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1 Introduction

A variety of condensed matter systems exhibits anisotropic scaling near a renormalization

group fixed point. Classical Lifshitz fixed points, in which the system scales anisotropically

in different spatial directions, are extensively explored. Quantum Lifshitz fixed points, in

which time and space scale anisotropically, with relative scaling ratio z, are particularly

common in strongly correlated systems [1–11]. When such systems possess a master field

configuration with large central charge, holography allows for a description in terms of

weakly coupled gravitational theories. Many-body field theories describing such anisotropic

fixed points were proposed to be holographically dual to gravity in the background of

Lifshitz geometries, where time and space scale asymptotically with the same ratio z [12].

The spacetime scaling of anisotropic fixed points is generally very different from the

spacetime scaling of isotropic fixed points. Even if the UV theory at the energy scale of

the band gap would have a plethora of anisotropic interactions and lattice field effects,

they are typically irrelevant perturbations, and the theory flows in the IR to a theory

with emergent space(time) isotropy. Lifshitz fixed points are exceptions to such a general

rule of thumb. Here, we pose a somewhat different question: can an anisotropic Lifshitz

critical point actually exhibit isotropic conformal invariance? We believe the answer to this

question bears interesting and important implications to the aforementioned many-body

field theories and beyond. In this paper, we shall answer this question in the affirmative

by constructing an explicit realization. We shall formulate our realization in terms of a

holographic duality between a gravitational theory in (2+1) dimensional Lifshitz space and

a non-gravitational theory in (1 + 1) dimensions at a quantum Lifshitz fixed point, which
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we will assume also possesses higher-spin conserved currents. In this case, the gravitational

theory is a higher-spin extension of Lifshitz gravity in (2 + 1) dimensions.

Higher spin gauge theories [13–27], long studied for their own unitary generalization

of spin-2 gravity and for their intriguing relation to the high-energy and tensionless limits

of string theory (for recent reviews, see [28, 29] and the references therein), have more

recently also gained much attention due to their special role in the holography of the Anti-

de Sitter/conformal field theory (AdS/CFT) correspondence: higher-spin gauge theories

are the gravitational duals to conformal field theories at Gaussian or Wilson-Fisher-type

fixed points [30–33]. Higher spin gauge theories are particularly simple in (2+1) dimensions

and admit a Chern-Simons description [34, 35], along the same lines as the Chern-Simons

description of (2 + 1) dimensional Einstein gravity [36, 37]. There is a further, extra

simplification in (2 + 1) dimensions: higher spin theories admit a truncation to a finite

tower of spins [38], which allows the use of methods very similar to those used in studying

spin-2 Einstein gravity [39, 40].

As in their higher-dimensional counterparts, the most symmetric solution to (2 + 1)-

dimensional higher-spin gauge theory is AdS space. The theory also admits non-AdS

solutions [41]. In particular, these include solutions with asymptotic Lifshitz scaling, dis-

tinct from asymptotic AdS solutions with isotropic scaling. We shall adopt the procedure

outlined in [42] and study the higher-spin gauge theory that contains spin-2 and -3 fields

only. We shall construct a Lifshitz spacetime with relative scaling ratio z = 2. A novel

feature of our construction is that, unlike other constructions known so far that involve p-

form gauge fields, the Lifshitz spacetime is realized by turning on a non-trivial spin-3 gauge

field configuration. To address the question we posed in the beginning, we study consistent

boundary conditions that lead to finite, conserved, and integrable asymptotic charges. We

analyze the asymptotic symmetry algebra (ASA) and identify by holography the current

algebra of the dual (1+ 1)-dimensional quantum Lifshitz fixed point. Remarkably, we find

that the ASA is W3 ⊕ W3, the same ASA as for AdS. We take this as evidence that the

current algebra of quantum Lifshitz fixed points is actually enhanced to that of isotropic

fixed points (in so far as the fixed point admits a holographic description).

Recently, asymptotic Lifshitz spacetimes were also studied by Gutperle, Hijano and

Samani in a spin-3 gravity context [43]. Much of their work focused on other issues such as

the presence of black hole states in higher-spin Lifshitz backgrounds, holonomy conditions

for such black holes, and the realization of a Lifshitz sub-algebra within the ASA. Here,

we study a different aspect of higher-spin realization of the Lifshitz background. We ex-

amine fully consistent boundary conditions, analyze the resulting ASA, and determine the

enhanced current algebra of the Lifshitz fixed point. On the way, we pay special attention

to the issue of gauge invariance and possible interpretation of higher spin excitations on a

Lifshitz background as a geometric theory.

The outline of the paper is as follows. We begin by briefly reviewing asymptotic

Lifshitz spacetimes in section 2. Then, in section 3, we propose a set of Lifshitz boundary

conditions in sl(3,R)⊕ sl(3,R) spin-3 gravity. In section 4 we prove the consistency of our

boundary conditions and identify the resulting ASA as W3 ⊕ W3. In section 5 we show

that, despite the presence of AdS isometries, the ground state on the gravity side is the
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z = 2 Lifshitz spacetime with non-trivial spin-3 field background. Finally, in section 6,

we conclude with some remarks on more general Lifshitz boundary conditions, aspects on

Lifshitz CFT2 duals, comparison with the approach of [43], and a discussion of the role of

geometry and gauge invariance.

