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1 Introduction

Significant progress has been made recently in the conformal bootstrap program [1, 2] for

theories in higher than two spacetime dimensions [3–30]. In particular, spectacular results

have emerged from applying the bootstrap to supersymmetric systems [6, 9, 10, 17, 23–

25, 30], where constraints from supersymmetry and knowledge of protected aspects of the
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spectrum make the approach even more powerful. A crucial ingredient in the supercon-

formal bootstrap is the expansion of four-point functions in superconformal blocks, which

sum up the contributions of all of the descendants of a given superconformal primary oper-

ator. Results for 4d superconformal blocks in N = 1, 2, 4 theories have previously appeared

in [6, 25, 31–34].

Recently, we introduced a new covariant approach to studying superconformal

blocks [35], based on generalizing the shadow formalism developed in [36–40] to super-

conformal theories. In [35] we used this approach to analyze four-point functions of chiral

and antichiral operators in theories with N = 1, 2 superconformal symmetry. In the present

work we will apply our formalism to four-point functions containing general scalar oper-

ators in N = 1 theories, focusing on situations where the exchanged operator is neutral

under the U(1)R symmetry.

The class of correlators we consider includes the interesting cases of chiral-antichiral

four-point functions, for which the bootstrap was performed in [6, 9, 10], and also four-

point functions of currents, which have been studied in [25, 34]. These types of correlators

(together with mixed chiral-current correlators which are also covered by our formalism)

are extremely fruitful objects of study in the superconformal bootstrap for three reasons.

Firstly, we have extensive knowledge of the protected spectrum of N = 1 superconformal

theories. Secondly, four-point functions of scalars are currently the easiest systems for

applying numerical bootstrap techniques. Thirdly, bootstrap techniques are often most

powerful for four-point functions of low-dimension operators, and such operators are often

protected. For these reasons, our expressions will likely be crucial ingredients in future

explorations of the 4d N = 1 bootstrap.

The initial complication that arises in our analysis is the fact that multiple structures

can appear in superspace three-point functions. Thus, our first task is to review the

superembedding formalism for describing these structures and then to enumerate them,

which we do in sections 2 and 3. In section 4 we set up and evaluate the superconformal

integrals relevant for computing superconformal blocks, with our results given in section 5.

We also show how the cases of four-point functions containing chiral or conserved current

operators emerge as special cases of our general result. In section 6 we show explicitly how

previous results for N = 2 superconformal blocks decompose into N = 1 superconformal

blocks, providing a highly nontrivial consistency check on the form of the blocks. Several

details of our calculations are presented in the appendices.

2 The superembedding and supershadow formalisms

2.1 Superembedding space

The superembedding formalism provides a simple language for writing down and classifying

superconformally invariant correlation functions in N = 1 SCFTs [41–50]. The essential

idea is the one underlying the embedding formalism [40, 51–57]. We introduce a space

on which the superconformal group SU(2, 2|1) acts linearly, and view SCFT operators

as functions on this space (with special properties depending on the operator’s dimension,

spin, and R-charge). Correlators are then given by products of simple invariants. This story
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and associated techniques for computing superconformal blocks were developed recently

in [35]; here we will briefly summarize the results we need for our computation.

The basic superconformally covariant objects are supertwistors

ZA =



Zα

Zα̇

Z5


 ∈ C

4|1, (2.1)

and dual supertwistors

Z̄A =
(
Z̄α Z̄α̇ Z̄5

)
∈ C

4|1. (2.2)

They transform as fundamentals and antifundamentals of SU(2, 2|1), so that the pairing

Z̄A
1 Z2A is SU(2, 2|1)-invariant.

Superspace is given by a pair of supertwistors Za
A, a = 1, 2, and a pair of dual super-

twistors Z̄ ȧA, ȧ = 1, 2, subject to a constraint

Z̄ ȧAZa
A = 0, a, ȧ = 1, 2 (2.3)

and with gauge redundancies

Za
A ∼ Zb

Agb
a, Z̄ ȧA ∼ ḡȧḃZ̄ ḃA, for g, ḡ ∈ GL(2,C). (2.4)

Here, “∼” means “is equivalent to.” This space has a natural action of the superconformal

group given by matrix multiplication on the SU(2, 2|1) indices A. On the other hand, it

is equivalent to the usual N = 1 superspace. To see why, one can choose the “Poincaré

section” gauge fixing of GL(2,C)×GL(2,C), where (Z, Z̄) take the form

Za
A =




δα
a

ixα̇a+
2θa


 , Z̄ ȧA =

(
−ixȧα− δȧα̇ 2θ̄ȧ

)
. (2.5)

The constraint (2.3) then reads x+ − x− − 4iθ̄θ = 0, so that we can identify x± with the

usual chiral/anti-chiral bosonic coordinates and θ, θ̄ with the usual fermionic coordinates

on superspace. Any function of Z’s (Z̄’s) alone is purely chiral (anti-chiral).

We will often work with bi-supertwistors

XAB ≡ Za
AZb

Bǫab, X̄AB ≡ Z̄ ȧAZ̄ ḃBǫȧḃ (2.6)

which are invariant under the SL(2,C)×SL(2,C) subgroup of the gauge redundancies (2.4).

A basic set of superconformal invariants are given by supertraces of products of X ’s and

X̄ ’s, for instance
〈2̄1〉 ≡ X̄AB

2 X1BA, (2.7)

〈4̄32̄1〉 ≡ X̄AB
4 X3BCX̄CD

2 X1DA(−1)pC . (2.8)

Here, pC denotes the fermion number parity of the index C (1 if C = 5, and 0 otherwise).1

By construction, these invariants are chiral in unbarred coordinates and anti-chiral in

barred coordinates.
1The rule for inserting signs (−1)pA into products of supermatrices is that we need a sign whenever

superindices A,B are contracted from bottom to top, since the basic superconformally invariant pairing

contracts indices from top to bottom.

– 3 –
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2.2 Lifting N = 1 fields to superembedding space

A four-dimensional N = 1 superconformal primary is labeled by its SL(2,C) Lorentz

quantum numbers ( j2 ,
j̄
2), its scaling dimension ∆, and its U(1)R charge R. It is convenient

to summarize these labels as ( j2 ,
j̄
2 , q, q̄), where the superconformal weights q, q̄ are given by

q ≡ 1

2

(
∆+

3

2
R

)
, q̄ ≡ 1

2

(
∆− 3

2
R

)
. (2.9)

A general superfield with spin lifts to a multi-twistor operator in superembedding space

φ
β̇1···β̇j̄
α1···αj

→ Φ
A1···Aj

B1···Bj̄
(X , X̄ ), (2.10)

with homogeneity determined by its superconformal weights

Φ(λX , λ̄X ) = λ−(2q+j)/2λ̄−(2q̄+j̄)/2Φ(X , X̄ ). (2.11)

The field Φ is also subject to gauge redundancies in each index,

Φ
A1···Aj

B1···Bj̄
(X , X̄ ) ∼ Φ

A1···Aj

B1···Bj̄
(X , X̄ ) + XB1CΛB2···Bj̄

CA1···Aj , (2.12)

and similarly for the other indices. It is convenient to introduce index-free notation by using

auxiliary twistors SA, S̄A to absorb the indices of the superembedding fields. We define

Φ(X , X̄ ,S, S̄) ≡ S̄Bj̄ · · · S̄B1Φ
A1···Aj

B1···Bj̄
SAj
· · · SA1 . (2.13)

The gauge-redundancy of Φ allows us to restrict S, S̄ to be transverse and null2

X̄ S = 0, S̄X = 0, S̄S = 0. (2.14)

Finally, the four-dimensional superfield is recovered by

φ
β̇1···β̇j̄
α1···αj

=
1

j!

1

j̄!

(
X̄−→∂S̄

)β̇1 · · ·
(
X̄−→∂S̄

)β̇j̄

Φ(X , X̄ ,S, S̄)
(←−
∂SX

)

α1

· · ·
(←−
∂SX

)

αj

∣∣∣∣
Poincaré

. (2.15)

where the subscript “Poincaré” means we choose the Poincaré section gauge fixing (2.5).

2.3 Superconformal integration

The superspace defined in section 2.1 admits a natural notion of superconformally invariant

integration. Note that the measure

ω ≡
∏

a=1,2

d4|1Za
∏

ȧ=1,2

d4|1Z̄ ȧδ4(Z̄ ḃAZb
A) (2.16)

is superconformally invariant, and because of the delta function it is supported on Z, Z̄
which satisfy the constraint (2.3). The form ω transforms in the following way under the

gauge redundancies (2.4):

ω → (det g)(det ḡ)ω. (2.17)

2Nullness follows because the transverse conditions can be solved by S = XT̄ , S̄ = X̄ T for some T , T̄ .
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Suppose f(Z, Z̄) is a function that transforms oppositely under GL(2,C)×GL(2,C):

f(Zg, ḡZ̄) = (det g)−1(det ḡ)−1f(Z, Z̄). (2.18)

Then the product ωf(Z, Z̄) is gauge-invariant and can be integrated, provided we divide

by the volume of the gauge group

∫
D[Z, Z̄]f(Z, Z̄) ≡ 1

vol(GL(2,C)×GL(2,C))

∫
ωf(Z, Z̄). (2.19)

This gauge-redundant integral is defined by the Faddeev-Popov procedure: we choose a

gauge slice for GL(2,C)×GL(2,C), introduce the appropriate determinant, and integrate

over the remaining variables.

