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Orme des Merisiers, F-91191 Gif-sur-Yvette, France

E-mail: jan.louis@desy.de, paul.smyth@epfl.ch, hagen.triendl@cea.fr

Abstract: We use the embedding tensor formalism to analyse maximally symmetric back-

grounds of N = 2 gauged supergravities which have the full N = 2 supersymmetry. We

state the condition for N = 2 vacua and discuss some of their general properties. We

show that if the gauged isometries leave the SU(2) R-symmetry invariant, then the N = 2

vacuum must be Minkowski. This implies that there are no AdS backgrounds with eight

unbroken supercharges in the effective N = 2 supergravity of six-dimensional SU(3)×SU(3)

structure compactifications of type II string theory and M-theory. Combined with previous

results on N = 1 vacua, we show that there exist N = 2 supergravities with a given set of

gauged Abelian isometries that have both N = 2 and N = 1 vacua. We also argue that an

analogue of our analysis holds in five and six spacetime dimensions.

Keywords: Extended Supersymmetry, Supergravity Models, Flux compactifications

ArXiv ePrint: 1204.3893

Open Access doi:10.1007/JHEP08(2012)039

mailto:jan.louis@desy.de
mailto:paul.smyth@epfl.ch
mailto:hagen.triendl@cea.fr
http://arxiv.org/abs/1204.3893
http://dx.doi.org/10.1007/JHEP08(2012)039


J
H
E
P
0
8
(
2
0
1
2
)
0
3
9

Contents

1 Introduction 1

2 Gauged supergravity with eight supercharges 2

3 Vacua with N = 2 supersymmetry 4

4 N = 2 supergravities in d = 5, 6 7

5 Gauging the isometries of the c-map 8

6 N = 2 and N = 1 vacua in the same gauged supergravity 9

1 Introduction

The analysis of Minkowski and Anti-de Sitter (AdS) supersymmetric vacua in gauged ex-

tended supergravity has received much attention in recent years. In this paper we consider

such maximally-symmetric backgrounds of N = 2 supergravities in four spacetime dimen-

sions (d = 4) and their “cousins” in d = 5, 6 which also have eight supercharges.

The general conditions for N = 2 vacua in electrically gauged N = 2 supergravities,

together with a few illustrative examples, were given recently in [1]. By using the embedding

tensor formalism, introduced in [2] and applied to N = 2 gauged supergravity in [3],1 we

extend the analysis of [1] by allowing for the possibility of electrically and magnetically

charged fields in the spectrum. We derive the conditions for N = 2 vacua with Abelian and

non-Abelian factors in the gauge group and show that solutions generically exist. However,

it is not guaranteed that these solutions lie inside the physical domain of the Kähler cone

and thus are physically acceptable. For the special case of hypermultiplets that are gauged

with respect to isometries which do not induce an SU(2) R-symmetry rotation, we show

that AdS vacua with eight unbroken supercharges are not possible. It is straightforward

to extend our analysis to spacetimes with d = 5, 6.

We shall specifically study the class of isometries that are present in quaternionic-

Kähler manifolds which are in the image of the c-map and appear at the tree level of type

II compactifications in string theory [5, 6]. These manifolds can be viewed as a graded

Heisenberg algebra fibred over a special-Kähler base. We show that no N = 2 AdS vacua

can occur for gauged isometries in the fibre, which in turn implies that there are no AdS

vacua in the low-energy effective N = 2 action of six-dimensional SU(3)× SU(3)-structure

compactifications of type II string theory and M-theory that preserve eight supercharges.

1Related work on tensor fields in N = 2 supergravity has been performed in [4].
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This means in particular that SU(3) × SU(3)-structure backgrounds with four- and five-

dimensional N = 2 AdS vacua as found in [7–9] do not have any description in terms of

N = 2 gauged supergravity. The conditions for N = 2 Minkowski vacua are linear in

the fibre coordinates and holomorphic in the coordinates on the special-Kähler manifold

suggesting that generically a solution exists. However, the Kähler cone condition is not

automatically satisfied for these solutions.

N = 2 supergravities with N = 1 vacua were first discovered in refs. [10–12] and later

systematically analysed in [13–15]. It is of interest to determine under what conditions

these supergravities can also admit N = 2 vacua in their field space. We again find that

the conditions are linear in the fibre coordinates and holomorphic in the special-Kähler

coordinates, leaving the Kähler cone condition as the non-trivial requirement to find a

physically acceptable solution. We give two examples of special-Kähler manifolds with

cubic prepotential, one of which contains either an N = 1 or an N = 2 vacuum inside

the Kähler cone but never both at the same time. The second example can accommo-

date both N = 1 and N = 2 vacua inside the Kähler cone, as long as the charges are

chosen appropriately.

This paper is organised as follows. In section 2 we briefly introduce N = 2 gauged

supergravity in order to set the stage for the analysis. In section 3 we record the conditions

for vacua with the full N = 2 supersymmetry and determine some of their properties. In

section 4 we extend the analysis to supergravities with eight supercharges in d = 5, 6. In

section 5 we consider the special case of gauged isometries in the fibre of quaternionic-

Kähler manifold which are in the image of the c-map. Finally, in section 6 we address the

question of simultaneously havingN = 2 andN = 1 vacua in the same gauged supergravity.

