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1 Introduction

Two opposite lines of thought have dominated the development of science at various times,

both leading to success when properly applied:

1) Use simplest ingredients, assume maximal symmetries, hope for the best, and do not

make the theory more complicated than necessary.

2) Use a maximally general approach, do not assume that Nature cooperates until proven

otherwise, write all possible terms in the theory and then cut some of them out only

if there is a good reason to do so.

The first versions of inflationary theory have been proposed soon after the triumph

of the Standard Model and the principle of renormalizability. This principle implied, in

particular, that the potential of a scalar field should have the general form including terms

φn only up to n = 4. This seemed to be a reasonable starting point to apply the first of the

two approaches mentioned above. It was soon recognized that this approach can be fruitful

if the inflaton field φ interacts with other fields with small coupling constants g. Once one

makes this assumption, the theory remains valid until effective masses of the fields become

super-Planckian (gφ ∼ 1), or the value of the potential energy becomes super-Planckian
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(V (φ) ∼ 1). The simplest models satisfying all desirable criteria could be borrowed from

the Standard Model. One could take V ∼ 1
2m

2φ2 or V ∼ 1
4λφ

4, or some combination of

these two terms with a (nearly) vanishing vacuum energy, like in the Higgs potential [1–3].

Yet another idea is to use some kind of global symmetry protecting certain directions

of the potential. Several possibilities of this type are discussed in the literature: a shift

symmetry φ → φ + c that is broken only by small terms such as m2

2 φ
2 [1–3], natural

inflation in the axion direction where the flatness of the potential is broken only by some

small non-perturbative effects [4, 5], and axion monodromy potentials in string theory [6, 7].

These models, as well as many other models of a similar type, often belong to the classes

of large field inflation and give predictions compatible with the results of the BICEP2, with

r ∼ 0.1 [8], although this is not a general rule.

On the other hand, one can follow the second line of thought and argue that the general

inflationary potential can be represented as a series

V (φ) =
∞∑
n=0

cn

(
φ

Λ

)n
, (1.1)

where Λ is some constant which is often identified with the UV cutoff, and cn = O(1) unless

there are some reasons why these coefficients are abnormally large or small. The commonly

used argument is that Λ should be smaller than Mp = 1, so this series diverge at φ > 1,

and therefore the behavior of the potential at large φ is uncontrollable. Many authors use

it as an argument against large field inflation and in favor of small-field inflation models,

with φ� 1, and r � 0.1.

One may argue that the argument given above is a bit naive because the scalar field

does not have its own invariant meaning. It enters all physical expressions only due to its

contribution to masses of particles with which it interacts. Therefore instead of the naive

criterion φ < Λ ∼ 1 one should have a more sophisticated criterion gφ < 1. However, in

supergravity and string theory the value of the scalar field may have its own geometric

interpretation. For example, the F -term contribution to the inflaton potential contains

the term eK . For the simplest Kähler potential K = ΦΦ̄ this term is eΦΦ̄, or, restoring

the Planck mass, eΦΦ̄/M2
p . Clearly, this means that the value of the scalar field does have

meaning in this theory, and it can be measured, just as naively expected, in units of Mp = 1.

This brings us back to the expansion (1.1).

But observational data suggest that something is lacking with this argument: BICEP2

as well as Planck to some extent are pointing towards large field inflation. For instance, the

simplest theories that provide the best match to the Planck data [9] are the Starobinsky

model [10–13] and the Higgs inflation model [14, 15], both of which are large field models,

with φ� 1 during the last 60 e-foldings of inflation.

One could consider the existence of these theories just a minor glitch, an exception

from the general rule used by many theorists and based on the expansion (1.1). However,

there is an additional miracle associated with these two classes of models: in the leading

approximation in 1/N , where N is the number of e-foldings, these models give identical pre-

dictions for ns and r. A subsequent investigation revealed further surprises. Several large

classes of theories have been found, all of which have the same observational predictions
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in the leading order in 1/N [16–19]. We called these theories “cosmological attractors.”

Most of these models belong to the class of large field models, disfavored by the arguments

based on (1.1), and yet all of them predicted the same values of ns and the same (or almost

the same) values of r as the models [10–15], in wonderful agreement with the Planck 2013

data. These properties are associated with special features of these theories which could

not be envisaged by investigation of random potentials represented by (1.1).

In this paper we highlight a second feature that makes these models even more inter-

esting and challenging: in a different limit, the predictions of a certain subclass of these

models presented in [18, 19] coincide with the predictions of the various versions of chaotic

inflation based on monomial potentials, in good agreement with the BICEP2 data.

A natural framework for the investigation of these theories is the formulation where

they have explicit conformal (or superconformal) invariance, which later becomes broken

by a specific choice of a gauge. In this formulation, the theories have a cutoff, corresponding

to the boundary of the moduli space in terms of the original field variables. This cutoff

is also manifest in the Jordan frame, see section 3. But upon the transformation to the

Einstein frame, the position of the cutoff runs away to infinity, when formulated in terms

of a canonically normalized inflaton field. This infinite stretching of the field in the vicinity

of the boundary of the moduli space (i.e. near the cutoff) is the main reason for the

universality of the observational predictions in a broad class of models of that type [16–19].

More details of this mechanism can be found in section 5.

