks

at large x ∼ 1 and small θi (g → gg, q(q̄) → gq(q̄) and g → qq̄). Such corrections

are included in the standard Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [14–16]

splitting functions which describe the parton evolution at intermediate and large x in the

(time-like) FFs and (space-like) parton distribution functions (PDFs). The first comparison
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of the MLLA analytical results to the inclusive particle spectra in jets, determining the

energy evolution of the HBP peak position was performed in [17].

The solution of the evolution equations for the gluon and quark jets is usually obtained

writing the FF in the form

D ≃ C(αs(t)) exp

[∫ t

γ(αs(t
′))dt

]

, t = lnQ

where C(αs(t)) = 1 +
√
αs + αs . . . are the coefficient functions, and γ = 1 +

√
αs + αs . . .

is the so-called anomalous dimension, which in Mellin space at LLA reads,

γLLA(ω, αs) =
1

4

(

−ω +
√

ω2 + 8Ncαs/π
)

.

where ω is the energy of the radiated gluon and Nc the number of colours. At small

ω or x, the expansion of the FF expression leads to a series of half-powers of αs, γ ≃√
αs + αs + α

3/2
s + . . ., while at larger ω or x in DGLAP, the expansion yields to a series

of integer powers of αs, γ ≃ αs + α2
s + α3

s + . . . for FFs and PDFs. In the present work we

are mostly concerned with series of half-powers of
√
αs generated at small ω, which can be

truncated beyond O (αs) in the high-energy limit.

In this paper, the set of next-to-MLLA corrections of order O (αs) for the single inclu-

sive hadron distribution in jets, which further improve energy conservation [18, 19], includ-

ing in addition the running of the coupling constant αs at two-loop or next-to-leading order

(NLO) [20], are computed for the first time. Corrections beyond MLLA were considered

first in [21], and more recently in [22], for the calculation of the jet mean multiplicity N and

the ratio r = Ng/Nq in gluon and quark jets. We will follow the resummation scheme pre-

sented in [21] and apply it not just to the jet multiplicities but extend it to the full properties

of parton fragmentation functions using the distorted Gaussian (DG) parametrisation [23]

for the HBP which was only used so far to compute the evolution of FFs at MLLA. The

approach followed consists in writing the exponential of eq. (1) as a DG with mean peak ξ̄

and width σ, including higher moments (skewness and kurtosis) that provide an improved

shape of the quasi-Gaussian behaviour of the final distribution of hadrons, and compute

the energy evolution of all its (normalised) moments at NMLLA+NLO∗ accuracy, which

just depend on ΛQCD as a single free parameter.

Since the evolution of each moment is independent of the ansatz for the initial condi-

tions assumed for the jet hadron spectrum, and since each moment evolves independently

of one another, we can obtain five different constraints on ΛQCD . By fitting all the measured

e+e− jet distributions in the range of collision energies
√
s ≈ 2–200GeV [7, 24–35, 35–38] a

value of ΛQCD can be extracted which agrees very well with that obtained from the NLO cou-

pling constant evaluated at the Z resonance, αs(m
2
Z
), in the minimal subtraction (MS) fac-

torisation scheme [39–41]. Similar studies –at (N)MLLA+LO accuracy under different ap-

proximations, and with a more reduced experimental data-set– were done previously for var-

ious parametrizations of the input fragmentation function [42–45] but only with a relatively

modest data-theory agreement, and an extracted LO value of ΛQCD with large uncertainties.

The paper is organised as follows. In section 2 we write the evolution equations and

provide the generic solution including the set of O (αs) terms from the splitting func-
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tions in Mellin space. In subsection 3.1, the new NMLLA+NLO∗ anomalous dimension,

γNMLLA+NLO∗

ω , is obtained from the evolution equations in Mellin space, being the main

theoretical result of this paper. In subsection 3.2 the Fong and Webber DG parametri-

sation [23] for the single-inclusive hadron distribution is used and the energy evolution of

its moments (mean multiplicity, peak position, width, skewness and kurtosis) is computed

making use of γNMLLA+NLO∗

ω . In subsection 3.3, the results of our approach are compared

for the quark and gluon multiplicities, recovering the NMLLA multiplicity ratio first ob-

tained in [18]. The energy-evolution for all the moments in the limiting spectrum case

(Q0 → ΛQCD) are derived in subsection 3.4, and the role of higher-order corrections con-

tributing to the resummed components of the DG which improve the overall behaviour of

the perturbative series, are discussed in subsection 3.5, and the final analytical formulæ

are provided. Subsection 3.6 discusses our treatment of finite-mass effects and heavy-quark

thresholds, as well as other subleading corrections. The phenomenological comparison of

our analytical results to the world e+e− jet data is carried out in section 4, from which a

value of ΛQCD can be extracted from the fits. Our results are summarised in section 5 and

the appendices provide more details on various ingredients used in the calculations.

2 Evolution equations for the low-x parton fragmentation functions

The fragmentation function of a parton a splitting into partons b and c satisfies the following

system of evolution equations [4–6] as a function of the variables defined in figure 1:

∂

∂ ln θ
xDb

a(x, lnEθ) =
∑

c

∫ 1

0
dz
αs(k

2
⊥)

2π
Pac(z)

[x

z
Db

c

(x

z
, ln zEθ

)]

, (2.1)

where Pac(z) are the regularised DGLAP splitting functions [14–16], which at LO are given

by

Pqg(z) = 4CF

(

1

z
+
z

2
− 1

)

, Pqq(z) = 2CF

([

1

1− z

]

+

− z

2
− 1

2

)

, (2.2)

Pgg(z) = 2CA

(

1

z
+

[

1

1− z

]

+

+ z(1− z)− 2

)

, Pgq(z) = nfTR[z
2 + (1− z)2], (2.3)

with CF = (N2
c − 1)/2Nc and Nc respectively the Casimirs of the fundamental and adjoint

representation of the QCD colour group SU(3)c, TR = 1/2, and nf is the number of active

(anti)quark flavours. The regularisation of the splitting functions in eq. (2.1) is performed

through the + distribution1 in eqs. (2.2) and (2.3). The αs is the strong coupling which at

the two-loop level reads [20]

αs(q
2) =

4π

β0 ln q2

[

1− 2β1
β20

ln ln q2

ln q2

]

, for q2 =
k2⊥

Λ2
QCD

, (2.4)

with

β0 =
11

3
Nc −

4nfTR
3

, β1 =
51

3
Nc −

38nfTR
3

,

1The plus distribution applied to a function F (x), written [F (x)]+, is defined as
∫ 1

0
dx[F (x)]+g(x) =∫ 1

0
dx[F (x)](g(x)− g(1)) for any function g(x).

– 5 –
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being the first two coefficients involved in the perturbative expansion of the β-function

through the renormalisation group equation:

β(αs) = −β0
α2
s

2π
− β1

α3
s

4π2
+O(α4

s ).

The initial condition for the system of evolution equations (2.1) is given by a delta

function

xDb
a(x, lnEθ) |(lnEθ=lnQ0)= δba · δ(1− x)

running “backwards” from the end of the parton branching process, with a clear physical

interpretation: when the transverse momentum of the leading parton is low enough, it

can not fragment (x = 1) and hadronises into a single hadron. The equations (2.1) are

identical to the DGLAP evolution equations but for one detail, the shift in ln z in the second

argument of the fragmentation function x
zD

b
c

(

x
z , ln z + lnEθ

)

, that for hard partons is set

to zero, ln z ∼ 0, in the LLA. It corresponds to the so-called scaling violation of DGLAP

FFs in time-like evolution, and that of space-like evolution of PDFs in in DIS. In our

framework, however, this term is responsible for the double soft-collinear contributions

that are resummed at all orders as (αs ln
2)n, justifying the fact that the approach is said

to be modified (MLLA) with respect to the LLA.

The evolution equations are commonly expressed as a function of two variables:

Y = ln
Eθ

Q0
, λ = ln

Q0

ΛQCD

, (2.5)

where Y provides the parton-energy dependence of the fragmentation process, and the λ

specifies, in units of ΛQCD , the value of the hadronisation scale Q0 down to which the parton

shower is evolved. Standard parton showers Monte Carlo codes, such as pythia [46], use

Q0 values of the order of O (1GeV) whereas in the limiting spectrum [4, 5], that will be

used here, it can be taken as low as λ→ 0, i.e. Q0 → ΛQCD . Applying the Mellin transform

to the single inclusive distribution in eq. (2.1)

D(ω, Y ) =

∫ ∞

0
dξe−ωξD(ξ, Y ), (2.6)

and introducing

ξ̂ = ln
1

z
, ŷ = ln

k⊥
Q0

, ξ̂ + ŷ = ln
Eθ

Q0
≡ Y, (2.7)

with k⊥ ≈ zEθ in the soft approximation (z ≪ 1), one is left with the integro-differential

system of evolution equations for the non-singlet distributions

∂

∂Y
D(ω, Y ) =

∫ ∞

0
dξ̂e−ωξ̂P (ξ̂)

αs(Y − ξ̂)

2π
D(ω, Y − ξ̂), (2.8)

where

P (ξ̂) =

(

Pqq(ξ̂) Pqg(ξ̂)

Pgq(ξ̂) Pgg(ξ̂)

)

, D(ω, ŷ) =

(

Dq(ω, ŷ)

Dg(ω, ŷ)

)

(2.9)
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and the lower and upper indices have been omitted for the sake of simplicity. The NLO

strong coupling (2.4) can be rewritten as a function of the new variables (2.7), such that

αs(ŷ) =
2π

β0(ŷ + λ)

[

1− β1
β20

ln 2(ŷ + λ)

ŷ + λ

]

, ŷ = Y − ξ̂. (2.10)

The parton density xD(x, Y ) is then obtained through the inverse Mellin transform:

D(ξ̂, Y ) =

∫

C

dω

2πi
eωξD(ω, Y ) (2.11)

where the contour C lies to the right of all singularities in the ω-complex plane. In the

high-energy limit (Q ≫ Q0) and hard fragmentation region (Y ≫ ξ̂ or x ∼ 1), one can

replace in the r.h.s. of eq. (2.8) the following expansion:2

αs(Y − ξ̄)D(ω, Y − ξ̄) = e−ξ̄ ∂
∂Y αs(Y )D(ω, Y ), e−ξ̄ ∂

∂Y =
∞
∑

n=0

(−1)n

n!

