
J
H
E
P
0
8
(
2
0
1
3
)
1
3
7

Published for SISSA by Springer

Received: June 6, 2013

Accepted: August 3, 2013

Published: August 30, 2013

Quarter-BPS AdS5 solutions in M-theory with a T 2

bundle over a Riemann surface

Ibrahima Bah

Institut de Physique Théorique, CEA/ Saclay,
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The general system presented, provides a unified description of all known AdS5 solutions

in M-theory. These systems are governed by two functions, one that corresponds to the

conformal factor of the Riemann surface and another that describes the T 2 fibration. We

find a special set of solutions that can be organized into two classes. In the first one,

solutions are specified by the conformal factor of the Riemann surface which satisfies a

warped generalization of the SU(∞) Toda equation. The system in the second class requires

the Riemann surface to be S2, H2 or T 2. Class one contains the M-theory AdS5 solutions

of Lin, Lunin and Maldacena; the solutions of Maldacena and Núñez; the solutions of

Gauntlett, Martelli, Sparks and Waldram; and the eleven-dimensional uplift of the Yp,q
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author. Within each class there are new solutions that will be studied in a companion
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1 Introduction

Five-branes in M-theory are very useful for studying and describing superconformal field

theories (SCFT’s) in various dimensions. This story started in pre AdS/CFT [1] days with

Witten’s description [2] of the strong coupling limit of N = 2 quiver gauge theories as a

M5-brane wrapping a holomorphic curve of R3 × S1 in M-theory. In more recent times,

the moduli space of a large class of N = 2 quiver gauge theories were studied by extending

Witten’s descriptions to M5-branes wrapping Riemann surface with defects [3]. Building on

this, Gaiotto [4] showed that strongly coupled and isolated N = 2 SCFT’s are classified by

M5-branes wrapping punctured Riemann surfaces embedded in a four-dimensional subspace

of M-theory. Constructions from [3, 4] are typically called theories of class S due to their

six-dimensional origin. They do not admit known Lagranian descriptions but a great

deal of their physical properties can be deduced from the constructions. Different N = 2

SCFT’s are labelled by the genus of the two-dimensional surface and the types of punctures

present. Exactly marginal couplings of N = 2 SCFT’s correspond to relative positions of
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punctures, and therefore, the rich S-duality of N = 2 SCFT’s is described by the various

ways of bringing punctures close to each other. Gaiotto’s classification has lead to intense

activity which continues to elucidate the properties of N = 2 SCFT’s; here is an incomplete

list of references [5–17].

The wonders of M5-branes continue with the description of a class of three-dimensional

N = 2 SCFT’s [18–20] from wrapping M5-branes on hyperbolic three-manifolds such as

knot complements. Recently a principle of c-extremization, a tool for determining R-

symmetry, in two-dimensional N = (0, 2) SCFT’s [21, 22] has been uncovered by studying

branes wrapped on compact manifolds.1

Gaiotto’s classification was further validated by using AdS/CFT. In [24] it was shown

that the gravity duals to the N = 2 constructions can be described by using Lin, Lunin

and Maldacena (LLM) AdS5 geometries [25] in M-theory.2 The main question of interest

in this paper is: does Gaiotto’s classification of N = 2 SCFT’s extend to N = 1 SCFT’s?3

Our approach to this question is to study how LLM AdS5 solutions, which preserve eight

supercharges, can be generalized to AdS5 systems in M-theory that preserve four super-

charges. To this end, we classify warped AdS5 systems and solutions in M-theory where

the internal six-dimensional manifold is a T 2 bundle over a closed Riemann surface and

two interval directions. Next, we provide motivation for this approach by reviewing some

of the milestones in addressing this question, and what we have learned from them.

First we review some field theoretic approaches toN = 1 extensions of Gaiotto theories.

The authors of [38], for example, considered mass deformations4 of Gaiotto theories that

break N = 2 to N = 1. It was shown that such deformations lead to infinite classes of new

isolated N = 1 SCFT’s which admit generalized versions of Seiberg dualities inherited from

S-duality. In [39] direct constructions of new N = 1 quiver gauge theories from Gaiotto

theories were considered. By using a-maximization [40] and various tools for analysing

N = 1 SCFT’s, the necessary conditions for constructing new and isolated N = 1 SCFT’s

from Gaiotto theories were discussed. These theories do not, generically, describe the IR

dynamics of any known N = 1 deformations of class S theories as in [38]. Both works hint

at the existence of N = 1 structures that generalize Gaiotto’s classification.

In [41] the IR limit of N = 2 SCFT’s, describing M5-branes wrapped on genus g > 1

Riemann surfaces without punctures, with N = 1 mass deformations were studied in detail.

Some time ago, the gravity duals of such configurations of M5-branes were described by

1The gravity dual for c-extremization was described in [23].
2The LLM system describes the most general half-BPS AdS5 solution in M-theory; it was re-derived

in [26]. A possible loophole on its generality was plugged in [27, 28]. Nonlinear KK reductions of LLM

geometries was presented in [29].
3It is important to note that a similar question had been asked in pre AdS/CFT days. Following Witten’s

description of N = 2 theories using M5-branes, there was an intense and interesting program that tried to

describe N = 1 field theories by using a M5-brane wrapped on a holomorphic curve in a six dimensional

submanifold of M-theory. Seiberg’s description of SQCD [30] was reproduced in [31] as the dynamics of

a M5-brane wrapping a holomorphic curve. An incomplete list of references is [32–36]. In more recent

times the authors of [37] described some class S theories with N = 1 supersymmetry by using holomorphic

curves.
4Mass deformation refers to giving masses to chiral adjoints in N = 2 vector multiplets. Weakly coupled

vector multiplets are present at various S-dual corners.
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Maldacena and Núñez (MN) in [42]. The holographic RG flows fromM5-branes on Riemann

surfaces were discussed by using seven-dimensional gauged supergravity [43], which uplifts

to M-theory [44, 45]. The authors of [42] identified two IR AdS5 fixed points, one preserving

eight supercharges (MN2) and the other preserving four supercharges (MN1). The field

theory dual to the MN2 geometry is the class S theory corresponding to the genus g > 1

Riemann surface without punctures [24]. In [41] it is argued that the field theory dual to

the MN1 solution is the mass deformed theory dual to MN2. This was the first extension

of class S theories to N = 1 by using gravity.

The RG flows of [42] have more than two fixed points. In [46, 47] (B3W) the authors

describe a one-parameter family of quarter-BPS AdS5 solutions in M-theory that emerge

as IR fixed points of a stack of M5-branes wrapping a Riemann surface. Furthermore, by

using the tools in [39], the field theory duals were constructed by using building blocks in

Gaiotto’s constructions. These theories do not emerge from known deformations of N = 2

class S theories. The difference between the solutions comes from how supersymmetry

is preserved by the M5-branes’ world-volume theory. Now we review this aspect of these

solutions as they provide principle guidance on how we should extend LLM to N = 1.

When branes of any type are wrapped on curved manifolds, supersymmetry of the

world volume theory is broken. Some of the supercharges can be preserved if the theory is

topologically twisted [48, 49]. The main problem is that supersymmetry for field theories

requires globally defined constant spinors that are associated to the conserved supercharges.

However on curved manifolds this is hard to come by since the supercharges will satisfies

a non-trivial differential equation which involves the covariant derivative. When a field

theory is topologically twisted, a background gauge field, valued in the R-symmetry, is

turned on and tuned to cancel the contribution of the spin connection in the covariant

derivative acting on the supercharges. This latter condition is equivalent to tuning the

fluxes from the gauge fields to cancel the curvature two form. The number of ways this

can be done enumerates the possible supersymmetric configurations. The MN solutions

are obtained by considering topological twists of the field theory living on M5-branes [42].

The world volume theory of a stack of N M5-branes is the AN−1 (2, 0) six-dimensional

SCFT. The theory preserves 16 supercharges and has an SO(5) R-symmetry group. When

we wrap M5-branes on a Riemann surface, we can preserve supersymmetry by consider-

ing the possible twists of (2, 0) SCFT. Since the spin connection of a two-dimensional

Riemann surface is SO(2)-valued, we need to turn on a U(1)-valued gauge field from the

R-symmetry [42]. The rank of SO(5) is two, therefore we have two-dimensional space of

gauge fields to choose from. Tuning the sum of fluxes from the two Cartan U(1)’s to cancel

the curvature allows for a one-parameter family of supersymmetric configurations which

generically preserve four supercharges [42, 46, 47]. From the point of view of the M5-branes

in M-theory, the Riemann surface is embedded into a Calabi-Yau three-fold and the local

geometry is two line bundles over the Riemann surface. The vanishing of the first Chern

class for the CY3 fixes the sum of the degrees of the line bundles to the curvature of the

Riemann surface [46, 47]. At the end of the day, the SO(5) R-symmetry group is broken to

U(1)2; from M-theory point of view, these U(1)’s come from the phases of the line bundles.