To express it in terms similar to those encountered by cosmologists, one may say that

the generically non-uniform shape of the potential (1.1) is analogous to the homogeneity

problem. It is solved by exponential expansion of space during inflation. Similarly, expo-

nential stretching of the field variables upon transition to canonical fields in these models

makes the potential (1.1) exponentially flat, which allows inflation to occur and leads to

universal predictions of the theories.

In a certain class of such theories, called α-attractors, one can control the value of

the cutoff. The smaller is the cutoff, the faster the predictions of these theories converge

to the universal values favored by Planck 2013. But what if we send the value of the

cutoff to infinity? In this case, the previous universal behavior disappears, but a new

universality becomes manifest: as we will show in the next section, in the limit Λ →
∞, the predictions of these theories generically converge towards the predictions of the

simplest chaotic inflation model with the potential 1
2m

2φ2. We will call such theories

double attractors.

The outline of this paper is as follows. In section 2 we discuss the limit Λ → ∞ for

generic inflationary models. We introduce the role of conformal symmetry and cosmological

attractors in section 3. These models are generalized to α-attractors in section 4. Section

5 discusses the double attractor nature of this class of models. In section 6 we present

more examples. Their appearance in (superconformal) supergravity is the topic of section

7, where two formulations of the theory are given, one is defined on a disk, the other one

on a half-plane. Finally, we offer our conclusions in section 8.
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2 Inflation in the large cutoff limit

As we already mentioned, the Taylor series expansion (1.1) for the inflationary potential

suggests that the potential is expected to change significantly on scale φ & Λ unless there

are some reasons to assume that almost all terms in this expansion vanish.

But what if we interpret recent observational data differently? Prior to the proof of the

renormalizability of the electroweak interactions, scientists also indulged in speculations

about higher order corrections above the unitarity bound 102 GeV. It seemed plausible

that something very wrong should happen at high energies, where perturbation theory

breaks down. Once the Standard Model of electroweak interactions was constructed and

we learned how to make calculations there, suddenly the road was clear for investigations

of processes well above the conjectured cutoff at 102 GeV, up to the energies approaching

the Planck energy.

What if the history repeats itself, and the recent cosmological data can be interpreted

as an indication that the Planck energy is not really a limit? Perhaps it is too early to

think about it, especially since, as we already mentioned, in many theories the Planck

energy cutoff should not be considered as a cutoff for φ, but a cutoff for masses of the

particles interacting with this field. For a moment, we will just ignore this debate and

explore a radical possibility: consider once again the series of the type of (1.1), but take a

limit Λ→∞. It is a risky exercise, but maybe it will teach us something.

And indeed, the results are quite intriguing. Large field inflation typically requires

knowledge of the potential on scale φ . O(10) [1–3]. For such fields, all terms higher order

in φ in (1.1) vanish in the limit Λ→∞; only the lowest terms survive.

The absolute value of the constant term c0 in (1.1) is limited by 10−120 due to an-

thropic considerations. The linear term exactly vanishes at the minimum. Of course, if the

coefficient in front of the linear term is smaller than 10−120, we may not be at the mini-

mum as yet (dark energy) [20]. But this does not change the main conclusion: generically,

the only term in (1.1) that is important for the description of inflationary dynamics at

φ . O(10) for Λ� 1 is the quadratic term. This means that the predictions of all models

(1.1) should converge to the predictions of the simplest model 1
2m

2φ2 in the limit Λ→∞.

These conclusions can be illustrated by the results of the investigation of the parameters

ns and r in a broad class of the models of the type of (1.1), see figure 1.

Of course, this conclusion is not absolutely general. For example, the potential may

be more complicated so that one cannot even represent it using series (1.1), see e.g. [6, 7]

where the potential was quadratic at small |φ|, and proportional to |φ| or |φ|2/3 at large

|φ|. Our only goal was to show that if the potential can be represented by the series (1.1),

then in the large Λ limit the inflationary potential is quadratic during the last 60 e-folds

of inflation.

One could consider this argument just as a mathematical curiosity, but it will play

an interesting role in our discussion. In the subsequent sections, we will describe a class

of large field inflationary models called cosmological α-attractors. They exhibit double-

attractor behavior. In a certain limit, their predictions converge at ns = 1 − 2/N and

r = 0, which is very close but not exactly the same as in the Starobinsky model. In the
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Figure 1. The cosmological observables ns and log r for a representative class of large and small

field models with different potentials V (φ/Λ) converge to the predictions of the simplest model with

the quadratic potential in the large Λ limit.

opposite limit they also converge at ns = 1 − 2/N , but the prediction for r is the same

as for the theory 1
2m

2φ2: r = 4n/N . As we will see, the predictions span a large area

of possibilities on the way from one attractor point to another. Moreover, in order to

understand the double-attractor nature of these models, we will need to explore both the

small and the large cutoff limit.

3 Conformal symmetry and cosmological attractors

To explain the structure of the cosmological attractors, we will start with a toy model with

the following Lagrangian:

L =
√
−g
[

1

2
∂µχ∂

µχ+
χ2

12
R(g)− 1

2
∂µφ∂

µφ− φ2

12
R(g)− λ

36
(φ2 − χ2)2

]
. (3.1)

This theory is locally conformal invariant under the following transformations:

g̃µν = e−2σ(x)gµν , χ̃ = eσ(x)χ , φ̃ = eσ(x)φ . (3.2)

In addition, it has a global SO(1, 1) symmetry with respect to a boost between these two

fields, preserving the value of χ2−φ2, which resembles the Lorentz symmetry of the theory

of special relativity. Note that this theory describes gravity rather than antigravity only

for χ2 − φ2 > 0. In other words, χ represents the cutoff for possible values of the field φ.