2 Lifshitz spacetime in (2 + 1) dimensions

The (2 + 1)-dimensional Lifshitz spacetime [12] is described by the line element

ds2Lifz = ℓ2
(

− r2z dt2 +
dr2

r2
+ r2 dx2

)

. (2.1)

The Lifshitz spacetime (2.1) is invariant under the anisotropic scaling (z ∈ R):

t → λzt x → λx r → λ−1r . (2.2)

For z = 1, the scaling is isotropic and the spacetime (2.1) reduces to Poincaré patch AdS3.

It is often useful to consider a change of coordinates to the radial variable ρ = ln r.

The spacetime (2.1) now becomes

ds2Lifz = ℓ2
(

−e2zρ dt2 + dρ2 + e2ρ dx2
)

. (2.3)

The asymptotic region is approached for ρ → ∞.

The Lifshitz spacetime (2.3) possesses spacetime isometries. These Lifshitz isometries

are generated by the Killing vector fields

ξH = ∂t ξP = ∂x ξD = −zt ∂t + ∂ρ − x ∂x (2.4)

whose isometry algebra is the Lifshitz algebra lif(z,R)

[ξH, ξP] = 0 [ξD, ξH] = z ξH [ξD, ξP] = ξP (2.5)

The Killing vector ξH (ξP) [ξD] generates time translations (spatial translations) [anisotropic

dilatations]. The Lifshitz spacetime with z = 1 corresponds to the Poincaré patch of the

isotropic AdS3 spacetime. With enhanced (1 + 1)-dimensional Lorentz (boost) invariance,

the isometry algebra gets enlarged to sl(2,R)⊕ sl(2,R) associated with two copies of chiral

and anti-chiral excitations. Conversely, the Lifshitz algebra lif(1,R) is a subalgebra of the

sl(2,R)⊕ sl(2,R) isometry algebra of the AdS3 spacetime.

Since the Lifshitz spacetime does not fulfill the vacuum Einstein equations, mat-

ter contributions are necessary. Known realizations so far involve, e.g., p-form gauge

fields [12]. For example, AdS Einstein gravity coupled to two 1-form abelian gauge fields

F2 = dA1, G2 = dC1,

I =
1

16πG3

∫

d3x
√−g

[

R(g) +
2

ℓ2
+

1

4
||F2||2 +

1

4α
||G2||2 +

1

2
∗ (A1 ∧G2)

]

, (2.6)

admits the Lifshitz spacetime as a classical solution, where the scaling ratio z is determined

by

z = α±
√

α2 − 1 (α ≥ 1) . (2.7)
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Some other constructions require either a massive gauge field [44], a massive graviton [45,

46] or Hořava-Lifshitz gravity [47].

Here, we take a different route and realize the Lifshitz spacetime by coupling AdS3
Einstein gravity to a spin-3 field with full higher-spin gauge symmetry. In the next section,

we construct an explicit example of (2+1)-dimensional z = 2 Lifshitz spacetime (2.3) with

non-trivial spin-3 background field. We shall then carefully examine boundary conditions

for the gravitational and spin-3 excitations over this Lifshitz spacetime.

3 Lifshitz boundary conditions in higher-spin gravity

In the classical regime we shall be working on (2 + 1)-dimensional spin-3 gravity, which

is most conveniently described in the gauge theory formulation. The action is that of an

sl(3,R)⊕ sl(3,R) Chern-Simons gauge theory on the spacetime M,

Ibulk =
k

4π

∫

M
tr
[

CS(A)− CS(A)
]

, (3.1)

where A and A are sl(3,R) connections,

CS(A) = A ∧ dA+
2

3
A ∧A ∧A (3.2)

is the Chern-Simons 3-form, and the Chern-Simons level k is inversely related to the grav-

itational coupling G3 according to the formula

k =
ℓ

8G3tr(L0L0)
. (3.3)

Hereafter, we consider the principal embedding sl2 →֒ sl3 with spin-2 generators L−1, L0, L+1

and spin-3 generators W−2, W−1, W0, W+1, W+2. Our conventions for the generators and traces

are summarized in appendix A; in particular, tr(L0L0) = 2. The classical equations of

motion derived from the action (3.1) imply gauge flatness of the connections:

dA+A ∧A = 0 = dA +A ∧A (3.4)

In order to find the Lifshitz spacetime, we decompose the connections as in [40, 42, 48],

A = b−1 db+ b−1
(

â(0) + a(0) + a(1)
)

b , A = b db−1 + b
(

ˆ̄a(0) + ā(0) + ā(1)
)

b−1 (3.5)

with the group element b = eρL0 . The connection thus splits into a sum of terms containing

â(0) and a(0) of order O (1), and a(1) of order o (1) (and similarly for the barred sector).1

The fixed background â(0) and the state-dependent fluctuations a(0) are assumed to satisfy

the equations of motion (3.4). To fix a variational principle, we take δAt = 0 = δAt

at asymptotic infinity ρ → ∞, where t and x are our boundary coordinates. With the

boundary term
k

4π

∫

∂M
tr
(

AtAx −AtAx

)

dt dx (3.6)

1Given a function f(ρ) that depends on the radial coordinate ρ, the notation f is of order O(1) means

limρ→∞ |f | < ∞, while f is of order o(1) means limρ→∞ f = 0.
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added to the bulk action (3.1), such a variational principle is well-posed [41]. The bound-

ary term (3.6) retains the time-reversal T of the action (3.1), under which the temporal

orientation of M is changed, t → −t, together with A → −Ā, Ā → −A, Ln → L−n

and Wn → W−n.