One linear combination is a flavor U(1) for the field theory.
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The solutions of B3W are warped product of AdS5 × Cg × S̃4 where Cg is a Riemann

surface of genus g and S̃4 is a squashed four-sphere with U(1)2 isometry. The circles are

generically fibred over Cg. These isometries corrrespond to the Cartan U(1)’s from the

broken SO(5) R-symmetry, and the phases of the line bundles. The sum of the degrees

of the circle fibrations is fixed to 2(g − 1) by the twist condition. The main result of

B3W is that each supersymmetric configuration from the topological twists flows to an

AdS5 geometry. When one of the line bundles is trivial, i.e. the degree of one of the circle

fibration vanishes, the system preserves eight supercharges and the dual field theory has

N = 2 supersymmetry. The isometry of S̃4 enhances to U(1) × SU(2) which corresponds

to the N = 2 R-symmetry. The solution is MN2 and the field theory is from Gaiotto’s

constructions. For this case, the Riemann surface is embedded into a four-dimensional space

as it is expected for N = 2 class S theories. When the degrees of the two fibrations are

equal, S̃4 also has a U(1)×SU(2) isometry but the solution preserves four supercharges. The

SU(2) is a flavor symmetry and the solution is MN1. Modulo the MN solutions, we have a

one-parameter family of AdS5×Cg describing the different ways we can supersymmetrically

wrap M5-branes on a Riemann surface. The dual N = 1 SCFT’s have a U(1) flavor

symmetry in addition to the U(1) R-symmetry.

An important aspect of B3W solutions is that the relative warping between the AdS5
and Cg is constant. This reflects the fact that the geometry emerges solely from the wrapped

M5-branes whose world-volume in the UV is the Minkowski slice in AdS5 and Cg. The

RG flow can only induce a radially dependent relative warp factor between these two

subspaces. This pictures changes if there are other branes localized on the Riemann surface.

The radial RG coordinate for such branes would be different, and therefore the relative

warping between the Minkowski and the Riemann surface will generically depend on other

coordinates. This important feature of these solutions is observed in the description of

gravity duals of N = 2 SCFT’s [24].

Gaiotto and Maldacena (GM) use the AdS5 LLM system in M-theory [25] to describe

gravity duals of N = 2 field theories from M5-branes on punctured Riemann surface [24].

The internal geometry of LLM is Cg× S̃
4. The isometries of the internal S̃4 is U(1)×SU(2)

corresponding to the R-symmetry of the dual field theories. The circle is fibred over Cg
with degree one. Locally, the metric on the Riemann surface is conformally flat. The

conformal factor depends on the coordinates of the Riemann surface and on the interval

of the S̃4. It is the single function that determines solutions and it satisfies the SU(∞)

Toda equation. When the conformal factor is separable, the Toda equation reduces to the

Liouville equation for the part that depends on the Riemann surface coordinates. The

two-dimensional geometries obtained from such equation are the constant curvature ones,

H2, T
2 and S2. The only regular solution is the one with H2, which can be replaced with a

genus g > 1 closed Riemann surface by modding with a Fuchsian subgroup. This solutions

is MN2.

From the point of view of Gravity, adding punctures on Cg corresponds to adding lo-

calized sources on the Riemann surface in MN2 [24]. In the probe approximation, these

sources are M5-branes extended along AdS5 × S1 and sitting at a point where the S2

shrinks as to preserve the N = 2 R-symmetry [24]. When these probes are backreacted,
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the geometry near a puncture should be an AdS7 × S4 throat. The conformal factor in

LLM must interpolate between MN2 to AdS7 × S4. When the Riemann surface admits

a translation direction or U(1) isometry, the SU(∞) Toda equation can be mapped to an

axially symmetric three-dimensional electrostatic problem [25, 50]. The solutions of this

latter problem are completely determined by boundary conditions, moreover they satisfy

the superposition principle [24]. The MN2 solution and the AdS7 × S4 solution will cor-

respond to different choices of boundary conditions. The interpolating solution is trivially

obtained by superposition. GM described how to map choices of punctures to boundary

conditions, thereby providing explicit constructions for gravity duals of Gaiotto theories.

Our goal is to understand how this construction by GM can be generalized to quarter-

BPS systems. The first step is to find the generalization of MN2 solutions, i.e. all quarter-

BPS systems of M5-branes wrapped on a Riemann surface without punctures. These are

exactly the B3W solutions. The next step is to find the Toda like structure that can

describe interpolating solutions between B3W to AdS7 × S4. We expect such system to

preserve the same isometries as B3W similar to LLM and MN2. The internal geometry

should be a T 2 bundle over Cg with two intervals. Naively we expect the conformal factor

of the Riemann surface to depend on interval coordinates similar to LLM. In this paper we

classify AdS5 systems of this type in M-theory.

In section 2 we review the general conditions for supersymmetric AdS5 solutions in

M-theory as described in [51]. We reduce the system on the most general ansatz for

a T 2 bundle over a Riemann surface. We use the equations to refine the ansatz and

find coordinates that trivialize many conditions. In section 2.4 we summarize the main

results of this exercise, i.e. we write the most general metric and the necessary system of

equations. The eager reader can jump to this section and review details later. The residual

equations are not readily solvable. In section 3 we discuss cases when we can solve the

system of equations. The general metric for solvable systems is described in section 3.1.

In section 4 we discuss two classes of solutions, one that includes the MN1 solutions and

a set of solutions described in [51], and another that includes the LLM system. The

solutions in these classes are similar to LLM in that they are governed by a single function

corresponding to the conformal factor of the Riemann surface. This function in both cases

satisfies a warped generalization of the SU(∞) Toda equation. This equation plays the

same role for MN1 as does the Toda equation for MN2 in LLM. We expect it to interpolate

between MN1 to AdS7 × S4. The general metric for these classes are (4.17) and (4.37),

respectively.

In section 5 we describe a class of solution where the Riemann surface is always one

of the constant curvature type. The left over system of equations are on the interval

directions. There are many more solutions in this class that generalize the B3W solutions.

We present a general formalism for writing them and work out an example that includes

B3W. The general metric for this class is (5.9). Finally in section 6 we provide a summary

of results and discuss the next step in this programme. The reader is free to jump to this

section and return to the body for details.

The work presented here focuses on understanding the AdS5 systems in M-theory and

how to solve them. In [52] we perform a more careful study of the solutions found here.
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We discuss regularity conditions, compute the central charge for the dual theories and the

four-form flux that supports the solutions. We will also discuss the underlying M5-branes

possible punctures on the Riemann surface.

2 AdS5 in M-theory

2.1 Supersymmetric AdS5 systems in M-theory

The necessary and sufficient conditions for supersymmetric AdS5 solutions in M-theory are

given in [51] (GMSW system). We review this general system and then discuss how we

plan to use it. The metric is

L−4/3ds211 = H−1/3

[
ds2AdS5

+
1

9
cos2(ζ) (dψ + ρ)2 +Hds2(M4) +

Hdy2

cos2(ζ)

]
. (2.1)

The single length scale of the system, L, is factored out. We will set it to one and turn

it on when needed by multiplying the overall metric by L4/3. The metric ds2AdS5
has

unit radius. Solutions are determined by the four-dimensional space M4. It corresponds

to a one-parameter family of Kähler metrics with complex structure, Ω, and symplectic

structure, J , that satisfy

d4Ω = (iρ− d4 log (cos(ζ))) ∧ Ω (2.2)

∂yΩ =

(
−

3

2y
tan2(ζ)− ∂y log (cos(ζ))

)
Ω (2.3)

∂ψΩ = iΩ. (2.4)

and

d4J = 0 (2.5)

∂yJ = −
2

3
yd4ρ (2.6)

∂ψJ = 0 (2.7)

where d4 is the exterior derivative on M4. The single function, ζ, that appears in the

metric, depends on y and the coordinates on the Kähler base, but not on ψ. This latter

direction parametrizes a U(1) isometry. The warp factor H is given by

H =
1

4y2
(
1− cos2(ζ)

)
. (2.8)

The four-form flux is given once a solution is fixed

L−2F4 = − (∂yH) V̂ ol4 + sec2(ζ) (∗4d4H) ∧ dy −
1

9
cos4(ζ) (∗4∂yρ) ∧ (dψ + ρ)

+

[
1

9
cos2(ζ) ∗4 d4ρ−

4

3
HJ

]
∧ dy ∧ (dψ + ρ) .

(2.9)

The system of equations above implies the Bianchi identity and equation of motion:

d (∗11F4) = dF4 = 0. (2.10)
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The Hodge star operators on the four-dimensional and eleven-dimensional spaces are ∗4
and ∗11, respectively.

Our goal is to classify solutions of this system where the internal geometry contains

a T 2 bundle on a Riemann surface. The eleven-dimensional metric already has a U(1)

isometry, the ψ-circle. Therefore we can impose one more on the Kähler base. In the

next subsections, we reduce the system and study the consequences of the U(1) in the

base. Throughout this paper, we will not worry about the flux since it is determined once

solutions are known. We focus solely on finding solutions.