Note that any f satisfying the condition (2.18) can always be written as a homogeneous

function of X , X̄ with degree −1 in both variables, so we will sometimes write f(X , X̄ )
instead of f(Z, Z̄). We will also occasionally write D[X , X̄ ] for D[Z, Z̄].

A special class of superconformal integrals will be particularly important in our com-

putations. This is the case where f(X , X̄ ) is independent of the fermionic variables

ηa ≡ Za
5 , η̄ȧ ≡ Z̄ ȧ5, (2.20)

so we may write f(X , X̄ ) = f(X, X̄), where Xσρ and X̄σρ are the restrictions of XAB and

X̄AB to bosonic twistor indices σ, ρ = 1, 2, 3, 4. The 4×4 antisymmetric matrices X, X̄ can

also be thought of as six-dimensional vectors X, X̄ ∈ C
6 transforming under SO(4, 2) ∼=

SU(2, 2).3 In [35], we showed that such superconformal integrals can be computed in a

simple way in terms of non-supersymmetric conformal integrals,

∫
D[X , X̄ ]f(X, X̄) =

∫
D4X ∂2

X̄f(X, X̄)
∣∣
X̄=X

. (2.21)

Here, the notation ∂2
X̄

means we take two derivatives with respect to X̄ as an independent

variable, and contract indices using the six-dimensional metric.4 The conformally-invariant

measure D4X on the right-hand side of eq. (2.21) was defined in [40] and is given by5

∫
D4Xf(X) ≡ 1

vol(GL1)

∫
d6Xδ(X2)f(X). (2.22)

In this work, we will also encounter more general N = 1 superconformal integrals,

where f(X , X̄ ) is not independent of η, η̄ and (2.21) doesn’t immediately apply. For our

3Our conventions are: (Γ̃mΓn + Γ̃nΓm) β
α = −2ηmnδ β

α , Xαβ = 1
2
XmΓmαβ , Xαβ = 1

2
XmΓ̃m

αβ .
4In SU(2, 2) notation, this is ∂2

X̄ ∝ ǫαβγδ∂X̄αβ∂X̄γδ .
5As written, the measures D[X , X̄ ] and D4X are ambiguous under multiplication by an overall constant.

This is because division by the infinite volumes vol(GL(2,C)×GL(2,C)) and vol(GL(1,C)) is really defined

by a choice of Faddeev-Popov determinant in the gauge-fixing procedure, and the overall scale of this

determinant is arbitrary. In this work, we choose determinants so that (2.21) holds. In other words,

we absorb any difference in normalization of the two sides into the definition of D[X , X̄ ]. The overall

normalization of D4X will drop out of our computations and is unimportant (in practice we choose the

same normalization as in [40]).
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purposes, we will be able to fix the required answers without going through a full compu-

tation. But for now, let us note how these integrals can be done in principle.

Consider a general function f(X , X̄ ) and expand in the fermionic variables η, η̄. The

measure ω contains a delta function

δ4(Z̄ ȧAZa
A) = δ4(Z̄ ȧ · Za + η̄ȧηa), (2.23)

where Z̄ · Z is the SU(2, 2)-invariant pairing between the bosonic components of Z̄,Z.
The presence of this delta function means that in any term with equal degree in η, η̄, we

can replace

η̄ȧηa → −Z̄ ȧ · Za, (2.24)

leaving the integral unchanged. Meanwhile, terms with unequal degree in η, η̄ integrate to

zero. Thus, via the above replacement we can completely remove the η, η̄ dependence of

f(X , X̄ ) and reduce to the case where (2.21) applies.

2.4 Supershadows

The idea of computing conformal blocks using conformally-invariant integrals was pioneered

by Ferrara, Gatto, Grillo, and Parisi in the series of papers [36–39]. Given a conformal

primary O(x), they define a nonlocal “shadow” operator

Õ(x) =

∫
d4y

1

(x− y)2(4−∆O)
O(y), (2.25)

which formally has the transformation properties of a primary operator. By integrating

shadow correlators against regular correlators, they derived a number of interesting results,

including 1) the structure of the conformally covariant OPE for scalars and 2) integral

expressions for conformal blocks appearing in a four-point functions of scalars. They also

computed these expressions in terms of special functions for ℓ = 0 in 2 and 4 dimensions.

In [58], Dolan and Osborn generalized their computation to the case of ℓ 6= 0 blocks in 4

dimensions, deriving the elegant formula (4.18) in terms of hypergeometric functions. In

this section we summarize the generalization of this construction to N = 1 superconformal

theories [35]. Shadow integrals have also been used to investigate representation theory

of the conformal group, for example in [59] and more recently in [60] where a particular

type of shadow integral dubbed “conglomeration” was used to compute OPE coefficients

of double trace operators in Mean Field Theory.

For an operator O(X , X̄ ,S, S̄) with quantum numbers ( j2 ,
j̄
2 , q, q̄), we define the non-

local shadow operator

Õ(X , X̄ ,S, S̄) ≡
∫

D[Y, Ȳ] 1

〈X Ȳ〉1−q+ j
2 〈X̄Y〉1−q̄+ j̄

2

O†(Y, Ȳ,YS̄, ȲS), (2.26)

where D[Y, Ȳ] is the superconformal measure from eq. (2.19) and O† ∼ ( j̄2 ,
j
2) transforms

in the conjugate Lorentz representation to O. Because the integrand and measure are

superconformally covariant, Õ transforms like a superconformal primary with quantum

– 6 –
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numbers ( j̄2 ,
j
2 , 1 − q, 1 − q̄). The shadow transform (2.26) is uniquely determined up to a

constant by the requirement that the integrand transform appropriately under GL(2,C)×
GL(2,C) (2.18), together with the transverseness conditions on auxiliary twistors (2.14).

Within a correlation function, one can project onto the superconformal multiplet of O
by inserting the projector

|O|= 1

j!2j̄!2

∫
D[X , X̄ ]|O(X , X̄ ,S, S̄)〉

(←−
∂SX
−→
∂T

)j (←−
∂S̄X̄
−→
∂T̄

)j̄
〈Õ(X , X̄ , T , T̄ )|

∣∣∣∣
M

(2.27)

In the definition above, |M schematically denotes a “monodromy projection” [40].6 Oper-

ationally, all we will need is the result for a monodromy-projected (non-supersymmetric)

conformal integral, which has been derived previously [40, 58] and is given in eq. (4.16).

The form of (2.27) is uniquely determined by superconformal invariance and the various

conditions on O as a function of X ,S, T and their conjugates.

The example of interest for us will be a four-point function 〈A1A†
2B1B†2〉, where the

superconformal partial wave WO corresponding to O ∈ A1 × A†
2 is given (up to some

normalization) by

WO ∝ 〈A1A†
2 |O| B1B†2〉. (2.28)

The partial wave WO differs from the superconformal block GO by simple kinematic fac-

tors. In general the three-point functions 〈A1A†
2O〉 and 〈ÕB1B†2〉 appearing inWO contain

multiple structures, each with an independent coefficient. As we show explicitly below,

WO will then receive independent contributions from each of these structures.

3 Correlation functions

In a conformal field theory, the form of two and three point correlation functions are com-

pletely determined by conformal symmetry. Supersymmetry, in addition, relates different

conformal primaries and implies further constraints on correlation functions. General con-

straints on correlation functions in superconformal theories were derived for N = 1 theories

in [61, 62] and for N = 2, 4 theories in [31, 63]. More recently, manifestly covariant corre-

lators in N = 1 theories were constructed using superembedding space [41–50], which we

will use extensively in this work.

3.1 2-point functions

The two-point correlation function of a scalar superfield with its conjugate is determined

by superconformal symmetry up to a constant. This fact is obvious in the superembedding

space where there is only a single superconformal invariant with the correct homogeneity

in X1,2, X̄1,2,

〈A(1, 1̄)A†(2, 2̄)〉 ∝ 1

〈12̄〉qA〈21̄〉q̄A (3.1)

6As detailed in [40], the monodromy projection restricts the region of integration in eq. (2.27) so as

not to interfere with the OPE expansion of the fields in a four-point function, thus avoiding extraneous

“shadow” contributions in the computation of partial waves.

– 7 –
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where we have labeled the coordinates (Xi, X̄i) simply as (i, ī). After restricting to the

Poincare section, 〈̄ij〉 reduces to 1
2x

2
īj
, where xµ

īj
≡ xµi− − xµj+ + 2iθjσ

µθ̄i, giving

〈A(z1)A†(z2)〉 ∝
1

x2qA
2̄1

x2q̄A
1̄2

(3.2)

where zi ≡ (xi, θi, θ̄i).

Correlation functions of operators with spin are most easily expressed using index

free notation. The two-point function between an N = 1 superfield and its conjugate is

determined by superconformal symmetry up to a constant as

〈O(1, 1̄,S1, S̄1)O†(2, 2̄,S2, S̄2)〉 ∝
(S1S̄2)j(S2S̄1)j̄

〈12̄〉q+ j
2 〈21̄〉q̄+ j̄

2

. (3.3)

This reproduces the superconformal two-point function when we project to 4d:

〈Oβ̇1...β̇j̄
α1...αj (z1)O†α̇1...α̇j

β1...βj̄
(z2)〉 ∝

C
(α̇1···α̇j)(β̇1···β̇j̄)

(α1···αj)(β1···βj̄)

(
x2
2̄1

)q+ j
2
(
x2
1̄2

)q̄+ j̄
2

,

C
α̇1···α̇j β̇1···β̇j̄

α1···αjβ1···βj̄
≡ (x2̄1)

α̇1
α1

. . . (x2̄1)
α̇j
αj (x1̄2)

β̇1

β1
. . . (x1̄2)

β̇j̄

βj̄
. (3.4)

3.2 3-point functions

In this section we construct the superfield three-point correlation function 〈A1A†
2O〉, where

A1,2 are scalars with identical superconformal weights (qA, q̄A), and O ∼ ( ℓ2 ,
ℓ
2 ,

∆
2 ,

∆
2 ) is a

real superfield with dimension ∆ and spin ℓ. Since superconformal invariance is explicit

in superembedding space, a correlator is simply the most general function of independent

invariants and tensor structures, consistent with the homogeneity properties of the par-

ticipating operators. We will show that this correlation function contains 4 independent

coefficients. In special cases such as A1,2 being the chiral or conserved current superfields,

there are additional constraints on the three-point function coefficients.