At the first glance, the physical interpretation of this theory may seem rather obscure,

especially because the kinetic term of the field χ has the wrong sign. This construction

could seem ‘ad hoc’, but it is pretty standard; it is commonly used to achieve a mathemat-

ically elegant formulation of the standard supergravity. The field χ, called the conformal

compensator or conformon, does not have any physical degrees of freedom associated to it.

One can remove it from the theory in several different ways. For example, we may use the

gauge χ2 − φ2 = 6 and solve this constraint in terms of the canonically normalized field ϕ:

χ =
√

6 cosh (ϕ/
√

6), φ =
√

6 sinh (ϕ/
√

6). Our action (3.1) becomes

L =
√
−g
[

1

2
R− 1

2
∂µϕ∂

µϕ− λ
]
. (3.3)
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Thus our original theory is equivalent to a theory of gravity, a free massless canonically

normalized field ϕ, and a cosmological constant λ [16, 17].

As we see, the somewhat unusual term∼ (φ2−χ2)2 in (3.1) is essentially the placeholder

for what eventually becomes a cosmological constant. The theories to be studied below

are based on the idea that one can develop an interesting class of inflationary models by

modifying this placeholder, i.e. by locally deforming the would-be cosmological constant.

Consider a class of models

L =
√
−g
[

1

2
∂µχ∂

µχ+
χ2

12
R(g)− 1

2
∂µφ∂

µφ− φ2

12
R(g)− 1

36
f2 (φ/χ) (φ2 − χ2)2

]
. (3.4)

where f is an arbitrary function of the ratio φ/χ. This theory is invariant under transfor-

mations (3.2), just as the toy model (3.1). When f2 (φ/χ) is constant, the theory has an

additional SO(1, 1) symmetry, as we have seen in the example studied above. Introducing

a function f2 (φ/χ) is the only possibility to keep the local conformal symmetry (3.2) and

to deform the SO(1, 1) symmetry. The variable z = φ/χ is the proper variable to describe

the shape of the function f2 (φ/χ) in a conformally invariant way.

Using the gauge χ2 − φ2 = 6, one immediately transforms the theory to the following

equivalent form:

L =
√
−g
[

1

2
R− 1

2
∂µϕ∂

µϕ− f2

(
tanh

ϕ√
6

)]
. (3.5)

Note that asymptotically tanh(ϕ/
√

6) → ±1 and therefore f2(tanh(ϕ/
√

6)) → const; the

system in the large ϕ limit evolves asymptotically towards its critical point where the

SO(1, 1) symmetry is restored.

It is instructive to consider an alternative derivation of the same result, using the gauge

χ(x) =
√

6 instead of the gauge χ2 − φ2 = 6. The full Lagrangian in the Jordan frame

becomes

Ltotal =
√
−gJ

[
R(gJ)

2

(
1− φ2

6

)
− 1

2
∂µφ∂

µφ− f2

(
φ√
6

)(
φ2

6
− 1

)2
]
. (3.6)

Now one can represent the same theory in the Einstein frame, by changing the metric gJ
to a conformally related metric gµνE = (1− φ2/6)−1gµνJ .

L =
√
−g
[

1

2
R− (∂φ)2

(1− φ2/6)2
− f2

(
φ√
6

)]
. (3.7)

Finally, one may express it in terms of a canonically normalized field ϕ related to the field

φ as follows:
dϕ

dφ
=

1

1− φ2/6
⇒ φ√

6
= tanh

ϕ√
6
. (3.8)

This relates the two Einstein frame formulations (3.5) and (3.7) to each other.

One can clearly see the presence of the UV cutoff Λ =
√

6 (i.e. Λ =
√

6Mp) in (3.6),

(3.7). If the field φ would become greater than
√

6, one would have antigravity instead of

gravity. It is natural to expect that something should prevent it from happening [21, 22].

Indeed, the solution of (3.8) shows that while the field φ approaches the boundary at

– 6 –
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φ =
√

6, the canonically normalized field ϕ becomes infinitely large. This effect is at the

heart of the universality of cosmological predictions in this class of models.

Note that for |φ| �
√

6 one has φ ≈ ϕ, and the effects of the cutoff can be ignored.

On the other hand, once the field φ approaches the cutoff, the physical distance from

the boundary of the moduli space measured by the canonically normalized field ϕ becomes

indefinitely large. Unless the function f(φ) has some very peculiar (singular) behavior near

the boundary of the moduli space, asymptotic behavior of V (ϕ) at large ϕ is universal,

which results in the universality of the observational predictions of these models. The

potentials of the Starobinsky model [10–13] and of the the Higgs inflation model [14, 15]

can be consistently incorporated in this class of models, and the inflaton potentials in these

models have the functional form which can be cast in the universal form (3.5), and they

have the same observational predictions:

ns = 1− 2

N
, r =

12

N2
. (3.9)

For a detailed discussion of related issues and for the description of incorporation of these

models to superconformal theory and supergravity see [16–19, 21, 23] (and [24] for related

work).