2.2 Ansatz for Kähler base

We want to impose a U(1) isometry on the base,M4. At fixed y,M4 is Kähler. We consider

the complex 4D metric

ds4 = e2Aǫ1ǭ1 + e2Bǫ2ǭ2 (2.11)

with

ǫ1 = dx̂1 + idx̂2, ǫ2 = dτ + eC(idφ+ V ). (2.12)

The complex vector, V ,5 has legs along ǫ1 and ǭ1 only. The x̂1 and x̂2 plane coordinatize

a Riemann surface that is determined by the conformal factor e2A. The coordinate τ

parametrizes an interval.

The φ direction is a circle which corresponds to the U(1) isometry, no metric functions

depends on it. In real coordinates, the metric ansatz is

ds24 = e2A(dx̂21 + dx̂22) + e2B
(
(dτ + eCV R)2 + e2C(dφ+ V I)2

)
6 (2.13)

where I and R superscripts refer to imaginary and real parts. It is useful to define the

frame fields and volume form

ητ = dτ + eCV R (2.14)

ηφ = dφ+ V I (2.15)

dR2 = dx̂1 ∧ dx̂2. (2.16)

The Kähler and the complex two-forms can be written as

J = e2AdR2 + e2B+Cητ ∧ ηφ (2.17)

Ω = ei(ψ+pφ)eA+BΩ0 (2.18)

ΩR0 = dx̂1 ∧ ητ − eCdx̂2 ∧ ηφ (2.19)

ΩI0 = eCdx̂1 ∧ ηφ + dx̂2 ∧ ητ . (2.20)

5One could consider system with Vτ . We do not since we want to fiber the U(1) over the Riemann

surface.
6It is not clear whether this is the most general complex metric with a U(1) isometry. More precisely,

it is not clear whether one can always make the x̂1-x̂2 directions conformally flat when the metric depends

on τ . This can be investigated by considering a slightly more general one-form ǫ1 = dx̂1 + ieF (x̂1,x̂2,τ)dx̂2

and let the equations fix F (x̂1, x̂2, τ).
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The parameter p corresponds to the charge of Ω under the U(1) corresponding to φ. The

charge of Ω under ψ is fixed by (2.4).

Any Kähler metric can be brought to a form where V R = 0 and C = 0 by coordinate

transformations. Since M4 is part of a larger metric, and is Kähler only at fixed y, such

transformations will generically turn on dy terms in ητ . Therefore we cannot turn off V R

and C in the ansatz unless they are independent of y. We make these statements more

precise in section 2.3.

Next we will use the equation to refine the metric ansatz which will require introduction

of new coordinates we call canonical coordinates. The reader can jump to section 2.4 for

the end product to avoid details.

2.3 Refinining Ansatz

Now we use the equations in (2.2)–(2.7) to refine the metric ansatz in (2.13).

We fix our conventions for the Hodge star operators. The hodge star, ∗4, on a form

with p legs on x̂ plane and q legs on τ plane can be written as

∗̂4Xp ∧ Tq = (−1)p ∗Xp ∧ ∗τTq (2.21)

where ∗ and ∗τ act on x̂ and τ planes, respectively. They are defined as

∗dx̂1 = −dx̂2, ∗dx̂2 = dx̂1 (2.22)

∗τητ = −eCηφ, ∗τe
Cηφ = ητ (2.23)

∗1 = e2AdR2 (2.24)

∗τ1 = e2B+Cητ ∧ ηφ. (2.25)

The exterior derivative on x̂ plane is d̂. It useful to decompose the exterior derivative d4 as

d4 = d2 + ητ∂τ + dφ∂φ (2.26)

d2 = d̂− eCV R∂τ. (2.27)

The Ω equations. The ansatz for Ω trivially solves equation (2.4). We, then, start with

equation (2.3), which yields three conditions. The first is

∂yC = 0. (2.28)

This condition implies that we can set C = 0. To see this, first write e−C = ∂τW , for some

W that is independent of y. Then we observe that

e−Cητ = dW − d̂W + V R. (2.29)

to complete the transformation, we shift V R by d̂W and recover the original form of ητ
with W replacing τ . We also need to shift B by −C in order to completely remove C from

the metric. The x̂ coordinates stay the same but the derivative d̂ gets shifted by a ∂τ term.

This is cancelled by the shift in V R in the exterior derivative d4 in (2.26). Therefore we

fix C = 0 from now on.
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The next condition obtained from (2.3) is

V I = V0 − ∗V R, with ∂yV0 = 0. (2.30)

The last condition obtained from (2.3) is

y∂y log
(
e2(A+B) cos2(ζ)

)
= −3 tan2(ζ). (2.31)

We solve this condition by introducing functions Σ and Λ defined such that

e2A =
1

3
ΣeΛ, e2B =

y3

Σcos2(ζ)
. (2.32)

The equation becomes

cos2(ζ) = −
3

y∂yΛ
. (2.33)

Now we look at equation (2.2). This equation yields two conditions:

∂τV0 = 0 (2.34)

ρ = pdφ+
1

2
∗ d2Λ−

1

2
∂τΛηφ. (2.35)

The one-form V0 depends only on the x̂ coordinates.

The J equations. Now we consider the J equations. These will yield the equations of

motion for the system. Equation (2.7) implies that the metric functions are independent

of ψ, therefore it corresponds to a U(1) isometry as expected. The first set of non-trivial

conditions are from the Kähler condition, equation (2.5). These are

d2V
R = 0 (2.36)

d2e
2B = e2B∂τV

R (2.37)

∂τe
2AdR2 = e2Bd2V

I . (2.38)

The first condition, (2.36), implies

d22 = 0, thus V R = d2Γ =
d̂Γ

1 + ∂τΓ
(2.39)

for some scalar function Γ. Plugging this result into equation (2.37) yields

d2

(
e2B

1 + ∂τΓ

)
= 0. (2.40)

We can then write

e2B =
1

3
G(1 + ∂τΓ), with d2G = 0. (2.41)

The relations in (2.32) and (2.33) imply

Σ = −
y4∂yΛ

G(1 + ∂τΓ)
. (2.42)
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Equation (2.38) becomes
∂τ

1 + ∂τΓ

(
ΣeΛ

)
dR2 = Gd2V

I . (2.43)

Finally we can expand equation (2.5). We collect ρ and J as

ρ = pdφ+
1

2
∗ d2Λ−

1

2
∂τΛηφ (2.44)

J =
1

3
ΣeΛdR2 +

1

3
G(1 + ∂τΓ)ητ ∧ ηφ. (2.45)

We find

1

y
∂y [G(1 + ∂τΓ)] = ∂2τΛ (2.46)

G(1 + ∂τΓ)
1

y
∂yV

R = d2∂τΛ (2.47)

G(1 + ∂τΓ)
1

y
∂yV

I = ∂τΛ∂zV
I − ∂τ ∗ d2Λ (2.48)

1

y
∂y
(
ΣeΛ

)
dR2 = ∂τΛd2V

I − d2 ∗ d2Λ. (2.49)

The V I equation in (2.48) is implied by (2.30), (2.46) and (2.47). Equation (2.47) can be

written as

d2
(
y2∂τΛ− y∂yΓG

)
= 0. (2.50)

We can therefore write

y2∂τΛ = y∂yΓG+G2 where d2G2 = 0. (2.51)

Equation (2.46) becomes

∂τ
1 + ∂τΓ

G2 =

(
y∂y −

y∂yΓ

1 + ∂τΓ
∂τ

)
G. (2.52)

This completes the reduction of the supersymmetry equations on the ansatz above.

However the story can be cleaned up more. This follows from the fact that the twisted

derivative operator d2 is nilpotent; it defines new coordinates on the Riemann surface. We

study this next.

Canonical Coordinates. We can simplify the system above by making the coordinate

transformation

log(q) = τ + Γ, s = y, xi = x̂i. (2.53)

In these coordinates we find

∂τ =
q∂q

1− q∂qΓ
, 1 + ∂τΓ =

1

1− q∂qΓ
. (2.54)

The other derivatives become

d2 = dxi ∧ ∂i

s∂s = y∂y −
y∂yΓ

1 + ∂τΓ
∂τ .

(2.55)
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2.4 Canonical system

The most general supersymmetric AdS5 metric in M-theory that contains two circles fibred

over a two-dimensional Riemann surface is

ds211 = H−1/3

[
ds2AdS5

+
1

3

s3(1− q∂qΓ)

ΣG
(dψ + ρ)2 +

1

3
Hds25

]

ds25 = ΣeΛ
(
dx21 + dx22

)
+

G

1− q∂qΓ

[
Σ

s

ds2

s2
+ η2τ +

(
dφ+ V I

)2
]
.