We take as a background that leads to the Lifshitz spacetime the connections

â(0) =
4

9
W+2 dt+ L+1 dx (3.7a)

ˆ̄a(0) = W−2 dt+ L−1 dx . (3.7b)

The specific numerical coefficients are chosen to cancel factors arising from traces. Note

that the background breaks the time-reversal T .

Using the standard definition of the metric in terms of the zuvielbein,

gµν =
1

2
tr (eµeν) where eµ =

ℓ

2

(

Aµ −Aµ

)

, (3.8)

leads to the geometry

ds2Lif2 = ℓ2
(

−e4ρ dt2 + dρ2 + e2ρ dx2
)

. (3.9)

We thus obtain as a classical configuration the (2+1)-dimensional Lifshitz spacetime (2.3)

with z = 2. The classical solution also involves the totally symmetric spin-3 gauge field:

φλµν =
1

3!
tr(e(λeµeν)) , (3.10)

where the parentheses denote symmetrization without further normalization. For our clas-

sical configuration, we find that the Lifshitz spacetime is supported by a nontrivial spin-3

background gauge field

φµνλ dxµ dxν dxλ = −5ℓ3

4
e4ρ dt (dx)2 . (3.11)

From now on we set ℓ = 1 to reduce clutter. The spin-3 gauge field is invariant under the

transformations generated by the Killing vector fields (2.4). We conclude that the classical

configuration (3.9), (3.11) respects the Lifshitz algebra lif(2,R).

The above construction of the Lifshitz spacetime is quite elementary and simple. A

potential advantage of the higher-spin realization of the Lifshitz spacetime is better control

of stability due to enlarged gauge symmetry. It is believed (though precise details are yet

to be understood better) that higher-spin gauge theory is a consistent unitary truncation

when arising from compactification of a higher-dimensional UV completion such as string

theory. If this were true, the higher-spin gauge symmetry severely constrains nonlinear

interactions. For example, in the p-form construction, the full-fledged dynamics would

include nonlinear interactions beyond the quadratic terms (2.6) and other spectator fields

must also have quadratic or higher-order interactions with the p-form fields. This is in

general not automatic and neutral scalar fields, if present, are the most delicate ones to

control. In contrast, the higher-spin theory does not face such issues since scalars that
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would arise from compactification are necessarily all charged under the higher-spin gauge

symmetry and therefore severely constrained.

Let us next examine the algebra of the symmetry currents for the Lifshitz system we

have constructed. To this end, we first need to impose boundary conditions consistent with

the background Lifshitz spacetime geometry. Note that we take the ansatz used in [42, 49],

which differs from the asymptotic behavior A − Â = O (1) used in [40, 43], where Â was

a fixed background connection. The fluctuations, which are already on-shell, turn out to

take the following form

a(0) =

(

8π

9k
tW(x)L0 −

π

2k
L(x)L−1

)

dx

+

(

− 32π

81k
t2W(x)W+2 +

8π

9k
tL(x)W+1 +

2π

9k
W(x)W−2

)

dx (3.12a)

ā(0) =

(

− 2π

k
tW(x)L0 −

π

2k
L(x)L+1

)

dx

+

(

− 2π

k
t2W(x)W−2 −

2π

k
tL(x)W−1 +

2π

9k
W(x)W+2

)

dx (3.12b)

a(1) = o (1) = ā(1) . (3.12c)

The set of all boundary functions L, L, W and W specify the set of all admissible fluctu-

ations about the Lifshitz background.

A remarkable feature of these boundary conditions is the polynomial time depen-

dence. In general, time-dependent boundary conditions lead to non-conservation of canon-

ical charges. However, in the next section, we will demonstrate that all t-dependence is

canceled in the boundary charge density and hence the canonical charges are conserved.

Below, we address some immediate consequences of the above boundary condi-

tions (3.12), which all point to the fact that consistency of the boundary conditions is

a highly non-trivial result.

Using (3.8) and (3.10), we also extract fluctuations of spin-2 and spin-3 fields. Up to the

sub-leading terms a(1) and ā(1), fluctuations of the spin-2 field take the form (for notational

simplification, we suppress the x-dependence of all component functions hereafter)

gtt = −e
4ρ (3.13a)

gtρ = 0 (3.13b)

gtx = t2e4ρ
(

πW +
4π

9
W

)

+
π

4
W +

π

9
W (3.13c)

gρρ = 1 (3.13d)

gρx = t

(

π

2
W +

2π

9
W

)

(3.13e)

gxx = e
2ρ − t4e4ρ

16π2

81
WW − t2e2ρ

π2

9
LL

+
π

6
L +

π

6
L+ t2

8π2

81
WW +

π2

36
e−2ρLL − π2

81
e−4ρWW , (3.13f)
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while fluctuations of the spin-3 field take the form

φtxx = −
5

12
e
4ρ + t2e4ρ

(

π2

3k2
L2 − 3π2

4k2
L2

)

+ e2ρ
(

π

3k
L − 3π

4k
L
)

+
π2

12k2
L2 − 3π2

16k2
L2

(3.14a)

φρxx = te2ρ
(

2π

3k
L − 3π

2k
L
)

+ t

(

π2

3k2
L2 − 3π2

4k2
L2

)

(3.14b)

φxxx = t4e4ρ
(

2π3

k3
L2W − 2π3

k3
L2W

)

+ t2e4ρ
(

9π

2k
W − 8π

9k
W

)

+ t2e2ρ
(

2π2

k2
LW − 2π2

k2
LW

)

+ t2
(

π3

k3
L2W − π3

k3
L2W

)

− π

2k
W +

π

2k
W

+ e−2ρ

(

π2

2k2
LW − π2

2k2
LW

)

+ e−4ρ

(

π3

8k3
L2W − π3

8k3
L2W

)

(3.14c)

φµνλ = 0 otherwise . (3.14d)

The boldfaced terms denote background geometry, while the remaining terms correspond

to state-dependent contributions to the spin-2 and spin-3 fields.