∂n

∂Y n
. (2.12)

Thus, replacing eq. (2.12) into (2.8) one obtains

∂

∂Y
D(ω, Y ) =

(∫ ∞

0
dξ̂e−Ωξ̂P (ξ̂)

)

αs(Y )

2π
D(ω, Y ), (2.13)

which allows for the factorisation of αs(Y )D(ω, Y ), and leads to the equation

∂

∂Y
D(ω, Y ) = P (Ω)

αs(Y )

2π
D(ω, Y ), P (Ω) =

∫ ∞

0
dξ̂e−Ωξ̂P (ξ̂), (2.14)

more suitable for analytical solutions. Truncating the series at higher orders translates into

including corrections O (αs) which better account for energy conservation, particularly at

large x. In Mellin space, the expansion can be made in terms of the differential operator

Ω ≡ ω+ ∂/∂Y such that, up to the second term in Ω, one is left with NMLLA corrections

of order O (αs) [12]. Explicitly, the inclusion of higher-order corrections from the second

term of αs(Y − ξ̄)D(ω, Y − ξ̄) ≈ αsD − ξ̄∂(αsD)/∂Y , followed by the integration over

the splitting functions (2.2)–(2.3) in x space in the r.h.s. of eq. (2.8), is equivalent to the

expansion P (Ω) = P (0) + P (1)Ω in Mellin space in the r.h.s. of (2.14), where P (0) and

P (1) are constants. The expansion of the matrix elements P (Ω) in Ω can be obtained

from the original expressions of the Mellin transformed splitting functions [47], as given in

eqs. (A.1a)–(A.1d) in appendix A, which leads to the following expressions:

Pgg(Ω)=
4Nc

Ω
− 11

3
Nc −

4

3
nfTR + 4Nc

(

67

36
− π2

6

)

Ω+O(Ω2), (2.15a)

Pgq(Ω)=
8nfTR

3
− 26nfTR

9
Ω +O(Ω2), (2.15b)

Pqg(Ω)=
4CF

Ω
− 3CF +

7

2
CFΩ+O(Ω2), (2.15c)

Pqq(Ω)=4CF

(

5

8
− π2

6

)

Ω+O(Ω2). (2.15d)

2Note that the MLLA solution [4, 5] to the evolution equations corresponds to the replacement αs(Y −
ξ̄)D(ω, Y − ξ̄) ≈ αs(Y )D(ω, Y ) accounting for the single logarithmic corrections of relative order O (

√
αs).
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where the finite terms for Ω → 0 constitute the new subset to be computed for the first

time in this work. The solution of the evolution equations in the MLLA were considered

in [4, 5] up to the regular terms with δPqq(Ω)Ω = 0. By including those proportional to Ω,

one is in addition considering the set of higher-order corrections O (αs) known as NMLLA

that improve energy conservation [21]. The diagonalisation of the matrix (2.9) in order to

solve (2.14) results into two trajectories (eigenvalues), which can be written as [4, 5, 47]

P±±(Ω) =
1

2

[

Pgg(Ω) + Pqq(Ω)±
√

(Pgg(Ω)− Pqq(Ω))
2 + 4Pgq(Ω)Pqg(Ω)

]

. (2.16)

Substituting eqs. (2.15a)–(2.15d) into (2.16) and performing the expansion again up to

terms O (Ω), yields:

P++(Ω)=
4Nc

Ω
− a1 + 4Nca2Ω+O(Ω2), (2.17a)

P−−(Ω)=−b1 + 4CF b2Ω+O(Ω2), (2.17b)

where the terms proportional to Ω are new in this framework. The set of constants involved

in eqs. (2.17a) and (2.17b) reads:

a1=
11

3
Nc +

4

3
nfTR

(

1− 2
CF

Nc

)

, (2.18a)

a2=
67

36
− π2

6
− nfTRCF

18N2
c

[

11

3
Nc − 4

nfTR
Nc

(

1− 2
CF

Nc

)]

, (2.18b)

b1=
8nfTRCF

3Nc
, (2.18c)

b2=
5

8
− π2

6
+
nfTR
18Nc

[

11

3
Nc − 4

nfTR
Nc

(

1− 2
CF

Nc

)]

. (2.18d)

Therefore, the diagonalisation of eq. (2.14) leads to two equations:

∂

∂Y
D±(ω, Y, λ) = P±±(Ω)

αs(Y )

2π
D±(ω, Y, λ), (2.19)

such that in the new D±-basis the respective solutions read:

Dq(ω, Y, λ)=
Pqg(Ω)

P++(Ω)− P−−(Ω)

[

D+(ω, Y, λ)−D−(ω, Y, λ)
]

, (2.20a)

Dg(ω, Y, λ)=
P++(Ω)− Pqq(Ω)

P++(Ω)− P−−(Ω)
D+(ω, Y, λ)− P−−(Ω)− Pqq(Ω)

P++(Ω)− P−−(Ω)
D−(ω, Y, λ). (2.20b)

where the ratios in front of D± are the coefficient functions that will be evaluated hereafter.

Notice that in the D± basis, the off-diagonal terms P+−(Ω) = 0 and P−+(Ω) = 0 vanish for

LO splitting functions, while this is no longer true for time-like splitting functions obtained

from the MS factorisation scheme beyond LO [48], as explained in [22] for multiparticle

production. Following this logic, D± should first be determined in order to obtain the

gluon and quark jets single inclusive distributions.
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3 Evolution of the parton fragmentation functions at NMLLA +NLO∗

3.1 Anomalous dimension at NMLLA +NLO∗

Our NMLLA+NLO∗ scheme involves adding further corrections O (αs) from contributions

proportional to Ω in the Mellin representation of the expanded splitting functions, and

considering the two-loop strong coupling, eq. (2.10). We label our approach as NLO∗ to

indicate that the full set of NLO corrections are only approximately included, as the two-

loop splitting functions (discussed e.g. in [22]) are not incorporated. After diagonalisation

of the original evolution equations (2.1), the eqs. (2.19) for D± result in the following

expressions for D+ and D−:

(

ω+
∂

∂Y

)

∂

∂Y
D+(ω, Y, λ)=

[

1− a1
4Nc

(

ω+
∂

∂Y

)

+a2

(

ω+
∂

∂Y

)2
]

4Nc
αs

2π
D+(ω, Y, λ) (3.1)

∂

∂Y
D−(ω, Y, λ)=−b1

αs

2π
D−(ω, Y, λ) + 4CF b2

(

ω +
∂

∂Y

)

αs

2π
D−(ω, Y, λ). (3.2)

The leading contribution to D− after setting b2 = 0 in eq. (3.2) reads:

D−(ω, Y, λ) ≈
(

λ

Y + λ

)

b1
4Ncβ0 D−(ω, λ). (3.3)

The exponent b1/(4Ncβ0) = O
(

10−2√αs

)

induces a very small (non-Gaussian) correction,

which can be neglected asymptotically, for Y + λ ≫ λ. Thus, the (+) trajectory (2.17a)

provides the main contribution to the single inclusive distribution D(ξ, Y ) = xD(x, Y )

at small x ≪ 1, after applying the inverse Mellin transform (2.11). Hard corrections

proportional to a1 and a2 account for the energy balance in the hard fragmentation region

and are of relative order O
(√
αs

)

and O (αs) respectively with respect to the O (1) DLA

contribution. The NLO expression (2.4) results in corrections ∝ β0 at MLLA, and ∝ β0, β1
at NMLLA which provide a more accurate consideration of running coupling effects at

small x≪ 1 [21]. In ref. [21], the mean multiplicities, multiplicity correlators in gluon and

quark jets, and the ratio of gluon and quark jet multiplicities were also studied at NMLLA,

where corrections ∝ β1 were accordingly included. Here, we extend the NMLLA analysis

to all moments of the fragmentation function.

The solution of eq. (3.1) can be written in the compact form:

D+(ω, Y, λ) = E+(ω, αs(Y + λ))D+(ω, λ), (3.4)

with the evolution “Hamiltonian”:

E+(ω, αs(Y + λ)) = exp

[∫ Y

0
dy γ(ω, αs(y + λ))

]

. (3.5)

that describes the parton jet evolution from its initial virtuality Q to the lowest possible

energy scale Q0, at which the parton-to-hadron transition occurs. In eq. (3.5), γ(ω, αs(y))

is the anomalous dimension that mixes g → gg and g → qq̄ splittings and is mainly

dominated by soft gluon bremsstrahlung (g → gg). Introducing the shorthand notation

– 9 –
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γω = γ(ω, αs(Y )), the MLLA anomalous dimension has been determined in the past [4, 5,

23], setting a2 = 0 and β1 = 0 in eq. (3.1), and is given by

γMLLA
ω =

1

2

(

−ω +
√

ω2 + 4γ20

)

+
αs

2π

[

−1

2
a1

(

1 +
ω

√

ω2 + 4γ20

)

+ β0
γ20

ω2 + 4γ20

]

+O(α3/2
s ), (3.6)

where γ20 is the DLA anomalous dimension amounting to

γ20 =
4Ncαs

2π
=

4Nc

β0(Y + λ)
. (3.7)

The first term of eq. (3.6) is the DLA main contribution, of order O(
√
αs), which physically

accounts for soft gluon multiplication, the second and third terms are SL corrections O(αs)

accounting for the energy balance (∝ a1) and running coupling effects (∝ β0). It is impor-

tant to make the difference between orders and relative orders mentioned above. Indeed, if

one looks at the l.h.s. of the evolution equation (3.1) for D+, (ω+∂/∂Y )∂D+/∂Y = O (αs),

the first term in the r.h.s. is O (αs), the second one proportional to a1 is O
(

α
3/2
s

)

, and the

third one, proportional to a2, is O
(

α2
s

)

such that after factorising the whole equation by

O (αs) one is left with the relative orders of magnitude in
√
αs. Setting eq. (3.4) in (3.1)

leads to the perturbative differential equation

(ω+γω)γω−
2Ncαs

π
= −β(αs)

dγω
dαs

−a1(ω+γω)
αs

2π
− a1
2π
β(αs)+a2(ω

2+2ωγω+γ
2
ω)
αs

2π
, (3.8)

which will be solved after inserting the two-loop coupling (2.4) in order to include correc-

tions ∝ β1 as well. The equation can be solved iteratively (perturbatively) by setting the

MLLA anomalous dimension written in eq. (3.6) in the main and subleading contributions

of eq. (3.8), to find:

γNMLLA+NLO∗

ω =γMLLA
ω +

γ40
16N2

c

{

a21
γ20

(ω2 + 4γ20)
3/2

+
a1β0
2

(

1
√

ω2 + 4γ20
− ω3

(ω2 + 4γ20)
2

)

+ β20

(

2γ20
(ω2 + 4γ20)

3/2
− 5γ40

(ω2 + 4γ20)
5/2

)

− 4Nc
β1
β0

ln 2(Y + λ)
√

ω2 + 4γ20

}

+
1

4
a2γ

2
0

[

ω

(ω2 + 4γ20)
1/4

+ (ω2 + 4γ20)
1/4

]2

+O(γ40), (3.9)

which is the main theoretical result of this paper. Terms proportional to a21, a1β0 and

β20 are of order O(α
3/2
s ), and were previously calculated in the (N)MLLA+LO scheme

described in [43]. Those proportional to β1 and a2 are computed for the first time in

our NMLLA+NLO* framework. Indeed, the single correction ∝ β1 is obtained replacing

eq. (2.4) in the l.h.s. of (3.8), which leads to the equation,

γ2ω + ωγω − γ20 +
β1

4Ncβ0
γ40 ln 2(Y + λ) + . . .=0 ⇒ γω=γDLA

ω − γ40
4Nc

{

β1
β0

ln 2(Y + λ)
√

ω2 + 4γ20
+ . . .

}
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 = ln(1/x)ξ
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6
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8

9

10
 = 1.4; s=0, k=0σ = 3.5, ξGaussian: 

=1.4, s=-0.5, k=0σ=3.5, ξGaussian (skewed): 

=1.4, s=0, k=-0.5σ=3.5, ξGaussian (kurtic): 

=1.4, s=-0.5, k=-0.5σ=3.5, ξDG: 

Figure 2. Comparison of various Gaussian-like hadron distributions in jets sharing the same mean

ξ position and width (ξ̄ = 3.5 and σ = 1.4) but with different third and fourth moments: (i)

symmetric Gaussian, (ii) skewness s = −0.5, (iii) negative kurtosis k = −0.5, and (iv) full distorted

Gaussian with s = k = −0.5.

with γDLA
ω = 1

2

(

−ω +
√

ω2 + 4γ20

)

. Since ln(Y +λ) = O(1) and ω = O(
√
αs), and following

αs power counting, this correction has naturally the same order of magnitudeO(α
3/2
s ) as the

other terms and should not be neglected. The other new correction ∝ a2γ
2
0 ∝ αs adds those

NMLLA contributions arising from the ∝ ω terms in the LO splitting functions (2.15a)–

(2.15d), known to better account for energy conservation. Since this correction is multiplied

by a term [. . .]2 = O(
√
αs), the overall result is O(α

3/2
s ) and, thus, of the same order of

magnitude as the previous terms such that, the full resummed result is O(α
3/2
s ).