The general methods for constructing invariants and tensors in superembedding space

are detailed in [35, 42]. Here we show the relevant results. The three-point function

〈A1A†
2O(0, 0̄)〉 depends on 2-traces 〈ij̄〉, where i, j ∈ {1, 2, 0}. From these 2-traces we can

construct an invariant cross-ratio:

z =
〈21̄〉〈02̄〉〈10̄〉 − 〈12̄〉〈20̄〉〈01̄〉
〈21̄〉〈02̄〉〈10̄〉+ 〈12̄〉〈20̄〉〈01̄〉 . (3.5)

This cross-ratio vanishes in the limit θi = θ̄i = 0, i ∈ {1, 2, 0}, where 〈ij̄〉 = 〈jī〉. It also

has the following properties:

z3 = 0, z|1↔2 = −z. (3.6)

In addition, the correlator can depend on two elementary tensor structures

S ≡ S̄12̄S〈12̄〉 , S|1↔2 ≡
S̄21̄S
〈21̄〉 . (3.7)

– 8 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
9

or equivalently

S± =
1

2
(S ± (1↔ 2)), (3.8)

where S̄12̄S denotes S̄X1X̄2S. The structure S+ is nilpotent and satisfies the following

relations:

S+|θi=θ̄i=0 = 0, (S+)
2 = 0, zS+ =

1

2
z2S−. (3.9)

There are thus two independent spin-ℓ tensor structures:

Sℓ
− =

1

2

(
Sℓ + (−1)ℓ(1↔ 2)

)
,

Sℓ−1
− S+ =

1

2ℓ

(
Sℓ − (−1)ℓ(1↔ 2)

)
. (3.10)

3.2.1 General 3-point functions

The three-point correlation function 〈A1A†
2O〉 in general contains four independent struc-

tures and can be written in the following form:

〈A1(1, 1̄)A†
2(2, 2̄)O(0, 0̄,S, S̄)〉 =

(
λ
(0)

A1A
†
2O

+ λ
(1)

A1A
†
2O

z + λ
(2)

A1A
†
2O

z2
)
Sℓ
− + λ

(3)

A1A
†
2O

S+S
ℓ−1
−

〈12̄〉qA− 1
4
(∆+ℓ)〈21̄〉q̄A− 1

4
(∆+ℓ)(〈01̄〉〈10̄〉〈02̄〉〈20̄〉) 1

4
(∆+ℓ)

,

(3.11)

where λ
(i)

A1A
†
2O

are constant coefficients. The uniqueness of these structures follows from

the relations (3.6), (3.9) above.7 The λ
(i)

A1A
†
2O

are generically unrelated. However, if we

impose shortening constraints on A1,2, such as making them chiral or conserved current

multiplets, then there will be relations among the λ
(i)

A1A
†
2O

coefficients.

3.2.2 Chiral operators

In previous applications of the superembedding space and shadow formalisms, we’ve written

down the chiral three-point function:

〈Φ(1, 1̄)Φ†(2, 2̄)O(0, 0̄,S, S̄)〉 = λΦΦ†O
Sℓ

〈12̄〉qΦ− 1
2
(∆+ℓ)(〈10̄〉〈02̄〉) 1

2
(∆+ℓ)

. (3.12)

This is not manifestly of the form (3.11). However, we can render (3.12) in the form we

desire by using the identity
( 〈12̄〉
〈10̄〉〈02̄〉

)2δ

=

( 〈12̄〉〈21̄〉
〈10̄〉〈02̄〉〈01̄〉〈20̄〉

)δ

(1− 2δz + 2δ2z2), (3.13)

which follows readily from the definition (3.5), together with the fact that z is nilpotent of

degree three. Specializing to δ = ∆+ℓ
4 , we obtain

〈Φ(1, 1̄)Φ†(2, 2̄)O(0, 0̄,S, S̄)〉

= λΦΦ†O

[
1− 1

2(∆ + ℓ)z + 1
8(∆ + ℓ)(∆− ℓ)z2

]
Sℓ
− + ℓS+S

ℓ−1
−

〈12̄〉qΦ− 1
4
(∆+ℓ)〈21̄〉− 1

4
(∆+ℓ)(〈01̄〉〈10̄〉〈02̄〉〈20̄〉) 1

4
(∆+ℓ)

. (3.14)

7The enumeration of structures can also be done straightforwardly using the formalism of [62], where

we can identify the invariants J = 2z and I = 2z2.
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Eq. (3.14) is now explicitly consistent with eq. (3.11). The relative ratio between the four

coefficients λ
(i)

ΦΦ†O
is fixed by the chirality condition D̄ȧΦ = 0. This alternative form will

be useful when taking the chiral limit of our general superconformal block.

3.2.3 Conserved currents

A conserved current superfield J has qJ = q̄J = 1. This gives a three-point function

〈J1(1, 1̄)J2(2, 2̄)O(0, 0̄,S, S̄)〉 =

(
λ
(0)
J1J2O

+ λ
(1)
J1J2O

z + λ
(2)
J1J2O

z2
)
Sℓ
− + λ

(3)
J1J2O

S+S
ℓ−1
−

(〈12̄〉〈21̄〉)1− 1
4
(∆+ℓ)(〈01̄〉〈10̄〉〈02̄〉〈20̄〉) 1

4
(∆+ℓ)

.

(3.15)

These coefficients are related to each other by the current conservation conditions D2J1,2 =
D̄2J1,2 = 0, which impose the constraints

λ
(2)
J1J2O

=
1

8
(4 + ℓ−∆)(∆ + ℓ)λ

(0)
J1J2O

,

λ
(3)
J1J2O

= −2(∆− 2)

∆ + ℓ
λ
(1)
J1J2O

. (3.16)

However, the ratio between λ
(0)
J1J2O

and λ
(1)
J1J2O

remains arbitrary.

3.3 Shadow operator and correlation functions

In order to calculate superconformal blocks we will also need the shadow three point func-

tion 〈ÕB1B†2〉, where B1,2 have superconformal weight (qB, q̄B). This is given by applying

eq. (2.26):

〈Õ(0, 0̄, T , T̄ )B1(3, 3̄)B†2(4, 4̄)〉 =
∫

D[5, 5̄]
1

〈05̄〉1− 1
2
(∆−ℓ)〈50̄〉1− 1

2
(∆−ℓ)

×

×〈O(5, 5̄, 5T̄ , 5̄T )B1(3, 3̄)B†2(4, 4̄)〉. (3.17)

By superconformal symmetry, it must take the form

〈Õ(0, 0̄, T , T̄ )B1(3, 3̄)B†2(4, 4̄)〉 =

(
λ
(0)

B1B
†
2
Õ
+ λ

(1)

B1B
†
2
Õ
z̃ + λ

(2)

B1B
†
2
Õ
z̃2
)
T ℓ
− + λ

(3)

B1B
†
2
Õ
T+T

ℓ−1
−

〈34̄〉qB+ 1

4
(∆−ℓ−2)〈43̄〉q̄B+ 1

4
(∆−ℓ−2)(〈03̄〉〈30̄〉〈04̄〉〈40̄〉)− 1

4
(∆−ℓ−2)

,

(3.18)

where T± is defined analogously to S±, and z̃ = z
∣∣
1→3,2→4

.

The shadow coefficients λ
(i)

B1B
†
2Õ

are linearly related to the coefficients of the original

operator λ
(i)

B1B
†
2O

. The relation between the coefficients may be determined by explicitly

computing the integral in eq. (3.17). The coefficients can also be uniquely fixed by requiring

that the linear transformation respects the constraints for current and chiral 3-point func-

tions and yields a partial wave consistent with unitarity. We give this argument explicitly

in appendix B. The resulting linear transformation is given by




λ
(0)

B1B
†
2Õ

λ
(2)

B1B
†
2Õ


 =

(
1
∆ − 8(∆−1)

∆(∆+ℓ)2

− (∆−1)(∆−ℓ−2)2

8∆
(∆−ℓ−2)2

∆(∆+ℓ)2

)


λ
(0)

B1B
†
2O

λ
(2)

B1B
†
2O
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λ
(1)

B1B
†
2Õ

λ
(3)

B1B
†
2Õ


 =

(
(∆−ℓ−2)2

(∆+ℓ)2
0

4ℓ(∆−1)
(∆+ℓ)2

1

)


λ
(1)

B1B
†
2O

λ
(3)

B1B
†
2O


 (3.19)

Here we have normalized the shadow transformation so that applying it twice takes the

three-point function coefficients back to themselves.

4 Partial wave computation

Now we will turn our attention to the four-point function,

〈A1(1, 1̄)A†
2(2, 2̄)B1(3, 3̄)B†2(4, 4̄)〉, (4.1)

where as in the previous section the superfields A1,2 and B1,2 are Lorentz scalars with

superconformal weights A1,2 ∼ (qA, q̄A) and B1,2 ∼ (qB, q̄B).