(2.56)

We have set the AdS radius, L, to one. We can reintroduce it by multiplying the metric

by an overall L4/3. The forms are

V I = V0 − ∗d2Γ (2.57)

ητ = (1− q∂qΓ)
dq

q
− s∂sΓ

ds

s
(2.58)

ρ = pdφ+
1

2
∗ d2Λ−

1

2

q∂qΛ

1− q∂qΓ

(
dφ+ V I

)
. (2.59)

The one-form, V0, depends only on the Riemann surface coordinates, xi. The exterior

derivative, d2, is taken along the xi directions. The Hodge star operator acts as ∗dx1 =

−dx2. The metric functions are

H =
1

4s2

[
1−

3s3 (1− q∂qΓ)

GΣ

]
(2.60)

Σ = −
s3

G
[(1− q∂qΓ)s∂sΛ + s∂sΓq∂qΛ] . (2.61)

The left over equations to solve are

d2G2 = d2G = 0, s∂sG = q∂qG2 (2.62)

s2q∂qΛ = (1− q∂qΓ)G2 + s∂sΓG (2.63)

s∂s
(
ΣeΛ

)
dR2 = G2d2V

I − s2d2 ∗ d2Λ (2.64)

q∂q
(
ΣeΛ

)
dR2 = Gd2V

I (2.65)

where dR2 = dx1 ∧ dx2.

The G equations can be solved in terms of a single function X(s, q). The solution is

G = q∂qX, G2 = s∂sX. (2.66)

The system seems to be governed by three functions and a one-form. Two of the

functions, Λ and Γ, depend on the Riemann coordinates and the interval coordinates (s, q).

The third function X depends only on the interval coordinates (s, q). The one-form, V0,

depends on the Riemann surface coordinates only. The one-form can be set to zero if we

allow for generic Γ. One can do this by shifting Γ by a x-dependent function and tune

it such that its Laplacian cancels the contribution of dV0 in equations (2.64) and (2.65).

Equivalently, we can keep V0 and let it parametrize the part of Γ that only depends on x.

We adopt this second choice.
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The function Λ determines the Riemann surface while Γ fixes the connections of the

U(1) fibrations. We will call them the structure function and the embedding function

respectively. As we will below, the function X determines the metric along the (s, q)

directions. It will be used to find convenient coordinates for this plane. So the system

really governed by the two functions Λ and Γ.

3 Finding solutions

The goal is to understand the solution space of the system of differential equations in (2.62)–

(2.65). Generically, this is an homogeneity four problem. Moreover the equations are second

order and non-linear; the left hand sides of equations (2.64)–(2.65) involve derivatives of Σ

which itself is a derivative of other quantities as given by (2.61). The system can be written

in terms of a single function that satisfies a Monge-Ampère equation. The fact that the

GMSW system is governed by a Monge-Ampere equation was first demonstrated in [53].

Writing a general solution for this system is a tall task and we do not hope to achieve it

here.

We are going to look for solutions by making assumptions about the embedding func-

tion, Γ. Most of the complications come from the fact that Σ mixes the embedding and

structure functions in a non-trivial way. We can hope to find solutions if we can simplify

this expression. If we assume that the x-dependence of Γ is through some implicit depen-

dence on Λ then Σ simplifies. It becomes an operator, that only depends on (s, q), acting

on Λ. We can then pick coordinates where this operator is a simple derivative. We can

solve the system when Γ is linear in Λ! We make the ansatz

Γ = aΛ−Z(s, q) + log(q). (3.1)

We could also add a term that depend only on x; however we know from the discussion

below equation (2.66) that adding such term is equivalent to keeping V0(x).

Now we define coordinates (t, k) such that

t∂t = q∂qZs∂s − s∂sZq∂q (3.2)

Gk∂k =
f

s2
(
aGs∂s − (aG2 + s2)q∂q

)
. (3.3)

In the (t, k) coordinates, we find

f = −k∂kX, s2 = 2T (t)− 2aX

Σ = −
s3

G
t∂tΛ, G =

f

s2
g(t)

(3.4)

where X is defined in (2.66) and g(t) = t∂tT . The functions T (t) comes from integrating

∂ks
2. These coordinates are such that Z is independent of t, it defines the k coordinates.

We fix it as Z = − log k. Since the coordinate transformation does not involve the Riemann

surface directions, the function X, defined in (2.66), depends only on (t, k).
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The system of equations (2.63)–(2.65) becomes

g(t)k∂kΛ = −t∂tX (3.5)

k∂k
(
ΣeΛ

)
= k∂kXe

2A0(x) (3.6)

t∂t
(
ΣeΛ

)
= g(t)∆Λ + t∂tXe

2A0(x). (3.7)

We have reduced the two-forms as

d2V0 = e2A0(x)dx1 ∧ dx2 (3.8)

d2 ∗ d2Λ = −∆Λdx1 ∧ dx2 (3.9)

where ∆ = ∂2x1 + ∂2x2 . The function Λ depends on all the coordinates. We have introduced

A0(x) to encode the V0 data, it only depends on x because V0 depends only on the Riemann

surface coordinates.

Now, we study the system in (3.5)–(3.7). Equation (3.6) can be integrated to

Xe2A0 +
s3

G
t∂te

Λ = L(x, t) (3.10)

for some function L. On the other hand equation (3.5) implies that Λ is separable as

Λ = D(x, t) + Λ1(t, k). (3.11)

These two conditions imply

L(x, t) = Xe2A0 +
s3

G
t∂te

Λ1eD +
s3

G
eΛ1t∂te

D. (3.12)

The function X cannot be independent of k, otherwise f , as given in (3.4), would vanish

and the coordinate transformation in (3.3) would be degenerate. This implies that when

e2A0 is non-vanishing in equation (3.12), eD must be separable in x and t. If we want more

generic solutions where eD is not separable, we must have e2A0 = 0. The solution space

splits into two classes. These can further split depending whether a in (3.1) vanishes or

not. After going through all possible scenarios, we find the following classes of solutions.

Class Ia In this class of solutions, we impose e2A0 = 0. Equation (3.8) implies that the

one-form, V0, is flat. We can set it to zero without lost of generality. The warp

factor for the Riemann surface, Λ, separates between x and k as implied by (3.5).

We also impose a = 0, this is equivalent to making Γ independent of x. The defining

conditions are

Λ = D(x, t) + Λ1(t, k), V I = 0. (3.13)

Class Ib The solutions in this class satisfy the same conditions as in class Ia solutions

except a is non-vanishing. The defining conditions are

Λ = D(x, t) + Λ1(t, k), V I = −a ∗ d2D. (3.14)
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Class II Finally we can consider solutions where e2A0(x) is non-vanishing. This requires

Λ to be separable in x and (t, k). For this class, we can set a = 0 without lost of

generality. This follows from the fact that if a is non-zero, then Γ will pick up a term

that depends on x only. Such a term is already encoded in V0 as discussed below

equation (2.66). We write the functions as

eΛ = e2A(x)eΛ1(t,k), e2A0 = κ2e
2A(x), V I = κ2V, dV = e2AdR2. (3.15)

3.1 The metric

Before we study the different classes of solutions, we write the metric in the (t, k) coordi-

nates. It is given as

ds211 = H−1/3

[
ds2AdS5

+
1

9

(
1− 4s2H

)
(dψ + ρ)2 +

1

3
Hds25

]
(3.16)

ds25 = ΣeΛ
(
dx21 + dx22

)
+ g(t)Σ0

dt2

t2
+ f

[
dk2

k2
+

3g(t)

s2Σ0 (1− 4s2H)

(
dφ+ V I

)2
]
.

The metric functions are

Σ =
s5

g(t)f
Σ0, Σ0 = −t∂tΛ (3.17)

H =
1

4s2

(
1−

3

4

(
t∂ts

2
)2

+ 4a2fg(t)Σ0

s2g(t)Σ0

)
. (3.18)

The one forms are

V I = V0 − a ∗ d2Λ (3.19)

ρ = pdφ+
1

2
∗ d2Λ−

3

4

t∂tXt∂ts
2 − 2afg(t)Σ0

s2g(t)Σ0 (1− 4s2H)

(
dφ+ V I

)
. (3.20)

We notice, from the metric and the equations of motion, that the function g(t) can

be removed by a coordinate transformation. We will keep it explicit and fix it when it is

convenient. The choice of g(t) will also fix the coordinate t.

Solving the supersymmetry equations determines the six-dimensional internal manifold

normal to the AdS space. This geometry is a S1 bundle over a five-dimensional base. The

base geometry is a S1 bundle over a Riemann surface and two interval directions, (t, k).

The conformal factor of the Riemann surface always separates into an (x, t) and (t, k)

parts as discussed around equation (3.11). The (t, k) dependence determines the size of

the Riemann surface on the tile while the (x, t) dependence determines a one-parameter

family of Riemann surface metrics along the t-direction. The connection one-form of the

ψ-circle fibration, ρ, has two parts. The first is simply the spin connection of the Riemann

at fixed t, while the second mixes the ψ-circle with φ-circle. The twisting varies along the

interval. Once the base metric is determined, ρ is fixed.

The connection of the φ-circle fibration, V I , determines the different classes of solu-

tion. The supersymmetry equations in (2.64)–(2.65) and (3.6)–(3.7) relate V I to the spin
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connection of the Riemann surface; more precisely to its variations along the intervals. In

class Ia solutions, the φ-circle fibration is trivial. The system of equations will split into

(x, t) sector, which determines the family of Riemann surface metrics, and a (t, k) sector

which determines the metric along the intervals, the radius of the Riemann surface, and

the shape and size of the T 2. The (t, k) dependence of metric can be solved exactly. In

class Ib solutions, we set V I proportional to the spin connection of the Riemann surface.