2 Gauged supergravity with eight supercharges

Let us start with a brief summary of gauged N = 2 supergravity in d = 4.2 Its spectrum

consists of a gravitational multiplet, nv vector multiplets and nh hypermultiplets.3 The

gravitational multiplet contains the spacetime metric gµν , two gravitini ΨµA,A = 1, 2

and the graviphoton A0
µ. Each vector multiplet contains a vector Ai

µ, two gaugini λiA

and a complex scalar ti, where i = 1, . . . , nv labels the vector multiplets.4 Finally, a

hypermultiplet consists of two hyperini ζα and four scalars qu, where α = 1, . . . , 2nh and

u = 1, . . . , 4nh. The scalar field space is parametrised by (ti, qu) and splits into the product

M = Mv ×Mh . (2.1)

The first component Mv is a special-Kähler manifold of complex dimension nv spanned by

the scalars ti in the vector multiplets. This implies that the metric obeys

gi̄ = ∂i∂̄K
v , with Kv = − ln i

(

X̄ΛΩΛΣX
Σ
)

, (2.2)

2For a more comprehensive review see, for example, ref. [16].
3We neglect the possibility of tensor multiplets, as they can be dualised into hypermultiplets (or vector

multiplets, if they are massive).
4Strictly speaking, the definition of the graviphoton is XI ImFIJA

J
µ, which can be read off from the

gravitino variation and depends on the scalar fields in the vector multiplets.
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where XΛ = (XI ,FI), I = 0, . . . , nv is a 2(nv + 1)-dimensional symplectic vector that

depends holomorphically on the ti. FI = ∂F/∂XI is the derivative of a holomorphic

prepotential F which is homogeneous of degree 2 and ΩΛΣ is the standard symplectic

metric. The physical range of the coordinates ti is restricted to the Kähler cone defined by

i
(

X̄ΛΩΛΣX
Σ
)

> 0 . (2.3)

The second component of the field space Mh, spanned by the scalars qu in the hy-

permultiplets, is quaternionic-Kähler and of real dimension 4nh. These manifolds admit a

triplet of almost complex structures Ix, x = 1, 2, 3 satisfying IxIy = −δxy1 + ǫxyzIz, with

the metric being Hermitian with respect to all three Ix. The associated two-forms Kx are

the field strength of the SU(2) connection ωx, i.e.

Kx = dωx +
1

2
ǫxyzωy ∧ ωz . (2.4)

In gauged supergravities the multiplets can be charged under a set of electric and

magnetic gauge fields. The corresponding covariant derivatives of the scalars read

Dµq
u = ∂µq

u −AΛ
µΘ

λ
Λk

u
λ , Dµt

i = ∂µt
i −AΛ

µ Θ̂
λ̂
Λk

i
λ̂
, (2.5)

where AΛ
µ = (AI

µ, Bµ I) is a symplectic vector of electric and magnetic gauge fields and

kuλ (ki
λ̂
), λ = 1, . . . , nKh, (λ̂ = 1, . . . , nKv, ) are Killing vectors on Mh (Mv) respectively.

Finally, the charges or group theoretical representations of the scalars are specified by the

embedding tensors Θλ
Λ, Θ̂

λ̂
Λ. Note that the ti transform in the adjoint representation of

the gauge group and thus for any non-Abelian factor the gauged ki
λ̂
have to be non-trivial.

Moreover, if the gauged isometries are non-Abelian, the embedding tensor has to transform

covariantly, which is ensured by the quadratic constraint

f λ̂
σ̂ρ̂Θ̂

σ̂
ΛΘ̂

ρ̂
Σ
+ Θ̂σ̂

Λ(kλ̂)
Γ
ΣΘ̂

λ̂
Γ = 0 . (2.6)

Here (kλ̂)
Γ
Σ is the symplectic transformation induced by the Killing vector ki

λ̂
via

ki
λ̂
∂iX

Λ = (kλ̂)
Λ
ΣX

Σ , (2.7)

and f λ̂
σ̂ρ̂ are the structure constants

[kσ̂, kρ̂] = f λ̂
σ̂ρ̂kλ̂ . (2.8)

Note that both (kλ̂)
Γ
Σ and f λ̂

σ̂ρ̂ are independent of the coordinates ti.

The gauging of isometries requires additional terms in the supersymmetry variations.

Since we are looking for maximally symmetric backgrounds it is sufficient to focus on the

scalar parts of the fermionic supersymmetry variations given by

δǫΨµA = Dµǫ
∗
A − SABγµǫ

B + . . . ,

δǫλ
iA = W iABǫB + . . . ,

δǫζα = NA
α ǫA + . . . ,

(2.9)
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where ǫA are the supersymmetry parameters and

SAB =
1

2
eK

v/2XΛΘλ
ΛP

x
λ (σ

x)AB ,

W iAB = ieK
v/2gi̄ (∇̄X̄

Λ)Θλ
ΛP

x
λ (σ

x)AB + eK
v/2ǫABX̄ΛΘ̂λ̂

Λk
i
λ̂
,

NA
α = 2eK

v/2X̄ΛΘλ
ΛUA

αuk
u
λ .