3.2 Distorted Gaussian (DG) parametrisation for the fragmentation function

The distorted Gaussian (DG) parametrisation of the single inclusive distribution of hadrons

in jets at small x (or ω → 0) was introduced by Fong and Webber in 1991 [23], and in

x-space it reads:

D+(ξ, Y, λ) =
N

σ
√
2π

exp

[

1

8
k − 1

2
sδ − 1

4
(2 + k)δ2 +

1

6
sδ3 +

1

24
kδ4
]

, (3.10)

where, δ = (ξ − ξ̄)/σ, N is the asymptotic average multiplicity inside a jet, and ξ̄, σ, s,

and k are respectively the mean peak position, the dispersion, the skewness, and kurtosis

of the distribution. The distribution should be displayed in the interval 0 ≤ ξ ≤ Y which

depends on the jet energy, and the values of Q0 and ΛQCD . The three scales of the process

are organised in the form Q ≫ Q0 ≥ ΛQCD . The formula (3.10) reduces to a Gaussian for

s = k = 0 and its generic expression does not depend on the approach or level of accuracy

used for the computation of its evolution.

As an example of the effects of non-zero skewness and kurtosis, we compare in figure 2

the shapes of four different single-inclusive hadron distributions of width σ = 1.4 and mean

– 11 –



J
H
E
P
0
8
(
2
0
1
4
)
0
6
8

position at ξ̄ = 3.5 in the interval 0 ≤ ξ . 7 typical of jets at LEP-1 energies: (i) an exact

Gaussian, (ii) a skewed Gaussian with s = −0.5, k = 0, (iii) a kurtic Gaussian with s = 0,

k = −0.5, and (iv) a DG including both “distorting” s, k components above. As can be

seen, the shape of the DG differs from that of the pure Gaussian, mainly away from the

hump region. A negative skewness displaces the peak of the Gaussian to higher ξ values

while adding a longer tail to low ξ, and a negative kurtosis tends to make “fatter” its width.

In order to obtain the evolution of the different DG components, we will proceed by

following the same steps as in [23] but making use instead of the expanded NMLLA+NLO∗

anomalous dimension, eq. (3.9), computed here. Defining Kn as the n-th moment of the

single inclusive distribution:

Kn(Y, λ) =

(

− d

dω

)n

ln
[

D+(ω, Y, λ)
]

ω=0
, (3.11)

the different components (normalised moments) of the DG are given by:3

N = K0, ξ̄ = K1, σ =
√

K2, s =
K3

σ3
, k =

K4

σ4
, k5 =

K5

σ5
; (3.12)

such that after plugging eq. (3.5) into (3.4) and what results from it into (3.11), one is left

with

Kn≥0 =

∫ Y

0
dy

(

− ∂

∂ω

)n

γω(αs(y + λ))

∣

∣

∣

∣

ω=0

, (3.13)

which is more suitable for analytical calculations since it directly involves the anomalous

dimension expression (3.9).

Multiplicity. The multiplicity is obtained from the zeroth moment, i.e. the integral, of

the single-particle distribution. Setting ω = 0 in eq. (3.9), one obtains

γω(0, αs)=γ0 −
1

8Nc

(

a1 −
β0
2

)

γ20 (3.14)

+
1

2

[

a2 +
1

32N2
c

(

a21
2

+ a1β0 +
3β20
8

)

− β1 ln 2(Y + λ)

4Ncβ0

]

γ30 ,

from which the mean multiplicity N (Y, λ) can be straightforwardly derived by integrating

over y:

N (Y, λ) = N0 exp [fN (Y, λ)− fN (0, λ)] (3.15)

where

fN (y, λ)=

√

16Nc

β0
(y + λ)−

(

a1
β0

− 1

2

)

ln
√

(y + λ)− 2Nc

β0

[

a2 +
1

4

(

a1
4Nc

)2

+
a1β0
32N2

c

+
3

16

(

β0
4Nc

)2

− β1
4Ncβ0

(ln 2(y + λ) + 2)

]
√

16Nc

β0(y + λ)
. (3.16)

As expected, the mean multiplicity (3.15) including the two-loop αs exactly coincides with

the expression obtained in [21]. This cross-check supports the validity of our “master”

3We list also k5 which is needed to obtain the maximum peak position ξmax from ξ̄, as discussed below.
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NMLLA+NLO∗ formula (3.9) for the anomalous dimension at small ω, which is not sur-

prising as the gluon jet evolution equation solved in [21] for the mean multiplicity coincides

with eq. (3.1) after setting ω = 0 and N (Y, λ) = D+(0, Y, λ). The first term in eq. (3.16)

is the DLA rate of multiparticle production, the second and third terms provide negative

corrections that account for energy conservation and decrease the multiplicity. However,

the third term, proportional to β1, is positive and can be large since it accounts for NLO

coupling corrections. Though, due to energy conservation, one may expect the multiplicity

to decrease in the present scheme running coupling effects take over and can drastically

increase the multiplicity as well as single inclusive cross-sections at the energy scales probed

so-far at e+e− colliders. Only at asymptotically high-energy scales, that is for Q0 ≫ ΛQCD ,

the energy conservation becomes dominant over running coupling effects, thus inverting

these trends. The ratio of multiplicities in quark and gluon jets are discussed in section 3.3

and compared with the calculations of [21]. Performing the numerical evaluation for nf = 5

quark flavours4 we obtain the final expression for the multiplicity:

N (Y )∝exp

[

2.50217
(√

Y + λ−
√
λ
)

− 0.491546 ln
Y + λ

λ
(3.17)

− (0.06889− 0.41151 ln(Y + λ))
1√
Y + λ

+ (0.06889− 0.41151 lnλ)
1√
λ

]

.

Peak position. The energy evolution dependence of the mean peak position is obtained

plugging eq. (3.9) into (3.5), and the latter into eq. (3.4) in order to get the Kn moments

of the distribution from eq. (3.11). Thus, for n = 1 one obtains

ξ̄ =
Y

2
+

a1√
16Ncβ0

(√
Y + λ−

√
λ
)

− 2Nc
a2
β0

(ln(Y + λ)− lnλ). (3.18)

The smallness of the constant in front of the NMLLA correction proportional to (ln(Y +

λ)− lnλ) should not drastically modify the MLLA peak position and should only affect it

at small energy scales.

The position of the mean peak is related to the corresponding maximum and median

values of the DG distribution by the expressions [49]:

ξmax − ξ̄ = −1

2
σs

(

1− 1

4

k5
s

+
5

6
k

)

, ξm − ξ̄ = −1

6
σs

(

1− 3

20

k5
s

+
1

2
k

)

, (3.19)

for which we need the fifth moment of the DG, k5, which reads:

k5(Y, λ)=
9

16
a1

(

3

Y + λ

)3/2 [β0(Y + λ)

16Nc

]1/4 1−
(

λ
Y+λ

)5/2

[

1−
(

λ
Y+λ

)3/2
]5/2

[

1 + 5

(

f1(Y, λ)

64

+
f4(Y, λ)

72

)

β0

√

16Nc

β0(Y + λ)

]

. (3.20)

4As will be seen below the dependence in nf is very weak and will not affect the final normalisation of

the distribution.
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The final numerical expressions for the mean and maximum peak positions, evaluated

for nf = 5 quark flavours, read:

ξ̄(Y )=0.5Y + 0.592722
(√

Y + λ−
√
λ
)

+ 0.002 ln
Y + λ

λ
, (3.21)

ξmax(Y )=0.5Y + 0.592722
(√

Y + λ−
√
λ
)

− 1

2
σ s+ 0.002 ln

Y + λ

λ
. (3.22)

Width. The DG distribution dispersion σ follows from its definition in eq. (3.13) for

n = 2. The full expression for the second moment K2(Y, λ) can be found in appendix B,

eq. (B.4), from which taking the squared root, followed by the Taylor expansion in (1/
√
y + λ

or
√
αs) and keeping trace of all terms in (1/(y+λ) or αs), the NMLLA+NLO∗ expression

for the width is obtained:

σ(Y, λ)=

(

β0
144Nc

)1/4√

(Y + λ)3/2 − λ3/2

{

1− β0
64
f1(Y, λ)

√

16Nc

β0(Y + λ)

+

[

9

16
a2f2(Y, λ)−

3

64

(

3a21
16N2

c

f2(Y, λ) +
a1β0
8N2

c

f2(Y, λ)−
β20

64N2
c

f2(Y, λ)

+
3β20

128N2
c

f21 (Y, λ)

)

+
β1
64β0

(ln 2(Y + λ)− 2)f3(Y, λ)

]

16Nc

β0(Y + λ)

}

, (3.23)

where the functions fi are also defined in appendix B. The new correction term, propor-

tional to (1/(Y + λ)), is of order O (αs) and decreases the width of the distribution and so

does λ for the truncated cascade with Q0 > ΛQCD . The numerical expression for the width

(for nf = 5 quark flavours) reads:

σ(Y )=0.36499
√

(Y + λ)3/2 − λ3/2
{

1− 0.299739f1(Y, λ)
1√
Y + λ

− [1.12479f2(Y, λ)

+ 0.0449219f21 (Y, λ) + (0.32239− 0.246692 ln(Y + λ)) f3(Y, λ)
] 1

Y + λ

}

. (3.24)

Skewness. The NMLLA term of the third DG moment, K3, turns out to vanish like the

leading order one [49]. According to the definition in eq. (3.13), the skewness s = K3σ
−3

presents an extra subleading term which in this resummation scheme comes from the

expansion of the second contribution to σ−3, proportional to 1/
√

(Y + λ), as written in

eq. (B.8) of appendix B, such that

s(Y, λ) = −a1
16

(

144Nc

β0

)1/4

√

(Y + λ)3/2 − λ3/2

[

1− β0
64
f1(Y, λ)

√

16Nc

β0(Y + λ)

]

. (3.25)

In [23], only the first term of this expression was provided, the subleading contribution given

here is thus new. This NMLLA+NLO∗ correction to eq. (3.25) increases the skewness of the

distribution, while for increasing λ it should decrease again, thus revealing two competing

effects. The net result is a displacement of the tails of the HBP distribution downwards to

the left and upwards to the right from the peak position and depending on the sign given

by both effects (figure 2). The final numerical expression for the skewness (for nf = 5

quark flavours) reads:

s(Y ) = − 1.94704
√

(Y + λ)3/2 − λ3/2

[

1− 0.299739f1(Y, λ)
1√
Y + λ

]

. (3.26)
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Kurtosis. The evolution of the kurtosis follows from the expressions for the fourth DG

moment, given in eqs. (B.6) and (B.9) of appendix B. As shown in the same appendix,

the proper Taylor expansion in powers of (1/
√
Y + λ) which keeps trace of higher-order

corrections and leads to:

k(Y, λ)=− 27

5(Y +λ)

√

β0(Y +λ)

16Nc

1−
(

λ
Y+λ

)5/2

[

1−
(

λ
Y+λ

)3/2
]2

{

1+
β0
16

(f1(Y, λ)−
5

3
f4(Y, λ))

√

16Nc

β0(Y +λ)

+

[(

25

24
f5(Y, λ)−

9

4
f2(Y, λ)

)

a2 +
a21

256N2
c

(

9f2(Y, λ)−
25

2
f5(Y, λ)

)

+
a1β0
256N2

c

(6f2(Y, λ)−5f5(Y, λ))+
β20

256N2
c

(

− 3

4
f2(Y, λ)+

54

8
f21 (Y, λ)+

275

24
f5(Y, λ)

− 15f1(Y, λ)f4(Y, λ)

)

+
5β1
96β0

(

ln 2(Y + λ)− 2

3

)

f6(Y, λ)

− β1
16β0

(ln 2(Y + λ)− 2)f3(Y, λ)

]

16Nc

β0(Y + λ)

}

, (3.27)

where the functions fi can be again found in appendix B. The new NMLLA+NLO∗ correc-

tion for the kurtosis affects the distribution by making it smoother in the tails and wider

in the hump region. The final numerical expression for the kurtosis (for nf = 5 quark

flavours) reads:

k(Y )=− 2.15812√
Y + λ

1−
(

λ
Y+λ

)5/2

[

1−
(

λ
Y+λ

)3/2
]2

{

1 + [1.19896f1(Y, λ)− 1.99826f4(Y, λ)]
1√
Y + λ

+
[

1.07813f21 (Y, λ) + 4.49915f2(Y, λ) + 1.28956f3(Y, λ)− 2.39583f1(Y, λ)f4(Y, λ)

− 3.76231f5(Y, λ) + 0.0217751f6(Y, λ)

− (0.986767f3(Y, λ)− 0.822306f6(Y, λ)) ln(Y + λ)]
1

Y + λ

}

. (3.28)

Final DG expression. The final expression of the DG parametrisation of the single

inclusive distribution of soft hadrons inside gluon and quark jets, eq. (3.10), can be obtained

summing all its individually-derived NMLLA+NLO∗-resummed components: the mean

multiplicity N (Y, λ) eq. (3.15), the mean peak position ξ̄(Y, λ) eq. (3.18), the dispersion

σ(Y, λ) eq. (3.23), the skewness eq. s(Y, λ) (3.25), and kurtosis k(Y, λ) eq. (3.27). In

figure 3, we display the resulting DG for two different values of the hadronisation parameter

λ = 1.4 (Y = 5.8, Q0 = 1GeV, ΛQCD = 0.25GeV) and λ = 2.0 (Y = 5.2, Q0 = 1GeV,

ΛQCD = 0.25GeV) for a jet of virtuality Q = 350GeV and reconstructed jet energy E =

500GeV inside a radius cone θ = 0.7. The distribution is compared to the corresponding

MLLA predictions with the Fong-Webber results from [23] after setting to zero all terms

proportional to 1/Y in the same expressions.

