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1 Introduction

Neutrino mixing [1–6] is important because it could in principle provide new clues for the

understanding of the flavour problem. Even more so since the neutrino mixing angles show

a pattern that is completely different than that of quark mixing. The bulk of the data

on neutrino oscillations are well described in terms of three active neutrinos. By now all

three mixing angles have been measured, although with different levels of accuracy (see

table 1 [7]; see also ref. [8]). In particular, we now have firm experimental evidence for

a non-vanishing value of the smallest angle θ13 and a rather precise determination of its

range (see table 2 [9–12]).

Models of neutrino mixing based on discrete flavour groups have received a lot of

attention in recent years [14–19]. There are a number of special mixing patterns that have

been studied in that context. The corresponding mixing matrices all have sin2 θ23 = 1/2,

sin2 θ13 = 0, values that are good approximations to the data, and differ by the value of

the solar angle sin2 θ12. The observed sin2 θ12, the best measured mixing angle, is very

close, from below, to the so called Tri-Bimaximal (TB) value [20–24] of sin2 θ12 = 1/3

(see figure 1). Alternatively, it is also very close, from above, to the Golden Ratio (GR)
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∆m2
sun (10−5 eV2) 7.54+0.26

−0.22

∆m2
atm (10−3 eV2) 2.43+0.06

−0.10 (2.42+0.07
−0.11)

sin2 θ12 0.307+0.018
−0.016

sin2 θ23 0.386+0.024
−0.021 (0.392+0.039

−0.022)

sin2 θ13 0.0241+0.0025
−0.0025 (0.0244+0.0023

−0.0025)

δCP /π 1.08+0.28
−0.31 (1.09+0.38

−0.26)

Table 1. Fits to neutrino oscillation data from ref. [7]. The results for both the normal and the

inverse (in the brackets) hierarchies are shown.

Quantity sin2 2θ13 sin2 θ13

T2K [9] 0.11+0.11
−0.05 (0.14+0.12

−0.06) 0.028+0.019
−0.024 (0.036+0.022

−0.030)

MINOS [10] 0.041+0.047
−0.031 (0.079+0.071

−0.053) 0.010+0.012
−0.008 (0.020+0.019

−0.014)

DC [11] 0.086± 0.041± 0.030 0.022+0.019
−0.018

DYB [12] 0.092± 0.016± 0.005 0.024± 0.005

RENO [13] 0.113± 0.013± 0.019 0.029± 0.006

Table 2. The reactor angle measurements from the recent experiments T2K [9], MINOS [10],

DOUBLE CHOOZ [11], Daya Bay [12] and RENO [13], for the normal (inverse) hierarchy.

value [25–28] sin2 θ12 = 1√
5φ

= 2
5+
√
5
∼ 0.276, where φ = (1 +

√
5)/2 is the GR (for a

different connection to the GR, see refs. [29, 30]). On a different perspective, one has also

considered models with Bi-Maximal (BM) mixing, where sin2 θ12 = 1/2, i.e. also maximal,

as the neutrino mixing matrix before diagonalization of charged leptons. This is in line

with the well-known empirical observation that θ12 + θC ∼ π/4, where θC is the Cabibbo

angle, a relation known as quark-lepton complementarity [31–51]. Probably the exact

complementarity relation becomes more plausible if replaced by θ12 +O(θC) ∼ π/4 (which

we call “weak” complementarity). One can think of models where a suitable symmetry

enforces BM mixing in the neutrino sector at leading order (LO) and the necessary, rather

large, corrective terms to θ12 arise from the diagonalization of the charged lepton mass

matrices [31–57]. Thus, if one or the other of these coincidences is taken seriously, models

where TB or GR or BM mixing is naturally predicted are a good first approximation.

In the following we will mainly refer to TB or BM mixing which are the most studied

first approximations to the data. The simplest symmetry that, at LO, leads to TB is A4

while BM can be obtained from S4. A4 models have been studied widely (for a review

and a list of references, see ref. [14]). At LO the typical A4 model leads to exact TB

mixing. The LO approximation is then corrected by non-leading effects. Given the set of

flavour symmetries and having specified the field content, the non-leading corrections to

– 2 –
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Figure 1. The values of sin2 θ12 for TB or GR or BM mixing are compared with the data at 1σ.

TB mixing, arising from higher dimensional effective operators, can be evaluated in a well-

defined expansion. In the absence of specific dynamical tricks, in a generic model all three

mixing angles receive corrections of the same order of magnitude. Since the experimentally

allowed departures of θ12 from the TB value, sin2 θ12 = 1/3, are small, numerically not

larger than O(λ2C) where λC = sin θC , it follows that both θ13 and the deviation of θ23 from

the maximal value are also expected to be typically of the same general size. The same

qualitative conclusion also applies to A5 models with GR mixing. This generic prediction of

a small θ13, numerically of O(λ2C), is now confronted with the most recent data. The central

value sin θ13 ∼ 0.15, from table 1, is betweenO(λ2C) ∼ O(0.05) andO(λC) ∼ O(0.23). Since

λC is not that small, this gap is not too large and one can argue that models based on TB

(or GR) mixing are still viable with preference for the lower side of the experimental range.