(2.10)

Here UAα are the vielbein one-forms onMh, the (σ
x)A

B
are the Pauli matrices, and ∇iX

Λ :=

∂iX
Λ + (∂iK

v)XΛ. Finally, P x
λ are the Killing prepotentials defined by

− 2kuλ K
x
uv = ∇vP

x
λ , (2.11)

where ∇v is the SU(2)-covariant derivative and the two-forms Kx are defined in (2.4). The

matrices given in (2.10) also determine the scalar potential V in the Lagrangian

V = −6SABS̄
AB +

1

2
gi̄W

iABW ̄
AB

+NA
α Nα

A . (2.12)

To conclude, a gauged supergravity is specified by the spectrum of vector- and hyper-

multiplets, their respective field spaces and the embedding tensor which determines the

charged directions in field space.

3 Vacua with N = 2 supersymmetry

We shall now give the conditions for vacua which have the full N = 2 supersymmetry. This

requires that all fermionic supersymmetry variations (2.9) vanish, which, for a maximally

symmetric spacetime, translates into the conditions

SABǫ
B =

1

2
µǫ∗A , W iAB = 0 , NαA = 0 , (3.1)

where Λ = −3|µ|2 is the cosmological constant of the N = 2 vacuum. These conditions

have been discussed before for electric gaugings in [1].

Let us start by analysing the second condition in (3.1). Since (σx)AB and ǫAB are

linearly independent, this condition together with the definition (2.10) implies [1]

(∇iX
Λ)Θλ

ΛP
x
λ = 0 , (3.2)

X̄ΛΘ̂λ̂
Λk

i
λ̂
= 0 . (3.3)

Equation (3.3) only depends on the ti and has a trivial solution ki
λ̂
= 0 with the property

that any non-Abelian factor of the gauge group is unbroken in the vacuum. If, on the other

hand, the background has ki
λ̂
6= 0, the gauge group is spontaneously broken and (3.3) can

only be fulfilled by tuning some of the ti’s appropriately. Contracting (3.3) with ∂iX
Σ and

using (2.7) yields

X̄ΛΘ̂λ̂
Λ(kλ̂)

Σ
ΓX

Γ = 0 , (3.4)
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which, upon further multiplication with Θ̂ρ̂
Σ
and use of (2.6), results in

i X̄Λ(Θ̂λ̂
Λf

ρ̂

λ̂σ̂
Θ̂σ̂

Γ)X
Γ = 0 . (3.5)

This gives a number of real quadratic equations for XΛ, which fix nr = rk(T (t, t̄)) real

degrees of freedom at some point ti, where we defined the nKv × (4nv + 4)-matrix

T ρ̂

Λ̂
(t, t̄) =

(

−Θ̂λ̂
Λf

ρ̂

λ̂σ̂
Θ̂σ̂

Γ Im(XΓ(t)), Θ̂λ̂
Λf

ρ̂

λ̂σ̂
Θ̂σ̂

ΓRe(X
Γ(t))

)

, Λ̂ = 1, . . . , 4nv + 4 . (3.6)

As a consequence nr gauge bosons become massive by “eating” nr real scalar degrees of

freedom leaving nr massive short BPS vector multiplets.5

Before we analyse (3.2) let us turn to the third condition in (3.1). Since the vielbein on

the quaternionic-Kähler manifold is invertible we infer from (2.10) that NαA = 0 implies

XΛΘλ
Λk

u
λ = 0 , (3.7)

which is similar to (3.3) but now couples the vector- and hypermultiplet sector. Further-

more, in contrast to (3.3), equations (3.7) are holomorphic conditions on the ti. As before

there is the trivial solution kuλ = 0 but (3.7) can also be satisfied by tuning further vector

scalars ti appropriately. More precisely, from the Killing vectors kλ that are non-zero at the

vacuum locus nc = rk(Θλ
Λk

u
λ) holomorphic conditions arise for the vector multiplet scalars

ti which in turn imply that there are nc further massive gauge boson.6 As we shall see

shortly, these massive gauge bosons reside in long non-BPS vector multiplets. Note that

the combined conditions following from (3.3) and (3.7) have to be compatible and solvable

by tuning at most nv complex scalars.

Now let us turn to (3.2) which can be nicely combined with the first equation in (3.1).

Noting that the matrix (XI ,∇iX
I) is invertible in special geometry we can rewrite the two

conditions together as [13]

(Θλ
I −FIJΘ

Jλ)P x
λ = −e−Kv/2(∂IK

v) µ̂ ax , (3.8)

where ax is an arbitrary real vector on S2 and µ̂ is related to µ by a phase. From the

definition of the Kähler potential (2.2) we have XI∂IK
v = 1 and (∂iX

I)∂IK
v = 0, which

means that the right-hand side in (3.8) gives only a contribution to the gauging of the

graviphoton XI ImFIJA
J
µ.

7 The non-vanishing prepotential of this gauging therefore de-

termines the cosmological constant, while the prepotentials of all other gaugings should

vanish in an N = 2 vacuum. We can easily solve (3.8) for the prepotentials. Since ImFIJ

is required by special geometry to be invertible, (3.8) is equivalent to

Θλ
ΛP

x
λ = −1

2
eK

v/2ΩΛΣ Im(µ̂X̄Σ) ax , (3.9)

where we used (2.2) and Θλ
Λ = (Θλ

I ,−ΘJλ).

5Note that for ki

λ̂
= 0 we have T

ρ̂

Λ̂
= 0 and therefore nr = 0 so that the gauge group remains unbroken.