Thus we have a broad class of consistent large field inflation models, which have identi-

cal model-independent observational predictions. This universality is closely related to the

existence of the UV cutoff in the original conformal formulation of the theory. Note that

we did not need to invent a cutoff, or speculate about its existence as in (1.1): it is a part

of the theory, and it is directly proportional to the Planck mass. The value of the cutoff

becomes infinitely large in terms of the canonically normalized inflaton field in the Einstein

frame, but the consequences of its original existence are reflected in the universality of the

observational predictions of this class of theories.

In the next section, we will describe α-attractors, the theories where the position of

the cutoff in the (super)conformal formulation of the theory can be controlled by some

parameter α. For each α . O(1), we will have universal observational predictions, but

they will depend on the value of α.

4 Cosmological α-attractors

As we will see, the cosmological α-attractors can be introduced in several inequivalent

ways, but at the end of the day, they lead to the Einstein frame Lagrangian for the inflaton

field which can be written in the form similar to (3.7):

L =
√
−g

[
1

2
R− α(∂φ̃)2

(1− φ̃2/6)2
− f2(φ̃/

√
6)

]
, (4.1)

or, equivalently, after rescaling of the field φ, as

L =
√
−g
[

1

2
R− (∂φ)2

(1− φ2/(6α))2
− f2(φ/

√
6α)

]
. (4.2)

– 7 –
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Upon canonically normalising the kinetic terms for the scalar field via the redefinition

φ√
6α

= tanh
ϕ√
6α

, (4.3)

this leads to the Einstein frame α-attractor theory:

Lα =
√
−g
[

1

2
R− 1

2
(∂ϕ)2 − f2

(
tanh

ϕ√
6α

)]
. (4.4)

Note that the position of the cutoff in (4.2) changed as compared to (3.7): Λ =
√

6α.

Thus we can control the position of the cutoff by changing α, which leads to a broad set

of possibilities.

In the subsequent sections, we will discuss the derivation and interpretation of this

class of models in the context of superconformal theory and supergravity. Here we will

concentrate on their observational consequences:

• For α = 1, the predictions of this class of models coincide at leading order in 1/N

with the predictions of the Starobinsky model, the Higgs inflation, and the large class

of conformal attractor models discussed in the previous section, see equation (3.9).

• For α . 1, N � 1 and for generic functions f(x), this class of models leads to a

universal prediction [19, 25]

ns = 1− 2

N
, r =

12α

N2
, (4.5)

while subleading corrections will be model-dependent [26]. One of the features of the

universal attractor here is the absence of dependence on the choice of f(x) in these

results.

• In the limit α→ 0 one finds the universal attractor prediction

ns = 1− 2

N
, r = 0 . (4.6)

with identical subleading corrections for all models.

Thus for sufficiently small α we have a universal behavior, independent of the function

f . This implies that, at a given small value of α there are many models which have the

same values of ns and r. For α = 1 this includes the Starobinsky and Higgs model [10–15]

but the same universality holds for any value of α. Decreasing α, one can reach arbitrarily

small values of gravity waves, without a significant change in ns.

In the opposite limit of large α, we may encounter a full spectrum of possibilities

instead. As an example, we have considered monomial functions f(x) = xn [19]. At small

α, we have the same universal behavior (4.5). In the large α limit one has the predictions

coinciding with the predictions of the simplest chaotic inflation with V ∼ φ2n, given by

ns = 1− 2

N
, r =

8n

N
. (4.7)

– 8 –
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Figure 2. The cosmological observables (ns, r) for different scalar potentials tanh2n
(

ϕ√
6α

)
with

2n = (2/3, 1, 2, 3, 4) for N = 60. These continuously interpolate between the predictions of the

simplest inflationary models with the monomial potentials ϕ2n for α→∞, and the attractor point

ns = 1 − 2/N , r = 0 for α → 0, shown by the bright blue star. The different trajectories form

a fan-like structure for α � n2. The set of dark red dots at the upper parts of the interpolating

straight lines corresponds to α = 100. The set of dark blue dots corresponds to α = 10. The lines

gradually merge for α = O(1). The upper blue contours correspond to BICEP2 results, the lower

contours correspond to Planck 2013.

The trajectories connecting these two limiting regions are almost exactly straight. A full

numerical investigation reveals the fan-like picture with a universal attractor at small α

and n-dependent split at large α, as presented at Fig 2. in [19], and reproduced here in

figure 2.

In the following section, we will consider the limit of large-α for generic functions f ,

and discuss the emergence of a second attractor in this limit.

5 A second attractor at large α

In [19] we studied the limit of large α for the choice f(x) = xn. We found an n-dependent

split of trajectories of the fan-type, leading to φn chaotic models as shown here in figure 2.

Now we propose to consider models (4.4) with a general class of functions f(x) defined by

the Taylor series similar to (1.1):

f(x)general =
∑
n

cnx
n, n = 1, 2, 3, . . . . (5.1)

In general, none of the coefficients cn is expected to be zero. However, in this investigation

we will concentrate on the models which have a minimum of the potential at x = 0. Then

c0 must be smaller than 10−60 because of anthropic considerations, see a similar argument

in section 2.

– 9 –
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Figure 3. The double α-attractor in the (ns, r) plane for different chaotic models with f(x) =

x+ cx2 with c = (0, 0.4, 0.8, 1.6, 3.2, 10) (in order from right to the left) for 60 e-folds and M = 1.