The contributions from the set of NMLLA+NLO∗ corrections to the MLLA DG appear

to be quite substantial and decrease for increasing λ, since λ guarantees the convergence

of the perturbative series for Q0 ≫ ΛQCD . Physically, for higher values of the shower en-

ergy cut-off Q0, the strength of the coupling constant decreases and the probability for
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Figure 3. Comparison of the distorted Gaussian hadron distributions obtained for a jet of virtuality

Q = 350GeV evolved using NMLLA+NLO∗ (solid curve) and MLLA (dashed curve) equations,

for two hadronisation parameters: λ = 1.4 (left) and λ = 2.0 (right).

the emission of soft gluon bremsstrahlung decreases accordingly, making the multiplic-

ity distribution and the peak position smaller. The difference between the MLLA and

NMLLA+NLO∗ resummed distributions is, as mentioned above, mainly due to running-

coupling effects, proportional to β1, at large ξ (small x) which is not unexpected because in

this region they are more pronounced due to the ln(xEθ) dependence in the denominator

of the strong coupling. On the other hand, energy conservation plays a more important

role in the hard fragmentation region x ∼ 1 (ξ ∼ 0), where the NMLLA+NLO∗ DG is

somewhat suppressed compared with the MLLA DG.

3.3 Multiplicities for the single inclusive Dg and Dq distributions

In this section we determine the coefficient function involved in eq. (2.20a) that provide

higher-order corrections to the quark/gluon multiplicity ratio. As shown through eq. (3.3),

the D−(ω, λ) component is negligible and thus the solutions for the gluon and quark single

inclusive distributions can be directly obtained from D+ in the form

Dq(ω, Y, λ)≈Cg
q (Ω)D+(ω, Y, λ), Cg

q (Ω) =
Pqg(Ω)

P++(Ω)− P−−(Ω)
, (3.29a)

Dg(ω, Y, λ)≈Cg
g (Ω)D+(ω, Y, λ), Cg

g (Ω) =
P++(Ω)− Pqq(Ω)

P++(Ω)− P−−(Ω)
. (3.29b)

Making use of the expressions (2.15a)–(2.15d) and (2.17a)–(2.17b), and expanding in ω

results in

Cg
q (Ω) ≈

CF

Nc

[

1 + c(0)q Ω+ c(1)q Ω2 +O
(

Ω3
)

]

, Cg
g (Ω) ≈ 1+ c(0)g Ω+ c(1)g Ω2+O

(

Ω3
)

, (3.30)

where the numerical values of the constants, for nf = 5 quark flavours, read

c(0)q =
a1 − b1
4Nc

− 3

4

nf=5
= −0.049, (3.31)
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c(1)q =
7

8
+
a1 − b1
16Nc

(

a1 − b1
Nc

− 3

)

+
CF

Nc
b2 − a2

nf=5
= 0.608, (3.32)

c(0)g =− b1
4Nc

nf=5
= −0.247, (3.33)

c(1)g =
b1

16N2
c

(b1 − a1) +
CF

Nc

(

b2 −
5

8
+
π2

6

)

nf=5
= 0.045. (3.34)

The c
(0)
i numerical constants in eq. (3.30) were obtained in [4, 5]. Performing the inverse

Mellin-transform back to the x-space, or making the equivalent replacement Ω → ∂
∂ξ +

∂
∂Y ,

one has

Dq(ξ, Y, λ)≈
CF

Nc

[

1 + c(0)q

(

∂

∂ξ
+

∂

∂Y

)

+ c(1)q

(

∂

∂ξ
+

∂

∂Y

)2
]

D+(ξ, Y, λ), (3.35a)

Dg(ξ, Y, λ)≈
[

1 + c(0)g

(

∂

∂ξ
+

∂

∂Y

)

+ c(1)g

(

∂

∂ξ
+

∂

∂Y

)2
]

D+(ξ, Y, λ), (3.35b)

which in a more compact form can be rewritten as

Da(ξ, Y, λ)≈
CA

Nc

[

D+(ξ, Y, λ) + c
(0)
A

(

∂D+(ξ, Y, λ)

∂ξ
+
∂D+(ξ, Y, λ)

∂Y

)

+ c
(1)
A

(

∂2D+(ξ, Y, λ)

∂ξ2
+ 2

∂2D+(ξ, Y, λ)

∂ξ∂Y
+
∂2D+(ξ, Y, λ)

∂Y 2

)]

(3.36)

for numerical considerations. The first and second derivatives in eqs. (3.35a) and (3.35b)

can be evaluated numerically. They provide corrections which are suppressed for the first

and second terms of orders O(
√
αs) and O(αs) respectively. In figure 4, we compare the

quark (Dq), gluon (Dg) and parton (D+) hadron spectra obtained in the MLLA (left)

and NMLLA-NLO∗ (right) schemes for a jet of virtuality Q = 350GeV and hadronisa-

tion parameter λ = 1.4. The NMLLA-NLO∗ distributions are obtained from the above

eqs. (3.35a), (3.35b) and (3.10), while the MLLA are obtained setting to zero c
(1)
q and c

(1)
g

in eqs. (3.35a) and (3.35b) respectively and removing the O (αs) corrections in (3.10) for

D+(ξ, Y ).

A clear difference is observed in the quark and gluon jet initiated distributions given

by the colour factor CF /Nc = 4/9 and the role of higher-order corrections which prove

more sizable for the NMLLA+NLO∗ scheme over the whole phase space 0 ≤ ξ ≤ Y , as

observed in the right panel of figure 4. In [4, 5] however, the role of O (
√
αs) corrections,

proportional to c
(0)
q and c

(0)
g in eqs. (3.35a) and (3.35b), was reabsorbed into the inclusive

spectrum D+(ξ, Y ) through a shift to a slightly different jet energy EA = E exp
(

c
(0)
A

)

,

which allowed for a direct comparison between the MLLA D+(ξ, Y ) and the hadronic

energy-momentum spectrum (for a complete review see [11]). Asymptotically (Q → ∞),

the solution of the original eq. (3.36) has a Gaussian shape near its maximum:

Da(ξ,Q
2) ≈ CA

Nc

N
σ
√
2π

exp

[

− 1

2σ2
(ξ − ξ̄)2

]

, (3.37)

normalised by the inverse asymptotic value of the mean multiplicity ratio r−1 = CF /Nc

in a quark jet. The ratio of gluon and quark multiplicities can be recovered by replacing
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Figure 4. Comparison of the quark eq. (3.35a), gluon eq. (3.35b), and parton D+(ξ, Y ) eq. (3.10),

distributions of hadrons for a jet of virtuality Q = 350GeV and hadronisation parameter λ = 1.4

evolved using MLLA (left) and NMLLA+NLO∗ (right) equations.

ω = 0 ( ∂
∂ξ = 0) in eqs. (3.35a) and (3.35b), such that, after expanding the result in powers

of
√
αs, one is left with

r =
Ng

Nq
=
Nc

CF

(

1− r1γ0 − r2γ
2
0

)

, (3.38)

where, as a result of the expansion,

r1=c
(0)
q − c(0)g =

a1
4Nc

− 3

4
, (3.39)

r2=c
(1)
q − c(1)g − r1c

(0)
q − r1

8Nc

(

a1 −
β0
2

)

= ã2 − a2 + r1

(

3

4
− a1

8Nc
+

β0
16Nc

)

, (3.40)

with

ã2 =
7

8
+
CF

Nc

(

5

8
− π2

6

)

.

Notice that up to the order O (αs), the multiplicity ratio does not involve corrections

proportional to β1, which only appear beyond this level of accuracy [21]. Up to the NMLLA

order in O (αs), eq. (3.38) coincides with the expression found in [50], which gives further

support to the calculations carried out in our work. A more updated evaluation of the

mean multiplicity ratio, including two-loop splitting functions, was given recently in [22].

3.4 Limiting spectrum for the DG parametrisation

The so-called limiting spectrum, λ → 0, implies pushing the validity of the partonic evo-

lution equations down to (non-perturbative) hadronisation scales, Q0 ≈ ΛQCD [1]. Such

an approach provides a minimal (and successful) approach with predictive power for the

measured experimental distributions. We derive here the evolution of the distorted Gaus-

sian moments for this limit which involves formulæ depending only on ΛQCD as a single

parameter.
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Multiplicity. Among the various moments of the DG parametrisation, only its integral

(representing the total hadron multiplicity) needs an extra free parameter to fit the data.

The “local parton hadron duality” (LPHD) hypothesis is a powerful assumption which

states that the distribution of partons in inclusive processes is identical to that of the

final hadrons, up to an overall normalization factor, i.e. that the mean multiplicity of the

measured charged hadrons is proportional to the partonic one through a constant Kch,

N ch(Y ) = KchN (Y ) .

Thus, in the limiting spectrum the mean multiplicity reads

N ch(Y )=Kch exp

{
√

16Nc

β0
Y −

(

a1
β0

− 1

2

)

ln
√
Y − 2Nc

β0

[

a2 +
1

4

(

a1
4Nc

)2

+
1

2

a1β0
16N2

c

+
3

16

(

β0
4Nc

)2

− β1
4Ncβ0

(ln 2Y + 2)

]
√

16Nc

β0Y

}

, (3.41)

which is in agreement with the mean multiplicity first found in [21], supported by the

improved solution of the evolution equations accounting for the same set of corrections.

Peak position. For the limiting spectrum, the mean peak position eq. (3.18) can be

approximated as follows:

ξ̄ =
Y

2
+

a1
16Nc

√

16Nc

β0
Y − 2Nc

a2
β0

lnY (3.42)

thanks to the fortuitous smallness O(10−3) of the NMLLA correction to ξ̄ at high-energy

where Y + λ ≫ λ. Notice that, as shown in [23], the MLLA version of eq. (3.42) up to

the second order is finite. The origin of the third ∝ lnY correction in this resummation

framework comes from the truncated expansion of the anomalous dimension eq. (3.9) in

O(αs), which is proportional to 1/Y by making (−∂γω/∂ω) at ω = 0, and hence yields

the ∝ lnY term after integrating over Y . Therefore, we assume that eq. (3.42) is valid for

Q≫ Q0 ≈ ΛQCD .