6Note that electric gaugings give rise to linear equations, while magnetic gaugings are non-linear in the

standard coordinates on Mv.
7This explicit expression for the graviphoton is found from its appearance in the gravitino variation.
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In general (3.9) corresponds to 3nc real conditions for the hypermultiplet scalars which

in turn become massive. As we observed above nc gauge bosons also become massive by

each eating the forth real scalar field of a hypermultiplet. We thus see that the Higgs

mechanism leads to a long massive vector multiplet which contains altogether five massive

scalars — three from hypermultiplets and two from vector multiplets. Those scalar fields

which do not participate in the Higgs mechanism are flat directions of the vacuum and

thus define its N = 2 moduli space. Note that we need nh ≥ nc in order to have an

N = 2 vacuum.

Let us now consider the special case of isometries kλ which do not induce an SU(2)

R-symmetry rotation on the fermions, i.e. isometries of Mh whose Lie derivative on the

SU(2) connection vanishes

Lkω
x = 0 . (3.10)

For such isometries the Killing prepotentials are given in terms of the SU(2) connection

by [17]

P x = ωx(k) . (3.11)

Inserted into SAB the hyperino condition (3.7) implies

SAB ∼ XΛΘλ
ΛP

x
λ (σ

x)AB = ωx(XΛΘλ
Λkλ)(σ

x)AB = 0 . (3.12)

From eq. (3.1) we then infer that the cosmological constant must vanish and allN = 2 vacua

in such theories are necessarily Minkowski. It can be easily checked that the isometries in

the fibre of quaternionic-Kähler manifolds which are in the image of the c-map, and which

we discuss in more detail in section 5, have this property [13, 17]. Note, however, that

there are also examples where (3.10) is not fulfilled [1, 19].

Before we proceed, let us address the issue of the SU(2)-covariance of our result.

Both (3.10) and (3.11) do not transform covariantly under local SU(2) rotations and there-

fore one might worry that they only hold for a particular choice of coordinates.8 Indeed,

the Killing prepotentials can be written more generally as [18]

P x
λ = ωx(kλ) +W x

λ , (3.13)

where W x
λ is the so-called compensator field that makes the right-hand side transform

non-trivially as an SU(2) vector and that is defined via

LkλK
x = ǫxyzKyW z

λ . (3.14)

As a consequence of (3.10) the left-hand side of this equation vanishes and the compensator

field vanishes in this particular SU(2) frame. However, in the N = 2 locus (3.7) implies that

XΛΘλ
ΛP

x
λ

∣

∣

∣

N=2
= XΛΘλ

ΛW
x
λ

∣

∣

∣

N=2
, (3.15)

where each side transforms as an SU(2) vector. This means that

XΛΘλ
ΛLkλK

x
∣

∣

∣

N=2
= 0 , (3.16)

8We thank the referee and S. Vandoren for drawing our attention to this subtlety.
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is an SU(2)-covariant condition (see also appendix A.3 of [13] for similar manipulations),

which follows from the non-covariant equation (3.10). Furthermore, the condition (3.16)

implies that SAB is vanishing and that the N = 2 vacuum must be Minkowski.

4 N = 2 supergravities in d = 5, 6

The analysis of the previous section can be repeated in five and six dimensions for super-

gravities with the same number (eight) of supercharges. The hypermultiplet sector is un-

changed while the vector multiplets have only one real scalar in d = 5 or none at all in d = 6.

As a result the matrices appearing in fermionic supersymmetry variations (2.9) change.

Five-dimensional N = 2 gauged supergravity has been discussed for example in [20–

22] and references therein. Here we will restrict to the case with no tensor multiplets and

comment on the more general case later. The N = 2 vacua again arise as solutions of (3.1),

with the major difference relative to d = 4 being that there are no magnetically charged

fields, as there are no magnetic gauge vectors. In addition, the scalar matrices previously

defined in (2.10) now read

SAB =hIΘλ
IP

x
λ (σ

x)AB ,

W iAB =−
√
3√
2
gij∂jh

IΘλ
IP

x
λ (σ

x)AB ,

NA
α =

√
6

4
hIΘλ

IUA
αuk

u
λ ,

(4.1)

and depend in the vector multiplets only on a set of real coordinates hI (instead of the

complex coordinates XI) that obey the cubic condition

dIJKhIhJhK = 1 . (4.2)

Analogously to the derivation of (3.7), the hyperino condition NA
α = 0 leads to

hIΘλ
I k

u
λ = 0 . (4.3)

These are nr = rk(Θλ
I k

u
λ) real equations on the hI which fix the scalars of nr vector

multiplets. Furthermore, (hI , ∂jh
I) is again an invertible matrix so that, similarly to (3.9),

we can combine the gaugino and gravitino equation into

Θλ
IP

x
λ = dIJKhJhKµax , (4.4)

where µ is real and dIJKhJhK replaces ∂IK in (3.9) by virtue of the cubic condition (4.2).

This fixes 3nr hypermultiplet scalars, consistent with the Higgs mechanism and we end

up with nr long massive vector multiplets. Note that, analogously to four dimensions, a

supersymmetric AdS vacuum exists only if the Lie derivative on the SU(2) connection is

non-zero for at least one of the gauged Killing vectors. The story gets more involved in the

presence of tensor multiplets [20]. However, let us stress that the cosmological constant is

only affected by gaugings in the hypermultiplets, and therefore our discussion concerning

the existence of supersymmetric AdS vacua still applies.
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We now turn to gauged supergravities with eight supercharges in d = 6 which are

discussed, for example, in [23, 24]. In this case there are no scalars in the vector multiplet

sector. Moreover, due to chirality of the supergravity no scalar contributions arise in the

hyperino or gravitino variation, in contrast to (2.9). From the gaugino variation one finds

similarly to (3.7) the condition

Θλ
i P

x
λ = 0 , (4.5)

which again are 3 rk(Θ) real conditions on the hypermultiplet scalars, as required by the

Higgs mechanism. Furthermore, supersymmetric AdS is not a solution, as gaugings do not

give a contribution to the cosmological constant.

