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Abstract: Einstein-Strauss Hermitian gravity was recently formulated as a gauge theory
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group. A Higgs mechanism for massive gravity was also formulated. We generalize this

construction to obtain massive Hermitian gravity with the use of a complex Higgs multiplet.

We show that both the graviton and antisymmetric tensor acquire the same mass. At

the linearized level, the theory is ghost free around Minkowski background and describes

a massive graviton with five degrees of freedom and an antisymmetric field with three

degrees of of freedom. We determine the strong coupling scales for these degrees of freedom

and argue that the potential nonlinear ghosts, if they exist, have to decouple from the

gravitational degrees of freedom in strong coupling regime.
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1 Introduction

Hermitian gravity is based on a Hermitian metric tensor unifying gravity with an antisym-

metric tensor. It was first formulated by Einstein [1] and then by Einstein and Strauss [2]

in the hope of unifying gravity with electromagnetism based on a geometrical construction

with a Hermitian affine connection. Schrödinger has shown that Hermitian gravity is equiv-

alent to a theory of gravity with a non-symmetric metric tensor [3]. There exists variations

of this theory depending on whether a first or second order formulation is used. A system-

atic study of all these models was undertaken by Damour, Deser and McCarthy [4], who

have shown that these suffer either from appearance of ghost states or impose unacceptable

constraints on the curvature tensor. They arrived at a no-go theorem for all these models,

which however, could be evaded by adding a mass term to the antisymmetric tensor, or

a cosmological constant formed from the determinant of the Hermitian metric. Adding a

mass term to the antisymmetric field could not be written using the Hermitian metric only,

and thus it is not geometrical. This contradicts the fundamental assumption of Hermitian

gravity that all geometric invariants must be expressed in terms of the Hermitian metric.

Recently much progress was made in formulating a consistent theory of massive grav-

ity where the graviton acquires mass through the Higgs mechanism involving four scalar

fields [5–9]. The vacuum expectation values of these fields cause the excitations of three of

the four scalar fields to be absorbed by the metric thus leading to a massive graviton with

five degrees of freedom. The fourth scalar, a potential ghost degree of freedom, is non-

dynamical in the linear approximation on the Minkowski background for the Fierz-Pauli

mass term [10]. The potential nonlinear ghost [12], if exists, is in strong coupling regime

above Vainshtein energy scale [11] and, hence, harmless for gravity [8]. It is then natu-

ral to consider whether the Higgs mechanism generalizes to Hermitian gravity. The aim

would then be to give a mass to the antisymmetric field through spontaneous symmetry

breaking mechanism with the four complex scalar fields zA involved. In analogy with the

case of real scalar fields with global SO(1, 3) symmetry, the complex scalar fields must be
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taken to have a global U(1, 3) symmetry which must be imposed on the couplings to the

Hermitian metric.

In this letter, we shall construct a model of massive Hermitian gravity coupled to

four complex scalar fields zA. First, we will briefly review a derivation of the Hermitian

gravity action based on gauging of the U(1, 3) symmetry and promoting it to be the tangent

group of the manifold [13, 14]. Then we will introduce four complex scalar fields and show

how these fields, when acquire vacuum expectation values, generate the same masses for

both the graviton and the antisymmetric tensor. Finally we determine non-covariantly the

physical degrees of freedom of the antisymmetric field and find the strong coupling scales

for them.

2 Hermitian gravity and the U(1,3) tangent group

The action for Hermitian gravity is most easily constructed via imposing a local U(1, 3)

symmetry which is identified with the tangent group of the four-dimensional manifold. The

main fields are then a complex vierbein eµa and the connections ωa
µb, Γ

ν
ρµ (g) , constrained

by the metricity conditions [14]:

0 = ∇µe
ν
a = ∂µe

ν
a + ω b

µa eνb + Γν
ρµ (g) e

ρ
a. (2.1)

These sixty four complex conditions could be solved, perturbatively, to determine the 64

(anti) Hermitian spin-connections
(

ω c
µb

)

∗

ηca = −ω c
µa ηcb and the 64 Hermitian connec-

tions
(

Γν
µρ

)