The maximum of the peak position for the limiting spectrum DG can be obtained

via eq. (3.19) which involves the mean peak position as well as the other higher-order

moments. In a generic form, the moments of the distorted Gaussian associated with the

dispersion (3.23), skewness (3.25), kurtosis (3.27), and k5 (3.20), are finite for n ≥ 2 for

the limiting spectrum and can be written as

Kn(αs(Y + λ), αs(λ))≃αs(Y + λ)−(n+1)/2
[

K(0)
n +K(0)

n

√

αs(Y + λ) +K(0)
n αs(Y + λ)

− {αs(Y + λ) ⇔ αs(λ)}] , (3.43)

where the constants K(0)
n and the functions fi(λ → 0) → 1 are written in appendix B. In

other words, the second λ-dependent part of Kn in eq. (3.43) can be dropped as λ → 0

for sufficiently high energy scales, Y + λ ≫ λ, where αs(Y + λ) ≪ αs(λ) in the r.h.s. of

eq. (3.43). Performing the same approximation in eq. (3.43) as λ→ 0, the expressions for
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the rest of moments of the fragmentation functions in the limiting spectrum are derived

below. Thus inserting eqs. (3.45a), (3.45b), (3.45c) and (3.45d) into (3.19), we obtain:

ξmax − ξ̄ =
1

32
a1

(

1 +
5

64
β0

√

16Nc

β0Y

)

, ξm − ξ̄ =
1

96
a1

(

1 +
19

320
β0

√

16Nc

β0Y

)

(3.44)

Width. The width of the DG distribution in the limiting spectrum is obtained from

eq. (3.23):

σ(Y )=

√

1

3
Y

(

β0Y

16Nc

)1/4
{

1− β0
64

√

16Nc

β0Y
+

[

9

16
a2 −

3

64

(

3

16N2
c

a21 +
a1β0
8N2

c

+
β20

128N2
c

)

+
β1
64β0

(ln 2Y − 2)

]

16Nc

β0Y

}

. (3.45a)

Skewness. The skewness of the DG distribution in the limiting spectrum reads, from

eq. (3.25),

s(Y ) = −a1
16

√

3

Y

(

16Nc

β0Y

)1/4
(

1− β0
64

√

16Nc

β0Y

)

, (3.45b)

Kurtosis. The kurtosis can be derived from eq. (3.27):

k(Y )=− 27

5Y

√

β0Y

16Nc

{

1− β0
24

√

16Nc

β0Y
−
[

29

24
a2 +

(

7

512N2
c

a21 −
a1β0
256N2

c

− 59

6144N2
c

β20

)

+
β1
96β0

(

ln 2Y − 26

3

)]

16Nc

β0Y

}

. (3.45c)

Accordingly, we give the last component, k5, following from eq. (3.20):

k5(Y ) =
9

16
a1

(

3

Y

)3/2( β0Y

16Nc

)1/4
(

1 +
85

576
β0

√

16Nc

β0Y

)

. (3.45d)

Final DG (limiting spectrum) expression. In order to get the DG in the limiting

spectrum, one should replace eqs. (3.41)–(3.45c) into eq. (3.10). We note that in our

NMLLA+NLO∗ framework, the Kch from the DG can be smaller than that found in [21]

since it should fix the right normalisation enhanced by second-loop coupling constant ef-

fects. Notice also that setting subleading corrections to zero, we recover the results from [23]

as expected. In figure 5, the MLLA and NMLLA+NLO∗ distorted Gaussians are displayed

in the limiting spectrum approximation for a jet virtuality Q = 350GeV in the interval

0 ≤ ξ ≤ Y , for Y = 7.5.

We can see a sizable difference between the MLLA D+(ξ, Y ) and the NMLLA+NLO∗

D+(ξ, Y ) evolutions, which is mainly driven by the two-loop ∝ β1 correction in the mean

multiplicity and other moments of the DG, as mentioned above. The account of energy

conservation can be observed at low ξ, i.e. for harder partons. Similar effects have been

discussed in [51] where an exact numerical solution of the MLLA evolution equations was

provided with one-loop coupling constant. Numerical solutions of exact MLLA equations
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Figure 5. Comparison of the distorted Gaussian hadron distributions obtained for a jet of virtuality

Q = 350GeV evolved using MLLA and NMLLA+NLO∗ equations, in the limiting spectrum (i.e.

Q0 = ΛQCD, hadronization parameter λ = 0).

provide a perfect account of energy conservation at every splitting vertex of the branching

process in the shower. For this reason, accounting for higher-order corrections O(α
n/2
s ) to

the truncated series of the single inclusive spectrum of hadrons should follow similar fea-

tures and trends to that provided by the numerical solutions of [51] (see also [52]), although

our NMLLA+NLO∗ solution incorporates in addition the two-loop coupling constant.

In figure 6 we display the same set of curves as in the figure 4 with the right normali-

sation given by the coefficient functions for quark and gluon jets. The overall corrections

provided by the coefficient functions slightly decrease the normalisation of the spectrum

in a gluon jet as well as its width σ. In the quark jet, upon normalisation by the colour

factor CF /Nc, the normalisation is decreased while the width is slightly enlarged. In order

to better visualise the less trivial enlargement for the width, we can for instance con-

sider e+e−-annihilation into hadrons at the LEP-2 centre of mass energy
√
s = 196GeV

for a quark jet of virtuality Q =
√
s/2 = 98GeV with Y = ln(

√
s/(2ΛQCD)) ≈ 6.0 for

ΛQCD = 0.25GeV. If the resulting distribution Dq(ξ, Y ) is refitted to a DG and compared

with the D+(ξ, Y ), the enlargement of the width compared with that given by D+ (3.45a)

can reach 10%. This latter effect is mainly due to the positive O (αs) correction to the

coefficient function Cg
q given by the larger numerical coefficient c

(0)
q = 0.487. Similar effects

have been discussed in [51]. In conclusion, we will directly fit the D+(ξ, Y ) distribution to

the data of final state hadrons in the limiting spectrum approximation.

3.5 Higher-order corrections for the DG limiting spectrum

The exact solution of the MLLA evolution equations with one-loop coupling constant en-

tangles corrections which go beyond O (
√
αs), though the equations are originally obtained
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Figure 6. Comparison of the distorted Gaussian hadron distributions obtained for a quark

eq. (3.35a), gluon eq. (3.35b), and D+(ξ, Y ) eq. (3.10), distribution for a jet of virtuality Q =

350GeV evolved using MLLA (left) and NMLLA+NLO∗ (right) equations, in the limiting spec-

trum (i.e. Q0 = ΛQCD, hadronization parameter λ = 0).

in this approximation [6]. The exact solution resums fast convergent Bessel series in the

limiting spectrum λ → 0. Using the DG parametrisation it is possible to match the exact

solution in the vicinity of the peak position δ ≪ 1 after determining the DG moments:

ξ1 = ξ̄, ξ2 = 〈ξ2〉, ξ3 = 〈ξ3〉, ξ4 = 〈ξ4〉, related to the dispersion, skewness and kurtosis

through [53]:

σ2 = ξ2 − ξ̄2, (3.46)

s =
1

σ3
(ξ3 − 3ξ2ξ̄ + 2ξ̄3), (3.47)

k =
1

σ4
(ξ4 − 4ξ3ξ1 − 3ξ22 + 12ξ2ξ̄

2 − 6ξ̄4), (3.48)

where ξn is determined via

ξn = Y n · Ln(B + 1, B + 2, z), B =
a1
β0
, z =

√

16Nc

β0
Y (3.49)

discussed in more detail in appendix C. Similarly, these extra corrections, which bet-

ter account for energy conservation and provide an improved description of the shape

of the inclusive hadron distribution in jets, will be computed and added hereafter

to all the NMLLA+NLO∗ DG moments, as it was done in [4, 5] for the particular

case of the mean peak position, ξ̄, but extended here also to all other components:

eqs. (3.42), (3.45a), (3.45b) and (3.45c).

Multiplicity. The extra “hidden” corrections discussed in appendix C result in one extra

term for the multiplicity in the DG limiting spectrum, which is inversely proportional to
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Y and amounts to:

∆N = −0.168007

Y
, for nf = 3, and ∆N = −0.23252

Y
, for nf = 5 . (3.50)

However, we can use directly the full-NLO result obtained in [21] for the multiplicity. In

this case the extra correction amounts to:

∆N=−(0.08093 + 0.16539 lnY )
1

Y
, for nf = 3, and (3.51)

∆N=−(0.00068− 0.161658 lnY )
1

Y
, for nf = 5 . (3.52)

although the terms ∝ 1√
Y

and ∝ 1
Y are almost constant and practically compensate to each

other at the currently accessible energies.

Peak position. The mean peak value of the DG distribution, ξ̄, truncated as done in

eq. (3.18) can be improved as discussed in [4, 5]. The NMLLA correction proportional to

lnY is of relative order O(
√
αs) and is very small O(10−3 lnY ) compared to the second

term. There is one extra correction (numerical constant) to ξ̄ coming from the exact

solution of eq. (3.1) with a2 = 0, written in terms of Bessel series in appendix C. Indeed,

substituting eq. (C.11) into (C.9) (see appendix C for a complete derivation), one obtains

the extra NMLLA term to ξ̄:

∆ξ̄ = − β0
32Nc

B(2B + 3), (3.53)

from the expansion of the Bessel series through the eq. (C.9) that should be added to

eq. (3.18). Therefore, the full resummed expression of the mean peak position reads

ξ̄ =
Y

2
+

a1
16Nc

√

16Nc

β0
Y − 2Nc

a2
β0

lnY − a1(2a1 + 3β0)

32Ncβ0
(3.54)

in its complete NMLLA+NLO∗ form. The corresponding position of the maximum is

related to the mean peak value by the expression [49]:

ξmax − ξ̄ = −1

2
σs =

3a1
32Nc

, (3.55)

such that

ξmax =
Y

2
+

√

a21
16Ncβ0

Y − 2Nc
a2
β0

lnY − a21
16Ncβ0

. (3.56)

where the DLA width σ and skewness s are enough for the computation. Asymptotically

(Y → ∞) and factorising by Y , one recovers the maximum of the peak position for the

DLA spectrum eq. (1.1). In the same approximation, since s(Y ) → 0, the expression of

the mean peak position in eq. (3.55) coincides with that of the maximum of the Gaussian

distribution. Of course, the ensemble of NMLLA corrections written in eq. (3.54) can

be obtained from eq. (3.1), provided that one can determine the exact solution of the

evolution equations. Notice that eq. (3.56) does not include any term ∝ β1, as this kind

of term appears when higher-order corrections are included in the evolution equations and

their solutions.
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Width. Similar extra corrections can be found for the dispersion by calculating ξ2
through this recursive procedure. By making use of eq. (3.49) and the full derivation

presented in appendix C, it was found in [53]:

ξ2
Y 2

=
1

4
+
B(B + 1

3)

z2
+

(B + 1
3)

z2

(

1− 2B(B + 2)

z2

)

IB+2(z)

IB+1(z)
, (3.57)

such that, with σ2 = ξ2− ξ̄2 given by eq. (3.46), one finds the extra correction (for nf = 5)

∆σ

0.36499Y 3/4
=

1.98667

Y 3/2
, (3.58)

which should be accordingly added to the r.h.s. of eq. (3.45a).

Skewness. In the case of the skewness, the expression for ξ3 reads

ξ3
Y 3

=
1

8
+

3B(B + 1)

2z2

(

1− 4B(B + 3)

3z2

)

+
2

z

[

3B + 2

8
− B(B + 1)(B + 3)

z2

(

1

− 2B(B + 2)

z4

)]

IB+2(z)

IB+1(z)
(3.59)

such that, if one makes use of the expression (3.47), the extra correction reads (for nf = 5)

∆s

−1.94703/Y 3/4
= −1.64393

Y
, (3.60)

to be added to the r.h.s. of eq. (3.45b). Notice that eq. (3.59) was given in [53] without

accounting for terms O
(

z−4
)

and O
(

z−7
)

. Such terms cannot be neglected when dealing

with MLLA and NMLLA corrections.