We wish to compute the superconformal partial wave WO corresponding to the ex-

change of a real, spin-ℓ superfield O ∼ ( ℓ2 ,
ℓ
2 ,

∆
2 ,

∆
2 ) in the (12)(34)-channel. Up to overall

normalization, this is given by inserting the projector (2.27) into the four-point function,

WO ∝ 〈A1A†
2 |O| B1B†2〉

=

∫
D[0, 0̄]〈A1A†

2Oℓ(0, 0̄,S, S̄)〉
←→Dℓ〈Õℓ(0, 0̄, T , T̄ )B1B†2〉

=
1

〈12̄〉qA− 1
4
(∆+ℓ)〈21̄〉q̄A− 1

4
(∆+ℓ)〈34̄〉qB+ 1

4
(∆−ℓ−2)〈43̄〉q̄B+ 1

4
(∆−ℓ−2)

×

×
∫

D[0, 0̄]
N (full)

ℓ

(〈01̄〉〈10̄〉〈02̄〉〈20̄〉) 1
4
(∆+ℓ)(〈03̄〉〈30̄〉〈04̄〉〈40̄〉)− 1

4
(∆−ℓ−2)

(4.2)

where

N (full)
ℓ =

[
(λ

(0)

A1A
†
2O

+ λ
(1)

A1A
†
2O

z + λ
(2)

A1A
†
2O

z2)Sℓ
− + λ

(3)

A1A
†
2O

S+S
ℓ−1
−

]

←→Dℓ

[
(λ

(0)

B1B
†
2Õ

+ λ
(1)

B1B
†
2Õ

z̃ + λ
(2)

B1B
†
2Õ

z̃2)T ℓ
− + λ

(3)

B1B
†
2Õ

T+T
ℓ−1
−

]
, (4.3)

and we have introduced the shorthand notation

←→Dℓ ≡
1

ℓ!4
(∂S0∂T )

ℓ(∂S̄ 0̄∂T̄ )
ℓ. (4.4)

We will not attempt to evaluate the integral (4.2) in full generality. Rather, as in [35],

we will focus on the case where the superfields in the four-point function (4.1) are restricted

to their lowest component field. We refer to these superfields as the “external” fields,

in constrast to the “exchanged” operator O. Setting the external fields to their lowest

component means setting their Grassman coordinates,

θext ≡
{
θi, θ̄i, i = 1, . . . 4

}
, (4.5)

all to zero. This restriction is still of much interest, because the exchanged operator O
remains a full-fledged superfield, and its associated partial wave is an essential ingredient for
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supersymmetric bootstrap applications. Note that setting θext to zero brings the integrand

in (4.2) to a form where eq. (2.21) applies.

After setting θext = 0, several terms in N (full)
ℓ vanish. In particular, z, z̃, S+, and T+

are all proportional to θ0θ̄0, so
8

{
zz̃2, z2z̃, z2z̃2, z2T+, z̃2S+

}∣∣
θext=0

= 0. (4.6)

Therefore,

N (full)
ℓ = Sℓ

−
←→DℓT

ℓ
−

[
λ
(0)

A1A
†
2O

λ
(0)

B1B
†
2Õ

+ λ
(1)

A1A
†
2O

λ
(0)

B1B
†
2Õ

z + λ
(0)

A1A
†
2O

λ
(1)

B1B
†
2Õ

z̃

+λ
(2)

A1A
†
2O

λ
(0)

B1B
†
2Õ

z2 + λ
(0)

A1A
†
2O

λ
(2)

B1B
†
2Õ

z̃2 + λ
(1)

A1A
†
2O

λ
(1)

B1B
†
2Õ

zz̃

]

+Sℓ
−
←→DℓT+T

ℓ−1
−

[
λ
(0)

A1A
†
2O

λ
(3)

B1B
†
2Õ

+ λ
(1)

A1A
†
2O

λ
(3)

B1B
†
2Õ

z

]

+S+S
ℓ−1
−

←→DℓT
ℓ
−

[
λ
(3)

A1A
†
2O

λ
(0)

B1B
†
2Õ

+ λ
(3)

A1A
†
2O

λ
(1)

B1B
†
2Õ

z̃

]

+S+S
ℓ−1
−

←→DℓT+T
ℓ−1
−

[
λ
(3)

A1A
†
2O

λ
(3)

B1B
†
2Õ

]
+ . . . (4.7)

where the dots denote terms that vanish when θext = 0.

The supertraces in eq. (4.2) reduce as

〈̄ij〉|θext=0 = −Xi ·Xj ≡
1

2
Xij , (4.8)

where the Xi ∈ C
6 on the right are non-supersymmetric embedding vectors. With these

observations in mind, the prescription in eq. (2.21) then gives us

WO|θext=0 ∝
1

X
∆A− 1

2
(∆+ℓ)

12 X
∆B+

1
2
(∆−ℓ−2)

34

∫
D4X0 ∂

2
0̄

N (full)
ℓ

Dℓ

∣∣∣∣∣
0̄=0

, (4.9)

where
1

Dℓ
≡ 1

(X10X10̄X20X20̄)
1
4
(∆+ℓ)(X30X30̄X40X40̄)

− 1
4
(∆−ℓ−2)

. (4.10)

To compute the derivative in eq. (4.9), it is natural to introduce the object

Nℓ ≡ (S̄12̄S)ℓ←→Dℓ(T̄ 34̄T )ℓ (4.11)

This is the same quantity we encountered in our computation of superconformal blocks for

the chiral four-point function in [35]. In appendix A, we list several properties of Nℓ. For

now, we simply note that when θext = 0, Nℓ(X0, X̄0)→ Nℓ(X0, X0̄), and when 0̄ = 0

Nℓ(X0, X0̄)|0̄=0 = aℓ(X12X34X10X20X30X40)
ℓ
2 (−1)ℓC(1)

ℓ (t0), (4.12)

8In our index-free formalism, S+ and T+ represent matrices. Their proportionality to θ0θ̄0 when θext = 0

can be seen, for instance, by going to a frame with x1 → 0, x2 → ∞ for S+ and x3 → 0, x4 → ∞ for T+.
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where C
(λ)
ℓ (x) are the Gegenbauer polynomials, aℓ = 2−6ℓ, and

t0 = −
X13X20X40

2
√
X10X20X30X40X12X34

− (1↔ 2)− (3↔ 4). (4.13)

In our notation, the (3↔ 4) acts on both the first term and the (1↔ 2) term.

It is natural to introduce Nℓ, because N (full)
ℓ can be written in terms of Nℓ up to

coordinate exchanges that take (1↔ 2) and/or (3↔ 4). In particular, recalling eq. (3.10)

for Sℓ
− and S+S

ℓ−1
− , we have

Sℓ
−
←→DℓT

ℓ
− =

Nℓ

4〈12̄〉ℓ〈34̄〉ℓ + (−1)ℓ(1↔ 2) + (−1)ℓ(3↔ 4)

Sℓ
−
←→DℓT+T

ℓ−1
− =

Nℓ

4ℓ〈12̄〉ℓ〈34̄〉ℓ + (−1)ℓ(1↔ 2)− (−1)ℓ(3↔ 4)

S+S
ℓ−1
−

←→DℓT
ℓ
− =

Nℓ

4ℓ〈12̄〉ℓ〈34̄〉ℓ − (−1)ℓ(1↔ 2) + (−1)ℓ(3↔ 4)

S+S
ℓ−1
−

←→DℓT+T
ℓ−1
− =

Nℓ

4ℓ2〈12̄〉ℓ〈34̄〉ℓ − (−1)ℓ(1↔ 2)− (−1)ℓ(3↔ 4). (4.14)

Similar formulas with the left-hand side multiplied by z’s and z̃’s are easily obtained by

remembering that z is antisymmetric in (1 ↔ 2) and independent of 3 and 4, and vice

versa for z̃.

At this point, an important simplifying observation is that WO|θext=0 is invariant

under the simultaneous coordinate interchange 1↔ 2, 3↔ 4. Therefore, in eq. (4.9), any

piece of N (full)
ℓ |θext=0 that is antisymmetric under this interchange must have vanishing

contribution. By eqs. (4.14), this is true for the following terms,

zSℓ
−
←→DℓT

ℓ
−, z̃Sℓ

−
←→DℓT

ℓ
−, Sℓ

−
←→DℓT+T

ℓ−1
− , S+S

ℓ−1
−

←→DℓT
ℓ
−,

and so we can ignore these terms from the outset.9 This leaves us with

N (full)
ℓ = Sℓ

−
←→DℓT

ℓ
−

[
λ
(0)

A1A
†
2O

λ
(0)

B1B
†
2Õ

+ λ
(2)

A1A
†
2O

λ
(0)

B1B
†
2Õ

z2

+λ
(0)

A1A
†
2O

λ
(2)

B1B
†
2Õ

z̃2 + λ
(1)

A1A
†
2O

λ
(1)

B1B
†
2Õ

zz̃

]

+Sℓ
−
←→DℓT+T

ℓ−1
−

[
λ
(1)

A1A
†
2O

λ
(3)

B1B
†
2Õ

z

]

+S+S
ℓ−1
−

←→DℓT
ℓ
−

[
λ
(3)

A1A
†
2O

λ
(1)

B1B
†
2Õ

z̃

]

+S+S
ℓ−1
−

←→DℓT+T
ℓ−1
−

[
λ
(3)

A1A
†
2O

λ
(3)

B1B
†
2Õ

]
+ . . . (4.15)

where the dots denote terms that do not contribute to WO|θext=0.