Note that the spin-3 field explicitly breaks the time-reversal symmetry T . In partic-

ular, there are no states in the theory which are time-reversal invariant. This should be

contrasted with AdS3, which admits an infinite family of static solutions, all of which are

time-reversal invariant.

It is also interesting to observe that, although the background geometry is Lifshitz,

the boundary conditions also admit spin-2 field configurations that have asymptotically

stronger divergent contributions in ρ than the background geometry. For example, it

is possible to have configurations whose gtt and gxx have the same asymptotic growth,

∼ e4ρ. Nevertheless, as we are going to show below, all the configurations allowed by

our boundary conditions correspond to finite energy excitations, in the sense that all the

canonical charges associated with these configurations are finite (as well as integrable and

conserved). It should be stressed that this feature crucially relies on higher-spin gauge

symmetry that acts nontrivially on the spin-2 metric field: the would-be infinite energy

density in Einstein-gravity for configurations of ∼ e4ρ asymptotic growth is canceled off by

the spin-3 gauge transformations in higher-spin gravity.

4 Asymptotic symmetry algebra and canonical charges

We now examine the ASA of the higher-spin theory and its canonical charges. The bulk

action (3.1) has gauge invariance of the form

δǫA = dǫ+ [A, ǫ] δǫA = dǫ +
[

A, ǫ
]

. (4.1)

Taking into account the decomposition (3.5) and the boundary conditions (3.12), the gauge

transformations that retain the boundary conditions are of the form

ǫ = b−1 [εL + εW + o (1)] b (4.2a)

ǫ = b [εL + εW + o (1)] b−1 . (4.2b)
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The rotated gauge functions εL, εL, εW and εW are further decomposable into fluctuation-

independent parts labeled by ǫL, ǫL, ǫW , ǫW , and fluctuation-dependent parts proportional

to L, L, W, W (for notational simplicity, we suppress the x-dependence of all the func-

tions involved):

εL = ǫLL+1 +

(

8π

9k
tWǫL − ǫ′L

)

L0 −
(

π

2k
LǫL − 1

2
ǫ′′L

)

L−1

−
(

32π

81k
t2WǫL − 8

9
tǫ′L

)

W+2 +

(

8π

9k
tLǫL − 8

9
tǫ′′L

)

W+1 +
2π

9k
WǫLW−2 (4.3a)

εW =

(

π

3k
tL′ǫW +

5π

6k
tLǫ′W − 1

6
tǫ

(3)
W

)

L+1

+

(

π2

k2
tL2ǫW − π

3k
tL′′ǫW − 7π

6k
tL′ǫ′W − 4π

3k
tLǫ′′W +

1

6
tǫ

(4)
W

)

L0 −
π

k
WǫWL−1

+

(

ǫW − 4π2

9k2
t2L2ǫW +

4π

27k
t2L′′ǫW +

14π

27k
t2L′ǫ′W +

16π

27k
t2Lǫ′′W − 2

27
t2ǫ

(4)
W

)

W+2

+

(

16π

9k
tWǫW − ǫ′W

)

W+1 −
(

π

k
LǫW − 1

2
ǫ′′W

)

W0

+

(

π

3k
L′ǫW +

5π

6k
Lǫ′W − 1

6
ǫ
(3)
W

)

W−1

+

(

π2

4k2
L2ǫW − π

12k
L′′ǫW − 7π

24k
L′ǫ′W − π

3k
Lǫ′′W +

1

24
ǫ
(4)
W

)

W−2 (4.3b)

and

εL = ǫLL−1 −
(

2π

k
tWǫL − ǫ ′L

)

L0 −
(

π

2k
LǫL − 1

2
ǫ ′′L

)

L+1

−
(

2π

k
t2WǫL − 2tǫ ′L

)

W−2 −
(

2π

k
tLǫL − 2tǫ ′′L

)

W−1 +
2π

9k
WǫLW+2 (4.3c)

εW =

(

3π

4k
tL′ǫW +

15π

8k
tLǫ ′W − 3

8
tǫ

(3)
W

)

L−1

+

(

− 9π2

4k2
tL2ǫW +

3π

4k
tL′′ǫW +

21π

8k
tL′ǫ ′W +

3π

k
tLǫ ′′W − 3

8
tǫ

(4)
W

)

L0 −
π

k
WǫWL+1

+

(

ǫW − 9π2

4k2
t2L2ǫW +

3π

4k
t2L′′ǫW +

21π

8k
t2L′ǫ ′W +

3π

k
t2Lǫ ′′W − 3

8
t2ǫ

(4)
W

)

W−2

−
(

4π

k
tWǫW − ǫ ′W

)

W−1 −
(

π

k
LǫW − 1

2
ǫ ′′W

)