Of course, one can introduce additional theoretical input to improve the value of θ13 (for

an updated list of recent models of this kind see ref. [58] and references therein; for recent

models in the specific context of holographic composite Higgs see refs. [59, 60]). In the

case of A4, one particularly interesting example is provided by the Lin model [61] (see also

ref. [62]), formulated before the T2K, MINOS, DOUBLE CHOOZ, Daya Bay and RENO

results. In the Lin model the A4 symmetry breaking is arranged, by suitable additional

Zn parities, in a way that the corrections to the charged lepton and the neutrino sectors

are kept separated not only at LO but also at next-to-leading order (NLO). This way, the

contribution to neutrino mixing from the diagonalization of the charged leptons can be of

O(λ2C), while those in the neutrino sector of O(λC). In addition, in the Lin model these

large corrections do not affect θ12 and satisfy the relation sin2 θ23 = 1/2+1/
√

2 cos δ sin θ13,

with δ being the CKM-like CP violating phase of the lepton sector. Thus, in the Lin model

the NLO corrections to the solar angle θ12 and to the reactor angle θ13 can be naturally of

different orders.

Alternatively, one can think of models where, because of a suitable symmetry, BM

mixing holds in the neutrino sector at LO and the corrective terms for θ12, which in this case

are necessarily rather large, arise from the diagonalization of charged lepton masses [31–

57]. These terms from the charged lepton sector, numerically of order O(λC), would then

generically also affect θ13. The resulting value could well be compatible with the present

experimental values of θ13. An explicit model of this type based on the group S4 has been

developed in ref. [52] (see also refs. [53–55]). An important feature of this model is that

only θ12 and θ13 are corrected by terms of O(λC) while θ23 is unchanged at this order. This

model is compatible with present data and clearly prefers the upper range of the present

experimental result for θ13.
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In this work we discuss three possible classes of models: 1) typical A4 models where θ13
is generically expected to be small, of the order of the observed departures of θ12 from the

TB value, and thus with preference for the lower end of the allowed experimental range.

2) special A4 models, like the Lin model, where θ13 is disentangled from the deviation

of sin2 θ12 from the TB value 1/3 and can be as large as the upper end of the allowed

experimental range. We give a general characterization of these special A4 models where

the dominant corrections to TB mixing do not arise from the charged lepton sector but

from the neutrino sector. 3) Models where BM mixing holds in the neutrino sector and

large corrections to θ12 and θ13 arise from the diagonalization of charged leptons. The

value of θ13 could naturally be close to the present experimental range. In each of these

possible models the dominant corrections to the LO mixing pattern involve a number of

parameters of the same order of magnitude, ξ. We discuss the success rate corresponding to

the optimal value of ξ for each model, obtained by scanning the parameter space according

to a similar procedure for all three cases. We argue that, while the absolute values of the

success rates depend on the scanning assumptions, their relative values in the three classes

of models, provide a reliable criterium for comparison. We find that, for reproducing the

mixing angles, the Lin type models have the best performance, as expected, followed by

the typical A4 models while the BM mixing models lead to an inferior score, as they most

often fail to reproduce θ12.

We then discuss the implications for lepton flavour-violating (LFV) processes of the

above three classes of possibilities, assuming a supersymmetric context, with or without

See-Saw. The present bounds pose severe constraints on the parameter space of the models

(for a recent general analysis on model-independent flavour violating effects in the context

of flavour models, see ref. [63]). In particular, we refer to the recent improved MEG

result [64] on the µ → eγ branching ratio, Br(µ → eγ) . 2.4 × 10−12 at 95% C.L. and

to other similar processes like τ → (e or µ)γ. One expects that lepton flavour-violating

processes may also have a large discriminating power in assessing the relative merits of the

different models. We have studied this by adopting the simple CMSSM framework. While

this overconstrained version of supersymmetry is rather marginal after the results of the

LHC searches, more so if the Higgs mass really is around mH = 125 GeV, we still believe it

can be used here for our indicative purposes. We find that the most constrained versions

are the models with BM mixing at LO where relatively large corrections directly appear

in the off-diagonal terms of the charged lepton mass matrix. The A4 models turn out to

be the best suited to satisfy the experimental bounds, as the non-diagonal charged lepton

matrix elements needed to reproduce the mixing angles are quite smaller. An intermediate

score is achieved by the models of the Lin type, where the main corrections to the mixing

angles arise from the neutrino sector. Overall the A4 models emerge well from our analysis

and in particular those of the Lin type perhaps appear as the most realistic approach to

the data among the discrete flavour group models that we have studied. As for the regions

of the CMSSM parameter space that are indicated by our analysis, the preference is for

small tanβ and large SUSY masses (at least one out of m0 and m1/2 must be above 1 TeV).

As a consequence it appears impossible, at least within the CMSSM model, to satisfy the

MEG bound and simultaneously reproduce the muon g − 2 discrepancy.
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The paper is organized as follows. In section 2 we discuss the models and their predic-

tions for θ13 to then compare them with the data. In section 3 we list the effective operators

that induce lepton flavour violation and derive their contributions to the measured quan-

tities. We then apply the general formalism to the specific models and observables. In

section 4 we derive our conclusions.

2 Models

We consider models invariant under a flavour symmetry group Gf . At the LO the lepton

mixing arises from a mismatch between the residual symmetries Ge and Gν of charged

lepton and neutrino sectors, respectively. In this approximation charged leptons and neu-

trinos acquire mass from two independent sets of flavons, Φe and Φν , whose VEVs preserve

two Abelian groups: Ge = Zn (n ≥ 3) and Gν = Z2 × Z2. The groups Ge and Gν can

be subgroups of Gf or, as a result of the specific field content of the model and of the

LO approximation, they can contain some accidental symmetry and generate a group G

different from (and possibly larger than) Gf .1 Lepton mass matrices can be expanded in

inverse powers of the cut-off scale Λ

me = m(0)
e + δm(1)

e + . . .

mν = m(0)
ν + δm(1)

ν + . . .
(2.1)

where δm
(1)
e,ν/m

(0)
e,ν = O(〈Φe,ν〉/Λ) and dots stand for higher-order terms. The LO contribu-

tions m
(0)
e and m

(0)
ν depend only on 〈Φe〉 and 〈Φν〉, respectively. They are invariant under

Ge and Gν :
ρ(gei)

†m(0)†
e m(0)

e ρ(gei) = m(0)†
e m(0)

e ,

ρ(gνi)
Tm(0)

ν ρ(gνi) = m(0)
ν .