The dots correspond to logα = (1, 2). The dots which would correspond to α = 1 practically merge

with each other and are covered by the bright blue star corresponding to α = 0. The lower attractor

at small α is at small r, the upper attractor at large α is at the point where all models lead to a φ2

model.

At large-α one can use the approximation tanh(ϕ/
√

6α) ≈ ϕ/
√

6α, which holds when

ϕ�
√

6α. In this limit we have f
(

tanh(ϕ/
√

6α)
)

= c1ϕ/
√

6α� 1, and therefore

V (ϕ) = f2
(

tanh
ϕ√
6α

)
=

c2
1

6α
ϕ2 . (5.2)

Note that in the purely quadratic chaotic inflation model one hasN = ϕ2/4 [1–3]. Therefore

one can self-consistently describe inflation in the quadratic approximation (6.3) for α �
2N/3, which yields the constraint α� 40 for N = 60.

An exception to this conclusion is provided by the monomial examples f = xn with

n 6= 1 studied in [19]; these do not have a quadratic expansion (5.2) for any value of the

stretching parameter α, see figure 2. However, in reality we do expect the potential to be

quadratic near its minimum. Therefore, in the large α limit, the last 60 e-folds of inflation

always occur near the minimum where the potential is quadratic.

To illustrate the emergence of the attractor regime in the large α limit, we considered

functions f(x) = x+cx2 and plotted ns and r for various values of c and for α interpolating

between 1, 10, 100 and higher values as shown in figure 3. We have studied other examples,

like f(x) = x + cx3 and found analogous behavior at large α. As expected, we have

found a double-attractor regime, with predictions of a broad family of models continuously

interpolating between the set of data favored by Planck 2013 and the data favored by

BICEP2.
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Figure 4. a) A periodic potential in the theory (4.2) for α = 1; b) The same potential in terms

of the canonically normalized field ϕ for α = 1. The emergence of an infinitely long plateau of

the potential, with a sufficiently sharp fall-off, is responsible for the attractor behavior of this class

of models for α . 1; c) The same potential in terms of the canonically normalized field ϕ for

α = 104. The uniform horizontal stretching of the inflationary potential is responsible for the

attractor behavior in this class of theories in the limit α → ∞. Because of the stretching of the

potential, it became very flat. Therefore inflation may occur near each of the many minima of the

potential.

Here we would like to provide a simple graphical illustration explaining the origin of

the double-attractor regime in this class of models. Figure 4a shows the potential of the

theory (4.2) with a simple sinusoidal potential of the field φ. The potential is periodic with

a period smaller than 1, which means that if the field φ were canonically normalized, there

would be no inflation in this theory.

However, in terms of a canonically normalized field ϕ, the potential acquires an in-

finitely long flat direction, which makes inflation possible, see figure 4b, which shows the

potential for α = 1. The inflationary regime naturally emerges in this theory even if the

original potential in the theory (4.2) is very curved. Importantly, the potential at large ϕ

has a universal shape which is almost independent on the detailed behavior of the inflaton

potential in (4.2) near the boundary of the moduli space at φ =
√

6. This is the reason for

the universality of the observational predictions in this class of theories.

Finally, figure 4c shows the potential for α = 104. The only difference between this

potential and the potential in figure 4b is that the new potential is stretched horizontally by

a factor of 100. As a result, the curvature of the potential decreases, and now inflation may
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occur in the vicinity of each of the many minima of this potential, which were unsuitable for

inflation for α . 1. The inflationary regime at the infinitely long plateau remains possible,

but the last 60 e-foldings of inflation occur in a relatively small vicinity of each minimum,

at a distance ∆φ ∼ 15 from each minimum. Since in the vicinity of each minimum,

the potential is approximately quadratic, the predictions of the inflationary regime near

each minimum practically coincide with the predictions of the simplest version of chaotic

inflation with a quadratic potential.

6 Other examples of α-attractors

Since one has full freedom of choice of the functions f(φ/
√

6α), one can also represent

a family of the inflaton potentials belonging to this class using some different function

f̃
(

φ/
√

6α

1+φ/
√

6α

)
. In terms of the canonical variables, this theory looks as follows:

Lα =
√
−g
[

1

2
R− 1

2
(∂ϕ)2 − f̃2

(
1− e−

√
3
2α
ϕ
)]

. (6.1)

For the simplest choice of the function f̃(x) ∼ x, this model has a potential

V = V0

(
1− e−

√
2
3α
ϕ
)2

. (6.2)

This is a particular example of the supersymmetric α-model discovered in [25], which for

α = 1 coincides with the potential of the Starobinsky model [10–13]. We have studied

the α-dependence of the cosmological predictions of this model in [19]. For small α the

cosmological predictions of this model were studied in [27] and in [25].

When α becomes very large, one has

V = V0

(
1− e−

√
2
3α
ϕ
)2

≈ m2

2
ϕ2 . (6.3)

where m2 = 4V0/(3α). This approximation is valid for ϕ �
√

3α/2. As we already

mentioned, in the purely quadratic chaotic inflation model one has N = ϕ2/4. Therefore

one can self-consistently describe inflation in the quadratic approximation (6.3) for α �
8N/3, which yields the constraint α � 160 for N = 60. In the large N limit, in the

quadratic approximation one has

ns = 1− 2

N
, r =

8

N
. (6.4)

By continuously decreasing α from ∞ to 0, one can cover the full range of possible

values of r from r = 8/N to r = 0. The last part of this trajectory, when α is of order one

or smaller, proceeds along the attractor regime discussed above for small α. The results

of a numerical investigation of the parameters ns and r in this model are represented by a

thick blue line in figure 5.