Kurtosis. Finally, for the kurtosis, we obtain the formula for ξ4:

ξ4
Y 4

=
1

16
− (B + 4)(15B3 + 30B2 + 5B − 2)

5z2

(

1− 4B(B + 3)

3z4

)

+
9B2 + 15B + 2

6z2

+
1

z

[

B + 1

2
+

4(B + 3)(B + 4)(15B3 + 30B2 + 5B − 2)

15z4

(

1− 2B(B + 2)

z2

)

− 5B3 + 35B2 + 50B + 8

5z2

]

IB+2(z)

IB+1(z)
, (3.61)

which can be cast into eq. (3.48) to obtain the corresponding correction which reads (for

nf = 5):
∆k

−2.15812/
√
Y

= −8.05771

Y 3/2
, (3.62)

to be also added to eq. (3.45c).

Final numerical formulæ. For easiness of comparison to the data, we provide

here the final numerical expressions for the energy evolution of the NMLLA+NLO∗

components of DG hadron distribution of jets in the limiting spectrum, evaluated

from eqs. (3.41), (3.42), (3.45a), (3.45b) and (3.45c) plus the higher-order corrections

eqs. (3.52), (3.53), (3.58), (3.60) and (3.62). We include the expressions for nf = 3, 4, 5
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active quark flavours, although only the cases nf = 4, 5 are relevant for most phenomeno-

logical applications (jets are usually measured with energies (well) above the charm and

bottom-quark mass thresholds). For nf = 3 quark flavours, one finds

N (Y )=Kch exp

[

2.3094
√
Y − 0.373457 lnY + (0.061654 + 0.456178 lnY )

1√
Y

+ (0.121834− 0.14749 lnY )
1

Y

]

, (3.63)

ξ̄(Y )=0.5Y + 0.539929
√
Y − 0.05 lnY, (3.64)

ξmax(Y )=0.5Y + 0.539929
√
Y − 0.291524− 0.05 lnY, (3.65)

σ(Y )=0.379918Y 3/4

[

1−0.324759
1√
Y
−(1.6206−0.296296 lnY )

1

Y
+
1.70797

Y 3/2

]

,(3.66)

s(Y )=−1.84616

Y 3/4

[

1− 0.324759
1√
Y

− 1.63978

Y

]

, (3.67)

k(Y )=−2.33827√
Y

[

1−0.866025
1√
Y
+(0.713767−0.197531 lnY )

1

Y
− 6.99062

Y 3/2

]

. (3.68)

For nf = 4 quark flavours, relevant for jet analysis above the charm mass threshold

(mc ≈ 1.3GeV), one finds

N (Y )=Kch exp

[

2.4
√
Y − 0.427778 lnY + (0.0214879 + 0.44352 lnY )

1√
Y

+ (0.0682865− 0.158071 lnY )
1

Y

]

, (3.69)

ξ̄(Y )=0.5Y + 0.564815
√
Y − 0.0287888 lnY, (3.70)

ξmax(Y )=0.5Y + 0.564815
√
Y − 0.319015− 0.0287888 lnY, (3.71)

σ(Y )=0.372678Y 3/4

[

1−0.312499
1√
Y
−(1.31978−0.2772 lnY )

1

Y
+
1.83441

Y 3/2

]

, (3.72)

s(Y )=−1.89445

Y 3/4

[

1− 0.312499
1√
Y

− 1.64009

Y

]

, (3.73)

k(Y )=−2.25√
Y

[

1− 0.833333
1√
Y

+ (0.740793− 0.1848 lnY )
1

Y
− 7.47314

Y 3/2

]

; (3.74)

and for nf = 5 quark flavours relevant for jet analysis above the bottom mass threshold

(mb ≈ 4.2GeV):

N (Y ) = Kch exp

[

2.50217
√
Y − 0.491546 lnY − (0.06889− 0.41151 lnY )

1√
Y

+ (0.00068− 0.161658 lnY )
1

Y

]

, (3.75)

ξ̄(Y ) = 0.5Y + 0.592722
√
Y + 0.002 lnY, (3.76)

ξmax(Y ) = 0.5Y + 0.592722
√
Y − 0.351319 + 0.002 lnY, (3.77)

σ(Y )=0.36499Y 3/4

[

1−0.299739
1√
Y
−(1.4921−0.246692 lnY )

1

Y
+
1.98667

Y 3/2

]

, (3.78)

s(Y )=−1.94704

Y 3/4

[

1− 0.299739
1√
Y

− 1.64393

Y

]

, (3.79)
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k(Y )=−2.15812√
Y

[

1−0.799305
1√
Y
+(0.730466−0.164461 lnY )

1

Y
− 8.05771

Y 3/2

]

. (3.80)

The MLLA expressions first computed in [23] can be naturally recovered from our results

by keeping all terms up to 1/
√
Y . For nf = 5 quark flavours, they read:

N (Y ) = Kch exp
[

2.50217
√
Y − 0.491546 lnY

]

, (3.81)

ξ̄(Y ) = 0.5Y + 0.592722
√
Y , (3.82)

ξmax(Y ) = 0.5Y + 0.592722
√
Y , (3.83)

σ(Y ) = 0.36499Y 3/4

[

1− 0.299739
1√
Y

]

, (3.84)

s(Y ) = −1.94704

Y 3/4
, (3.85)

k(Y ) = −2.15812√
Y

[

1− 0.799305
1√
Y

]

, (3.86)

which clearly highlight, by comparing to the corresponding full expressions above, the new

NMLLA+NLO∗ terms computed in this work for the first time.

3.6 Other corrections: finite mass, number of active flavours, power terms,

and Λ
QCD

rescaling

Mass effects. In the approach discussed so far, the partons have been assumed massless

and so their scaled energy and momentum spectra are identical. Experimentally, the scaled

momentum distribution ξp = ln(
√
s/(2 ph)) is measured and, since the final-state hadrons

are massive, the equivalence of the theoretical and experimental spectra no longer exactly

holds. One can relate the measured ξp spectrum to the expected DG distribution (which

depends on ξ ≡ ξE) by performing the following change of variables [54]:

1

σtot

dσh

dξp
∝ ph
Eh

D+(ξ, Y ) , with ξ = ln(1/x) = ln

( √
s/2

√

(s/4)e−2ξp +meff
2

)

, (3.87)

where the energy of a hadron with measured momentum ph = (
√
s/2) · exp−ξp is Eh =

√

p2h +meff
2, and meff is an effective mass of O(ΛQCD) accounting for the typical mixture

of pion, kaon and protons in a jet. In figure (7) we compare the DG distribution in the

limiting-spectrum for the typical HBP of LEP-1 jets with and without mass corrections,

using eq. (3.87) with meff = 0 and meff = ΛQCD ≈ 0.23GeV. As expected, the net

effect of the non-null mass of the measured jet particles affects the tail of the distribution

at high ξ (i.e. at very low momenta) but leaves otherwise relatively unaffected the rest of

the distribution. In the analysis of experimental jet data in the next section, the rescaling

given by eq. (3.87) will be applied to the theoretical DG distribution for values of meff = 0–

0.35GeV to gauge the sensitivity of our results to finite-mass effects. Since experimentally

there are not many measurements in the large ξ tail (i.e. very low particle momenta) and

here the distribution has larger uncertainties than in other ranges of the spectrum, the fits

to the data turn out to be rather insensitive to meff .
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eff
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Figure 7. Comparison of the limiting-spectrum distorted Gaussian for jets typical of LEP-1 energies

(mean ξ̄ = 3.7, width σ = 1.1, skewness s = k = −0.25, and kurtosis k = −1.) with and without

corrections for finite-mass effects (meff ≈ Λ
QCD

) according to eq. (3.87).

Number of active flavours nf . The available experimental e+e− data covers a range of

jet energies Ejet ≈ 1–100GeV which, in its lowest range, crosses the charm (mc ≈ 1.3GeV)

and bottom (mb ≈ 4.2GeV) thresholds in the counting of the number of active quark

flavours nf present in the formulæ for the energy-dependence of the DG moments. Al-

though the differences are small, rather than trying to interpolate the expressions for

different values of nf in the heavy-quark crossing regions, in what follows we will use the

formulaæ for nf = 5 for the evolution of all moments and rescale the obtained moments of

the four lower-
√
s datasets from the BES experiment [24] to account for their lower effective

value of nf . The actual numerical differences between the evolutions of the DG moments

for nf = 4 and nf = 5 quark flavours — given by eqs. (3.69)–(3.74) and (3.75)–(3.80)

respectively — when evaluated for energies below the bottom-quark threshold are quite

small: 0–10% for N (Y ), below 1% for ξmax(Y ), around 5% for the width σ(Y ), and 5–10%

for the skewness s(Y ) and kurtosis k(Y ). In this respect, the most “robust” (nf -insensitive)

observable is the peak position of the distribution.

Power-suppressed terms. Power corrections of order O(Qn
0/Q

n) appear if one sets

more accurate integration bounds of the integro-differential evolution equations over z,

such as Q0

Q ≤ z ≤ 1 − Q0

Q instead of 0 ≤ z ≤ 1, which actually leads to eq. (3.1) after

Mellin transformation with Q0 ∼ mh, where mh is the hadron mass (for more details see

review [55, 56]). For the mean multiplicity, this type of corrections was considered in [18].

They were proved to be powered-suppressed and to provide small corrections at high-

energy scales. Furthermore, they become even more suppressed in the limiting spectrum

case where Q0 can be extended down to ΛQCD for infrared-safe observables like the hump-

backed plateau. The MLLA computation of power corrections for differential observables

is a numerical cumbersome task which, for the hump-backed plateau, would add minor

improvements in the very small x domain ln(1/x) → ln(Q/ΛQCD) away from the hump
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region of our interest, and thus they would not introduce any significant shift to the main

moments of the hadron distributions (in particular its peak position ξmax, and width σ).

Rescaling of the Λ
QCD

parameter. Technically, the ΛQCD parameter is a scheme-

dependent integration constant of the QCD β-function. Rescaling the QCD parameter by

a constant, ΛQCD → CΛQCD , would give an equally acceptable definition. In our formalism,

such a variation would translate into a lnC-shift of the constant term of the HBP peak,

eq. (3.56) [4, 5], which corresponds to higher-order contributions to the solution of the

evolution equations. The approach adopted here is to connect ΛQCD to αs in the MS

factorisation scheme through the two-loop eq. (2.4) and, at this level of NLO accuracy,

there is no ambiguity when comparing our extracted αs results to other values obtained

using the same definition.

4 Extraction of αs from the evolution of the distribution of hadrons in

jets in e
+
e
− collisions

In this last section, we confront our NMLLA+NLO∗ calculations with all the existing

charged-hadron spectra measured in jets produced in e+e− collisions in the range of ener-

gies
√
s ≈ 2–200GeV. The experimental distributions as a function of ξp = ln(

√
s/(2 ph))

are fitted to the distorted Gaussian parametrisation, eq. (3.10), and the corresponding

DG components are derived for each dataset. More concretely, we fit the experimental

distributions to the expression:

1

σtot

dσh

dξ
= Kch 2CF

Nc
D+(ξ, Y ) , (4.1)

where D+(ξ, Y ) is given by eq. (3.87) corrected to take into account the finite-mass effects

of the hadrons (for values of meff = 0–0.35GeV, see below) with Y = ln[
√
s/(2ΛQCD)].

Each fit has five free parameters for the DG: maximum peak position, total multiplic-

ity, width, skewness and kurtosis. In total, we analyse 32 data-sets from the following

experiments: BES at
√
s = 2–5GeV [24]; TASSO at

√
s = 14–44GeV [25, 26]; TPC at√

s = 29GeV [27]; TOPAZ at
√
s = 58GeV [28]; ALEPH [29], L3 [30] and OPAL [7, 31]

at
√
s = 91.2GeV; ALEPH [32, 35], DELPHI [33], OPAL [34] at

√
s = 133GeV; and

ALEPH [35] and OPAL [36–38] in the range
√
s = 161–202GeV. The total number of

points is 1019 and the systematic and statistical uncertainties of the spectra are added in

quadrature.