(2.2)

Here gei and gνi are the elements of Ge and Gν and ρ denotes an irreducible three-

dimensional unitary representation of the group G generated by Ge and Gν .2 Both Ge
and Gν are Abelian and the matrices ρ(gei) and ρ(gνi) can be diagonalized by two inde-

pendent unitary transformations Ωe and Ων

ρ(gνi)diag = Ω†ν ρ(gνi) Ων , ρ(gei)diag = Ω†e ρ(gei) Ωe , (2.3)

and the mixing matrix UPMNS reflects the misalignment between the two bases:

UPMNS = Ω†eΩν . (2.4)

It is immediate that the mixing matrix is independent of the choice of the basis. We

choose to work in the basis where ρ(gei) and m
(0)†
e m

(0)
e are diagonal: Ωe = 1. Beyond

1In the present paper we concentrate only on the TB, GR or BM patterns, originated by the mismatch

between Ge and Gν . However, interesting deformations of these patterns, all predicting already at the LO a

non-vanishing θ13, arise considering the finite modular groups ΓN , N > 1: in refs. [65, 66], a comprehensive

analysis is presented for an arbitrary Ge and Gν = Z2×Z2. In refs. [67–69], a more general study has been

presented, where the residual symmetry in the neutrino sector is Gν = Z2, while the other Z2 component

arises accidentally.
2Later on we will include in m

(0)
e also higher-order contributions satisfying the property (2.2).

– 5 –



J
H
E
P
0
8
(
2
0
1
2
)
0
2
1

LO, the prediction for the mixing in eq. (2.4) is modified. In general the VEVs of Φe and

Φν are corrected by terms of relative order 〈Φe,ν〉/Λ and do not preserve Ge and Gν any

more. Moreover higher order operators contribute to lepton masses without respecting

the LO residual symmetries. The NLO corrections are suppressed with respect to the LO

contributions by the ratio between the flavon VEVs (〈Φe〉, 〈Φν〉) and Λ. Depending on the

agreement of the LO approximation to the data, 〈Φe〉/Λ and 〈Φν〉/Λ will typically range

between λ2C and λC .

2.1 A4 models

We refer to SUSY models based on the flavour symmetryGf = A4×GAUX , where theGAUX
factor depends on the specific realization [61, 70–72].3 The group A4 can be generated by

two elements S and T satisfying

S2 = (ST )3 = T 3 = 1 . (2.5)

The irreducible representations of A4 are a triplet 3 and three inequivalent singlets 1, 1′

and 1′′. In the triplet representation S and T can be chosen as:

T =

 1 0 0

0 ω2 0

0 0 ω

 , S =
1

3

−1 2 2

2 −1 2

2 2 −1

 , (2.6)

where ω = ei2π/3. Under A4 the electroweak SU(2) lepton doublets l transform as a triplet,

while the electroweak singlets ec, µc and τ c and the electroweak Higgs doublets Hu,d as

singlets. In the flavon sector both Φe and Φν always include a triplet, but they can also

include additional singlets. At the LO and in the exact SUSY limit the VEVs of Φe and

Φν are determined by two separate sets of equations and satisfy at LO:

T ′〈Φe〉 = 〈Φe〉 , S〈Φν〉 = 〈Φν〉 . (2.7)

The transformation T ′ can coincide with the T generator of A4 [70, 71], or can represent

an accidental symmetry of the charged lepton Lagrangian still satisfying T ′3 = 1, as in the

models of refs. [61, 72], where T ′ = ωT . The charged lepton mass matrix me is given by

me = m(0)
e + δm(1)

e + . . . (2.8)

where

m(0)
e = vd

 ye 0 0

0 yµ 0

0 0 yτ

 η . (2.9)

3The present analysis applies also to models based on flavour symmetries that contain the group A4,

such as S4: few examples can be found in refs. [73–76], where the TB pattern is predicted at the LO, while

at the NLO the mixing is corrected in a similar way as we are going to discuss in this section. Moreover,

our analysis applies also to the model based on the flavour group T ′, described in ref. [77], even if T ′ does

not contain A4 as a subgroup. Although we could generalize our analysis to a brother class of symmetries,

we focus on the flavour group A4 that represents the minimal choice in terms of dimensions of a group.

– 6 –
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Here vd is the VEV of Hd, yf (f = e, µ, τ) are dimensionless quantities and η is a small

parameter that breaks the flavour symmetry A4. At the LO the charged lepton mass

matrix m
(0)
e , only depending on 〈Φe〉, is diagonal and invariant under the action of the

transformation T ′:

T ′
†
m(0)†
e m(0)

e T ′ = m(0)†
e m(0)

e . (2.10)

We have Ge = Z3, generated by T ′. The hierarchical pattern ye � yµ � yτ can be

reproduced by requiring that operators of increasing dimension contribute to yτ , yµ and ye,

respectively.4 This can be achieved either by means of a Froggatt-Nielsen U(1) symmetry

contained in GAUX [70, 71] or through some discrete components of GAUX as in refs. [61,

72].