What will happen if one considers the same model (6.1), but with f̃(x) ∼ xn? In the

small α limit we will have the same universal predictions (4.5). But, just as in the case
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Figure 5. The cosmological observables ns and r for the theory with a potential V0

(
1−e−

√
2
3αϕ
)2

for N = 60. As shown by the thick blue line, ns and r for this model depend on α and continuously

interpolate between the prediction of the simplest chaotic inflationary model with V ∼ ϕ2 for

α → ∞ (red star), the prediction of the Starobinsky model for α = 1 (the lowest red dot), and

the prediction ns = 1 − 2/N , r = 0 for α → 0 (blue star). The red dots on the thick blue line

correspond to logα = {3, . . . , 0}, from the top down.

studied in the previous sections, the situation changes dramatically in the large α limit. For

ϕ�
√

3α/2 the potential will behave as ϕ2n, with observational predictions (for N � n)

given by (4.7). The resulting picture will therefore be similar to the fan-like behavior of

figure 2, but with curved instead of straight lines.

Similarly, choosing a more generic function f̃(x) ∼ x + cx2 + . . . will provide an

interpolation between the two attractor points similar to figure 3, but again with a different

shape of lines in-between the two attractor points.

In the following sections, we will describe the implementation of the double-attractor

models in the context of superconformal theory and supergravity. We will see that the

cutoff controlled by α has an invariant geometric interpretation in these theories as a

measure of the curvature of the Kähler manifold.

7 Superconformal α-attractors

The supersymmetric α-attractor models were proposed in [19], following the first super-

symmetric cosmological model (6.1) with α 6= 1, which was found in [25], where also the

cosmology of these models was studied in the small α limit. All models which we discuss

below correspond to N = 1 supergravity embeddings of bosonic inflationary models. It is

interesting that recently a new N = 2 supergravity embedding of the inflationary models

(6.2) was achieved in [28, 29] for the choices α = 1/3, 2/3 and 1.

7.1 The model on a disk

At the superconformal level we consider 3 chiral supermultiplets: a conformon X0, an

inflaton X1 = Φ and a goldstino multiplet X2 = S, which has a first component scalar,
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the sgoldstino. The superconformal models are defined by two arbitrary functions of these

superfields. The first function is a Kähler potential of the embedding manifold N (X, X̄).

It is real and has a Weyl weight 2. The second one represents a superpotential W(X). It

is holomorphic and has a Weyl weight 3. The Lagrangian in terms of these functions is

L =
√
−g
[
−1

6
N (X, X̄)R−GIJ̄DµXIDµX̄ J̄ −GIJ̄WIW̄J̄

]
, (7.1)

with I, Ī = {0, 1, 2}. The superconformal Kähler potential for the α-attractor models is

given by [19]

N (X, X̄) = −|X0|2
[
1− |X

1|2 + |S|2

|X0|2

]α
. (7.2)

Note that the Kähler potential only preserves the manifest SU(1, 1) symmetry between X0

and X1 for the special value α = 1. The superconformal superpotential reads

W = S(X0)2f(X1/X0)

[
1− (X1)2

(X0)2

](3α−1)/2

. (7.3)

The superpotential with a constant f and α = 1 preserves the SO(1, 1) symmetry, the

subgroup of SU(1, 1). However, when either f is not constant, or α 6= 1, the SO(1, 1) sym-

metry is deformed. In order to extract a Poincaré supergravity we gauge fix the conformal

symmetry by setting X0 = X̄0 =
√

3. This leads to a supergravity version of the model

described in [19] is given by the Kähler and superpotential

K = −3α log

[
1− |Z|2 − SS̄

3
+

g(SS̄)2

3(1− |Z|2)

]
, W = Sf(Z)(1− Z2)(3α−1)/2 . (7.4)

Here g is the constant coefficient of a stabilization term that is required for small α [19],

but will play little role in what follows.

At S = 0 the complex variable Z = X1/X0 is restricted to a disk

|Z|2 < 1 (7.5)

which is a boundary of the moduli space. The action at S = 0 is

L =
√
−g
[

1

2
R− 3α

∂Z∂Z̄

(1− |Z|2)2
− f2(Z)

]
. (7.6)

The Kähler geometry in this theory for any value of α has an SU(1, 1) symmetry associated

with the symmetry of the kinetic term. We will describe it in detail in the next subsection

where it becomes an SL(2,R) symmetry.

For any real functions f , the model above allows for a truncation to a one-field model

via S = Z − Z̄ = 0. The effective Lagrangian at S = Z − Z̄ = 0 is

L =
√
−g
[

1

2
R− 3α

(∂Z)2

(1− Z2)2
− f2(Z)

]
. (7.7)
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Thus the action is greatly simplified for real Z. This form of the stabilized supergravity

action coincides with the bosonic action (4.1) and explains the supersymmetric origin of

the parameter α in the bosonic model (4.1) .