5 Gauging the isometries of the c-map

A large class of known quaternionic-Kähler manifolds are those that lie in the image of the

c-map [5, 6]. These manifolds are fibrations of a graded Heisenberg algebra over a special-

Kähler manifold and they are of interest as the fibre admits a large number of isometries.

Furthermore, they appear in the low-energy effective action of type II and M-theory com-

pactifications on six-dimensional SU(3) × SU(3) structure manifolds where fluxes, torsion

and non-geometric fluxes precisely gauge these isometries (see e.g. [17, 25–30]). Therefore

the vacua in these gauged supergravities coincide with the vacua for SU(3)×SU(3)-structure

compactifications of type II and M-theory to four and five dimensions, respectively.

Let us denote the (nh−1) complex coordinates of the special-Kähler base space by za,

the analogue of the holomorphic symplectic vector XΛ by ZΛ̃ = (ZA,GA) and the cor-

responding Kähler potential by Kh. The c-map adds an additional (2nh + 2) real fibre

coordinates (φ, φ̃, ξΛ̃) where ξΛ̃ = (ξA, ξ̃A) is a 2nh-dimensional symplectic vector.9 The

isometries of the fibre are generated by the Killing vectors10

kφ̃ = −2
∂

∂φ̃
, k

Λ̃
=

∂

∂ξΛ̃
+Ω

Λ̃Σ̃
ξΣ̃

∂

∂φ̃
, (5.1)

which form a graded Heisenberg algebra with the only non-trivial commutator being

[k
Λ̃
, k

Σ̃
] = Ω

Λ̃Σ̃
kφ̃ . (5.2)

Since these Killing vectors are everywhere linearly independent, eq. (3.7) simplifies to

XΛΘΛ̃
Λ = 0 , XΛΘφ̃

Λ
= 0 . (5.3)

This gives nc = rk(Θ) holomorphic conditions on Mv, giving a mass to nc vector multiplets

in the Higgs mechanism. Furthermore, eq. (5.3) defines the N = 2 vector moduli space of

the vacuum.

9For more details see, for example, [5, 6, 13].
10We neglect the Killing vector in the φ direction, as this isometry is broken in string compactifications

by one-loop corrections [31].
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Let us continue with the constraints in the hypermultiplet sector. The isometries

generated by (5.1) fulfil (3.10) and therefore the N = 2 vacuum is necessarily Minkowski.

Inserting (3.11) into (3.9) we arrive at

ΘΛ̃
Λω

x(k
Λ̃
) = 0 , Θφ̃

Λ
ωx(kφ̃) = 0 . (5.4)

The explicit form of the SU(2) connection is given by [6, 13]

ω1 − iω2 = 2eK
h/2+φZA(dξ̃A −FABdξ

B) ,

ω3 =
1

2
e2φ(dφ̃+ ξ̃Adξ

A − ξAdξ̃A)− i eK
h (

ZA(ImGAB)dZ̄
B − Z̄A(ImGAB)dZ

B
)

.

(5.5)

Inserted into (5.4) yields

ΘΛ̃
ΛΩΛ̃Σ̃

ZΣ̃ =0 , (5.6)

ΘΛ̃
ΛΩΛ̃Σ̃

ξΣ̃ =Θ
Λφ̃ . (5.7)

The first equation is completely analogous to (5.3) and gives nc holomorphic conditions on

the special-Kähler base of Mh. The second equation leads to nc real conditions on the fibre

of Mh. The other nc fibre scalars are eaten by the gauge vectors so that altogether there

are nc long massive vector multiplets leaving nv − nc vector and nh − nc hypermultiplets

unfixed and massless.

Note that (5.3) and (5.6) are holomorphic equations of the special-Kähler coordinates

and (5.7) gives real, linear equations for the fibre. Therefore they are generically solvable

but it is not automatic that the solution lies inside the Kähler cones for both the XI and

ZA (cf. (2.3)). We will see this feature more explicitly in the next section when we discuss

some examples.

6 N = 2 and N = 1 vacua in the same gauged supergravity

In ref. [13] the issue of spontaneous N = 2 → N = 1 supersymmetry breaking was consid-

ered and the possible N = 1 vacua of N = 2 supergravities were classified. It is of interest

to determine under which conditions a given gauged supergravity can have simultaneously

N = 2 and N = 1 vacua in its field space.11 Supersymmetry then implies that both vacua

are completely stable [32, 33]. In the following we derive these conditions and give two

explicit examples. As we will see, they are separated in scalar field space and can lie in the

same or in different chambers of the Kähler cone.

We will concentrate in the following on supergravities that are in the image of the

c-map. For this class the N = 1 Minkowski solutions of [13] can be stated in terms of the

embedding tensor as

Θ Λ̃
Λ = Re

(

C̄ΛD
Λ̃
)

, Θ φ̃
Λ

= Re
(

C̄ΛD̂
)

, (6.1)

11We thank Z. Komargodski for a remark which inspired the following analysis.