This class of models can be realized both with and without a See-Saw mechanism. In

the first case there are three right-handed neutrinos transforming as a triplet of A4, while

in the second case the source of neutrino masses is a set of higher dimensional operators

violating the total lepton number. In either case the light neutrino mass matrix mν is given

by:

mν = m(0)
ν + δm(1)

ν + . . . (2.11)

where

m(0)
ν =

 x y y

y x+ z y − z
y y − z x+ z

 . (2.12)

The parameters x, y and z are quadratic in vu, the VEV of Hu, and inversely proportional

to the scale associated with the violation of the total lepton number. The LO term m
(0)
ν is

invariant under the Z2 × Z2 symmetry generated by S, eq. (2.7), and by

A23 =

 1 0 0

0 0 1

0 1 0

 . (2.13)

Indeed,

STm(0)
ν S = m(0)

ν and AT23m
(0)
ν A23 = m(0)

ν . (2.14)

The Z2 symmetry generated by the matrix A23 is an accidental symmetry. The matrix

m
(0)
ν of eq. (2.12) is the most general one invariant under both S and A23. In the minimal

formulation of refs. [61, 70, 71] the parameters x, y and z are not independent. If neutrino

masses are generated via the See-Saw mechanism [61, 71] they are related by

z =
(x− y)2

4y − x
. (2.15)

If neutrino masses are parametrized directly through a higher dimensional operator [70, 71]

we have

z = −(x+ 2y) . (2.16)

4Here, we include in m
(0)
e all contributions arising from the LO 〈Φe〉, independently of the dimensionality

of the corresponding operator.
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At the LO m
(0)
e is diagonal while m

(0)
ν is diagonalized by

UTB =


√

2
3

√
1
3 0

−
√

1
6

√
1
3 −

√
1
2

−
√

1
6

√
1
3

√
1
2

 . (2.17)

This holds for any value of the parameters x, y and z since UTB simultaneously diagonalizes

both S and A23.

The departure from the LO approximation depends on the subleading contributions

δm
(1)
e and δm

(1)
ν , which can vary for different models. In all models considered here [61, 70–

72] the NLO correction to the charged lepton mass matrix is not invariant under T ′ and is

of the following type:

δm(1)
e = vd

O(ye) O(ye) O(ye)

O(yµ) O(yµ) O(yµ)

O(yτ ) O(yτ ) O(yτ )

 η ξ , (2.18)

where ξ is a small adimensional parameter given by the ratio between a flavon VEVs and

Λ. The transformation to diagonalize me is V T
e meUe = mdiag

e with

Ue =

 1 ce12 ξ ce13 ξ

−ce∗12 ξ 1 ce23 ξ

−ce∗13 ξ −ce∗23 ξ 1

 (2.19)

where ce12, c
e
13 and ce23 are complex parameters of order one in absolute value. We discuss

the NLO contribution to mν by distinguishing two cases.

2.1.1 Typical A4 models

In “typical” A4 models [71, 72], the NLO contribution δm
(1)
ν is a generic symmetric matrix

with entries suppressed, compared to the corresponding entries in m
(0)
ν , by a relative factor

ξ′, of the order of the ratio between a flavon VEV and Λ. This occurs both with and without

the See-Saw mechanism. The generic transformation that diagonalize mν is UTB ·Uν where

Uν =

 1 cν12 ξ
′ cν13 ξ

′

−cν∗12 ξ′ 1 cν23 ξ
′

−cν∗13 ξ′ −cν∗23 ξ′ 1

 , (2.20)

where cν12, c
ν
13 and cν23 are complex parameters of order one in absolute value. Barring a

fine tuning of the Lagrangian parameters, in these models the suppression factors ξ and

ξ′ are expected to be of the same order of magnitude. For example, beyond the LO the

equations satisfied by 〈Φe〉 and 〈Φν〉 are no longer decoupled and the corrections to the

LO flavon VEVs are of the same size, for both Φe and Φν . All the elements of the mixing

– 8 –
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Figure 2. Typical A4 Models. Success Rates as a function of the parameter ξ. The ce,νij
parameters that multiply ξ are treated as random complex numbers with absolute values following

a Gaussian distribution around 1 with variance 0.5. In Cyan the NH and in Orange the IH. The

value of ξ that maximizes the success rate is 0.076(0.077) for NH (IH).

matrix get corrections of the same size ξ ≈ ξ′. We expect5:

sin2 θ23 =
1

2
+Re(ce23) ξ +

1√
3

(
Re(cν13)−

√
2Re(cν23)

)
ξ

sin2 θ12 =
1

3
− 2

3
Re(ce12 + ce13) ξ +

2
√

2

3
Re(cν12) ξ

sin θ13 =
1

6

∣∣∣3√2 (ce12 − ce13) + 2
√

3
(√

2 cν13 + cν23

)∣∣∣ ξ .
(2.22)

We see that to reach the central value for the reactor angle in agreement with the value

reported in table 1, the parameter ξ should be of O(0.1). A precise value can be found

studying the success rate to reproduce all the three mixing angles inside the corresponding

3σ ranges, depending on the value of ξ. As shown in figure 2, the value of ξ that maximizes

the success rate is 0.076(0.077) for NH (IH). The corresponding value is ∼ 8.5%, which is

not large but not hopelessly small either.

We analyze quantitatively the expressions in eq. (2.22) and their correlations in fig-

ure 3: in the plots on the left (right), we show the correlation between sin2 θ13 and sin2 θ12
(sin2 θ23). The parameter ξ is taken equal to 0.076. The ce,νij parameters that multiply ξ are

treated as random complex numbers with absolute values following a Gaussian distribution

around 1 with variance 0.5. In the plots we show only the NH case. The IH case is similar.

As we can see, the plots are representing the general behaviour of this class of models:

sin2 θ13 increases with ξ, but correspondingly also the deviation of sin2 θ12 from 1/3 does.