The remainder of the computation is straightforward. One inserts eq. (4.15) into

eq. (4.9) and computes the ∂2
0̄
derivatives. This results in a sum over various conformal

9We have checked explicitly that each of these terms has vanishing contribution in eq. (4.9).
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integrals, which are evaluated using the result of [40, 58]:

∫
D4X0

(−1)ℓC(1)
ℓ (t0)

X
∆+∆12

2
10 X

∆−∆12
2

20 X
∆̃+∆34

2
30 X

∆̃−∆34
2

40

∣∣∣∣∣∣
M=1

= ξ
∆,∆̃,∆34,ℓ

(
X14

X13

)∆34
2
(
X24

X14

)∆12
2

X
−∆

2
12 X

− ∆̃
2

34 g∆12,∆34

∆,ℓ (u, v) (4.16)

where

ξ
∆,∆̃,∆34,ℓ

≡ π2Γ(∆̃ + ℓ− 1)Γ(∆−∆34+ℓ
2 )Γ(∆+∆34+ℓ

2 )

(2−∆)Γ(∆ + ℓ)Γ( ∆̃−∆34+ℓ
2 )Γ( ∆̃+∆34+ℓ

2 )
, (4.17)

and g∆12,∆34

∆,ℓ (u, v) are the usual non-supersymmetric conformal blocks given by10

g∆12,∆34

∆,ℓ (u, v) =
zz̄

z − z̄
[k∆+ℓ(z)k∆−ℓ−2(z̄)− (z ↔ z̄)] , (4.18)

kβ(x) = x
β
2 2F1

(
β −∆12

2
,
β +∆34

2
, β, x

)
,

u = zz̄, v = (1− z)(1− z̄).

Here, ∆ij ≡ ∆i − ∆j , and g∆12,∆34

∆,ℓ is the conformal block for exchange of an operator

with dimension ∆ and spin ℓ in a four point function of scalars with dimension ∆i. The

resulting expression for WO|θext=0 is a linear combination of the g∆12,∆34

∆,ℓ (as expected).

The corresponding superconformal block GN=1|A1A
†
2;B1B

†
2

∆,ℓ is simply related by

GN=1|A1A
†
2;B1B

†
2

∆,ℓ = (X12)
∆A(X34)

∆BWO|θext=0. (4.19)

Additional details of the calculation are given in appendix A.

5 Results

After relating the shadow coefficients to the coefficients of the original operator using

eqs. (3.19), the computations described in the previous section give the result

GN=1|A1A
†
2;B1B

†
2

∆,ℓ = (5.1)

λ
(0)

A1A
†
2O

λ
(0)

B1B
†
2O

g∆,ℓ +
λ
(1)

A1A
†
2O

λ
(1)

B1B
†
2O

(∆ + ℓ)(∆ + ℓ+ 1)
g∆+1,ℓ+1

+

[
λ
(1)

A1A
†
2O

+ ℓ+1
ℓ λ

(3)

A1A
†
2O

] [
λ
(1)

B1B
†
2O

+ ℓ+1
ℓ λ

(3)

B1B
†
2O

]

(∆− ℓ− 1)(∆− ℓ− 2)
g∆+1,ℓ−1

+

[
(∆+ℓ)2λ

(0)

A1A
†
2O
−8(∆−1)λ(2)

A1A
†
2O

][
(∆+ℓ)2λ

(0)

B1B
†
2O
−8(∆−1)λ(2)

B1B
†
2O

]

16∆2(∆− ℓ− 1)(∆− ℓ− 2)(∆ + ℓ)(∆ + ℓ+ 1)
g∆+2,ℓ,

10Our definition of g
∆12,∆34

∆,ℓ (u, v) differs by factors of (−2)ℓ and (−1)ℓ from the normalizations used

in [6, 58] and [40], respectively.
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where we have retained the overall OPE coefficient dependence to make it clear which struc-

tures contribute to each term. Here, g∆,ℓ = g0,0∆,ℓ is the conformal block for external scalars

with ∆1 = ∆2 and ∆3 = ∆4. The different terms present above reflect the decomposition

of the superconformal multiplet of O into conformal multiplets [6]. Note that the unitarity

bound on a superconformal primary with integer spin and vanishing R-charge is given by:

∆ ≥ ℓ+ 2. (5.2)

When this bound is saturated, the multiplet shortens and two conformal primaries in the

multiplet, (∆+1, ℓ−1) and (∆+2, ℓ), become null. This means both their norm and OPE

coefficients vanish as ∆ → ℓ + 2. Therefore, although there is a factor of (∆ − ℓ − 2)−1

in the last two terms in eq. (5.1) from the vanishing norm, the OPE coefficient in the

numerator will contribute a factor of (∆ − ℓ − 2)2 and these terms will vanish at the

unitarity bound. We will see this explicitly in eqs. (5.4)–(5.10).

If we take B2,1 = A1,2, then λ
(i)

B1B
†
2O

= λ
(i)

A2A
†
1O

=

(
λ
(i)

A1A
†
2O

)†

and we obtain the

superconformal block

GN=1|A1A
†
2;A2A

†
1

∆,ℓ =

∣∣∣∣λ
(0)

A1A
†
2O

∣∣∣∣
2

g∆,ℓ +

∣∣∣∣λ
(1)

A1A
†
2O

∣∣∣∣
2

(∆ + ℓ)(∆ + ℓ+ 1)
g∆+1,ℓ+1

+

∣∣∣∣λ
(1)

A1A
†
2O

+ ℓ+1
ℓ λ

(3)

A1A
†
2O

∣∣∣∣
2

(∆− ℓ− 1)(∆− ℓ− 2)
g∆+1,ℓ−1

+

∣∣∣∣(∆ + ℓ)2λ
(0)

A1A
†
2O
− 8(∆− 1)λ

(2)

A1A
†
2O

∣∣∣∣
2

16∆2(∆− ℓ− 1)(∆− ℓ− 2)(∆ + ℓ)(∆ + ℓ+ 1)
g∆+2,ℓ. (5.3)

If there are no further constraints on λ(i), then N = 1 superconformal symmetry cannot

fix the relative coefficients between the supermultiplet of conformal blocks. However, addi-

tional symmetries or shortening conditions may impose interesting constraints on λ(i). For

the four-point function 〈φφ†φφ†〉, where φ is the lowest component of a chiral multiplet Φ,

we may plug in the three-point function coefficients in eq. (3.14) to obtain:

GN=1|φφ†;φφ†

∆,ℓ = |λΦΦ†O|2
[
g∆,ℓ +

(∆− ℓ− 2)

4(∆− ℓ− 1)
g∆+1,ℓ−1 +

(∆ + ℓ)

4(∆ + ℓ+ 1)
g∆+1,ℓ+1

+
(∆ + ℓ)(∆− ℓ− 2)

16(∆ + ℓ+ 1)(∆− ℓ− 1)
g∆+2,ℓ

]
. (5.4)

This agrees exactly with the previous results derived in [6] and provides a nontrivial check

for our formalism. Note that when the unitarity bound eq. (5.2) is saturated, the multiplet

shortens and the contributions from the null states vanish as expected. We also note that

when ℓ = 0, the conformal primary (∆+1, ℓ− 1) does not exist in the exchanged multiplet

and g∆,−1 can be consistently defined to vanish.

Next let us consider the four-point function 〈J1J2J3J4〉, where Ji is the lowest com-

ponent of a global symmetry current multiplet Ji. This case was considered recently
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in [25, 34]. The conservation condition D2Ji = 0 imposes constraints on the three-point

function coefficients as in eqs. (3.16). Plugging in these relations we get:

GN=1|J1J2;J3J4
∆,ℓ = λ

(0)
J1J2O

λ
(0)
J3J4O

[
g∆,ℓ +

1

16

(∆− 2)2(∆ + ℓ)(∆− ℓ− 2)

∆2(∆ + ℓ+ 1)(∆− ℓ− 1)
g∆+2,ℓ

]
(5.5)

+λ
(1)
J1J2O

λ
(1)
J3J4O

[
1

(∆ + ℓ)(∆ + ℓ+ 1)
g∆+1,ℓ+1 +

(ℓ+ 2)2(∆− ℓ− 2)

ℓ2(∆ + ℓ)2(∆− ℓ− 1)
g∆+1,ℓ−1

]
,

where the ratio
λ
(1)
JiJjO

λ
(0)
JiJjO

is in general not fixed. We note again that setting ∆ = ℓ+2 shortens

the multiplet.

When J1, . . . , J4 are identical conserved currents, then the four-point function is sym-

metric under permutations (x1 ↔ x2) or (x3 ↔ x4). This further constrains the three-point

function coefficient. In particular, for even spin, λ
(1)
JJO = λ

(3)
JJO = 0 and we have:

GN=1|JJ ;JJ
∆,ℓ,even =

(
λ
(0)
JJO

)2 [
g∆,ℓ +

1

16

(∆− 2)2(∆ + ℓ)(∆− ℓ− 2)

∆2(∆ + ℓ+ 1)(∆− ℓ− 1)
g∆+2,ℓ

]
. (5.6)

For odd spin, λ
(0)
JJO = λ

(2)
JJO = 0 and we have:

GN=1|JJ ;JJ
∆,ℓ,odd =

(
λ
(1)
JJO

)2 [ 1

(∆+ℓ)(∆+ℓ+1)
g∆+1,ℓ+1+

(ℓ+ 2)2(∆− ℓ− 2)

ℓ2(∆+ℓ)2(∆−ℓ−1)g∆+1,ℓ−1

]
. (5.7)

For the four-point function 〈J1J2φφ†〉, we may plug in the conservation constraints for

λ
(i)

A1A
†
2O

and the chirality constraints for λ
(i)

B1B
†
2O

and find:

GN=1|J1J2;φφ†

∆,ℓ = λ
(0)
J1J2O

λΦΦ†O

[
g∆,ℓ −

1

16

(∆− 2)(∆ + ℓ)(∆− ℓ− 2)

∆(∆ + ℓ+ 1)(∆− ℓ− 1)
g∆+2,ℓ

]
(5.8)

+λ
(1)
J1J2O

λΦΦ†O

[
− 1

2(∆ + ℓ+ 1)
g∆+1,ℓ+1 +

(ℓ+ 2)(∆− ℓ− 2)

2ℓ(∆ + ℓ)(∆− ℓ− 1)
g∆+1,ℓ−1

]
.