W0

−
(

π

3k
L′ǫW +

5π

6k
Lǫ ′W − 1

6
ǫ
(3)
W

)

W+1

+

(

π2

4k2
L2ǫW − π

12k
L′′ǫW − 7π

24k
L′ǫ ′W − π

3k
Lǫ ′′W +

1

24
ǫ
(4)
W

)

W+2 . (4.3d)

The equations of motion assert that the canonical charges are given by the magnetic

field flux. Inserting the results above into the variations of the canonical charges (see

e.g. [50]),

δQ =
k

2π

∫

dx tr
(

ǫ δAx

)

δQ =
k

2π

∫

dx tr
(

ǫ δAx

)

(4.4)
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one finds two non-trivial, state-dependent, finite, conserved, integrable canonical asymp-

totic charges in each of the unbarred and barred sectors:

Q =

∫

dx (L(x)ǫL(x) +W(x)ǫW (x)) , (4.5a)

Q =

∫

dx
(

L(x)ǫL(x) +W(x)ǫW (x)
)

. (4.5b)

Note that the charge densities depend linearly on the fluctuation-independent part and

the fluctuation-dependent part, respectively. Note also that the charge densities are

time-independent despite the situation that the boundary conditions (3.12) are explic-

itly time-dependent. Typically, the Hamiltonian is part of the symmetry algebra and

transforms covariantly under the algebra. This renders the canonical charges generically

time-dependent. The Noether charges are a refinement of these canonical charges in which

all time-dependences are removed by linear transformation at each step of time evolution.

In this regard, our situation is exceptional since, for time-dependent boundary conditions,

both the canonical charges and the Noether charges are time-independent.

For completeness, one also needs to specify the global structure of x-space. We come

back to this issue in section 5. The canonical charges (4.5) also prove that our boundary

conditions (3.7), (3.12) are indeed consistent.

Using the shortcut (see e.g. [39, 40]),

{Q [ǫ] , •} := −δǫ(•) , (4.6)

we can determine the ASA by evaluating the variations of the charges. For these variations,

we find the result for the first, unbarred sl(3,R) gauge connection

δǫLL = L′ǫL + 2Lǫ′L − k

π
ǫ
(3)
L (4.7a)

δǫLW = W ′ǫL + 3Wǫ′L (4.7b)

δǫWL = 2W ′ǫW + 3Wǫ′W (4.7c)

δǫWW =

(

3π

k
LL′ − 3

8
L(3)

)

ǫW +

(

3π

k
L2 − 27

16
L′′

)

ǫ′W

− 45

16
L′ǫ′′W − 15

8
Lǫ(3)W +

3k

16π
ǫ
(5)
W . (4.7d)

Here, the superscript (n) refers to n-th derivative with respect to the argument of

the functions.

Interestingly, we also find identical expressions for the second, barred sl(3,R) gauge

connection with the replacement ǫ → ǫ , L → L and W → W . This means that, although

the background, boundary conditions and the admissible gauge functions are asymmetric

between the unbarred and the barred sectors, the resulting ASA, and hence the canon-

ical charges, exhibit exchange symmetry under the time-reversal T . We recognize the

ASA, (4.7) plus its barred sector, as the classical W3 ⊕ W3 extended conformal algebra

(see e.g. [51] and appendix B). It is remarkable that we have two identical copies of the
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W3 extended conformal algebra despite the fact that the Lifshitz spacetime lacks (1 + 1)-

dimensional Lorentz or boost invariance as well as the time-reversal symmetry. Recalling

the relation between level k, Newton constant G3, and curvature radius ℓ, (3.3), as well

as the conventions for the generator L0, the central charges of the extended conformal

algebra reads

c = c = 12k tr (L0L0) = 24k =
3ℓ

2G3
. (4.8)

The same value of the central charge follows for the AdS3 Einstein gravity [52] as well as

AdS3 higher-spin gravity [39, 40], presumably reflecting the fact that all these theories do

not have propagating bulk degrees of freedom.

5 AdS isometries of the Lifshitz background

As stressed, the same ASA, W3⊕W3 extended conformal algebra, with precisely the central

charges (4.8), arose in spin-3 gravity with the isotropic, AdS3 boundary conditions [39, 40].

Thus, it is imperative to verify that our boundary conditions are not merely a complicated

alternative route for imposing the same asymptotic AdS3 boundary conditions. To check

this, we now examine whether we have correctly identified the ground state of the theory.

In particular, if we have identified the holographic dictionary between higher-spin grav-

ity and CFT correctly, the symmetries of individual states should agree on both sides of the

duality. On the CFT side, Ward identities relate symmetries of a state to generators which

annihilate the state. On the bulk side, such symmetries are given by gauge transformations

which leave the state invariant and, adapting the language of gravity, are called isometries.

It is important not to confuse isometries, which are symmetries of an individual state in

a gravitational theory, with the symmetries of the theory as a whole, which often relate

distinct states. In particular, the number of isometries of any particular state is always

finite, while the symmetries of a theory can be much bigger and could (and in our case do)

enhance á la Brown-Henneaux to infinite dimensional algebras.

The ground state of the dual CFT2 ought to be invariant under the wedge algebra,

sl(3,R)⊕sl(3,R), and thus annihilated by the generators L0,L±1,W0,W±1,W±2 and their

barred counterparts. For consistency, the Lifshitz ground state (3.9), (3.11) on the higher-

spin gravity side must also be sl(3,R)⊕ sl(3,R) invariant.