∗

= Γν
ρµ in terms of eµa . The curvature tensor is identified with the field strength

R b
µνa = ∂µω

b
νa − ∂νω

b
µa + ω c

µa ω b
νc − ω c

νa ω b
µc , (2.2)

which admits two possible contractions:

R = eµbR
b

µνa eνa, (2.3)

R̃ = gµνR a
µνa , (2.4)

where

gµν = eµae
νa, eµa =

(

eµb
)

∗

ηab, eµae
a
ν = δµν (2.5)

We have shown in [14], that using the constraint (2.1) the curvatures above can be expressed

in terms of Γν
ρµ :

R (ω) = ηaceµ∗c R
b

µνa (ω) eνb = −ηaceµ∗c Rν
ρµν (Γ) e

ρ
a = gρµRν

ρνµ (Γ) = R (Γ) ,

where

Rσ
ρµν (Γ) = ∂µΓ

σ
ρν − ∂νΓ

σ
ρµ + Γσ

κµΓ
κ
ρν − Γσ

κνΓ
κ
ρµ. (2.6)

The generalization of the Einstein action is given then by

SE = −1

2

∫

d4x
∣

∣det eaµ
∣

∣R, (2.7)

and depends on metric gµν only (we use the units where 8πG = 1)
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3 Higgs for gravity

To give mass to the graviton and antisymmetric complex part of the metric we will introduce

the four complex scalar fields zA and construct the induced “Hermitian metric”

HA
B = gµν∂µz

A∂νzB =
(

HD
C

)∗

ηBDη
AC , (3.1)

where we have defined

zA = ηAB

(

zB
)∗

. (3.2)

It is straightforward then to write the analogue of the Fierz-Pauli mass term in powers of

H̄A
B, defined by

H̄A
B = HA

B − δAB. (3.3)

The action for the complex scalar fields providing us with the mass term for gravity becomes

Sz =
m2

8

∫

d4x
√
−g

(

H̄2 − H̄A
BH̄

B
A +O

(

H̄3
))

. (3.4)

where by O
(

H̄3
)

we have denoted all possible higher order extensions of the Fierz-Pauli

term, which do not influence the linear propagator for massive graviton on the symmetry

broken background. An elegant non-linear extension of the action for complex scalar fields

(3.4) will be given in the appendix. The vacuum solution of the full action given by the

sum of (2.7) and (3.4) is

gµν = ηµν , zA = xA. (3.5)

Expanding zA around this vacuum solution, we write

zA = xA + χA + iψA, (3.6)

while for the metric gµν we have

gµν = ηµν + hµν + iBµν , (3.7)

with Bµν being antisymmetric. Similarly H̄A
B, which is Hermitian, can be decomposed in

terms of a real symmetric part and an imaginary antisymmetric part

H̄A
B = h̄AB + iB̄A

B, (3.8)

where h̄AB = h̄BA and B̄AB = −B̄BA and the indices are raised and lowered with the

Minkowski metric ηAB. Substituting the expansions (3.6), (3.7) into the definition of H̄A
B

we find

h̄AB = hAB + ∂AχB + ∂BχA +O((∂χ)2 , . . .), (3.9)

B̄AB = BAB − ∂AψB + ∂BψA +O(∂χ∂ψ, . . .), (3.10)

where we have denoted by O((∂χ)2 , . . .) the higher order terms in perturbations, the ex-

plicit form of which will not be needed here. Notice that h̄AB is invariant with respect
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infinitesimal diffeomorphism transformations and the antisymmetric field B̄AB is invariant

with respect to the infinitesimal gauge transformations

BAB → BAB + ∂AζB − ∂BζA, ψA → ψA + ζA . (3.11)

Substituting (3.8) into (3.4) we can rewrite the action for the scalar fields up to quadratic

order as

Sz =
m2

8

∫

d4x
√
−g

(

h̄2 − h̄ABh̄AB − B̄ABB̄AB

)

. (3.12)