In order to assess the effect of finite-mass corrections discussed in the previous section,

we carry out the DG fits of the data to eq. (3.87) for many values of meff in the range 0–

320MeV. The lower value assumes that hadron and parton spectra are identical, the upper

choice corresponds to an average of the pion, kaon and (anti)proton masses weighted by

their corresponding abundances (65%, 30% and 5% approximately) in e+e− collisions.

Representative fits of all the single-inclusive hadron distributions for meff = 0, 140, and

320MeV are shown in figures 8–10 respectively, with the norm, peak, width, skewness, and

kurtosis as free parameters. In all cases the individual data-model agreement is very good,
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Figure 8. Top: single inclusive hadron distributions measured in jets in the world e+e− data at√
s ≈ 2–200GeV as a function of ξ = ln(

√
s/(2 ph)) fitted to the distorted Gaussian eq. (3.87) with

meff = 0. Bottom: ratio of each set of data points to the corresponding DG fit. The value 〈χ2/ndf〉
quoted is the average of all individual fits.

with goodness-of-fit per degree-of-freedom χ2/ndf ≈ 0.5–2.0, as indicated in the data/fit

ratios around unity in the bottom panels. The fits to all datasets with energies above√
s = 50GeV turn out to be completely insensitive to the choice of meff , i.e. the moments

of the DG obtained are “invariant” with respect to the value of meff , whereas those at lower

energies are more sensitive to it. The value of the effective mass that provides an overall

best agreement to the whole set of experimental distributions is meff ≈ 140MeV, which is

consistent with a dominant pion composition of the inclusive charged hadron spectra.

The general trends of the DG moments are already visible in these plots: as
√
s in-

creases, the peak of the distribution shifts to larger values of ξ (i.e. smaller relative values

of the charged-hadron momenta) and the spectrum broadens (i.e. its width σ increases).

In the range of the current measurements, the peak moves from ξmax ≈ 1 to ξmax ≈ 4, and

the width increases from σ ≈ 0.5 to 1.2. The expected logarithmic-like energy dependence

of the peak of the ξ distribution, given by eq. (3.77), due to soft gluon coherence (angular
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Figure 9. Top: single inclusive hadron distributions measured in jets in the world e+e− data at√
s ≈ 2–200GeV as a function of ξ = ln(

√
s/(2 ph)) fitted to the distorted Gaussian eq. (3.87) with

meff = 140MeV Bottom: ratio of each set of data points to the corresponding DG fit. The value

〈χ2/ndf〉 quoted is the average of all individual fits.

ordering), correctly reproduces the suppression of hadron production at small x seen in

the data to the right of the distorted Gaussian peak. Although a decrease at large ξ (very

small x) is expected based on purely kinematic arguments, the peak position would vary

twice as rapidly with the energy in such a case in contradiction with the calculations and

data. The integral of the ξ distribution gives the total charged-hadron multiplicity N ch

which increases exponentially as per eq. (3.75).

The
√
s-dependence of each one of the individual DG moments is studied by fitting

their evolution to our NMLLA+NLO∗ limiting-spectrum predictions eqs. (3.75)–(3.80) with

Y = ln(
√
s/(2ΛQCD)) for nf = 5 quark flavours, with ΛQCD as the only free parameter.

Before performing the combined energy-dependence fit, the moments of the lowest-
√
s

distribution from the BES experiment are corrected to account for their different number

of active flavours (nf = 3,4) as described in the previous section.
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Figure 10. Top: single inclusive hadron distributions measured in jets in the world e+e− data at√
s ≈ 2–200GeV as a function of ξ = ln(

√
s/(2 ph)) fitted to the distorted Gaussian eq. (3.87) with

meff = 320MeV. Bottom: ratio of each set of data points to the corresponding DG fit. The value

〈χ2/ndf〉 quoted is the average of all individual fits.

The collision-energy dependencies of all the obtained DG components are plotted in

figures 11–15 for meff = 0.14GeV which, as aforementioned, provides the best individual

fit to the DGs. In any case, using alternative meff values results only in small changes

in the derived values of ΛQCD , consistent with its quoted uncertainties. Varying meff

from zero to 0.32GeV yields differences in the extracted ΛQCD parameter below ±0.5%

for the ξmax fits and below ±2% for the other components, which indicate the robustness

of our NMLLA+NLO∗ calculations for the limiting-spectrum DG with respect to finite-

mass effects if a wide enough range of charged-hadron and parent-parton (jet) energies are

considered in the evolution fit. The point-to-point uncertainties of the different moments,

originally coming from the DG fit procedure alone, have been enlarged so that their mini-

mum values are at least 3% for the peak position, and 5% for the multiplicity and width.

Such minimum uncertainties are consistent with the spread of the DG moments obtained
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Figure 11. Energy evolution of the maximum peak position ξmax of the spectrum of charged

hadrons in jets measured in e+e− at collision energies
√
s ≈ 2–200GeV, fitted to eq. (3.77) with

Y = ln(
√
s/(2Λ

QCD
)), with finite-mass corrections (meff = 0.14GeV). The extracted values of Λ

QCD

and equivalent NLO
MS

αs(m
2
Z
) and the goodness-of-fit per degree-of-freedom ξ2/ndf, are quoted.
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Figure 12. Energy evolution of the total multiplicity N ch spectrum of charged hadrons in jets mea-

sured in e+e− at collision energies
√
s ≈ 2–200GeV, fitted to eq. (3.75) with Y = ln(

√
s/(2Λ

QCD
)),

with finite-mass corrections (meff = 0.14GeV). The extracted values of the Kch normalization

constant, Λ
QCD

and equivalent NLO
MS

αs(m
2
Z
), and the goodness-of-fit per degree-of-freedom

ξ2/ndf, are quoted.
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Figure 13. Energy evolution of the width σ spectrum of charged hadrons in jets measured in e+e−

at collision energies
√
s ≈ 2–200GeV, fitted to eq. (3.78) with Y = ln(

√
s/(2Λ

QCD
)), with finite-mass

corrections (meff = 0.14GeV). The extracted values of Λ
QCD

and equivalent NLO
MS

αs(m
2
Z
), and

the goodness-of-fit per degree-of-freedom ξ2/ndf, are quoted.
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Figure 14. Energy evolution of the skewness s of the spectrum of charged hadrons in jets measured

in e+e− at collision energies
√
s ≈ 2–200GeV, fitted to eq. (3.79) with Y = ln(

√
s/(2Λ

QCD
)), with

finite-mass corrections (meff = 0.14GeV). The extracted values of Λ
QCD

and equivalent NLO
MS

αs(m
2
Z
), and the goodness-of-fit per degree-of-freedom ξ2/ndf, are quoted.
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Figure 15. Energy evolution of the kurtosis k of the spectrum of charged hadrons in jets measured

in e+e− at collision energies
√
s ≈ 2–200GeV, fitted to eq. (3.80) with Y = ln(

√
s/(2Λ

QCD
)), with

finite-mass corrections (meff = 0.14GeV). The resulting Λ
QCD

, NLO
MS

αs(m
2
Z
), and goodness-of-fit

per degree-of-freedom ξ2/ndf are quoted. The long-dashed curve shows the expected theoretical

dependence for Λ
QCD

= 230MeV.

for different experiments at the same collision-energies, and guarantee an acceptable global

goodness-of-fit χ2/ndf ≈ 1 for their
√
s-dependence. We note that not all measurements

originally corrected for feed-down contributions from weak decays of primary particles.

This affects, in particular, the multiplicities measured for the TASSO [25, 26], TPC [27]

and OPAL [7] datasets which include charged particles from Ks
0 and Λ decays. The effect

on the peak position (and higher HBP moments) of including secondary particles from de-

cays is negligible (<0.5%), but increases the total charged particles yields by 8% according

to experimental data and Monte Carlo simulations [46]. For these three data-sets, we have

thus reduced accordingly the value of N ch.

The DG skewness and kurtosis are less well constrained by the individual fits to the

measured fragmentation functions and have much larger uncertainties than the rest of

moments. As a matter of fact, in the case of the kurtosis our NMLLA+NLO∗ prediction

for its energy-evolution eq. (3.80), fails to provide a proper description of the data and

seems to be above the data by a constant offset (figure 15). Whether this fact is due to

missing higher-order contributions in our calculations or to other effects is not yet clear

at this point. Apart from the kurtosis, the QCD coupling value extracted from all the

other moments has values around αs(m
2
Z
) = 0.118, in striking agreement with the current

world-average obtained by other methods [57, 58].

Table 1 lists each value of the ΛQCD parameter individually extracted from the energy

evolutions of the four DG components that are well described by our NMLLA+NLO∗
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DG moment: Peak position Multiplicity Width Skewness Combined

Λ
QCD

(MeV) 255 ± 4 191 ± 13 203 ± 4 185 ± 21 249 ± 6

αs(m
2
Z
) 0.120 ± 0.002 0.115 ± 0.008 0.116 ± 0.003 0.115 ± 0.013 0.1195 ± 0.0022

Table 1. Values of Λ
QCD

and associated αs(m
2
Z
) at NLO (MS scheme, nf = 5 quark flavours)

obtained from the fits of the
√
s-dependence of the moments of the charged hadron distribution of

jets in e+e− collisions obtained from their NMLLA+NLO∗ evolution. The last column provides the

weighted-average of the individual measurements with its total propagated uncertainty.

approach, and their associated values of αs(m
2
Z
) obtained using the two-loop eq. (2.4) for

nf = 5 quark flavours. Whereas the errors quoted for the different ΛQCD values include

only uncertainties from the fit procedure, the propagated αs(m
2
Z
) uncertainties have been

enlarged by a common factor such that their final weighted average has a χ2/ndf close

to unity. Such a “χ2 averaging” method [58] takes into account in a well defined manner

any correlations between the four extractions of αs, as well as underestimated systematic

uncertainties. The relative uncertainty of the αs(m
2
Z
) determination from the DG moments

evolution is about ±1.5% for the maximum peak position, ±3.5% for the width, ±7% for

the total multiplicity, and about ±11% for the skewness. The last column of table 1 lists

the final values of ΛQCD and αs(m
2
Z
) determined by taking the weighted-average of the

four individual measurements. We obtain a final value αs(m
2
Z
) = 0.1195 ± 0.0022 which

is in excellent agreement with the current world-average of the strong coupling at the Z

mass [57, 58]. Our extraction of the QCD strong coupling has an uncertainty (±2%) that is

commensurate with that from other e+e− observables such as jet-shapes (±1%) and 3-jets

rates (±2%) [57, 58]. In a forthcoming work, we will extend the extraction of the strong

coupling via the NMLLA+NLO∗ evolution of the moments of the hadron distribution in jet

world-data measured not only in e+e− but also including deep-inelastic e± p collisions [59].

5 Conclusions and outlook

We have computed analytically the energy evolution of the moments of the single-inclusive

distribution of hadrons inside QCD jets in the next-to-modified-leading-log approxi-

mation (NMLLA) including next-to-leading-order (NLO) corrections to the αs strong

coupling. Using a distorted Gaussian parametrization, we provide in a closed-form the

numerical expressions for the energy-dependence of the maximum peak position, total

multiplicity, peak width, kurtosis and skewness of the limiting spectra where the hadron

distributions are evolved down to the ΛQCD scale. Comparisons of all the existing jet

data measured in e+e− collisions in the range
√
s ≈ 2–200GeV to the NMLLA+NLO∗

predictions for the moments of the hadron distributions allow one to extract a value of

the QCD parameter ΛQCD and associated two-loop coupling constant at the Z resonance,

αs(m
2
Z
) = 0.1195 ± 0.0022, in excellent agreement with the current world average obtained

with other methods. The NMLLA+NLO∗ approach presented here can be further

extended to full NMLLA+NLO through the inclusion of the two-loop splitting functions.