When J1 and J2 are identical currents, the even or odd spin blocks will pick up different

parts of this result after setting λ
(1)
JJO = 0 or λ

(0)
JJO = 0, respectively:

GN=1|JJ ;φφ†

∆,ℓ,even = λ
(0)
JJOλΦΦ†O

[
g∆,ℓ −

1

16

(∆− 2)(∆ + ℓ)(∆− ℓ− 2)

∆(∆ + ℓ+ 1)(∆− ℓ− 1)
g∆+2,ℓ

]
(5.9)

and

GN=1|JJ ;φφ†

∆,ℓ,odd =λ
(1)
JJOλΦΦ†O

[
− 1

2(∆+ℓ+1)
g∆+1,ℓ+1+

(ℓ+2)(∆−ℓ−2)
2ℓ(∆+ℓ)(∆−ℓ−1)g∆+1,ℓ−1

]
. (5.10)

The superconformal blocks in eqs. (5.5)–(5.10) are in agreement with the expressions in

the most recent versions of [25, 34].

– 16 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
9

6 Decomposition of N = 2 blocks into N = 1 blocks

We can get a nontrivial consistency check on the superconformal blocks derived in the pre-

vious section from decomposing N = 2 superconformal blocks into N = 1 superconformal

blocks. Following closely the discussions of [6, 34], we can consider N = 2 global symmetry

current multiplets ϕij , which are SU(2)R triplets (neutral under U(1)N=2
R ) with dimension

∆ = 2. The components (ϕ11, ϕ(12), ϕ22) = (φ, J, φ†) are N = 1 chiral, current, and anti-

chiral, respectively. Then four-point functions 〈ϕϕϕϕ〉 can be decomposed into contribu-

tions from different SU(2)R channels, following the theory of Clebsch-Gordan coefficients, as

GN=2|φφ†;φφ†

= A0 +
1

2
A1 +

1

6
A2,

GN=2|JJ ;JJ = A0 +
2

3
A2,

GN=2|JJ ;φφ†

= A0 −
1

3
A2. (6.1)

Here the functions AR for R = 0, 1, 2 reflect the contributions from each representation of

SU(2)R appearing in 3⊗ 3 = 1⊕ 3⊕ 5.

For the exchange of long multiplets O of dimension ∆, even spin ℓ, and vanishing R

charge, Dolan and Osborn computed the contributions to be [31]

A0 = g∆,ℓ +
(∆ + ℓ+ 2)2

16(∆ + ℓ+ 1)(∆ + ℓ+ 3)
g∆+2,ℓ+2 +

(∆− ℓ)2

16(∆− ℓ− 1)(∆− ℓ+ 1)
g∆+2,ℓ−2

+
1

12
g∆+2,ℓ +

(∆ + ℓ+ 2)2(∆− ℓ)2

256(∆ + ℓ+ 1)(∆ + ℓ+ 3)(∆− ℓ− 1)(∆− ℓ+ 1)
g∆+4,ℓ,

A1 = g∆+1,ℓ+1 + g∆+1,ℓ−1 +
(∆ + ℓ+ 2)2

16(∆ + ℓ+ 1)(∆ + ℓ+ 3)
g∆+3,ℓ+1

+
(∆− ℓ)2

16(∆− ℓ− 1)(∆− ℓ+ 1)
g∆+3,ℓ−1,

A2 = g∆+2,ℓ. (6.2)

The chiral block decomposition using these results was performed in [6], with the result

GN=2|φφ†;φφ†

∆,ℓ = GN=1|φφ†;φφ†

∆,ℓ +
(∆− ℓ)

4(∆− ℓ− 1)
GN=1|φφ†;φφ†

∆+1,ℓ−1 +
(∆ + ℓ+ 2)

4(∆ + ℓ+ 1)
GN=1|φφ†;φφ†

∆+1,ℓ+1

+
(∆− ℓ)(∆ + ℓ+ 2)

16(∆− ℓ− 1)(∆ + ℓ+ 1)
GN=1|φφ†;φφ†

∆+2,ℓ . (6.3)

Now we extend this result to the decomposition of GN=2|JJ ;JJ and GN=2|JJ ;φφ†
. As

explained in [25], the J×J OPE can in general contain the descendants of unprotected N =

1 primaries with vanishing R-charge and (j, j̄) = ( ℓ±1
2 , ℓ∓1

2 ). In the present context, such

operators arise as N = 2 descendants of the schematic form Q2Q̄2O, with dimension ∆+1.

Because these operators have only one N = 1 descendant (which is a conformal primary)

with vanishing R-charge and integer spin, up to a normalization factor the corresponding

superconformal block is just a conformal block

GN=1|JJ ;JJ

∆+1,( ℓ±1
2

, ℓ∓1
2

)
∝ g∆+2,ℓ. (6.4)
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Taking these contributions into account, we expect a decomposition of the form

GN=2|JJ ;JJ
∆,ℓ,even = GN=1|JJ ;JJ

∆,ℓ,even +N(∆, ℓ)GN=1|JJ ;JJ
∆+1,ℓ−1,odd + J(∆, ℓ)GN=1|JJ ;JJ

∆+1,ℓ+1,odd

+D(∆, ℓ)GN=1|JJ ;JJ
∆+2,ℓ,even +B(∆, ℓ)g∆+2,ℓ, (6.5)

where we have absorbed the overall λ2 factors in eqs. (5.6) and (5.7) into the functions

N, J,D. Matching to eqs. (6.1) and (6.2) gives

N(∆, ℓ) =
(ℓ− 1)2(∆− ℓ)(∆ + ℓ)2

16(ℓ+ 1)2(∆− ℓ− 1)
, (6.6)

J(∆, ℓ) =
(∆ + ℓ+ 2)3

16(∆ + ℓ+ 1)
, (6.7)

D(∆, ℓ) =
(∆ + 2)2(∆− ℓ)(∆ + ℓ+ 2)

16∆2(∆− ℓ− 1)(∆ + ℓ+ 1)
, (6.8)

B(∆, ℓ) =
ℓ(ℓ+ 2)(∆ + 1)(∆− 1)

2(ℓ+ 1)2∆2
. (6.9)

Similarly, for the decomposition of GN=2|JJ ;φφ†
we expect

GN=2|JJ ;φφ†

∆,ℓ,even = GN=1|JJ ;φφ†

∆,ℓ,even + Ñ(∆, ℓ)GN=1|JJ ;φφ†

∆+1,ℓ−1,odd + J̃(∆, ℓ)GN=1|JJ ;φφ†

∆+1,ℓ+1,odd

+D̃(∆, ℓ)GN=1|JJ ;φφ†

∆+2,ℓ,even , (6.10)

with no contribution from (6.4) because these operators cannot appear in φ×φ†. Matching

to eqs. (6.1) and (6.2) gives

Ñ(∆, ℓ) =
(ℓ− 1)(∆− ℓ)(∆ + ℓ)

8(ℓ+ 1)(∆− ℓ− 1)
, (6.11)

J̃(∆, ℓ) = − (∆ + ℓ+ 2)2

8(∆ + ℓ+ 1)
, (6.12)

D̃(∆, ℓ) = − (∆ + 2)(∆− ℓ)(∆ + ℓ+ 2)

16∆(∆− ℓ− 1)(∆ + ℓ+ 1)
. (6.13)

The existence of this decomposition provides a highly nontrivial check on the superconfor-

mal block results derived using our methods.

7 Summary and outlook

We have computed the superconformal block GN=1|A1A
†
2;B1B

†
2

∆,ℓ , where A1,2 and B1,2 are

scalar superconformal primaries with general dimensions and R-charge, and the exchanged

operator is R-charge neutral. When A1,2 and B1,2 are chiral, we reproduce the known

result for superconformal blocks in the chiral-antichiral channel. Similarly, when A1,2 are

global symmetry currents and B1,2 are either global symmetry currents or chiral operators,

we obtain expressions for GN=1|JJ ;JJ
∆,ℓ and GN=1|JJ ;φφ†

∆,ℓ .

There are many future directions to explore. Most immediately, the blocks we have

computed provide new atomic ingredients to continue the study of N = 1 SCFTs using the

– 18 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
9

numerical bootstrap. We also hope to apply supershadow methods to SCFTs with N > 1;

for instance, the methods may be well-suited to study four-point functions of N = 2

supercurrents. Regarding the supershadow formalism in general, it would be interesting to

develop further machinery that allows us to: (i) compute shadow integrals in a manifestly

superconformally covariant way, rather than just a conformally covariant way as we have

done in this work; and (ii) consider superconformal blocks where the exchanged primaries

have nonzero R-charge. We hope to explore these various directions in the near future.