– 9 –
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where the solution is parametrised by two complex lightlike vectors CΛ and DΛ̃ satisfying

C̄ΛΩ
ΛΣCΣ = 0 , D̄Λ̃Ω

Λ̃Σ̃
DΣ̃ = 0 , (6.2)

and

CJFJI(tN=1) = CI , DBGBA(zN=1) = DA , DΛ̃Ω
Λ̃Σ̃

ξΣ̃N=1 = D̂ . (6.3)

D̂ is a constant and the last equation fixes two of the scalars ξΣ̃. The first two equations

in (6.3) generically fix all scalars ti and za, but for special theories there can be a moduli

space spanned by tN=1 and zN=1, respectively [15]. The structure of the embedding tensor

given in (6.1) defines the gauged supergravity and the conditions (6.2) and (6.3) ensure

that it has N = 1 vacua. Let us now consider under what conditions these supergravities

can also have N = 2 vacua.

Clearly, the embedding tensor in (6.1) has just rank two, so that generically there

should also exist an N = 2 vacuum. Inserting the N = 1 solutions (6.1) into (5.3), (5.6)

and (5.7) we find the N = 2 condition to be

XΛ
N=2 Re

(

C̄ΛD
Λ̃
)

= 0 , XΛ
N=2 Re

(

C̄ΛD̂
)

= 0 ,

Re
(

C̄ΛD
Λ̃
)

Ω
Λ̃Σ̃

ZΣ̃
N=2 = 0 , Re

(

C̄ΛD
Λ̃
)

Ω
Λ̃Σ̃

ξΣ̃N=2 = Re
(

C̄ΛD̂
)

,
(6.4)

where the subscript N = 2 indicates that we evaluate the quantity in the N = 2 vac-

uum. Using the fact that (6.3) holds at some point in scalar field space and that ImFIJ

and ImGAB are invertible, it follows that neither of the complex vectors CΛ and DΛ̃ are

proportional to a real vector. Therefore, the most general solution of (6.4) is

XΛ
N=2C̄Λ = XΛ

N=2CΛ = 0 , DΛ̃Ω
Λ̃Σ̃

ZΣ̃
N=2 = D̄Λ̃Ω

Λ̃Σ̃
ZΣ̃
N=2 = 0 , DΛ̃Ω

Λ̃Σ̃
ξΣ̃N=2 = D̂ .

(6.5)

We see that the condition on the fibre coordinates ξΣ̃ is the same forN = 1 andN = 2 vacua

while the conditions on the scalars ti and za are less restrictive forN = 2 vacua. Generically,

two complex ti and two complex za are fixed by (6.5). Therefore, gauged supergravities

which admit an N = 1 vacuum could easily also have an N = 2 vacuum. However, it is

not obvious that both vacua lie within the same Kähler cone where (2.3) holds.

Before we discuss examples where both types of vacua are realised, let us discuss their

positions in field space. On the one hand one expects that different vacua should not

intersect in field space. On the other hand one easily imagines a point in field space which

could fulfil both the N = 2 and N = 1 conditions (6.5) and (6.3) simultaneously. However,

the Kähler cone condition (2.3) ensures that N = 1 and N = 2 vacua are always separated

in field space. To see this we combine (6.3) and (6.5) to arrive at

X̄I(ImF)IJC
J = 0 , (6.6)

while (6.3) implies

C̄I(ImF)IJC
J = 0 . (6.7)

Eq. (6.7) states that CI is lightlike while (6.6) means that CI andXI are orthogonal to each

other. In the Kähler cone defined by (2.3), XI is timelike, contradicting one of these two

– 10 –
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statements. Therefore, both conditions cannot be fulfilled simultaneously as long as (2.3)

holds. Hence, N = 1 and N = 2 vacua can only coincide outside the physical region of the

Kähler cone. Of course, the same reasoning also holds for the special-Kähler base space in

the hypermultiplet sector.

We shall now consider the STU model as a first example, where the scalar manifolds

are given by

Mv =

(

Sl(2,R)

SO(2)

)3

, Mh =
SO(4, 4)

SO(4)2
. (6.8)

This means that both the special-Kähler manifold Mv for the vector multiplets as well as

the special-Kähler base underlying the quaternionic-Kähler manifold Mh are described by

the holomorphic prepotential

F =
XSXTXU

X0
= STU , (6.9)

where we have defined the complex coordinates S = XS

X0 , T = XT

X0 , U = XU

X0 and chosen

X0 = 1. Since the equations (6.3) and (6.5) are identical for both special-Kähler manifolds,

we will only focus on Mv in the following. The discussion for Mh is completely analogous.