For this case, the system of equations also splits in manner similar to class Ia solutions. In

both classes, the conformal factor will satisfy a warped generalization of the SU(∞) Toda

equation.

In class II solutions, we consider the case when V I is constant on the interval directions.

The effect of this is to make the spin connection of the Riemann surface constant along

the (t, k) directions, and therefore the family of Riemann surface metric along t collapse

to one one of the constant curvature surface, S2, H2 or T 2. We can then fix the Riemann

surface metric to be the constant curvature one. In this case, the problem of solving for

the (t, k)-dependence of the metric is more non-trivial. We discuss how to find them.

Now we study the system of equations for the different cases and discuss how to solve

them.

4 Class I solutions: warped SU(∞) Toda systems

The structure function for class Ia and Ib solutions separates as

Λ = D(x, t) + Λ1(t, k). (4.1)

This, again, follows from equation (3.5). When D is not separable in x and t, equa-

tion (3.12), derived from (3.6), requires

e2A0 = 0, and ∂k

(
s3

G
t∂te

Λ1

)
= ∂k

(
s3

G
eΛ1

)
= 0. (4.2)

The vanishing of e2A0 implies that V0 is flat, we can set it to zero without lost of generality.

The latter two constraints in (4.2) imply

eΛ1 = h0(t)h1(k), and G = h0(t)h1(k)s
3. (4.3)

In writing eΛ1 we have used the fact that the separability condition of Λ is defined up an

overall function of t. We fix it such that eΛ1 is proportional to h0(t).

Equation (3.7) becomes

g(t)∆D + t∂t

[
1

h0(t)
t∂t
(
h0(t)e

D
)]

= 0. (4.4)

We call this equation warped SU(∞) Toda equation. It is a generalization of SU(∞) Toda

equation obtained, here, by fixing g(t) = t2 and h0(t) ∝ t−1. The warping refers to the

presence of h0(t).

Differential equations for h0(t), h1(k) and X can be obtained from equations (3.5)

and (4.3) after we plug in for G and f as given in (3.4). Solutions to these equations
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will require some separability in s2 and X. Without lost of generality we can write these

functions in terms T (t) and a k-dependent function P (k):

Σ0 = −t∂t log(h0)− t∂tD (4.5)

s2 = 2(α0 + α1T (t))(a0 + aP (k)) (4.6)

X = −c0 − c1T (t)− c2P (k)− 2c3T (t)P (k) (4.7)

f = (c2 + 2c3T (t)) k∂kP (k). (4.8)

The relation between s2 and X in (3.4) imply

α0a0 = ac0, a (α0 − c2) = 0

α1a0 − 1 = ac1, a (α1 − 2c3) = 0.
(4.9)

After separating all the equations, we find

h0(t) = g(t)
c2 + 2c3T (t)

(α0 + α1T (t))
5/2

(4.10)

for the t-dependence. The k-dependence yields

k∂k log h1(k) = c1 + 2c3P (k) (4.11)

k∂kP (k) = h1(k) (2a0 + 2aP (k))5/2 . (4.12)

We can solve for h1 in terms of P (k) and obtain

h1(k) = (2a0 + 2aP (k))−3/2
[
c4 (2a0 + 2aP (k))3/2 + w0 + w1P + w2P

2
]

(4.13)

with

aw2 = 0, 2a0w1 − 3aw0 = c1, 4a0w2 − aw1 = 2c3. (4.14)

To continue, we need to specialize to different cases of a.

4.1 Class Ia

class Ia solutions further satisfy a = 0. The constraints on the parameters are

a = α0 = w0 = 0, 2a0 = 1, α1 = 2, w1 = c1, w2 = c3. (4.15)

The α’s are fixed by equations in (4.9); a0 can be fixed without lost of generality. The wi’s

are fixed by (4.14); w0 can be fixed without lost of generality. The ci parameters are not

constrained.

In order to write the metric, we need to fix g(t). It is convenient to chose

g(t) = t2, thus s2 = 2T = κ0t
2
0 + t2 (4.16)
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where κ0 = −1, 0, 1. We also shift c2 as c = c2 + c3κ1 and fix c3 = κ2. Finally, we write

h1(k) = k2e2U(k). The metric is then

ds211 = H−1/3

[
ds2AdS5

+
1

3

t2

(t2 + κ0t20)Σ0
(dψ + ρ)2 +

1

3
Hds25

]
(4.17)

ds25 = Σ0

[
dt2 + eD

(
dx21 + dx22

)]
+ (c+ κ2t

2)e2U(k)
(
dk2 + k2dφ2

)
.

The metric functions are given as

Σ0 = −t∂t log h0(t)− t∂tD(x, t) (4.18)

H =

(
t2 + κ0t

2
0

)
Σ0 − 3t2

4(t2 + κ0t20)
2Σ0

(4.19)

ρ = (p+ 1)dφ+
1

2
∗ d2D(x, t) + k∂kU(k)dφ. (4.20)

We can fix the charge of the holomorphic two-form in (2.18) as p = −1 in order to remove

the exact term in ρ. Equation (4.10) becomes

h0 = t2
c+ κ2t

2

(
t2 + κ0t20

)5/2 (4.21)

From equations (4.11) and (4.12), we find

∆kU(k) = κ2e
U(k). (4.22)

where ∆k is the Laplacian on the (k, φ) plane. The conformal factor of the Riemann surface

satisfies the warped SU(∞) Toda equation:

∆D +
1

t
∂t

[
1

h0(t)
t∂t
(
h0(t)e

D
)]

= 0. (4.23)

The space of solutions seem to have three free parameters (c, κ2, t0). We are free to

fix two of these parameters up to signs. Without lost of generality, we only consider cases

when κ2 = −1, 0, 1 and t0 = 1. Given the different choices for κ1, we find six subclasses of

one-parameter family of solutions.

The (k, φ) plane parametrizes a second Riemann surface with curvature −κ2 since the

conformal factor e2U satisfies the Liouville equation. At constant t, the internal geome-

try is then a S1 bundle over a product of two Riemann surfaces. The Riemann surface

parametrized by x mixes with t to form a three-manifold similar to the eleven-dimensional

LLM AdS5 system [25]. Its conformal factor satisfies a warped generalization of the SU(∞)

Toda equation (4.23). In [52] we analyse the space of these solutions, discuss their regular-

ity conditions and how they generalize known solutions. Next we show how the solutions

of GMSW [51], which includes the M-theory uplift of the Yp,q [54] and N = 1 Maldacena

and Núñez geometry [42], embed into this class.
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4.1.1 GMSW solutions

The solutions of GMSW [51] were obtained by considering cases when the internal six-

dimensional geometry is complex. Such solutions are S1 bundles over two Riemann surfaces

sitting on an interval. Solutions of this type should embed into the class Ia. The interval

corresponds to the t-direction. In GMSW, the conformal factors of the two Riemann surface

satisfy the Liouville equation on their respective planes. If we are to find them in class Ia,

we need to look for solutions where D is separable in x and t. We write

eD = e2A(x)L(t). (4.24)

Equation (4.23) implies

∆A = κ1e
2A, t∂t (h0(t)L(t)) = −

(
b1 + κ1t

2
)
h0(t). (4.25)

We solve for L(t) and find

L(t) =
1

3

t2 + κ0
t2(c+ κ2t2)

L̂(t) (4.26)

L̂(t) = (c− κ2κ0)(b1 − κ1κ0) + 3(κ2b1 + κ1c− 2κ0κ1κ2)(t
2 + κ0)

+ 3b2(t
2 + κ0)

3
2 − 3κ2κ1(t

2 + κ0)
2. (4.27)

where the b’s are integration constants. It is straightforward to write the metric functions,

we obtain

Σ0 = 3t2
(b1 + κ1t

2)(c+ κ2t
2)

(t2 + κ0)L̂(t)
(4.28)

H =
(c+ κ2t

2)(b1 + κ1t
2)− L̂(t)

4(κ0 + t2)(b1 + κ1t2)(c+ κ2t2)
(4.29)

ρ = ∗d2A+ k∂kU(k)dφ. (4.30)

The metric becomes

ds211 = H−1/3

[
ds2AdS5

+
1

9

L̂(t)

(b1 + κ1t2)(c+ κ2t2)
(dψ + ρ)2 +

1

3
Hds25

]
(4.31)

ds25 = 3t2
(b1 + κ1t

2)(c+ κ2t
2)

(t2 + κ0)L̂(t)
dt2 + (b1 + κ1t

2)ds2
(
C1
g

)
+ (c+ κ2t

2)ds2
(
C2
g

)

where Cig are the two Riemann surface with curvature −κi. The known solutions are

obtained by choosing the parameters in the following way

• The GMSW solutions [51] are obtained by fixing κ0 = 0.

• The eleven-dimensional uplift of the Yp,q metrics are contained within the GMSW

solutions [51]. This solutions is obtained by fixing κ1 = 0 and κ2 = −1, i.e. the first

Riemann surface is a torus while the second is a two-sphere.