Acknowledgments

We are grateful to J. Kaplan and L. Fitzpatrick for collaboration and many discussions at

the early stages of this work. We also thank C. Beem, M. Berkooz, J. Fortin, W. Goldberger,

K. Intriligator, L. Rastelli, D. Skinner, A. Stergiou, R. Yacoby, and A. Zait for discussions

and correspondence. We additionally thank the organizers of the “Back to the Bootstrap 3”

workshop at CERN for facilitating discussions related to this work. DP and DSD thank the

KITP for its hospitality during the completion of this work. This research was supported

in part by the National Science Foundation under Grant No. NSF PHY11-25915. DSD was

supported by DOE grant DE-SC0009988. ZUK was supported by DOE grant 9500302471.

A Embedding-space derivatives and integrals

In this appendix, we present some additional details of the calculation peformed in section 4.

We describe several properties of the quantities Nℓ, Dℓ, and z that are useful for computing

the ∂2
0̄
derivative in eq. (4.9). We present the results of this derivative acting on various

terms, and evaluate the relevant conformal integrals.

A.1 Nℓ as a Gegenbauer polynomial

One can show that the quantity Nℓ in eq. (4.11) satisfies a recursion relation that identifies

it as a Gegenbauer polynomial,

Nℓ ≡
(
S̄12̄S

)ℓ←→Dℓ

(
T̄ 34̄T

)ℓ
= (−1)ℓ s ℓ

2C
(1)
ℓ (t), (A.1)

where C
(λ)
ℓ (x) are the Gegenbauer polynomials and

t ≡ 〈2̄10̄34̄0〉
2
√
s

, s ≡ 1

26
〈0̄1〉〈2̄0〉〈0̄3〉〈4̄0〉〈2̄1〉〈4̄3〉. (A.2)

Recall our notation,
←→Dℓ ≡

1

ℓ!4
(∂S0∂T )

ℓ (∂S̄ 0̄∂T̄ )
ℓ . (A.3)

One can also write Nℓ as

Nℓ =
1

ℓ!2
(∂S0∂T )

ℓ (S 2̄10̄34̄T )ℓ . (A.4)

This expression follows from eq. (A.1) after acting all the ∂S̄,T̄ derivatives.

– 19 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
9

When θext = 0, an SU(2, 2|1) trace reduces to an SU(2, 2) trace of the six-dimensional

“sigma” matrices Γm, Γ̃m. In particular, Nℓ(X0, X̄0) reduces to a function of (X0, X0̄). In

this appendix, to be explicit, we define

Nℓ (X0, X0̄) ≡ Nℓ|θext=0 . (A.5)

It is given by the same expressions as eqs. (A.1) and (A.4), except that all auxiliary twistors

and coordinates are reduced to their bosonic twistor parts. We write this simply as, for

instance, (S 2̄10̄34̄T )→ (S2̄10̄34̄T ), etc.

With θext = 0, but prior to the ∂2
0̄
differentiation, 0̄ and 0 are considered to be inde-

pendent. Afterwards, though, we identify 0̄ = 0, in which case

t −→ t0 ≡ −
X13X20X40

2
√
X10X20X30X40X12X34

− (1↔ 2)− (3↔ 4) , (A.6)

s −→ s0 ≡
1

212
X10X20X30X40X12X34. (A.7)

Recalling that

1

Dℓ
≡ 1

(X10X10̄X20X20̄)
1
4
(∆+ℓ) (X30X30̄X40X40̄)

− 1
4
(∆−ℓ−2)

, (A.8)

we therefore have that

Nℓ

Dℓ

∣∣∣∣
0̄=0

= aℓ (X12X34)
ℓ
2

(−1)ℓC(1)
ℓ (t0)

(X10X20)
∆
2 (X30X40)

1−∆
2

, (A.9)

where

aℓ ≡ 2−6ℓ. (A.10)

A.2 Symmetries of Nℓ, Dℓ, and z

First, consider

Nℓ = (S̄12̄S)ℓ
←→Dℓ(T̄34̄T )

ℓ =
1

ℓ!2
(∂S0∂T )

ℓ(S2̄10̄34̄T )ℓ. (A.11)

If we identify 0̄ with 0, then

S2̄10̄34̄T =
1

4
X10S2̄34̄T − (1↔ 2) =

1

4
X30S2̄14̄T − (3↔ 4). (A.12)

These expressions can be derived by using the Clifford algebra of the sigma matrices to

commute 0̄ to the left or right and then using S0̄ = 0̄T = 0 (see eq. (2.14)). It follows that

S2̄10̄34̄T is antisymmetric in 1↔ 2 and 3↔ 4, so Nℓ is either symmetric or antisymmetric

in these exchanges depending on the parity of ℓ. This also follows from our expression for

Nℓ as a Gegenbauer polynomial.

Since ∂2
0̄
Nℓ ∝ (∂S̄Γ̄

m∂T̄ )(∂S̄Γ̄
m∂T̄ ) ∝ ǫαβγδ∂S̄α∂T̄ β∂S̄γ∂T̄ δ = 0, we have the important

result that

∂2
0̄Nℓ = 0 (A.13)
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Meanwhile, Dℓ is always symmetric under the exchanges 1 ↔ 2 and/or 3 ↔ 4. Its

derivatives are

∂m
0̄

1

Dℓ
=

1

Dℓ

[(
∆+ ℓ

2

)(
Xm

1

X10̄

+
Xm

2

X20̄

)
−
(
∆− ℓ− 2

2

)(
Xm

3

X30̄

+
Xm

4

X40̄

)]
, (A.14)

∂2
0̄

1

Dℓ
= − 1

Dℓ

[(
∆+ ℓ

2

)2 X12

X10̄X20̄

+

(
∆− ℓ− 2

2

)2 X34

X30̄X40̄

−
(
∆+ ℓ

2

)(
∆− ℓ− 2

2

)(
X13

X10̄X30̄

+ evenperms

)]
, (A.15)

where11

evenperms = + (1↔ 2) + (3↔ 4) . (A.16)

Finally, z is antisymmetric under 1 ↔ 2, while z̃ is antisymmetric under 3 ↔ 4. Its

derivatives are

∂m
0̄ z = (z2 − 1)

[
Xm

1

X10̄

− Xm
2

X20̄

]
, ∂2

0̄z = 2z(z2 − 1)
X12

X10̄X20̄

, (A.17)

∂m
0̄ z2 = 2z(z2 − 1)

[
Xm

1

X10̄

− Xm
2

X20̄

]
, ∂2

0̄z
2 = (6z2 − 2)(z2 − 1)

X12

X10̄X20̄

. (A.18)

Similar formulas hold for z̃ with 1, 2 replaced by 3, 4 respectively. In particular

(∂0̄z) · (∂0̄z̃)|0̄=0 = −
1

2

[
X13

X10X30
+ oddperms

]
, (A.19)

where

oddperms = − (1↔ 2)− (3↔ 4) . (A.20)

An important point is that z and z̃ vanish when θext = 0 and 0̄ is identified with 0 (i.e.

without supersymmetry, there is no conformally-invariant cross-ratio given three points).

This simplifies derivatives involving these quantities, because the derivatives must act to

eliminate all z’s and z̃’s.

A.3 Results for ∂2

0̄
derivatives

Using the equations above, it follows that

∂2
0̄

z2Nℓ

Dℓ

∣∣∣∣
0̄=0

= 2
X12

X10X20

Nℓ

Dℓ
, (A.21)

∂2
0̄

zz̃Nℓ

Dℓ

∣∣∣∣
0̄=0

= −
[

X13

X10X30
+ oddperms

]
Nℓ

Dℓ
, (A.22)

∂2
0̄

zNℓ

Dℓ

∣∣∣∣
0̄=0

= −
(
∆− ℓ− 2

2

)
Nℓ

Dℓ

[
X13

X10X30
− X23

X20X30
+

X14

X10X40
− X24

X20X40

]

+
1

2

1

Dℓ

ℓ

ℓ!2
(∂S0∂T )

ℓ (S2̄10̄34̄T )ℓ−1

[
X12

X10X20
X10 (S2̄34̄T )

]
, (A.23)

11Recall our notation: (3 ↔ 4) acts on both the first term and the (1 ↔ 2) term.
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∂2
0̄

Nℓ

Dℓ

∣∣∣∣
0̄=0

= −Nℓ

Dℓ

[(
∆+ ℓ

2

)2 X12

X10X20
+

(
∆− ℓ− 2

2

)2 X34

X30X40

−
(
∆+ ℓ

2

)(
∆− ℓ− 2

2

)(
X13

X10X30
+ evenperms

)]

+
1

2

1

Dℓ

ℓ

ℓ!2
(∂S0∂T )

ℓ (S2̄10̄34̄T )ℓ−1

[(
∆+ ℓ

2

)
X12

X10X20
(X10S2̄34̄T )

−
(
∆− ℓ− 2

2

)
X34

X30X40
(X30S2̄14̄T )

]
. (A.24)

Using these, one can derive the following derivative formulas needed for eq. (4.9)

4−ℓXℓ
12X

ℓ
34 ∂

2
0̄

[
z2 (S−)

ℓ←→Dℓ (T−)
ℓ
]∣∣∣

0̄=0
= 2

X12

X10X20

Nℓ

Dℓ
, (A.25)

4−ℓXℓ
12X

ℓ
34 ∂

2
0̄

[
zz̃ (S−)

ℓ←→Dℓ (T−)
ℓ
]∣∣∣

0̄=0
= −

[
X13

X10X30
+ oddperms

]
Nℓ

Dℓ
, (A.26)

4−ℓXℓ
12X

ℓ
34 ∂

2
0̄

[
z (S−)

ℓ←→DℓT+ (T−)
ℓ−1
]∣∣∣

0̄=0
= − 1

26
(ℓ+ 1)

ℓ

Nℓ−1

Dℓ
X12X34, (A.27)

4−ℓXℓ
12X

ℓ
34 ∂

2
0̄

[
S+ (S−)

ℓ−1←→DℓT+ (T−)
ℓ−1
]∣∣∣

0̄=0
= − 1

26
(ℓ+ 1)2

ℓ2
X12X34

Nℓ−1

Dℓ
, (A.28)

4−ℓXℓ
12X

ℓ
34 ∂

2
0̄

[
(S−)

ℓ←→Dℓ (T−)
ℓ
]∣∣∣

0̄=0
= −Nℓ

Dℓ

[(
∆+ ℓ

2

)(
∆− ℓ

2

)
X12

X10X20
(A.29)

+

(
∆− ℓ− 2

2

)(
∆+ ℓ− 2

2

)
X34

X30X40

−
(
∆+ℓ

2

)(
∆−ℓ−2

2

)(
X13

X10X30
+evenperms

)]
.