The Kähler potential can be computed from (6.9) and is given by

K = − ln(− i(S̄ − S)(T̄ − T )(Ū − U)) , (6.10)

so that the Kähler cone condition (2.3) reads

ImS ImT ImU > 0 . (6.11)

This gives various domains where either all imaginary parts are positive or two imaginary

parts are negative and the third one is positive. In [15] we already discussed the N = 1

vacuum of this model. In order to find a vacuum inside the Kähler cone, we choose

CS =
CTCU

C0
, CT =

CSCU

C0
, CU =

CSCT

C0
, C0 = −CSCTCU

(C0)2
, (6.12)

with C0 6= 0. Furthermore, condition (6.2) gives

Im
CS

C0
Im

CT

C0
Im

CU

C0
= 0 . (6.13)

This means that one of the three imaginary parts, say Im CU

C0 , must vanish. Then the

N = 1 solution is at [15]

SN=1 =
CS

C0
, TN=1 =

CT

C0
, (6.14)

with U arbitrary. On the other hand, from (6.5) we infer that a possible N = 2 vacuum

would be located at

SN=2 =
CS

C0
, TN=2 =

C̄T

C̄0
, or at SN=2 =

C̄S

C̄0
, TN=2 =

CT

C0
. (6.15)

– 11 –
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Checking the Kähler cone condition (6.11) we see that the N = 1 and N = 2 solutions can

never be both in the same chamber of the Kähler cone. Therefore, we find either an N = 1

or an N = 2 vacuum inside the Kähler cone, depending on the choice of CI .

Let us now give an example where N = 1 and N = 2 vacua do exist in the same theory

and, moreover, in the same domain of the Kähler cone. We consider a supergravity with

the field space

Mv =
Sl(2,R)

SO(2)
× SO(2, n+ 2)

SO(2)× SO(n+ 2)
, Mh =

SO(4, n+ 4)

SO(4)× SO(n+ 4)
. (6.16)

Mh is in the image of the c-map where the special Kähler base coincides with Mv [5]. Thus

the holomorphic prepotential for both spaces is given by

F =
XS(XTXU +XmXm)

X0
= STU + Symym , m = 1, . . . , n , (6.17)

where again the first expression is in terms ofXI and the second one in terms of holomorphic

coordinates withX0 = 1. As before, we will focus onMv in the following with the discussion

for Mh being completely analogous. The Kähler potential is given by

K = − ln i(S̄ − S)− ln
(

− (T − T̄ )(U − Ū)− (ym − ȳm)(ym − ȳm)
)

, (6.18)

so that the Kähler cone condition (2.3) reads

ImS(ImT ImU + Im ym Im ym) > 0 . (6.19)

In the following we will concentrate on the domain where

ImS > 0 , ImT ImU + Im ym Im ym > 0 . (6.20)

In [15] the condition (6.3) was discussed in detail for the example (6.17). The vector

CΛ parametrising the embedding tensor was defined to be

CS =
CTCU

C0
, CT = 〈S〉CU , CU = 〈S〉CT ,

Cm = 2〈S〉Cm , C0 = −〈S〉C
TCU

C0
, CS = 〈S〉C0 ,

(6.21)

with C0 6= 0. The N = 1 vacuum is located at

S = 〈S〉 ,
(

T − CT

C0

)(

U − CU

C0

)

+

(

ym − 2Cm

C0

)

ym = 0 . (6.22)

If Im〈S〉 > 0, condition (6.2) gives

Im
CT

C0
Im

CU

C0
= −CmC̄m

2|C0|2 . (6.23)

If we take Im CT

C0 > 0, then one point of the N = 1 vacuum is given by

T =
CT

C0
, ym = 0 , (6.24)

– 12 –
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and therefore an N = 1 vacuum exists.

Now let us discuss the N = 2 vacuum. From (6.5) we obtain two equations that read

(S − 〈S〉)
((

T − CT

C0

)(

U − CU

C0

)

+ ym
(

ym − 2Cm

C0

))

= 0 ,

(S̄ − 〈S〉)
((

T̄ − CT

C0

)(

Ū − CU

C0

)

+ ȳm
(

ȳm − 2Cm

C0

))

= 0 .

(6.25)

The first one is easily satisfied by S = 〈S〉. The second one is then more difficult to solve

since (6.20) demands ImS > 0. Here we only display one point of the N = 2 vacuum to

prove that it exists inside the Kähler cone. This point is

S =〈S〉 , U =Re
CU

C0
+ 3 i Im

CU

C0
,

T =Re
CT

C0
+ 3 i Im

CT

C0
, ym =2 i Im

Cm

C0
,

(6.26)

where we set Re Cm

C0 = 0. By using (6.13), one can check that the point (6.26) solves (6.25)

and therefore gives an N = 2 solution. Furthermore, (6.26) lies inside the Kähler cone

defined by (6.20). Therefore, we have an N = 1 and an N = 2 vacuum in the same N = 2

gauged supergravity.
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[9] D. Lüst and D. Tsimpis, New supersymmetric AdS4 type-II vacua, JHEP 09 (2009) 098

[arXiv:0906.2561] [INSPIRE].

[10] S. Ferrara, L. Girardello and M. Porrati, Minimal Higgs branch for the breaking of half of the

supersymmetries in N = 2 supergravity, Phys. Lett. B 366 (1996) 155 [hep-th/9510074]

[INSPIRE].

[11] S. Ferrara, L. Girardello and M. Porrati, Spontaneous breaking of N = 2 to N = 1 in rigid

and local supersymmetric theories, Phys. Lett. B 376 (1996) 275 [hep-th/9512180]

[INSPIRE].
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[18] R. D’Auria, S. Ferrara and P. Fré, Special and quaternionic isometries: general couplings in

N = 2 supergravity and the scalar potential, Nucl. Phys. B 359 (1991) 705 [INSPIRE].

[19] J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein

truncations with massive modes, JHEP 04 (2009) 102 [arXiv:0901.0676] [INSPIRE].