Next we expand the Einstein action (2.7) up to second order in perturbations. Using

the equivalence of the expressions for curvature in terms of spin-connections ω b
µa to that

in terms of the Hermitian connections Γρ
µν (g), we can solve the equation

∂µg
νρ + Γν

σµg
σρ + Γρ

σµg
νσ = 0, (3.13)

to determine Γρ
µν (g) perturbatively in terms of powers of hµν and Bµν . To the first order

we have

Γρµν(1) = −1

2
(∂µ (hνρ + iBνρ)− ∂ν (hρµ + iBρµ) + ∂ρ (hµν + iBµν)) , (3.14)

where the indices are raised and lowered with the Minkowski metric. This can be used

back in the constraint equation to find Γρµν(2) to second order. The gravitational action

to second order is then given by

SE =
1

8

∫

d4x
[(

∂AhBC∂AhBC + 2∂Bh∂Ah
AB − 2∂Ah

AB∂ChCB − ∂Ah∂
Ah

)

+
(

∂ABBC∂ABBC − 2∂CBAB∂ABCB

)]

(3.15)

This action is invariant with respect to both the diffeomorphism and gauge transformations,

respectively,

hAB → hAB + ∂AξB + ∂BξA, BAB → BAB + ∂AζB − ∂BζA. (3.16)

Hence we can replace hAB and BAB in the gravitational part of the action by their gauge

invariant combinations with the scalar fields, h̄AB and B̄AB, correspondingly. The field h̄AB

then satisfy the same linear equations as massive graviton with five degrees of freedom. The

massive gravity and its nonlinear extensions were studied in details in [6–9] and therefore

we concentrate here only on the antisymmetric massive field, the action for which becomes

SB̄ =
1

8

∫

d4x
(

∂AB̄BC∂AB̄BC − 2∂CB̄AB∂AB̄CB −m2B̄ABB̄AB

)

. (3.17)

The equations of motion for B̄AB are

(

∂2 +m2
)

B̄AB − ∂A∂
CB̄CB − ∂B∂

CB̄AC = 0. (3.18)

They describe massive field with three degrees of freedom. Remarkably, B̄AB is exactly

the same combination of fields worked out by Kalb and Ramond in [15], where they used
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Stückelberg method to introduce fake gauge invariance for the auxiliary fields (correspond-

ing here to ψA ) and showed that B̄AB has two degrees of freedom from the transverse

components of ψA plus one degree from the longitudinal part of BAB.

To demonstrate this explicitly and to determine the strong coupling scales for the

different degrees of freedom we will express the action (3.17) entirely in terms of physical

degrees of freedom and find when they enter the strong coupling regime.

4 Physical degrees of freedom and strong coupling scales

Let us first rewrite the action (3.17) explicitly separating space and time components

in B̄AB :

SB̄ =
1

8

∫

d4x
[

Ḃ2
ik + 2Ḃik (Bi,k −Bk,i) + (Bi,k −Bk,i)

2

−B2
ik,j − 2Bik,jBji,k + 2m2B2

i −m2B2
ik

]

, (4.1)

where dot denotes the derivative with respect to time, indices i, k, . . . take the values 1, 2, 3

and comma denotes the derivative with respect to the corresponding spatial coordinate.

We have also introduced the following notations:

B̄0i ≡ Bi, B̄ik ≡ Bik, (4.2)

and assumed summation over repeated indices. Next we define the vector Al dual to the

antisymmetric tensor Bik, so that,

Bik = εiklAl, (4.3)

and decompose the 3-vectors Al and Bi into transverse and longitudinal parts

Al =
ϕ,l√
−∆

+A
(T )
l , Bi = µ,i +B

(T )
i , (4.4)

where ∆ is the Laplacian and the transverse components satisfy the conditions A
(T )
l,l =

0, B
(T )
i,i = 0. Substituting (4.3) and (4.4) into (4.1) the action reduces to

SB̄ =
1

4

∫

d4x
[

(

ϕ̇2 − ϕ,iϕ,i −m2ϕ2
)

+m2µ,iµ,i + Ȧ
(T )
i Ȧ

(T )
i

+ 2εiklB
(T )
i,k Ȧ

(T )
l +B

(T )
i,k B

(T )
i,k −m2A

(T )
i A

(T )
i +m2B

(T )
i B

(T )
i

]