• The N = 1 Maldacena and Núñez solution [42] is obtained within the GMSW solu-

tions with b2 = 0 and by fixing κ1 = 1, κ2 = −1, i.e. the Riemann surface is a higher

genus surface while the second is a two-sphere. We also need to impose b1 = 3c.

Finally the apparent free parameter, c, can be fixed by rescaling the t coordinate.
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4.2 Class Ib

In class Ib solutions, a is non-vanishing. We start by reducing the number of parameters.

Without lost of generality, we can fix a0 = 0 by shifting the function P (k) in (4.6)–(4.8).

This will also require us to redefine some of the parameters. The constraints in (4.9)

and (4.14) imply

α0 = c2, α1 = 2c3 = −aw1, c0 = w2 = 0, 3a2w0 = −ac1 = 1. (4.32)

We observe from equations (4.11), (4.12) and (4.13) that all k-dependent functions appear-

ing in the metric are functions of P (k). This suggests that we should use P as the actual

coordinate instead of solving equation (4.12). This equation will instead allows us to write

dk in terms of dP . It is actually more convenient to introduce the coordinate u from which

we have

P =
1

2a
u2,

dk

k
=

3a

h(u)

du

u
(4.33)

h1(u) =
1

3a2u3
h(u), h(u) = 1− 3c3u

2 − bu3 (4.34)

where b = −3a2c4.

For this class, we can fix 2T = g(t) = t2. The metric functions are

T = 9c23u
2t2 + 3

(
c2 + c3t

2
)
h(u)Σ0 (4.35)

H =
1

4 (c2 + c3t2)

[
bu+ 3c3

(
c2 + c3t

2
)
Σ0 − c3t

2

(c2 + c3t2) Σ0

]
. (4.36)

The metric is given as

ds211 = H−1/3

[
ds2AdS5

+
1

9

T

3 (c2 + c3t2) Σ0
(dψ + ρ)2 +

1

3
Hds25

]
(4.37)

ds25 = Σ0

[
dt2 + eD

(
dx21 + dx22

)]
+ 3

(
c2 + c3t

2
) [ du2
h(u)

+
t2h(u)

a2T
(dφ− a ∗ d2D)2

]
.

The warp factor of the Riemann surface satisfies the SU(∞) Toda equation:

∆D +
1

t
∂t

[
1

h0
t∂t
(
h0e

D
)]

= 0 (4.38)

with

h0(t) = t2
(
c2 + c3t

2
)
−3/2

(4.39)

Σ0 = −t∂t log h0(t)− t∂tD (4.40)

ρ =

(
p+

1

2a

)
dφ−

9

2a

c3t
2

T
(dφ− a ∗ d2D) . (4.41)

It is clear from the metric that we can fix a = 1 without lost of generality; this requires

rescaling the φ coordinate. We can also fix c3 and c2 up to overall signs, therefore we can

consider cases where 3c3 = −1, 0, 1 and c2 = −1, 0, 1 with out lost of generality. The only

free parameter of the system is b.

Next we show how the LLM solutions fit in this system.7

7The embedding of LLM into the GMSW system (in section 2.1) was also understood by Lunin in [53].
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4.2.1 LLM solutions

The LLM solutions are obtained by fixing b = 0, c2 = 0 and 3c3 = 1. In this section

we work out the metric explicitly. Fixing c2 = 0 implies that the conformal factor of

the Riemann surface satisfies the SU(∞) Toda equation in (4.38) as expected. The LLM

solutions contain a topological S̃4 with U(1)×SU(2) isometry corresponding to the N = 2

R-symmetry. The interval for this S̃4 is u. The metric along the (φ, ψ) directions, in (4.37),

should diagonalize to two circles corresponding to the N = 2 U(1) R-symmetry and the

Cartan of the SU(2) R-symmetry. The metric is diagonalized by

φ̂ =
3

2

(
p+

1

2

)
φ+

3

2
ψ, χ = φ− φ̂. (4.42)

We can make this transformation even when c2 6= 0 to obtain

ds211 = H−1/3

[
ds2AdS5

+
t2

4(3c2 + t2)Σ0
(dχ− ∗d2D)2 +

1

3
Hds25

]
(4.43)

ds25 = Σ0

[
dt2 + eD

(
dx21 + dx22

)]
+
(
3c2 + t2

) [ du2

1− u2
+ (1− u2)dφ̂2

]
.

This matches the LLM metric as described by Gaiotto and Maldacena [24] for c2 = 0.

5 Class II solutions: Liouville systems

In class II solutions, the conformal factor of the Riemann surface is separable between x

and other coordinates. The x dependent part satisfies the Liouville equation. For this class

we can fix a = 0 without lost of generality. We can write

eΛ = e2A(x)eΛ1(t,k), ∆A = κ1e
2A, e2A0(x) = κ2e

2A(x) (5.1)

where κi are constants. The curvature of the Riemann surface is −κ1. In writing the

differential equations, it is more useful to see things as functions of T (t). When we fix g(t),

we would have also fixed T (t) and therefore the t-dependence of the system. We switch t

derivatives to T derivatives as t∂t = g(t)∂T . The supersymmetry equations in (3.5)–(3.7)

become

∂T e
Λ1 =

1

(2T )5/2
k∂kX (κ2X + L0(t)) (5.2)

k∂ke
Λ1 = −∂TXe

Λ1 (5.3)

Equation (3.7) imply

L0(t) = ℓ0 + 2κ1T (5.4)

where ℓ0 is a constant.

The goal is to write metric solutions. This problem does not require us to explicitly

solve the equations in (5.2) and (5.3). We need to write a metric that is consistent with

the equations. We saw a little bit of this when we worked out class Ib solutions. There,

we obtained equations (4.11)–(4.13) for P (k) and h1(k). We observed, as discussed below
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equation (4.32), that we should use P (k) as the coordinate instead of k since all metric

functions depended on k through P (k). The differential equation was then used as the

Jacobian of transformation from k to P in the metric. We use this trick at industrial scale

to write solutions for class II. We present an algorithm for doing this and work out an

example that includes B3W solutions [47]. In [52] we do a more extensive study of class II

solutions.

Start by introducing a third coordinate u that depends on (t, k). We assume that both

X and eΛ1 are polynomials in u with t-dependent coefficients. We denote them as

X =
∑

Xn(t)u
n, eΛ1 =

1

(2T )3/2

∑
Pn(t)u

n. (5.5)

It is convenient to factor out an overall (2T )−3/2 in eΛ1 in order to cancel the (2T )−5/2

factor in equation (5.2). The explicit form of u is not important, however when we expand

the equations above, k and t derivatives of u will appear by the chain rule. We also assume

that these functions are polynomials in u with t-dependent coefficients. We denote them as

k∂ku = −Dk(u, t) = −
∑

Cn(t)u
n

∂Tu = Dt(u, t) =
∑

Tn(t)u
n.

(5.6)

The integrability condition for u implies

∂

∂T

∣∣∣∣
u

Dk = Dk∂uDt −Dt∂uDk. (5.7)

The T -derivative on the left is taken at fixed u. This relation constrains possible choice for

the Cn’s once given the Tn’s.

The next step is to plug the ansatz in (5.5) into equations (5.2) and (5.3). We expand

these equations in powers of u by using (5.6). This yields differential equations for the

Xn’s and Pn’s in terms of the Cn’s and Tn’s. When this system is solvable, we can write a

metric in (u, t) coordinates by replacing dk with

dk

k
= −

du

Dk(u, t)
+
g(t)Dt(u, t)

Dk(u, t)

dt

t
. (5.8)

The metric can be written as

ds211 = H−1/3

[
ds2AdS5

+
1

9

(2T )3/2eΛ1

Dk∂uX (L0 + κ2X)
(dψ + ρ)2 +

1

3
Hds25

]
(5.9)

ds25 = (L0 + κ2X)

[
e2A

(
dx21 + dx22

)
+

Dk∂uX

(2T )3/2eΛ1

g2(t)dt2

2t2T

]

+Dk∂uX (dφ− κ2 ∗ d2A0)
2 +

∂uX

Dk

(
du−Dt

g(t)dt

t

)2

.

The functions are

H =
1

8T

[
Dk∂uX (L0 + κ2X)− 3(2T )3/2eΛ1

Dk∂uX (L0 + κ2X)

]
(5.10)

ρ = pdφ+ ∗d2A−
1

2
Dk∂uΛ1 (dφ− κ2 ∗ d2A) . (5.11)
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The solutions found in this way tend to have many parameters coming from integration

constants. Moreover at various steps of reducing the equations, the system breaks into

subclasses. In order to illustrate these points, and the validity of this method, we consider

an example that leads to B3W solutions [47].