The gauge variations that leave (3.7) and (3.12) invariant are included in the gauge

transformations (4.3) that keep the background and the boundary conditions form-

invariant. In other words, to identify the isometries, we demand now

δǫA = dǫ+ [A, ǫ] = 0 δǫA = dǫ +
[

A, ǫ
]

= 0 . (5.1)

This means variations of the form (4.7) are not allowed anymore and we get restrictions
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for the functions ǫL, ǫW , ǫL and ǫW of the gauge generators (4.3). These are of the form

0 = −k

π
ǫ
(3)
L (x) + L′(x)ǫL(x) + 2L(x)ǫ′L(x) + 2W ′(x)ǫW (x) + 3W(x)ǫ′W (x) (5.2a)

0 =
k

π
ǫ
(5)
W (x) +

16π

k
L(x)L′(x)ǫW (x)− 2L(3)(x)ǫW (x) +

16π

k
L(x)2ǫ′W (x)− 9L′′(x)ǫ′W (x)

− 15L′(x)ǫ′′W (x)− 10L(x)ǫ(3)W (x) +
16

3
W ′(x)ǫL(x) + 16W(x)ǫ′L(x) (5.2b)

and are isomorphic for the barred sector after the replacement ǫ → ǫ , L → L and W →W .

Since they are isomorphic, we shall only analyze the unbarred sector hereafter.

We restrict first to constant-valued L and set W = 0. Under this restriction, (5.2)

decouple ǫL and ǫW , leading to

0 = ǫ
(3)
L (x)− 2π

k
Lǫ′L(x) (5.3a)

0 = ǫ
(5)
W (x)− 10π

k
Lǫ(3)W (x) +

16π2

k2
L2ǫ′W (x). (5.3b)

Depending on the sign of L, the solution comes in three classes. For L > 0, the solution

belongs to the hyperbolic class

ǫL(x) =
1

∑

n=−1

ǫLne
nωx ǫW (x) =

2
∑

n=−2

ǫWne
nωx. (5.4a)

For L < 0, the solution belongs to the trigonometric class

ǫL(x) =

1
∑

n=−1

ǫLn[cos(nωx+ ϕL)] ǫW (x) =

2
∑

n=−2

ǫWn[cos(nωx+ ϕW )] (5.4b)

where ω =
√

2πL/k. For L = 0 = W, the solution belongs to the rational class

ǫL(x) =

1
∑

n=−1

ǫLnx
n+1 ǫW (x) =

2
∑

n=−2

ǫWnx
n+2 . (5.5)

Together with the barred sector, they form 16 linearly independent solutions to the isometry

conditions (5.1). Plugging these variations into the formulas for the charges, (4.5), we find

that these isometries correspond to the modes L0,±1, L0,±1, W0,±1,±2 andW0,±1,±2,
2 which

generate exactly the wedge algebra sl(3,R)⊕sl(3,R) of our ASA W3⊕W3. See again (B.1).

Which class of L corresponds to the Lifshitz vacuum depends on the global structure

of the x-space. Hereafter, we shall assume that x takes values in R with no periodicity

built in, so that the dual CFT2 is defined on a plane and not on a cylinder. In that

case, the hyperbolic and trigonometric classes above that arise for L 6= 0 have essential

singularities at |x| → ∞. Thus, the rational class (5.5) is the only possible choice. In this

2Fields with weight h are expanded as φ(z) =
∑

n∈Z
φnz

−n−h. The quantity L(x) is of weight 2 and

W(x) is of weight 3.
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class, the Lifshitz background (3.9), (3.11) is the unique sl(3,R) ⊕ sl(3,R) invariant state

in the theory on the plane and therefore corresponds to the ground-state on the CFT2 side.

We recognize that the z = 2 Lifshitz isometries (2.4) of our vacuum state are nothing

but restriction to the 8 generators (5.5),

ξH : ǫW−2 =
4

9
ǫW−2 = 1 remaining ǫLn, ǫWn, ǫLn, ǫWn = 0 (5.6a)

ξP : ǫL−1 = 1 ǫL−1 = 1 remaining ǫLn, ǫWn, ǫLn, ǫWn = 0 (5.6b)

ξD : ǫL0 = −1 ǫL0 = −1 remaining ǫLn, ǫWn, ǫLn, ǫWn = 0, (5.6c)

by virtue of the relation between gauge symmetries and diffeomorphisms, ǫ = ξµAµ, ǫ =

ξµAµ [37]. The gauge parameters ǫW−2, ǫL−1 and ǫL0 generate the fluctuations W−2, L−1

and L0, respectively. With the identification W−2 ↔ H, L−1 ↔ P, L0 ↔ D and the use

of (B.1), it becomes obvious that, with the barred sector included, we have the isometry

subalgebra lif(2,R).

So, the situation goes as follows. While one might naively expect due to diffeomorphism

invariance that the Lifshitz spacetime should be invariant just under the Lifshitz isometry

algebra lif(2,R) (2.5), we actually find an enhancement of it to the full wedge algebra

sl(3,R) ⊕ sl(3,R). Crucially, the idea is that such enhancement is purely a phenomenon

of higher-spin gauge symmetry: the higher spin gauge transformations mix the spin-3

background with the spin-2 metric background, and consequently the Lifshitz invariance

gets enhanced to the full spin-3 higher-spin invariance.