. (4.5)

Variation of this action with respect to µ and B
(T )
i give us the constraints

∆µ = 0, εiklȦ
(T )
l,k +∆B

(T )
i −m2B

(T )
i = 0, (4.6)

from which it follows, that

µ = 0, B
(T )
i =

εiklȦ
(T )
l,k

−∆+m2
. (4.7)
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Substituting these expressions into (4.5), the action becomes

SB̄ =
1

4

∫

d4x

[

(

ϕ̇2 − ϕ,iϕ,i −m2ϕ2
)

+

(

Ȧ
(T )
i

m2

−∆+m2
Ȧ

(T )
i −m2A

(T )
i A

(T )
i

)]

. (4.8)

The three physical degrees of freedom (one pseudo-scalar ϕ and two independent transverse

components of pseudo-vector A
(T )
i ) satisfy the following equations

(

∂2 +m2
)

ϕ = 0,
(

∂2 +m2
)

A
(T )
i = 0. (4.9)

The last term in the action is proportional to the mass and therefore when the mass m van-

ishes A
(T )
i drops out from the action and in this limit the antisymmetric field Bαβ describes

a massless pseudo-scalar with only one degree of freedom. This is not surprising because

as one can easily see from (4.1), three B0i components of the antisymmetric metric are not

dynamical and the gauge symmetry (3.16), involving only two transverse components of

ζi removes two degrees of freedom in Bik. When we couple gravity to the scalar fields ψB,

which in the absence of Bµν are described by the “Maxwell action”

− m2

8

∫

d4xB̄ABB̄AB, (4.10)

with B̄AB = ∂BψA− ∂AψB, the two physical degrees of freedom of ψB are absorbed by the

antisymmetric metric, which thus acquires three degrees of freedom.

The scalar and vector degrees of freedom become strongly coupled at different scales.

To determine these scales let us consider the plane wave with the wavelength λ.We first note

that the scalar ϕ enters (4.8) with canonical normalization. Hence, the minimal quantum

fluctuations of this field at the length-scale λ are of order δϕλ ≃ 1/λ for λ≪ m−1. Because

B̄ ∼ ϕ (see (4.3), (4.4)), we find that the quantum fluctuations of the antisymmetric field

due to the scalar mode become of the order unity at the Planck scale, where this degree of

freedom enters the strong coupling regime. For the two transverse degrees of freedom A
(T )
i

the strong coupling scale is larger than the Planck length. Actually, as follows from (4.8)

the canonically normalized degrees of freedom for these modes are

√

m2

−∆+m2
A

(T )
i ∼ mλA

(T )
i

and therefore the minimal vacuum fluctuations ofmλA
(T )
i decay as 1/λ for λ≪ m−1.Hence

the amplitude of the fluctuations of the fields A
(T )
i itself is of order

δA
(T )
λ ≃ 1

mλ2

It then follows that the quantum fluctuations of B̄ ∼ δA
(T )
λ due to transverse degrees of

freedom become of order unity at scales

λstrong ≃ m−1/2 =
1

m

(

m

mP l

)1/2

– 6 –
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For masses much smaller than the Planck massmP l this strong coupling scale is significantly

smaller than the inverse mass of the field but larger than the Planck wavelength by the

factor (mP l/m)1/2 . Thus the transverse modes enter strong coupling regime before the

scalar mode. As a result, the scalar fields which provide mass to these transverse modes

decouple and the antisymmetric field will remain with one scalar degree of freedom at

energy scales above m1/2.

In [4] it was shown that unbroken Hermitian gravity is inconsistent, due to the coupling

of Bµν to the curvature tensor. However, they also pointed out that the inconsistencies

can be avoided by adding a mass term for the Bµν field. On the other hand, adding

non diffeomorphism invariant mass terms for Bµν , destroys the Hermitian symmetry and

violates the diffeomorphism invariance because the antisymmetric field is also a part of

the Hermitian metric. Therefore, “hard” introduction of the mass term is not acceptable

as it makes the use of a Hermitian metric pointless and spoils the geometrical nature of

Hermitian gravity.