5.1 Example

First we chose the Xn’s and Tn’s as

Tn(t) =
b

X1(t)
αn+1 (5.12)

X0 = c0 + c1T (5.13)

X1(t) = c2 + 2c3T. (5.14)

The α’s are non-vanishing only for n = −1, 0, 1; b is also constant. When we plug this

choice for Tn into (5.6), we obtain several solutions for the Cn’s. We restrict to one of

simplest where they are independent of t. We have

Dk(u, t) =
1

u
K(u) =

1

u

(
α0 + α1u+ α2u

2
)
. (5.15)

Equation (5.3) implies

K(u)∂uΛ1 = c1u+ 2c3u
2 + bK(u). (5.16)

The function eΛ1 must be separable in u and t. We write it as

eΛ1 =
1

(2T )3/2
h0(t)h1(u) (5.17)

K(u)∂u log h1(u) = c1u+ 2c3u
2 + bK(u). (5.18)

Now we expand equation (5.2) to obtain

K(u)

h1(u)
X2

1 (L0 + κ2X0 + uκ2X1) = −2b(2c3 + bα2)h0Tu
2 − 2α0b

2Th0 (5.19)

− u [X1(−3h0 + 2T∂Th0) + 2(c1 + bα1)bh0T ] .

Solutions to (5.19) require h1(u) to be a ratio of two polynomials. This is compatible

with (5.18) only when

2c3 + α2b = 0 (5.20)

in order to match the highest power of u on the left hand side. This constraint removes

the u2 term on the right hand side of (5.19), therefore the generic solution of h1(u) is a

ratio of two polynomials with degrees m + 2 and m, respectively. We consider the simple

case where h1(u) is quadratic in u and write it as

h1(u) = β0 + β1u+ β2u
2. (5.21)
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Equation (5.18) restricts the parameters as

2β0 (β2α0 − α2β0) = β1 (α0β1 − β0α1) , β1 = bβ0

2β0 (β2α1 − α2β1) = β1 (α0β2 − β0α2) , c1 = 2α2 − bα1.
(5.22)

The u0 and u3 terms of equation (5.19) yield

h0(t) = −
1

2β0b2
X2

1

L0 + κ2X0

T
(5.23)

2T∂Th0 = −
1

2β2β0b2T
X2

1

(
2β0α2b

2κ2T + 3β2(L0 + κ2X0)
)

+
(c1 + bα1)

β0b
X1(L0 + κ2X0). (5.24)

The u1 and u2 terms yield

β2 (α1β0 − α0β1) (L0 + κ2X0) = β0 (α2β0 − α0β2)κ2X1 (5.25)

β2 (α2β0 − α0β2) (L0 + κ2X0) = β0 (α2β1 − α1β2)κ2X1. (5.26)

Plugging (5.23) into (5.24) implies

ℓ0 + κ2c0 = 0, and 3β2 (2κ1 + κ2c1) = −2β0α2κ2b
2 (5.27)

and therefore

h0(t) =
α2

3β2
κ2X

2
1 (5.28)

L0 + κ2X0 = −
2β0α2κ2b

2

3β2
T. (5.29)

One can check that when αiβj 6= βiαj , the equations in (5.25) and (5.26) are not

compatible with the constraints in (5.22) unless β1 = β0 = 0. We must have

αiβj = βiαj or β1 = β0 = 0. (5.30)

The solution space splits into two types. We can write the general metric for this example as

ds211 = H−1/3

[
ds2AdS5

+
1

3

h1(u)

K(u)

α2uX1

T
(dψ + ρ)2 +

1

3
Hds25

]
(5.31)

ds25 =
κ1
3β2

T e2A
(
dx21 + dx22

)
+

1

u
K(u)X1 (dφ− κ2 ∗ d2A)

2

+
K(u)

h1(u)

T

α2uX1

g2(t)dt2

2t2T
+

uX1

K(u)

(
du−

bK(u)

uX1

g(t)dt

t

)2

.

The metric functions are

X1 = c2 − 2α2bT (5.32)

T = 3β2uX1 − 4β0α2b
2T (5.33)

H =
1

8T

3uX1 [β2K(u)− α2h1(u)]− 4β0b
2α2K(u)T

K(u)T
(5.34)

ρ = pdφ+ ∗d2A−
1

2u
(α0b+ 2α2u) (dφ− κ2 ∗ d2A) . (5.35)

Now we reduce to B3W solutions.
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5.1.1 B3W Solutions

We restrict to

αiβj = βiαj , thus β2K(u) = α2h1(u). (5.36)

The metric becomes

ds211 = H−1/3

[
ds2AdS5

+
κ2B

12
e2A

(
dx21 + dx22

)
+
B

4

g2(t)dt2

2ut2X1T
+

1

3
uX1Hds

2
3

]
(5.37)

ds23 =
1

K(u)

(
du−

α1K(u)

α0uX1

g(t)dt

t

)2

+
K(u)

u2
(dφ− κ2 ∗ d2A)

2 +
4

3B
(dψ + ρ)2

where

B = −
α2
1

3α0
X1 = c2 −

α2α1

α0
T, H =

B

8BT + 4uX1
. (5.38)

The Riemann surface data is encoded in A(x) which satisfies

∆A = κ1e
2A, where 2κ1 = −κ2 (B + 2α2) . (5.39)

The one-form ρ is given as

ρ = pdφ+ ∗d2A−
1

2u
(α1 + 2α2u) (dφ− κ2 ∗ d2A) . (5.40)

The solution of B3W corresponds to fixing α0 = − 1
36 , α1 = 1 and c2 = 3. We also fix

g(t) = t2 and 2T = t2. This matches the solution as described in appendix D of [47].

6 Summary and discussion

Our goal in this paper was to understand supersymmetric AdS5 solutions in M-theory

when the internal space contains a two-dimensional Riemann surface, Cg, and admits at

least an additional U(1)2 isometry. The six-dimensional internal geometry is generically

a T 2 bundle over Cg with two intervals that form a two-dimensional subspace. The size

and shape of the T 2 can vary on the interval directions. The system is governed by two

functions Λ and Γ that dependent on the Riemann surface coordinates (x1, x2) and interval

directions. The metric on Cg is conformal to R
2 with eΛ as conformal factor. The circle

coordinates on the T 2 are ψ and φ. The connection for the φ-circle fibration is V I = −∗d2Γ

(star and derivative are taken on the Riemann surface). The connection for the ψ-circle

fibration is the spin connection of Cg plus a φ mixed term corresponding to the off diagonal

term of the metric on the T 2. The supersymmetry conditions reduce to a system of second

order non-linear equations for Λ and Γ in all four coordinates. It is solvable when we make

certain identifications with Γ. We organize them into three classes. The coordinates on

the interval directions are t and k.

Class Ia solutions. For class Ia, we assume that Γ is constant on Cg. The effect of this is

to trivialize the φ-circle fibration, i.e. V I = 0. The equations reduce such that the φ-circle

joins with k to form a second Riemann surface with constant curvature, C′

g′ . The original

Riemann surface, Cg, joins with the t-interval to form a three-manifold that describes a
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one-parameter family of Riemann surface metrics. The conformal factor separates into a

function that depends on (t, k), which goes into fixing the size of Cg along the interval

directions, and another that depends on (x, t). The full metric is determined up to the

(x, t)-dependent part of the conformal factor, denoted as D(x, t). The [t]× Cg part of the

metric is

ds26 = . . .− t∂t log
(
h0(t)e

D
) [
dt2 + eD

(
dx21 + dx22

)]
+ . . . (6.1)

The ellipsis correspond to overall warping and the other parts of the metric. The function

D(x, t) satisfies a warped generalization of the SU(∞) Toda equation:

∆D +
1

t
∂t

[
1

h0(t)
t∂t
(
h0(t)e

D
)]

= 0 (6.2)

where ∆ = ∂2x1 +∂
2
x2 . The function h0(t) is known. The total internal space is a S

1 bundle

over [t]× Cg × C′

g′ . The connection of the ψ-circle fibration is completely fixed by the spin

connection of Cg × C′

g. The degree of the fibration only depends on the period of ψ which

is fixed by regularity conditions.

In the special case when eD is separable, we can write D = 2A(x) + D0(t). Equa-

tion (6.2) implies that the x dependent part of D satisfies the Liouville equation

∆A(x) = κ1e
2A(x) (6.3)

where κ1 = −1, 0, 1. The solutions correspond to the constant curvature Riemann surfaces

H2 (κ1 = 1), T 2 (κ1 = 0) and S2 (κ1 = −1). The H2 can be made compact by mod-ing

with a Fuchsian subgroup, of the SL(2,R) isometry, to obtain a genius g > 1 Riemann

surface. The t-dependent part contributes to the size of Cg along the intervals. This

subclass includes the solutions of GMSW [51] and therefore the eleven-dimensional uplift

of the Yp,q solutions [51, 54] and N = 1 Maldacena and Núñez solution [42].

Class Ib Solutions. class Ib solutions are obtained by identifying the x-dependence

of Γ with Λ. This fixes the connection for the φ-circle fibration as V I = − ∗ d2Λ. The

supersymmetry equations still imply that eΛ is separable as functions of (t, k) and D(x, t).

The part of the metric that include the Riemann surface has the same form as (6.1)

and (6.2) with a different h0(t). Generically the solution is a T 2 bundle over Cg × [t]× [k].

The connections for the circle-fibrations are completely fixed by supersymmetry in terms

of the spin connection of Cg.