It is worth noting that the isometry conditions (5.2) admit no solutions that have

only the Lifshitz isometries (5.6). Thus, any state in our theory must be either more

symmetric (like our z = 2 Lifshitz vacuum) or less symmetric. A simple class of examples

for states with less isometries than the vacuum (but more than Lifshitz isometries) are

configurations with fluctuations only in one sector, L = 0 = W and ǫLn = ǫWn = 0 which

are invariant under a single sl(3,R) (and similarly for configurations with L = 0 = W
and ǫLn = ǫWn = 0). A simple class of examples for states with less isometries than

Lifshitz are solutions with constant L 6= 0 and W 6= 0. Restricting ǫL(x) and ǫW (x) to

the modes (5.5), we only get isometries for nonzero ǫL−1 and nonzero ǫW−2 whereas the

other modes have to vanish. The situation is the same when either L or W vanishes (for

W = 0 this can be seen from (5.4), where only the constant modes are finite polynomials).

The remaining two nonzero modes generate the commuting subalgebra [H,P] = 0 (with

the identifications given above) of sl(3,R). We expect some of these states are black holes

and conical surpluses, but we have not investigated them yet.

Although the isometry algebras are the same, the Lifshitz background and the AdS3
background are different configurations, not related in any equivalent ways, such as regular

gauge transformations. One way of showing this follows from the fact that the Lifshitz

background is not invariant under the time-reversal T . In terms of the connections, this is

evident from (3.7). In terms of higher spin fields, this is evident from (3.11). By contrast,

the AdS3 background is maximally symmetric and conserves T . Furthermore, the theories
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themselves differ, as our Lifshitz boundary conditions are not T -invariant, while the usual

AdS boundary conditions are.

Another way of showing that we are not describing AdS3 holography in disguise is

to try to explicitly construct a gauge transformation between the two theories. In other

words, we want to find g and g that fulfill

AAdS = g−1ALif g + g−1 dg (5.7a)

AAdS = g−1ALif g + g−1 dg, (5.7b)

where the AdS3 is given by

AAdS = b−1

(

L+1 +
2π

k
LAdS(x

+)L−1 −
π

2k
WAdS(x

+)W−2

)

b dx+ + b−1 db (5.8a)

AAdS = −b

(

L−1 +
2π

k
LAdS(x

−)L+1 −
π

2k
WAdS(x

−)W+2

)

b−1 dx− + b db−1. (5.8b)

By ALif and ALif we mean our usual connection given by (3.7) and (3.12) (with the Lif

subscript added for clarity). To show equivalence we need to identify

LLif(x) ⇔ LAdS(x+ t) LLif(x) ⇔LAdS(x− t) (5.9a)

WLif(x) ⇔ WAdS(x+ t) WLif(x) ⇔WAdS(x− t). (5.9b)

A change of coordinates which transforms both x+ = x+t and x− = x−t simultaneously to

x would require a singular diffeomorphism, and thus is not allowed. We therefore conclude

that we are looking at a different theory than AdS3. This also corroborates the fact that

the Lifshitz critical point does not preserve the time-reversal T .

In conclusion, while the z = 2 Lifshitz isometries (2.4) are part of the isometries (5.5) of

our Lifshitz vacuum, they get enhanced to the same set of isometries as in AdS3, sl(3,R)⊕
sl(3,R), due to the presence of a non-trivial spin-3 background field (3.11).

6 Discussion

In this paper, we established nontrivial results regarding a higher-spin realization of Lif-

shitz critical system in (1 + 1) dimensions. We showed that, in higher-spin realizations,

the anisotropic Lifshitz critical point actually exhibits isotropic and extended conformal

invariance. Below, we highlight implications as well as several important issues for fu-

ture studies.

Firstly, it is interesting that higher-spin gravity offers a simple holographic realization

of the Lifshitz spacetime. The higher-spin approach has advantages as compared to pre-

viously studied proposals. In particular, higher-spin theory, after Higgsing, is believed to

be UV-completed to string theory (though precise details are not yet understood). Ex-

tending our construction to matter-coupled and supersymmetric higher-spin theories in

(2 + 1) dimensions [53] and to theories in higher dimensions is an interesting direction for

future study. Explicit construction of dual Lifshitz field theory in (1 + 1) dimensions and

realization of the W3 ⊕W3 symmetry algebra is much sought for.
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Secondly, it would be interesting to reassess various confusing results concerning the

Lifshitz spacetime in Einstein gravity from the viewpoint of the higher-spin gauge sym-

metry. More specifically, Lifshitz holography seemed to lead to pathologies such as naked

singularities and difficulties with embedding into string theory [54, 55]. These issues may

be absent in higher-spin realizations of Lifshitz spacetimes. Foremost, the metric is not

higher-spin gauge invariant. For example, higher-spin gauge transformations can change

the number of event horizons extracted from the metric [56]. While higher-spin gravity

in three dimensions is a topological theory, the topological invariants are not those of the

manifold endowed with the metric induced by the spin-2 field. Rather, we should consider

holonomies, which contain the gauge invariant information and can be used to determine

global structures such as event horizons and singularities [57]. It is perhaps not surprising

that the obvious isometries of the Lifshitz metric (2.3) can get (and indeed are) extended

to the isometries of AdS3 within spin-3 gravity.