In this paper we have shown that in geometrical Hermitian gravity a mass term for

Bµν can be generated only if the graviton simultaneously acquires the same mass. By

adding four complex scalar fields (corresponding to 8 real fields), we demonstrated how

the gravitational Higgs mechanism can be realized for Hermitian gravity. Three out of the

eight fields are absorbed by the real symmetric part of the metric thus giving us massive

graviton with five degrees of freedom. Two other fields are absorbed by the antisymmetric

part of the metric making this field massive (with 3 degrees of freedom). The remaining

three scalar fields are non-dymamical at linear level on Minkowski background. Two of

them could be potential non-linear ghosts. However, these potential ghosts could certainly

be dangerous for gravity only in those regions where the corresponding degrees of freedom

are in the weak coupling regime and hence the perturbative analysis is trustable for them.

We have shown that for a small graviton mass the strong coupling scales are much below

the Planck scale and hence “the trustable nonlinear ghosts” are completely harmless even

if they would exist.

A Non-linear extension for Fierz-Pauli mass terms

It is straightforward to write the analogue of the Pauli-Fierz action containing various

powers of HA
B . This can be simplified in terms of the field H

A
B defined by

HA
B = δAB +H

A
B (A.1)

We have shown in reference [9] that in the real case there is a special simple consistent

action that starts with quadratic kinetic terms for the fields zA instead of the quartic

terms normally used . To generalize this construction, we first define the auxiliary fields

Eµ
A constrained so that

gµν = Eµ
AE

νA (A.2)

We then define the field

SA
B = Eµ

B∂µz
A − δAB (A.3)

– 7 –
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which depends on the first derivative of zA and is constrained to be Hermitian

SA
B =

(

SB
A

)∗

(A.4)

These constraints could be imposed through the use of Lagrange multipliers. Thus the 16

complex fields Eµ
A are subjected to 32 real constraints, and could be determined completely,

in a perturbative way in terms of gµν and zA. The quadratic part of the proposed action

in terms of the field SA
B is given by

∫

d4x
√
g

[

m2

2!
δAB
EF S

E
AS

F
B

]

(A.5)

This expression can be rewritten in terms of the induced metric HA
B by using the identity

S′A
C S

′
C

B = Eµ
C∂µz

A
(

Eν
B∂νz

C
)

= Eµ
C∂µz

A
(

Eν
C∂νz

B
)∗

= Eµ
CE

νC∂µz
A∂νzB

= gµν∂µz
A∂νzB

= HA
B (A.6)

where

S′A
B = SA

B + δAB (A.7)

Thus we have

SA
B =

√

HA
B − δAB

=

√

δAB +H
A
B − δAB

=
1

2
H

A
B − 1

8
H

A
CH

C
B +

1

16
H

A
CH

C
DH

D
B + · · · (A.8)

There is also unique generalization of the above action that adds terms which are cubic

and quartic in terms of SA
B

∫

d4x
√
g

[

c1
3!
δABC
EFGS

E
AS

F
BS

G
C +

c2
4!
δABCD
EFGHS

E
AS

F
BS

G
CS

H
D

]

(A.9)

Since SA
B is an infinite expansion in terms of H

A
B the action could be expressed in terms of

H
A
B. The action, up to quartic terms is given by

−
∫

d4x
√
g

(

m2

2!
δAB
EF

(

1

4
H

E
AH

F
B − 1

8
H

E
AH

F
CH

C
B +

1

16
H

E
AH

F
CH

C
DH

D
B +

1

64
H

E
CH

C
AH

F
DH

D
B

)

+
c1
3!
δABC
EFG

(

1

8
H

E
AH

F
BH

G
C − 3

32
H

E
AH

F
BH

G
DH

D
C

)

+
c2
4!

1

16
δABCD
EFGHH

E
AH

F
BH

G
CH

H
D

)

(A.10)

This is the same expression obtained in the real case that produce decoupling of ghosts up

to quartic order in perturbation series (compare with equation (20) in reference [8]).

It would be very interesting to generalize the analysis carried out in this paper to

non-linear terms and on non-trivial backgrounds.
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