In the special case when h0(t) ∝ t−1, equation (6.2) reduces to the SU(∞) Toda

equation. In one of the sub-sectors of the solutions we can find circle coordinates that

diagonalize the metric on T 2. One of the circle stays non-trivially fibred on Cg while

the other joins with k interval to form a two-sphere. This solution is precisely the eleven-

dimensional AdS5 solution of LLM [25]. When eD is separable, the Riemann surface reduces

to the constant curvature ones. The regular solution, which picks out the negatively curved

Riemann surface [24], corresponds to the N = 2 Maldacena and Núñez solution [42].
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Class II Solutions. Class II solutions are obtained when eΓ is a separable in x and

(t, k). With this choice, the supersymmetry equations forces Λ to also separate into a sum

of a x-dependent function and (t, k)-dependent function. The x-dependent part will satisfy

the Liouville equation and therefore Cg can be taken as one of the constant curvature

Riemann surfaces. This choice for Γ also fixes the connection for the φ-circle fibration

to V I = −κ2V where V is the spin connection on Cg. The parameter κ2 labels different

solutions, it determines the ratio of the degree of the two circle-fibrations.

All equations in class II solutions reduce to a system on the (t, k) directions that is far

less constrained than in class Ia and Ib. We can find many different solutions including

the separable ones of class Ia and Ib. For this case, we presented a general algorithm for

writing metrics. The general form of the solution is a T 2 bundle over Cg × [t] × [k]. We

work out an example and show that it includes the solutions of B3W [47]. In [52], we do a

more careful study of these solutions and discuss their regularity conditions.

Punctures. The systems and solutions discussed above correspond to the near-horizon

geometry of a stack of M5-branes wrapping Cg inside a larger structure of intersecting

branes. The field theory dual describe such structure from the point of view of the M5-

branes on Cg. This interpretation of AdS5 solutions in M-theory was made precise in

the case of LLM solutions [25] by Gaiotto and Maldacena (GM) [24] as reviewed in the

introduction. Our goal in upcoming works is to make this interpretation precise for the

solutions discussed above. The strategy is to start with a seed solution like the MN2

solution. The Riemann surface in the seed solution must have trivial relative warping with

respect to the AdS5 geometry. Next, we interpret the rest of the solutions as emerging from

adding localized sources on the Riemann surface. In class Ia solutions, the seed solution

is the N = 1 Maldacena and Núñez solution [42]. In class Ib solutions, the seed is the

MN2 solution. In class II solutions there is a one parameter family of seed solutions which

include the MN solutions, these are the B3W solutions [47].

It is interesting to notice that class Ib solutions contain more than just LLM. Since the

seed is always MN2, if these non-LLM solutions exist, it is reasonable to expect punctures

that break the N = 2 supersymmetry down to N = 1. These would be N = 1 punctures

of N = 2 class S SCFT’s. It would be interesting to understand how these defects work

from the point of view Gaiotto’s classification. It is known that the CFT dual to MN1

solution is the IR limit of the mass deformed field theory dual to MN2 [41]. It is natural

to wonder whether class Ia solutions describe the gravity dual to mass deformations of

Gaiotto theories in general. It is tempting to expect this given the similarity between class

Ia, and class Ib solutions. This will require understanding the solutions of the warped

SU(∞) Toda equations.

Finally we observe that the separable sector of class Ia and class Ib solutions, and all of

the class II solutions have the constant curvature Riemann surface. Except for the seed so-

lutions, there is always a relative warping between Cg and AdS5. We expect these solutions

to emerge from punctures. Since we have the constant curvature Riemann surface, these

source must be uniformly distributed and their density function should be related to this rel-

ative warping. In other words, we have smeared punctures. We explore these objects in [52].

– 26 –



J
H
E
P
0
8
(
2
0
1
3
)
1
3
7

To IIA and IIB. In all three classes there exist solutions with shrinking T 2, which is

unrelated to T 2 from the bundle. One such example is the Yp,q in class Ia. In fact the Yp,q
were discovered in M-theory by GMSW and then studied them in IIB. In class II there are

more examples when we fix the Riemann surface to be T 2. One should compactify down

to IIA supergravity and then T-dualize to IIB. This should yield IIB metric including the

L(p, q, r) solutions [55]. It is interesting to wonder whether there are more examples of

Sasaki-Einstein metrics than the L(p, q, r) solutions in IIB.

Acknowledgments

I am grateful to Phil Szepietowski and Maxime Gabella for reviewing earlier draft. I would

also like to thank Brian Wecht, Nikolay Bobev, Chris Beem, Leopoldo Pando Zayas, James

Liu, Iosif Bena, Nicholas Warner, Daniel Waldram, Mariana Graña and Nicholas Halmagyi

for useful discussions. IB is supported in part by ANR grant 08-JCJC-0001- 0 and the

ERC Starting Grants 240210 - String-QCD-BH and 259133 - ObservableString. Part of

this work was complete while IB was at the Michigan Center for Theoretical Physics and

supported in part by DOE grant DE-FG02-95ER-40899.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]

[INSPIRE].

[2] E. Witten, Solutions of four-dimensional field theories via M-theory,

Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].

[3] D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB

Approximation, arXiv:0907.3987 [INSPIRE].

[4] D. Gaiotto, N=2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

[5] L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from

Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219]

[INSPIRE].

[6] L.F. Alday, F. Benini and Y. Tachikawa, Liouville/Toda central charges from M5-branes,

Phys. Rev. Lett. 105 (2010) 141601 [arXiv:0909.4776] [INSPIRE].

[7] S. Kanno, Y. Matsuo, S. Shiba and Y. Tachikawa, N=2 gauge theories and degenerate fields

of Toda theory, Phys. Rev. D 81 (2010) 046004 [arXiv:0911.4787] [INSPIRE].

[8] D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS States, arXiv:1006.0146 [INSPIRE].

[9] Y. Tachikawa, N=2 S-duality via Outer-automorphism Twists, J. Phys. A 44 (2011) 182001

[arXiv:1009.0339] [INSPIRE].

– 27 –

http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1016/S0550-3213(97)00416-1
http://arxiv.org/abs/hep-th/9703166
http://inspirehep.net/search?p=find+EPRINT+hep-th/9703166
http://arxiv.org/abs/0907.3987
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.3987
http://dx.doi.org/10.1007/JHEP08(2012)034
http://arxiv.org/abs/0904.2715
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2715
http://dx.doi.org/10.1007/s11005-010-0369-5
http://arxiv.org/abs/0906.3219
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.3219
http://dx.doi.org/10.1103/PhysRevLett.105.141601
http://arxiv.org/abs/0909.4776
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4776
http://dx.doi.org/10.1103/PhysRevD.81.046004
http://arxiv.org/abs/0911.4787
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4787
http://arxiv.org/abs/1006.0146
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0146
http://dx.doi.org/10.1088/1751-8113/44/18/182001
http://arxiv.org/abs/1009.0339
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.0339


J
H
E
P
0
8
(
2
0
1
3
)
1
3
7

[10] D. Nanopoulos and D. Xie, N = 2 Generalized Superconformal Quiver Gauge Theory,

JHEP 09 (2012) 127 [arXiv:1006.3486] [INSPIRE].

[11] O. Chacaltana and J. Distler, Tinkertoys for Gaiotto Duality, JHEP 11 (2010) 099

[arXiv:1008.5203] [INSPIRE].

[12] D. Gaiotto, G.W. Moore and A. Neitzke, Wall-Crossing in Coupled 2d-4d Systems,

arXiv:1103.2598 [INSPIRE].

[13] S. Cecotti and C. Vafa, Classification of complete N = 2 supersymmetric theories in 4

dimensions, Surveys in differential geometry 18 (2013) [arXiv:1103.5832] [INSPIRE].

[14] Y. Tachikawa and S. Terashima, Seiberg-Witten Geometries Revisited, JHEP 09 (2011) 010

[arXiv:1108.2315] [INSPIRE].

[15] M. Alim et al., BPS Quivers and Spectra of Complete N = 2 Quantum Field Theories,

arXiv:1109.4941 [INSPIRE].

[16] M. Alim et al., N=2 Quantum Field Theories and Their BPS Quivers, arXiv:1112.3984

[INSPIRE].

[17] D. Gaiotto, G.W. Moore and Y. Tachikawa, On 6d N = (2, 0) theory compactified on a

Riemann surface with finite area, PTEP 2013 (2013) 013B03 [arXiv:1110.2657] [INSPIRE].

[18] T. Dimofte, D. Gaiotto and S. Gukov, Gauge Theories Labelled by Three-Manifolds,

arXiv:1108.4389 [INSPIRE].

[19] T. Dimofte, D. Gaiotto and S. Gukov, 3-Manifolds and 3d Indices, arXiv:1112.5179

[INSPIRE].

[20] T. Dimofte, M. Gabella and A.B. Goncharov, K-Decompositions and 3d Gauge Theories,

arXiv:1301.0192 [INSPIRE].

[21] F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and

c-extremization, Phys. Rev. Lett. 110 (2013), no. 6 061601 [arXiv:1211.4030] [INSPIRE].

[22] F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization,

JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].
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