Thirdly, we leave for future works the construction of the CFT2 holographically dual

to the Lifshitz background (3.7) with the boundary conditions (3.12). The asymptotic

symmetry algebra W3 ⊕W3 (see section 4) and its central charge turn out isomorphic to

those associated with spin-3 gravity in asymptotically AdS3 spacetime. We pointed out

that the two systems are still distinguishable by the time-reversal T . Related to this, we

note that the CFT dual to the Lifshitz theory need not be modular invariant. As such, the

presence of two left-moving sectors does not seem to pose a problem as it would for a theory

defined on a torus. Moreover, the allowed classical saddle points could differ between the

two theories.

Fourthly, an exhaustive classification of admissible boundary conditions needs to be

done. In addition to the boundary conditions discussed in section 3, there is also a relaxed

set of consistent boundary conditions for the same background (3.7). These boundary

conditions result in four towers of asymptotic charges in each of the unbarred and barred

sectors and are explicitly shown in [49]. Unfortunately, the resulting asymptotic symme-

try algebra is quite complicated. While the number of charges suggests that the algebra

might be the Polyakov-Bershadsky algebra W(2)
3 ⊕ W(2)

3 , verifying this conjecture would

require a complicated non-linear field redefinition which we have not yet succeeded in find-

ing. It is also possible to consider mixed boundary conditions, with the unbarred sector

having the strict boundary conditions of section 3 and the barred sector having looser

boundary conditions (or vice-versa), as both boundary conditions are based on the same

background (3.7).

We close with a discussion concerning the recent work of [43]. The authors analyzed a

set of higher spin boundary conditions leading to a Lifshitz sub-algebra within the asymp-

totic symmetry algebra, and presented its own set of puzzles. Their charges are finite but

not conserved. Note that the non-conservation does not invalidate the symmetry algebra,

since it can arise from the choice of a different charge basis, as explained in [59]. Inter-

estingly, their boundary condition preserving gauge transformations, eqs. (3.31) and (3.32)

in [43], also lead to a W3 algebra, as pointed out in [60]. In fact, their field configurations

turn out to be a special case of a general class of solutions of spin-3 gravity in the presence

of chemical potentials [61, 62]. In the conventions of [59] [see their eqs. (3.7)-(3.11)] the

relevant choice of chemical potentials is η± = 1 and ξ± = 0.
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Built upon their work and ours, we may put forth a conjecture for generic higher-spin

Lifshitz holography that the asymptotic symmetry algebra gets ubiquitously enhanced

from the infinite-dimensional Lifshitz algebra, for instance the one presented in appendix

B of [58], to a class of W-algebras. Our present work can be viewed as a concrete realization

of the conjecture for a specific case of spin-3 gravity.
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A Spin-3 generators and their traces

The sl(3,R) algebra

[Ln, Lm] = (n−m) Ln+m (A.1a)

[Ln, Wm] = (2n−m) Wn+m (A.1b)

[Wn, Wm] = σ (n−m)(2n2 + 2m2 − nm− 8) Ln+m (A.1c)

is generated by the following representation (with σ = − 3
16)

L+1 =







0 0 0

−
√
2 0 0

0 −
√
2 0






L0 =







1 0 0

0 0 0

0 0 −1






L−1 =







0
√
2 0

0 0
√
2

0 0 0






(A.2a)

W+2 =







0 0 0

0 0 0

3 0 0






W+1 =







0 0 0

− 3
2
√
2

0 0

0 3
2
√
2
0






W0 =







1
2 0 0

0 −1 0

0 0 1
2






(A.2b)

W−1 =







0 3
2
√
2

0

0 0 − 3
2
√
2

0 0 0






W−2 =







0 0 −3

0 0 0

0 0 0






. (A.2c)
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The non-vanishing traces of bi-linears in generators are listed below.

tr(L+1L−1) = −4 tr(L0L0) = 2 (A.3a)

tr(W+2W−2) = 9 tr(W+1W−1) = −9

4
tr(W0W0) =

3

2
(A.3b)

B W3 algebra at finite central charge

The variation (4.7) derived in the main text translates into corresponding Poisson brack-

ets (4.6) that generate the ASA. Replacing Poisson brackets by commutators and introduc-

ing modes for the generators then leads to the ASA in the classical (large central charge)

limit. For finite values of the central charge, normal ordering effects shift some of the

structure functions in the algebra. The final result of this analysis is the W3 algebra at

finite central charge (first introduced in [63] and reviewed in [64])

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n) δn+m, 0 (B.1a)

[Ln, Wm] = (2n−m)Wn+m (B.1b)

[Wn, Wm] = (n−m)(2n2 + 2m2 − nm− 8)Ln+m +
c

12
(n2 − 4)(n3 − n) δn+m, 0

+
96

c+ 22
5

(n−m) Λn+m (B.1c)

where

Λn =
∑

p∈Z
: (Ln−pLp) : −

3

10
(n+ 3)(n+ 2)Ln . (B.2)

For the corresponding analysis in the AdS case, see [39, 40]. The generators split into the

towers of Virasoro generators Ln and of spin-3 generators Wn with integer n. For large

values of the central charge c, the quantum shift of 22
5 in the denominator in the last line

of (B.1) is negligible. The wedge algebra sl(3,R)⊕ sl(3,R) [see (A.1)] is recovered by first

restricting to the wedge modes L0,±1 and W0,±1,±2 and then taking the c → ∞ limit.
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