5Eq. (2.22) is a particular case of the general parametrization presented ref. [78]:

sin θ23 =
1√
2

(1 + a) , sin θ12 =
1√
3

(1 + s) , sin θ13 =
r√
2
, (2.21)

with a, s and r real numbers. The expressions in eq. (2.22) show explicitly the dependence of the NLO

mixing angles on the corrections from both the neutrino and the charged lepton sectors.
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(a) Correlation between sin2 θ12 and sin2 θ13. (b) Correlation between sin2 θ23 and sin2 θ13.

Figure 3. Typical A4 Models. On the left (right), we plot sin2 θ13 as a function of sin2 θ12
(sin2 θ23), following eq. (2.22). The dashed-black lines represent the 3σ values for the mixing angles

from the Fogli et al. fit [7]. Only the NH data sets is shown. The parameter ξ is taken equal to

0.076. The ce,νij parameters that multiply ξ are treated as random complex numbers with absolute

values following a Gaussian distribution around 1 with variance 0.5.

As a result, even for the value of ξ that maximizes the success rate, the requirement for

having a reactor angle inside its 3σ error range corresponds to a prediction for the solar

angle that spans all the 3σ experimental error bar and is often not even in agreement with

the data.

2.1.2 Special A4 models

In these models the accidental symmetry A23 of the neutrino sector is broken by a relatively

large amount so that, in first approximation, the residual symmetries of the charged lepton

and neutrino sectors are those generated by T ′ and S, respectively. At the LO and in the

chosen basis m†eme is diagonal while mν is invariant under S:

STmνS = mν . (2.23)

The most general solution to this constraint can be parametrized in the following form:

mν =

 x y − w y + w

y − w x+ z + w y − z
y + w y − z x+ z − w

 , (2.24)

We see that w describes the deviation of mν from the form associated to the Tri-Bimaximal

mixing, see eq. (2.12). The matrix mν can be diagonalized in two steps. First we transform

mν by a Tri-Bimaximal rotation:

m′ν = UTTBmνUTB =

 x− y 0
√

3w

0 x+ 2y 0√
3w 0 x− y + 2z

 . (2.25)
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Second, we perform a unitary transformation in the (1,3) plane:

V =

 α 0 ξ′

0 1 0

−ξ′∗ 0 α∗

 , |α|2 + |ξ′|2 = 1 , (2.26)

V Tm′νV = mdiag
ν . (2.27)

The exact rotation is given by:

2αξ′

|α|2 − |ξ′|2
=
uv∗(u∗ − v)

|v|2 − |u|2
, with u ≡ 2

√
3w

x− y
, and v ≡ − 2

√
3w

x− y + 2z
. (2.28)

The unitary matrix that diagonalizes mν is

UTB V =


√

2/3α 1/
√

3
√

2/3 ξ′

−α/
√

6 + ξ′∗/
√

2 1/
√

3 −α∗/
√

2− ξ′/
√

6

−α/
√

6− ξ′∗/
√

2 1/
√

3 +α∗/
√

2− ξ′/
√

6

 . (2.29)

Such a mixing pattern is very interesting because the observed θ13 can be reproduced

by choosing ξ′ of order 0.1 and the predicted value of sin2 θ12 deviates from 1/3 only by

terms of order ξ′2. To preserve these properties corrections from the charged lepton sector

should be small compared to ξ′. This can be realized by adopting two different expansion

parameters ξ � ξ′ for the charged lepton sector and for the neutrino sector. A model along

these lines has been built in ref. [61]. The setup is arranged in such a way that 〈Φe〉 and

〈Φν〉 satisfy decoupled equations up to NLO so that it is possible to achieve 〈Φe〉 � 〈Φν〉
and to maintain the property of eq. (2.7) up to NLO. Moreover 〈Φν〉 couples to charged

leptons only at the NNLO so that the dominant source of corrections to the neutrino mixing

pattern is δm
(1)
ν , which in turns, being dominated by 〈Φν〉, is invariant under S.

In eq. (2.29) it is not restrictive to choose α real and positive and we have:

δCP ≈ arg ξ′ (2.30)

sin θ13 =

∣∣∣∣∣
√

2

3
ξ′ +

ce12 − ce13√
2

ξ

∣∣∣∣∣ (2.31)

sin2 θ12 =
1

3− 2 |ξ′|2
− 2

3
Re(ce12 + ce13) ξ

=
1

3
+

2

9
|ξ′|2 − 2

3
Re(ce12 + ce13) ξ (2.32)

sin2 θ23 =
1

2

(
1 + ξ′√

3α

)(
1 + ξ′∗√

3α

)
(

1 + |ξ′|2
3α2

) +Re(ce23) ξ

=
1

2
+

1√
3
|ξ′| cos δCP +Re(ce23) ξ (2.33)

where we have also included the effects coming from the diagonalization of the charged

lepton sector as in eq. (2.19), to first order in ξ. The second equality shows the result
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Figure 4. Special A4 Models. Contour plot for 1, 2, 3σ values of sin2 θ23 in the parameter space

sin2 θ13–cos δCP according to the values for the NH in table 1. The Yellow, Orange, Red regions

refer to the data at 1σ, 2σ, 3σ, respectively.

expanded in powers of |ξ′|, to the order |ξ′|2. In these models |ξ′| is chosen to be of order

0.1, larger than ξ so that the contribution of eq. (2.19) can be neglected, and the lepton

mixing matrix is very close to UTB V . It is interesting to note that if we neglect the

corrections proportional to ξ, we have exact correlations between the reactor angle and the

other two angles:6

sin2 θ12 =
1

3(1− sin2 θ13)
, sin2 θ23 =

1

2
+

1√
2

sin θ13 cos δCP . (2.34)