One can see the role of the parameter α by performing the change of Z = φ/
√

6α to

L =
√
−g

1

2
R− 1

2

(∂φ)2(
1− φ2

6α

)2 − V
( φ√

6α

) . (7.8)

There is a simple relation between the geometric field Z = φ/
√

6α at Z = Z̄ and a canonical

one ϕ: it is the rapidity-like relation

Z =
φ√
6α

= tanh
ϕ√
6α

(7.9)

where the geometric field Z has to be inside the disk |Z|2 < 1, implying that φ2 < 6α,

whereas the canonical field ϕ is unrestricted.

7.2 The model of the half-plane

Here we will describe the same model as given in [30], after the map of the disk to the

half-plane. The model on the disk in in [19] is given in eq. (7.4) and it becomes more

elegant when transformed to the half-plane by means of

Z =
T − 1

T + 1
(7.10)

and for real fields ReZ → 1⇒ ReT →∞ and ReZ → −1⇒ ReT → 0. In these variables

our supergravity model (7.4) becomes, up to a Kähler transformation and overall factor

for the superpotential,

K = −3α log

(
T + T̄ − CC̄ + 3g

(CC̄)2

T + T̄

)
, W = CF (T ) . (7.11)

Here the original S variable is related to C as follows: S =
√

6 C
T+1 . The relation to the

function f(Z) in [19] is explained in details in [30]. It is given by the following formula

F (T ) ≡ T (3α−1)/2f

(
T − 1

T + 1

)
= T (3α−1)/2f̃(T ) . (7.12)

The bosonic part of the supergravity model at the minimum at C = 0 is given by the

following expression

e−1L|C=0 =
1

2
R− 3α

∂T∂T̄

(T + T̄ )2
− 1

3

F (T )F (T̄ )

(T + T̄ )3α−1
. (7.13)

The SL(2.R) symmetry associated with the Kähler geometry of this model can be seen as

an invariance of the kinetic term (for an arbitrary α) under the transformations

T ′ =
aT + b

cT + d
, ad− cb = 1 . (7.14)
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When the imaginary part of the T -field is stabilized, the action becomes at T = T̄

e−1L|C=0,T=T̄=t =
1

2
R− 3

4
α

(
∂T

T

)2

− 1

12
f̃2(T ) . (7.15)

In canonical variables T = e

√
2
3α
ϕ

it reads

e−1L|
C=0,T=T̄=e

√
2/3αϕ =

1

2
R− 1

2
(∂ϕ)2 − V (ϕ) , (7.16)

where (ignoring a numerical rescaling of the potential)

V (ϕ) = f̃2

(
e

√
2
3α
ϕ
)

= f2

(
tanh

ϕ√
6α

)
. (7.17)

Thus (7.11) constitutes a rather elegant form of the α-attractor class of models [19] as

derived in [30]. Here they are defined in a complex moduli space on a half-plane T +T > 0

instead of the disc Z2 < 1 used in [19].

It is interesting that in the half-plane variables we can look at the special case of

our general models (7.11) with W = CT 3(α−1)/2(T − 1). The bosonic part is V =

V0

(
1 − e

−
√

2
3α
ϕ)2

. For α = 1 this model is a Cecotti model [31] which in the bosonic

case coincides with the potential of [10–13]. In our generic α supergravity case (7.11) this

model interpolates between [10–13] at α = 1 and ϕ2 chaotic model [1–3] as shown in fig-

ure 5. The case with the simpler Ansatz W = C(T − 1) was studied in [32]; it coincides

with the above for the special values α = 1/3 or 1.

7.3 The superconformal action

The superconformal action for the α-attractor models using the superfield form was derived

in [30]

−
[
X̄0X0

(
T + T̄ − CC̄ + 3g

(CC̄)2

T + T̄

)α ]
D

+
([
CF (T )(X0)3

]
F

+ h.c.
)
. (7.18)

When extra local symmetries of this action are fixed, one finds a supergravity model (7.11).

The scalar curvature Rk of the Kähler manifold for the (7.11) models is at C = 0 is

Rk

∣∣∣
C=0

= −2(1− 2g)

α
. (7.19)

However, since the field C is massive, the relevant curvature is not the scalar curvature of

the Kähler manifold Rk but the holomorphic sectional curvature

RT T̄T T̄
(GT T̄ )2

∣∣∣∣
C=0

= − 2

3α
, (7.20)

which agrees with the scalar curvature computed using the induced metric on the half-plane

C = 0,

Gind
T T̄ = −3α∂T∂T̄ ln(T + T̄ ), (7.21)

as explained in [30]. Either way, at large α both type of curvatures tend to zero.
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7.4 Interpretation of α

The bosonic model (4.4) has a parameter α which has the interpretation of regulating the

difference between φ and ϕ. This distinction is very similar to that between velocity and

rapidity in special relativity, as discussed in the context of conformal symmetry gauge-fixing

in [16, 17]. The region of very small α corresponds to a large rapidity, when tanh ϕ√
6α

is

significantly smaller than ϕ√
6α

. At small α, the difference between rapidity and velocity

tends to disappear:

α→ 0 , tanh
ϕ√
6α
� ϕ√

6α
, “ultra relativistic” limit. (7.22)

In contrast, at large α one has:

α→∞ , tanh
ϕ√
6α
≈ ϕ√

6α
, “non relativistic” limit. (7.23)

The superconformal α-attractor models suggest an interesting interpretation of the inter-

polating parameter α in this class of models as related to a curvature of the Kähler moduli

space. It is the curvature of the SU(1,1)
U(1) symmetric space with constant curvature

Rk = − 2

3α
, (7.24)

or its generalizations. This means that in the supersymmetric case the geometry of the

Kähler space has

α→ 0 , high Rk curvature limit, (7.25)

or

α→∞ , low Rk curvature limit. (7.26)

The discovery of gravitational waves by BICEP2, if confirmed, suggests that our α-attractor

models are compatible with the data at low curvature limit of the Kähler geometry.