A.4 Conformal integrals

Once the differentiation is done in eq. (4.9), the final step is to evaluate the resulting

conformal integrals. The relevant formulas, with aℓ given by eq. (A.10), are

∫
D4X0

X12

X10X20

Nℓ

Dℓ

∣∣∣∣
0̄=0

= aℓ
ξ∆+2,2−∆,0,ℓ

X
1
2
(∆−ℓ)

12 X
− 1

2
(∆+ℓ−2)

34

g0,0∆+2,ℓ(u, v), (A.30)

∫
D4X0

X34

X30X40

Nℓ

Dℓ

∣∣∣∣
0̄=0

= aℓ
ξ∆,4−∆,0,ℓ

X
1
2
(∆−ℓ)

12 X
− 1

2
(∆+ℓ−2)

34

g0,0∆,ℓ(u, v), (A.31)

∫
D4X0

Nℓ−1

Dℓ

∣∣∣∣
0̄=0

= aℓ−1
ξ∆+1,3−∆,0,ℓ−1

X
1
2
(∆−ℓ)+1

12 X
− 1

2
(∆+ℓ−2)+1

34

g0,0∆+1,ℓ−1(u, v), (A.32)

∫
D4X0

[
X13

X10X30
+ evenperms

]
Nℓ

Dℓ

∣∣∣∣
0̄=0

=

aℓ
ξ∆+1,3−∆,1,ℓ

X
1
2
(∆−ℓ)

12 X
− 1

2
(∆+ℓ−2)

34

[
4g0,0∆,ℓ +

(∆ + ℓ) (∆− ℓ− 2)

4 (∆ + ℓ+ 1) (∆− ℓ− 1)
g0,0∆+2,ℓ

]
, (A.33)
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∫
D4X0

[
X13

X10X30
+ oddperms

]
Nℓ

Dℓ

∣∣∣∣
0̄=0

=

aℓ
ξ∆+1,3−∆,1,ℓ

X
1
2
(∆−ℓ)

12 X
− 1

2
(∆+ℓ−2)

34

[
(∆ + ℓ)

(∆+ℓ+1)
g0,0∆+1,ℓ+1+

(∆−ℓ−2)
(∆−ℓ−1)g

0,0
∆+1,ℓ−1

]
. (A.34)

The first three equations follow from eq. (A.9) and a direct application of eq. (4.16).

For the latter two integrals, one additionally needs the following relations between the

conformal blocks,

g−∆12,−∆34

∆,ℓ = v
1
2
(∆34−∆12)g∆12,∆34

∆,ℓ , (A.35)

u−
1
2 g1,1∆+1,ℓ + u−

1
2 g1,−1

∆+1,ℓ = 2g0,0∆,ℓ +
(∆ + ℓ) (∆− ℓ− 2)

8 (∆ + ℓ+ 1) (∆− ℓ− 1)
g0,0∆+2,ℓ, (A.36)

u−
1
2 g1,1∆+1,ℓ − u−

1
2 g1,−1

∆+1,ℓ =
(∆ + ℓ)

2 (∆ + ℓ+ 1)
g0,0∆+1,ℓ+1 +

(∆− ℓ− 2)

2 (∆− ℓ− 1)
g0,0∆+1,ℓ−1. (A.37)

B Shadow 3-point function coefficients

In this appendix we will show how one can derive the transformation matrices in eq. (3.19).

Because 3-point function structures can only mix with structures with the same symmetry

properties, the linear transformation λ
(i)

B1B
†
2Õ

=M(∆, ℓ)ijλ
(j)

B1B
†
2O

must be block diagonal




λ
(0)

B1B
†
2Õ

λ
(2)

B1B
†
2Õ

λ
(1)

B1B
†
2Õ

λ
(3)

B1B
†
2Õ




=




A B 0 0

C D 0 0

0 0 E F

0 0 G H







λ
(0)

B1B
†
2O

λ
(2)

B1B
†
2O

λ
(1)

B1B
†
2O

λ
(3)

B1B
†
2O




. (B.1)

Taking B1 = B2 = Φ to be chiral and using eq. (3.14), we have the constraint




1
1
8(2−∆+ ℓ)(2−∆− ℓ)

−1
2(2−∆+ ℓ)

ℓ


 ∝




A B 0 0

C D 0 0

0 0 E F

0 0 G H







1
1
8(∆ + ℓ)(∆− ℓ)

−1
2(∆ + ℓ)

ℓ


 . (B.2)

On the other hand, taking Bi = Ji to be a conserved current and using eqs. (3.16) gives

the constraints
(

1
1
8(2 + ℓ+∆)(2−∆+ ℓ)

)
∝
(
A B

C D

)(
1

1
8(4 + ℓ−∆)(∆ + ℓ)

)
,

(
(2−∆+ℓ)

2∆

1

)
∝
(
E F

G H

)(
− (∆+ℓ)

2(∆−2)

1

)
. (B.3)

The above equations so far give 5 constraints on 8 unknowns.

The remaining freedom can be fixed by requiring that the superconformal partial waves

are consistent with unitarity, i.e. that in reflection positive configurations the coefficients
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of individual conformal blocks have positive coefficients. Concretely, the computations

described in section 4 and appendix A give the result

GN=1|A1A
†
2;B1B

†
2

∆,ℓ ∝

λ
(0)

A1A
†
2O

[
λ
(2)

B1B
†
2Õ

+ λ
(0)

B1B
†
2Õ

(∆− ℓ− 2)2

8(∆− 1)

]
g∆,ℓ

+λ
(1)

A1A
†
2O

λ
(1)

B1B
†
2Õ

(∆− 2)(∆ + ℓ)

8(∆− 1)(∆ + ℓ+ 1)
g∆+1,ℓ+1

+

[
λ
(1)

A1A
†
2O

+
ℓ+ 1

ℓ
λ
(3)

A1A
†
2O

] [
λ
(1)

B1B
†
2Õ

+
ℓ+ 1

ℓ
λ
(3)

B1B
†
2Õ

]
(∆− 2)(∆− ℓ− 2)

8 (∆− 1) (∆− ℓ− 1)
g∆+1,ℓ−1

+

[
λ
(2)

A1A
†
2O
− λ

(0)

A1A
†
2O

(∆ + ℓ)2

8(∆− 1)

]
λ
(0)

B1B
†
2Õ

(∆− 2)(∆ + ℓ)(∆− ℓ− 2)

16∆(∆ + ℓ+ 1)(∆− ℓ− 1)
g∆+2,ℓ. (B.4)

In the reflection positive configuration B1,2 = A2,1, each of the conformal block coefficients

must be positive. This implies that

[
λ
(2)

B1B
†
2Õ

+ λ
(0)

B1B
†
2Õ

(∆− ℓ− 2)2

8(∆− 1)

]
∝ λ

(0)

B1B
†
2O

, (B.5)

λ
(1)

B1B
†
2Õ
∝ λ

(1)

B1B
†
2O

, (B.6)
[
λ
(1)

B1B
†
2Õ

+
ℓ+ 1

ℓ
λ
(3)

B1B
†
2Õ

]
∝
[
λ
(1)

B1B
†
2O

+
ℓ+ 1

ℓ
λ
(3)

B1B
†
2O

]
, (B.7)

λ
(0)

B1B
†
2Õ
∝
[
λ
(2)

B1B
†
2O
− λ

(0)

B1B
†
2O

(∆ + ℓ)2

8(∆− 1)

]
, (B.8)

which imposes the additional constraints

A+
(∆ + ℓ)2

8(∆− 1)
B = D +

(∆− ℓ− 2)2

8(∆− 1)
B = H − E − ℓ+ 1

ℓ
G = F = 0. (B.9)

This fixes the transformation matrix up to an overall constant




A B 0 0

C D 0 0

0 0 E F

0 0 G H


 = H




1
∆ − 8(∆−1)

∆(∆+ℓ)2
0 0

− (∆−1)(∆−ℓ−2)2

8∆
(∆−ℓ−2)2

∆(∆+ℓ)2
0 0

0 0 (∆−ℓ−2)2

(∆+ℓ)2
0

0 0 4ℓ(∆−1)

(∆+ℓ)2
1




, (B.10)

where H depends on the overall normalization of the shadow transformation. A convenient

choice is H = 1, which corresponds to defining the shadow transformationM(∆, ℓ) so that

when applied twice it gives the identityM(∆, ℓ) · M(2−∆, ℓ) = 14×4.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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