The first expression shows that the unitary transformation V always increases the solar

angle from the TB value, while the preferred 1σ interval is below the TB prediction, see

figure 1. This is a small effect, of second order in θ13, that can be compensated by the

corrections proportional to ξ. The second correlation involves the Dirac CP phase and is

particularly interesting considering the recent hint of a CP phase close to π for the NH

case. In figure 4, we graphically compare this second expression with the present data

for the NH case: when considering the 1σ (2σ) ranges for the mixing angles, one sees an

indication that cos δCP lies in the interval [−1,−0.5], while no indication arises when the

3σ error band for sin2 θ23 is taken into account. Although these results for the CP phase

is modified by the inclusion of the subleading ξ contributions, these correlations will allow

an interesting test for such models once δCP is measured and the precision on sin2 θ23 is

improved.

In figure 5, we study the success rate to reproduce all the three mixing angles inside

their corresponding 3σ error ranges, as a function of |ξ′|. The parameters have been chosen

such that ξ is a real number in [0.005, 0.06] and ceij are random complex numbers with

6It has been shown in ref. [69], from general group theoretical considerations, that these correlations are

a general feature of flavour models when the symmetry group of the charged lepton (neutrino) mass matrix

is Z3 (Z2).

– 12 –



J
H
E
P
0
8
(
2
0
1
2
)
0
2
1

Figure 5. Special A4 Models. Success Rates as a function of the parameter |ξ′|. The parameters

have been chosen such that ξ is a real number in [0.005, 0.06] and ceij are random complex numbers

with absolute values following a Gaussian distribution around 1 with variance 0.5. In Cyan the NH

and in Orange the IH. The value of |ξ′| that maximizes the success rate for both NH and IH is

0.184.

absolute values following a Gaussian distribution around 1 with variance 0.5. The value

of |ξ′| that maximizes the success rate for both NH and IH is 0.184. The corresponding

success rate is much larger in these models (∼ 55%) than for the typical A4 models.

We analyze quantitatively the deviations in eqs. (2.32) and (2.33) and their correlations

in figure 6: in the plots on the left (right) column, we show the correlations in eqs. (2.32)

and (2.33) between sin2 θ13 and sin2 θ12 or sin2 θ23, respectively. The parameters have been

chosen such that ξ is a real number in [0.005, 0.06]; ξ′ is a complex number with absolute

values equal to 0.184; the parameters ceij are random complex numbers with absolute values

following a Gaussian distribution around 1 with variance 0.5. In the plots we show only

the NH case. The IH case is similar. For this choice of the parameters, the model can well

describe all three angles inside the corresponding 3σ interval, and its success rate is much

larger than that of the typical TB models, as turns out by comparing figures 2 and 5.

2.2 S4 models

In this section we refer to a SUSY model based on the flavour symmetry Gf = S4 × Z4 ×
U(1) [52], but we keep the presentation slightly more general, to embrace a wider class of

possibilities [53–55]. The group S4 admits two generators S and T satisfying

S2 = (ST )3 = T 4 = 1 . (2.35)

Its irreducible representations are two singlets 1 and 1′, a doublet 2 and two triplets 3 and

3′. In one of the two triplet representations of S4, S and T can be chosen as:

T =

−1 0 0

0 −i 0

0 0 i

 , S =

 0 − 1√
2
− 1√

2

− 1√
2

1
2 −1

2

− 1√
2
−1

2
1
2

 . (2.36)
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(a) Correlation between sin2 θ12 and sin2 θ13. (b) Correlation between sin2 θ23 and sin2 θ13.

Figure 6. Special A4 Models. sin2 θ13 as a function of sin2 θ12 (sin2 θ23) is plotted on the left

(right), following eqs. (2.32) and (2.33). The dashed-black lines represent the 3σ values for the

mixing angles from the Fogli et al. fit [7]. Only the NH data sets is shown. The parameter ξ is

a real number in [0.005, 0.06]; ξ′ is a complex number with absolute values equal to 0.184; the

parameters ceij are random complex numbers with absolute values following a Gaussian distribution

around 1 with variance 0.5.

In the class of models considered here the electroweak SU(2) lepton doublets l transform as

a triplet 3, the electroweak singlets ec, µc and τ c transform as singlets and the electroweak

Higgs doublets Hu,d are invariant. If present, the right-handed neutrinos transform as a

triplet 3. Similarly to the previous class of models, at the LO and in the SUSY limit the

VEVs of Φe and Φν are determined by two decoupled equations and satisfy

T ′〈Φe〉 = 〈Φe〉 , S〈Φν〉 = 〈Φν〉 [LO] . (2.37)

The transformation T ′ = iT generates a Z4 subgroup of the flavour group Gf [52]. The

charged lepton mass matrix me is given by

me = m(0)
e + δm(1)

e + . . . (2.38)

with the LO contribution m
(0)
e of the same type as the one considered before in eq. (2.9).

In this case, η represents a small parameter that breaks the flavour symmetry S4. At the

LO the charged lepton mass matrix m
(0)
e , only depending on 〈Φe〉, is diagonal and invariant

under the action of the transformation T ′:

T ′
†
m(0)†
e m(0)

e T ′ = m(0)†
e m(0)

e . (2.39)

We have Ge = Z4, generated by T ′. The hierarchical pattern ye � yµ � yτ is reproduced

by operators of increasing dimensions contributing to yτ , yµ and ye, respectively. Also in

this case we are including in m
(0)
e all terms arising from the LO 〈Φe〉, independently from

the dimensionality of the operators that contribute to the charged lepton mass matrix.