8 Conclusions

While we are waiting for further guidance from Planck and BICEP2 on the preferred

values of the cosmological parameters, it is interesting to concentrate on the problems

which emerge with the interpretation of observational data from both of these two sources.

The models at the sweet spot of the Planck data include the Starobinsky model, the Higgs

inflation model, and a broad class of cosmological attractor models. Inflation in most of

these models (except α-attractors for α � 1) occurs at φ� 1, so most of them belong to

the class of large field chaotic inflation models, despite the fact that the amplitude of the

tensor modes in these models can be extremely small. The results of BICEP2, indicating

a possible contribution of the gravitational waves with r ∼ 10−1, also favor various large

field models.

Some authors argued that large field inflation does not fit into modern physics because

of a cutoff at φ ∼ Λ < 1. This argument does not necessarily apply to the simplest quantum

field theory models. The cutoff, if it exists, should be associated with observable quantities
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such as masses of particles ∼ gφ, rather than with the value of the inflaton field [1–

3]. However, a cutoff in moduli space may appear in theories such as supergravity and

string theory, where the scalar field may have an independent geometric meaning. For this

and other reasons, some authors interpreted the recent BICEP2 data as an experimental

evidence against supersymmetry and supergravity, see e.g. [33].

In this respect, it is important to notice that supergravity in its original superconformal

formulation does not have any fixed energy scale associated with it. The Planck scale

appears only after gauge fixing where the conformal compensator acquires a non-zero vev.

This introduces the mass scale to the theory.

However, in some cases where this mass scale determines the boundary of the moduli

space, this boundary runs to infinity upon transformation from the original variables used in

the superconformal theory to canonical scalar fields in the Einstein frame. In this case, the

existence of the cutoff in the original theory is not dangerous. On the contrary, it plays an

important positive role: the observational predictions of such theories rapidly converge to

universal values which practically do not depend on many details of the original models. In

this paper, we discussed a particular class of such models, called α-attractors. In the limit

of small α, predictions of these theories are very similar to predictions of the Starobinsky

model and Higgs inflation, which lead to very small value of r ∼ 4 × 10−3. In the limit

α → 0, the value of r for α-attractors can go all the way down to r = 0, which serves as

an attractor point for these theories.

In this paper we have shown that this class of model has another attractor point: in

the limit α → ∞, the predictions of such models converge to predictions of the simplest

chaotic inflation model with a quadratic potential, see figure 3.

Thus, we presented a double-attractor system, the first attractor point most favored

by Planck 2013 and the second one most favored by BICEP2. In our models a parameter

which interpolates between these two attractor points is α. Once we know the values of ns
and r, we will be able to measure α in this class of theories. Therefore it is important to

understand the meaning of this parameter.

Our bosonic models (4.4) are based on the underlying superconformal/supergravity

models, where the parameter α defines the curvature of the Kähler manifold during infla-

tion. In our class of models, it is a symmetric space SU(1,1)
U(1) , where T, T̄ are coordinates of

the Kähler manifold with the potential K = −3α ln(T + T̄ ) and the single component of

the Kähler metric is gT T̄ ≡ g = 3α
(T+T̄ )2

so that

ds2 =
3α

(T + T̄ )2
dTdT̄ . (8.1)

This metric defines a symmetric space of a constant T -independent curvature

Rk = g−3(∂T g∂T̄ g − g∂T∂T̄ g) = − 2

3α
. (8.2)

The situation here is very similar to what happens in inflationary theory, where the expo-

nential growth of the scale factor a(t) makes the universe flat. Here, the flatness of Kähler

geometry appears in the large α limit.
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In the context of our class of supergravity models defined in (7.11), for the choice

of F (T ) made in this paper, we will be able to say the following: the measurements of

the curvature of the Kähler manifold Rk = − 2
3α during inflation was performed, and the

curvature must be very small to fit the BICEP2, or large to fit the models favored by

Planck 2013.

From the point of view of inflationary model building in supergravity, the main class of

models that was available for a long time was the class of models where the Kähler potential

did not depend on one of the directions in the moduli space, which was associated with the

inflaton field [34]–[37]. As we see now, there are two more classes of large field inflationary

models in supergravity which are based on a different principle. One of them works best

in the limit where the original formulation of the theory has a small cutoff, which leads

to model-independent predictions with tiny values of r. Another one leads to equally

universal predictions in the limit of the large value of the cutoff, Λ→∞, which in our case

corresponds to the limit α → ∞. To discover the existence of such models, we used the

first of the two approaches outlined in the Introduction: we considered the simplest models

with lots of symmetries and tried to preserve their good consequences as long as possible.

One might say that the existence of double attractors is not unexpected: every good story

needs a villain, every attractor needs a repeller - experiment will tell where inflation has

ended up and hence which of the two ends is the real attractor. We might even find that

the truth is somewhere in between.
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