[20] M. Günaydin and M. Zagermann, The gauging of five-dimensional, N = 2 Maxwell-Einstein

supergravity theories coupled to tensor multiplets, Nucl. Phys. B 572 (2000) 131

[hep-th/9912027] [INSPIRE].

[21] E. Bergshoeff et al., N = 2 supergravity in five-dimensions revisited,

Class. Quant. Grav. 21 (2004) 3015 [Class. Quant. Grav. 23 (2006) 7149] [hep-th/0403045]

[INSPIRE].

– 14 –

http://dx.doi.org/10.1142/S0217751X89000972
http://inspirehep.net/search?p=find+J+Int.J.Mod.Phys.,A4,2475
http://dx.doi.org/10.1016/0550-3213(90)90097-W
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B332,317
http://arxiv.org/abs/hep-th/0403038
http://inspirehep.net/search?p=find+EPRINT+hep-th/0403038
http://dx.doi.org/10.1088/1126-6708/2009/09/107
http://arxiv.org/abs/0904.4915
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4915
http://dx.doi.org/10.1088/1126-6708/2009/09/098
http://arxiv.org/abs/0906.2561
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.2561
http://dx.doi.org/10.1016/0370-2693(95)01378-4
http://arxiv.org/abs/hep-th/9510074
http://inspirehep.net/search?p=find+EPRINT+hep-th/9510074
http://dx.doi.org/10.1016/0370-2693(96)00229-8
http://arxiv.org/abs/hep-th/9512180
http://inspirehep.net/search?p=find+EPRINT+hep-th/9512180
http://dx.doi.org/10.1016/S0550-3213(97)00076-X
http://arxiv.org/abs/hep-th/9607032
http://inspirehep.net/search?p=find+EPRINT+hep-th/9607032
http://dx.doi.org/10.1007/JHEP02(2010)103
http://arxiv.org/abs/0911.5077
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.5077
http://dx.doi.org/10.1007/JHEP10(2010)017
http://arxiv.org/abs/1008.1214
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1214
http://arxiv.org/abs/1111.0679
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.0679
http://dx.doi.org/10.1016/S0393-0440(97)00002-8
http://arxiv.org/abs/hep-th/9605032
http://inspirehep.net/search?p=find+EPRINT+hep-th/9605032
http://dx.doi.org/10.1016/S0550-3213(97)00184-3
http://arxiv.org/abs/hep-th/9610151
http://inspirehep.net/search?p=find+EPRINT+hep-th/9610151
http://dx.doi.org/10.1016/0550-3213(91)90077-B
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B359,705
http://dx.doi.org/10.1088/1126-6708/2009/04/102
http://arxiv.org/abs/0901.0676
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.0676
http://dx.doi.org/10.1016/S0550-3213(99)00801-9
http://arxiv.org/abs/hep-th/9912027
http://inspirehep.net/search?p=find+EPRINT+hep-th/9912027
http://dx.doi.org/10.1088/0264-9381/23/23/C01
http://arxiv.org/abs/hep-th/0403045
http://inspirehep.net/search?p=find+EPRINT+hep-th/0403045


J
H
E
P
0
8
(
2
0
1
2
)
0
3
9

[22] M. Zagermann, The gauging of vector- and tensor-field-coupled five-dimensional N = 2

supergravity, Class. Quant. Grav. 18 (2001) 3197 [INSPIRE].

[23] H. Nishino and E. Sezgin, The complete N = 2, D = 6 supergravity with matter and

Yang-Mills couplings, Nucl. Phys. B 278 (1986) 353 [INSPIRE].

[24] F. Riccioni, All couplings of minimal six-dimensional supergravity,

Nucl. Phys. B 605 (2001) 245 [hep-th/0101074] [INSPIRE].

[25] J. Polchinski and A. Strominger, New vacua for type-II string theory,

Phys. Lett. B 388 (1996) 736 [hep-th/9510227] [INSPIRE].

[26] S. Gurrieri, J. Louis, A. Micu and D. Waldram, Mirror symmetry in generalized Calabi-Yau

compactifications, Nucl. Phys. B 654 (2003) 61 [hep-th/0211102] [INSPIRE].

[27] R. D’Auria, S. Ferrara, M. Trigiante and S. Vaula, Gauging the Heisenberg algebra of special

quaternionic manifolds, Phys. Lett. B 610 (2005) 147 [hep-th/0410290] [INSPIRE].

[28] M. Graña, J. Louis and D. Waldram, Hitchin functionals in N = 2 supergravity,

JHEP 01 (2006) 008 [hep-th/0505264] [INSPIRE].

[29] M. Graña, J. Louis and D. Waldram, SU(3)× SU(3) compactification and mirror duals of

magnetic fluxes, JHEP 04 (2007) 101 [hep-th/0612237] [INSPIRE].

[30] D. Cassani and A. Bilal, Effective actions and N = 1 vacuum conditions from SU(3)× SU(3)

compactifications, JHEP 09 (2007) 076 [arXiv:0707.3125] [INSPIRE].

[31] D. Robles-Llana, F. Saueressig and S. Vandoren, String loop corrected hypermultiplet moduli

spaces, JHEP 03 (2006) 081 [hep-th/0602164] [INSPIRE].

[32] S. Weinberg, Does gravitation resolve the ambiguity among supersymmetry vacua?,

Phys. Rev. Lett. 48 (1982) 1776 [INSPIRE].
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