In the specific model of ref. [52] a See-Saw mechanism produces a mass matrix for the

light neutrinos mν , given by:

mν = m(0)
ν + δm(1)

ν + . . . (2.40)
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where

m(0)
ν =

 x y y

y z x− z
y x− z z

 .

The parameters x, y and z are quadratic in vu, the VEV of Hu and inversely proportional

to the scale associated with the violation of the total lepton number. The LO term m
(0)
ν is

invariant under the Z2×Z2 symmetry generated by S, eq. (2.37), and by the transformation

A23 of eq. (2.13):

STm(0)
ν S = m(0)

ν , AT23m
(0)
ν A23 = m(0)

ν . (2.41)

Also in this case the Z2 symmetry represented by the matrix A23 is an accidental symmetry.

The matrix m
(0)
ν of eq. (2.41) is the most general one invariant under both S and A23. In

the realization of ref. [52] the parameters x, y and z are related by

z = x− y2

x
. (2.42)

At the LO m
(0)
e is diagonal while m

(0)
ν is diagonalized by

UBM =


√

1
2 −

√
1
2 0

1
2

1
2 −

√
1
2

1
2

1
2

√
1
2

 . (2.43)

This holds for any value of the parameters x, y and z since UBM is the matrix that

simultaneously diagonalizes S and A23.

The departure from the bimaximal mixing depends on the subleading contributions

δm
(1)
e , δm

(1)
ν . In the model of ref. [52], such contributions are not generic. At the NLO

the corrections to both the neutrino and the charged lepton sector are controlled by 〈Φν〉
which preserves the LO alignment. The NLO correction to the charged lepton mass matrix

is no longer invariant under T ′ and is of the following type:

δm(1)
e = vd

O(ye) O(ye) O(ye)

O(yµ) O(yµ) 0

O(yτ ) 0 O(yτ )

 η ξ ,

where ξ is a small adimensional parameter given by the ratio between a flavon of the Φν

sector and Λ. The transformation needed to diagonalize me is V T
e meUe = mdiag

e where, to

first order in ξ

Ue =

 1 ce12 ξ c
e
13 ξ

−ce∗12 ξ 1 0

−ce∗13 ξ 0 1

 , (2.44)

where ceij are complex number with absolute value of order one. In the neutrino sector

after the inclusion of the NLO corrections the mass matrix has still the form of eq. (2.41)
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(a) ce13 6= 0 (b) ce13 = 0

Figure 7. S4 Models. In (a), the success rate as a function of the parameter ξ. The parameters

ce12,13 have been taken as random complex numbers with absolute value following a Gaussian dis-

tribution around 1 with variance 0.5. In Cyan the NH and in Orange the IH. The value of ξ that

maximizes the success rate shown in the left plot is ξ = 0.172, for both the NH and IH. In (b), the

success rate for the case ce13 = 0 as a function of ξ and cos δCP . The parameters ce12 is been taken

as a random complex number with absolute value following a Gaussian distribution around 1 with

variance 0.5. The success rate reaches its maximum, ∼ 20%, for cos δCP = −1 and ξ = 0.18. Only

the NH case is shown. The IH is similar.

and is diagonalized by UBM . The lepton mixing is U †eUBM and to first order in ξ we have

δCP = π + arg (ce12 − ce13)

sin θ13 =
1√
2
|ce12 − ce13| ξ

sin2 θ12 =
1

2
− 1√

2
Re(ce12 + ce13) ξ

sin2 θ23 =
1

2
.

(2.45)

To properly correct the BM value of the solar angle to agree with the data, ξ is

expected to be O(λC). Studying the success rate of having all three mixing angles inside

the corresponding 3σ ranges, we find that it is maximized for both the NH and IH when

ξ = 0.172, as shown in figure 7(a). In this case, the maximal success rate of about 2.6%

is particularly small. The problem for this model is not to reproduce θ13 but rather to

calibrate the correction to θ12 for it to fall in its allowed window: we see from figure 7(a)

that most of the scanning points spread out in a large interval of sin2 θ12 between ∼ 0.2 and

∼ 0.8. It may be interesting in this case to explore the possibility that one of the charged

lepton mixing angles is dominant. For this to occur naturally an additional dynamical input

would be needed. For the specific case ce13 = 0, we get a even more predictive correlation

(still dependent, through δCP , on the ce12 phase) among the solar and the reactor angle:

sin2 θ12 =
1

2
+ sin θ13 cos δCP +O(sin2 θ13) . (2.46)
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Figure 8. S4 Models. Contour plot for 1, 2, 3σ values of sin2 θ12 in the parameter space sin2 θ13–

cos δCP according to the values for the NH in table 1. The Orange and Red regions refers to the

data at 2σ and 3σ, respectively. No region corresponding to the data at 1σ is present.

In this case, we study the dependence of the success rate from both ξ and the Dirac CP

phase, in terms of cos δCP : being dependent on two parameters, this success rate cannot

be directly compared with the previous one, function of only ξ; a trustworthy comparison

requires to average among all the values of the success rate for a fixed ξ. The corresponding

plot for the NH case is shown in figure 7(b): the success rate reaches its maximum, ∼ 20%,

for ξ = 0.18 and cos δCP = −1, for both the NH and IH cases. Only the NH case is shown

in figure 7(b), while the IH is similar. The alternative possibility that ce12 = 0 would lead

to similar results.