Also, in a forthcoming phenomenological study we plan to compare our approach not

only to the world e+e− jet data but also to jet measurements in (the current hemisphere
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of the Breit-frame of) deep-inelastic e± p collisions. The application of our approach to

the hadron distribution of TeV-jets produced in proton-proton collisions at LHC energies

would further allow one to extract αs from parton-to-hadron FFs over a very wide

kinematic range. The methodology presented here provides a new independent approach

for the determination of the QCD coupling constant complementary to other existing

jet-based methods — that rely on jet shapes, and/or on ratios of N -jet production cross

sections — with a totally different set of experimental and theoretical uncertainties.
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A Mellin-transformed splitting functions

The set of LO DGLAP splitting functions in Mellin space has been given in [47]. It follows

from eqs. (2.2)–(2.3) by making use of the Mellin transform given in eq. (2.14) such that

Pgg(Ω)=−4Nc [ψ(Ω + 1) + γE ] +
11Nc

3
− 2nf

3
+

8Nc(Ω
2 +Ω+ 1)

Ω(Ω2 − 1)(Ω + 2)
, (A.1a)

Pgq(Ω)=
Ω2 +Ω+ 2

Ω(Ω + 1)(Ω + 2)
, (A.1b)

Pqg(Ω)=2CF
Ω2 +Ω+ 2

Ω(Ω2 − 1)
, (A.1c)

Pqq(Ω)=−CF

[

ψ(Ω + 1) + 4γE − 3− 2

Ω(Ω + 1)

]

. (A.1d)

The expansion of the set of splitting functions (A.1a)–(A.1d) in Mellin space is trivial and

makes use of the Taylor expansion of the digamma function as Ω → 0:

ψ(Ω + 1) = −γE +
π2

6
Ω +O(Ω2),

and (1± Ω)α ≈ 1∓ αΩ+ 1
2α(α− 1)Ω2 + . . ., which leads to the formulæ (2.15a)–(2.15d).

B NMLLA+NLO∗ moments Kn of the distorted Gaussian

We compute here the generic for the moments of the distorted Gaussian (DG) for λ 6= 0

according to eq. (3.13) by introducing the following functions:

f1(Y, λ) =
1− λ

Y+λ

1−
(

λ
Y+λ

)3/2
, f4(Y, λ) =

1−
(

λ
Y+λ

)2

1−
(

λ
Y+λ

)5/2
(B.1)
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f2(Y, λ) =
1−

(

λ
Y+λ

)1/2

1−
(

λ
Y+λ

)3/2
, f5(Y, λ) =

1−
(

λ
Y+λ

)3/2

1−
(

λ
Y+λ

)5/2
, (B.2)

f3(Y, λ) =
1−

(

λ
Y+λ

)1/2 [
ln 2λ−2

ln 2(Y+λ)−2

]

1−
(

λ
Y+λ

)3/2
, f6(Y, λ) =

1−
(

λ
Y+λ

)3/2 [
ln 2λ−2/3

ln 2(Y+λ)−2/3

]

1−
(

λ
Y+λ

)5/2
. (B.3)

Notice that fi(Y, λ = 0) = 1. The expressions forK2, K3, K4 andK5 are then, respectively:

K2(Y, λ)=
Y + λ

3

√

β0(Y + λ)

16Nc

[

1−
(

λ

Y + λ

)3/2
]{

1− 1

32
β0f1(Y, λ)

√

16Nc

β0(Y + λ)

+

[

9

8
a2f2(Y, λ)−

3

32

(

3

16N2
c

a21 +
a1β0
8N2

c

− β20
64N2

c

)

f2(Y, λ)

+
β1
32β0

(ln 2(Y + λ)− 2)f3(Y, λ)

]

16Nc

β0(Y + λ)

}

(B.4)

K3(Y, λ)=− a1
64Nc

√

β0
Nc

(Y +λ)3/2

[

1−
(

λ

Y +λ

)3/2
](

1−β0
16
f1(Y, λ)

√

16Nc

β0(Y +λ)

)

(B.5)

K4(Y, λ)=− 3

320

(

β0
Nc

)3/2

(Y +λ)5/2

[

1−
(

λ

Y +λ

)5/2
]{

1− 5

48
β0f4(Y, λ)

√

16Nc

β0(Y +λ)

+

[

25

24
a2f5(Y, λ)−

5

256

(

5

2N2
c

a21 +
a1β0
N2

c

− 55

24N2
c

β20

)

f5(Y, λ)

+
5β1
96β0

(

ln 2(Y + λ)− 2

3

)

f6(Y, λ)

]

16Nc

β0(Y + λ)

}

(B.6)

K5(Y, λ)=
3a1β

2
0(Y + λ)2

4096N3
c

(

10 + 12

√

Nc(Y + λ)

β0

)

− 3a1β
2
0λ

2

4096N3
c

(

10 + 12

√

Ncλ

β0

)

. (B.7)

Compared to MLLA, a new term appears in the expression (B.5) of K3. In order to

determine the dispersion σ, the skewness s and kurtosis of the distribution, we need to

normalise by the corresponding power of σ. After taking the σ =
√
K2 and expanding the

Taylor series in 1/
√
Y , we find the following expressions:

σ−3(Y, λ)=

(

3

Y + λ

)3/2( 16Nc

β0(Y + λ)

)3/4
[

1−
(

λ

Y + λ

)3/2
]−3/2(

1

+
3β0
64

f1(Y, λ)

√

16Nc

β0(Y + λ)

)

, (B.8)

σ−4(Y, λ)=

(

3

Y + λ

)2 16Nc

β0(Y + λ)

[

1−
(

λ

Y + λ

)3/2
]−2{

1 +
β0
16
f1(Y, λ)

√

16Nc

β0(Y + λ)

−
[

9

4
a2f2(Y, λ)−

3

16

(

3a21
16N2

c

f2(Y, λ) +
a1β0
8N2

c

f2(Y, λ)−
β20

64N2
c

f2(Y, λ)

+
9β20
64N2

c

f21 (Y, λ)

)

+
β1
16β0

(ln 2(Y + λ)− 2)f3(Y, λ)

]

16Nc

β0(Y + λ)

}

, (B.9)
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σ−5(Y )=

(

3

Y + λ

)5/2( 16Nc

β0(Y + λ)

)5/4
[

1−
(

λ

Y + λ

)3/2
]−5/2(

1

+
5β0
64

f1(Y, λ)

√

16Nc

β0(Y + λ)

)

. (B.10)

Thus σ−3, σ−4 and σ−5 expressions should be multiplied by K3, K4 and K5 and the

result re-expanded again in order to get the final results of eqs. (3.25), (3.27) and (3.20)

respectively.

C Higher-order corrections to the moments of the distorted Gaussian

We extract here some corrections to be incorporated into the perturbative expansion of the

truncated series for the mean peak position, dispersion, skewness and kurtosis [53]. The

presence of these corrections in the exact solution of the MLLA evolution equations is far

from trivial and is thus detailed in this appendix. These corrections are indeed hidden in

the exact solution of the MLLA evolution equations with one-loop coupling constant and

can be extracted after performing some algebraical calculations as described in [53] (see

also [4, 5] and references therein). The exact solution was written in terms of confluent

hypergeometric functions and then in terms of fast convergent Bessel series as follows [4, 5]:

D+(ξ, Y ) =
8Nc Γ(B)

β0

∫ π
2

0

dτ

π
e−Bα FB(τ, Y, ξ), (C.1)

where the integration is performed with respect to τ defined by α =
1

2
ln
Y − ξ

ξ
+ iτ and

with

FB(τ, Y, ξ) =









coshα− Y − 2ξ

Y
sinhα

4Nc Y

β0

α

sinhα









B/2

IB(2
√

Z(τ, Y, ξ)),

Z(τ, Y, ξ) =
4Nc Y

β0

α

sinhα

(

coshα− Y − 2ξ

Y
sinhα

)

,

B = a1/β0 and IB is the modified Bessel function of the first kind. It was then possible

to extract the moments of the DG from this more complicated approach also. In the end,

the MLLA moments of the DG found in [23] from the MLLA anomalous dimension allows

one to cross check the MLLA expressions found in [4, 5]. According to [53],

ξn = Y n · Ln(B + 1, B + 2, z), B =
a1
β0
, z =

√

16Nc

β0
Y , (C.2)

where the function Ln was written in the form of the series,

Ln(B + 1, B + 2; z) = P
(n)
0 (B + 1, B + 2; z) +

2

z

IB+2(z)

IB+1(z)
· P (n)

1 (B + 1, B + 2; z),
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with

P
(n)
0 (B+1, B+2; z) =

n−1
∑

k=0

α
(n)
n−k

(

2

z

)2k

, P
(n)
1 (B+1, B+2; z) =

n−1
∑

k=0

β
(n)
n−k

(

2

z

)2k

. (C.3)

The functions IB+i(z) correspond to the modified Bessel series of the second kind. The

leading coefficients are defined as:

α(n)
n = 2−n, β(n)

n =
n

2n

(

B +
n− 1

3

)

and the others α
(n)
n−k, β

(n)
n−k for k 6= 0 are the solutions of the triangular matrix



















1 0 0 0 0 0

1 B + 2 0 0 0 0

1 1 −B − 1 0 0 0

1 B + 3 B + 3 (B + 2)(B + 3) 0 0

1 2 −2B −2B 2B(B + 1) 0

1 B + 3 B + 4 (B + 3)(B + 4) (B + 3)(B + 4) (B + 2)(B + 3)(B + 4)









































β
(n)
1

α
(n)
1

β
(n)
2

α
(n)
2

β
(n)
3

α
(n)
3























=

























−Φ
(n)
−B−1

B+1

0

−Φ
(n)
−B

B

0

−Φ
(n)
−B+1

B−1

0

























. (C.4)

The functions Φ in the r.h.s. of eq. (C.4) are defined in the form

Φ(1)
c =

1

2
{c}2 + (B + 1) {c}1 , (C.5)

Φ(2)
c =

1

4
{c}4 +

(

B +
5

3

)

{c}3 + (B + 1)(B + 2) {n}2 , (C.6)

Φ(3)
c =

1

8
{c}6 +

1

4
(3B + 7) {c}5 +

1

2

(

3B2 + 13B + 13
)

{c}4
+(B + 1)(B + 2)(B + 3) {c}3 , (C.7)

Φ(4)
c =

1

16
{c}8 +

1

2
(B + 3) {c}7 +

(

3

2
B2 +

17

2
B +

34

3

)

{c}6

+

[

2(B + 1)3 + 10(B + 1)2 + 14(B + 1) +
24

5

]

{c}5
+(B + 1)(B + 2)(B + 3)(B + 4) {c}4 , (C.8)

where the shorthand notation {c}p = c(c − 1) . . . (c − p + 1) has been introduced for the

sake of simplicity and c = −B − 1,−B,−B + 1 according to the r.h.s. of eq. (C.4). For

instance, making use of eq. (3.49), for n = 1 one has,

ξ1 = Y ·L(B+1, B+2; z) = Y

[

P
(1)
0 (B + 1, B + 2; z) +

2

z

IB+2(z)

IB+1(z)
· P (1)

1 (B + 1, B + 2; z)

]

,
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where in this case:

P
(1)
0 (B + 1, B + 2; z) = α

(1)
1 =

1

2
, P

(1)
1 (B + 1, B + 2; z) = β

(1)
1 =

1

2
B,

according to the recursive relations given above. Therefore,

ξ1 =
Y

2

[

1 +
2

z
B
IB+2(z)

IB+1(z)

]

. (C.9)

Expanding the ratio IB+2(z)/IB+1(z) for large z (large energy scale in Y (E)) and making

use of the asymptotic expansion for the Bessel functions,

Iν(z) ≈ ez√
2πz

[

1− 1

2z

(

ν2 − 1

4

)

+
1

8z2

(

ν2 − 9

4

)(

ν2 − 1

4

)

− 1

48z3

(

ν2 − 25

4

)(

ν2 − 9

4

)(

ν2 − 1

4

)]

, (C.10)

one has

IB+2(z)

IB+1(z)
= 1− 2B + 3

2z
+

(2B + 3)(2B + 1)

8z2
+

(2B + 3)(2B + 1)

8z3
+O(z−4). (C.11)
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