It is interesting to investigate the origin of the preference for δCP = −1 shown in

figure 7(b). In figure 8, we graphically present the correlation in eq. (2.46), neglecting the

O(sin2 θ13) terms. The predicted value of sin2 θ12 agrees with the experimental one only

when cos δCP is very close to −1. Although this correlation is modified once subleading

contributions from both the neutrino and the charged lepton sectors are taken into account,

still it will provide a strong test for such models.

We analyze quantitatively the expressions in eq. (2.45) and their correlation in fig-

ure 9(a), where ce12,13 have been taken as random complex numbers with absolute value

following a Gaussian distribution around 1 with variance 0.5, while ξ = 0.172. In fig-

ure 9(b), we analyze the specific case ce13 = 0, where ξ = 0.18 and cos δCP = −1. In

figure 9, only the NH case is shown. The IH case is similar. Comparing figure 7(a) with

figures 2 and 5, we can see that these S4 models are strongly disfavoured with respect to

the A4 ones, and especially with respect to the special A4 models.

In conclusion, from the point of view of reproducing the observed values of the mixing

angles in a natural way, the A4 models of the Lin type provide a most efficient solution. In

the next sections we will study the performance of the different models for LFV processes.
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(a) c13 6= 0 (b) c13 = 0

Figure 9. S4 Models. sin2 θ13 as a function of sin2 θ12 is plotted, following eq. (2.45). The

dashed-black lines represent the 3σ values for the mixing angles from the Fogli et al. fit [7]. Only

the NH data sets is shown. On the left, the parameters ceij are random complex numbers with

absolute values following a Gaussian distribution around 1 with variance 0.5, while ξ = 0.172. In

the right, ce13 = 0, ξ = 0.18 and cos δCP = −1.

3 Lepton flavour violation

In this section we discuss the implications on LFV processes of the three classes of mod-

els described in the previous section. In particular, given the stringent upper bound on

BR(µ → eγ), we focus on radiative lepton decays. By working in the super-CKM basis,

where all kinetic terms are canonical and lepton mass matrices have been diagonalized

through unitary transformations acting on the whole supermultiplets, the only sources of

LFV are the off-diagonal terms of the slepton mass matrices. In our models these terms are

much smaller than the corresponding diagonal entries and we can use the mass-insertion

(MI) approximation [79–81] to illustrate the qualitative behavior of the model predictions.

The quantitative results shown in our plots have been obtained by using complete one-loop

results, which can be found for example in refs. [82–88]. The normalized branching ratios

Rij for the LFV transitions li → ljγ

Rij =
BR(li → ljγ)

BR(li → ljνiν̄j)
(3.1)

can be written as

Rij =
48π3α

G2
Fm

4
SUSY

(
|AijL |

2 + |AijR|
2
)
. (3.2)

At the LO in the MI approximation, the amplitudes AijL and AijR are given by:

AijL = aLL(δij)LL + aRL
mSUSY

mi
(δij)RL

AijR = aRR(δij)RR + aLR
mSUSY

mi
(δij)LR

(3.3)

where mi are the charged fermion masses and aCC′ (C,C ′ = L,R) are dimensionless func-

tions of the SUSY parameters mSUSY , M1,2, µ, tanβ, renormalized at the electroweak scale.
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aLL
1

240

g2

16π2

[
1− 3 (1 + 4c) tan2 θW + 4

(
4 + 5 tan2 θW

)
tanβ

]
+(2.0÷ 16.3)

aRL = aLR
1

12

g2

16π2
tan2 θW 0.30

aRR
1

60

g2

16π2
tan2 θW [−3− 3c− tanβ] −(0.5÷ 1.2)

Table 3. Coefficients aCC′ characterizing the transition amplitudes for µ → eγ, τ → eγ and

τ → µγ, in the MI approximation and by taking the limit the µ = M1,2 = mSUSY . Numerical

values are given in units of g2/(192π2) and using sin2 θW = 0.23, c = 1, and tanβ = 2 ÷ 15. The

parameter c is a model dependent quantity of order one.

Here a common value in the diagonal entries of both LL and RR blocks of the slepton mass

matrices has been assumed at the electroweak scale and mSUSY denotes the average mass.

Such assumption, often made at the cut-off scale in constrained versions of the MSSM, is

spoiled by running effects and does not hold any more at the electroweak scale. We will

discuss this effect in the next subsection. The simplified framework considered here is suffi-

cient to correctly describe the relation between Rij and the expansion parameters ξ and ξ′.

In our conventions the explicit expression of aCC′ is given in appendix A. Their typical size

is one tenth of g2/(16π2), g being the SU(2)L gauge coupling constant. To appreciate the

relative weights of the contributions in eq. (3.3), we list in table 3 the expressions and the

numerical values of the functions aCC′ , in the limit µ = M1,2 = mSUSY . As one can see,

in this limit the dominant coefficient is aLL, which is larger than aRL = aLR by a factor

7 ÷ 54, and larger than aRR by a factor 4 ÷ 14, depending on tanβ = 2 ÷ 15. This range

of tanβ is taken as representative for the models under consideration. More precisely, the

parameter tanβ is related to the expansion parameter η, the mass of the τ lepton and the

τ Yukawa coupling yτ , by:

tanβ ≈ |yτ | η vEW√
2mτ

, (3.4)

where vEW ≈ 246 GeV is the EW Higgs VEV. For typical A4 models the parameter η ≈ ξ
is of order 0.1. For special A4 model, η ≈ ξ is smaller than ξ′ and we will use the range

0.007 . η . 0.05. For the S4 models, we have η ≈ 0.08 to correctly fit the charged lepton

masses. Requiring yτ to be of order one, 1/3 . |yτ | . 3, we have the following allowed

ranges for tanβ:

3 . tanβ . 30 Typical A4

2 . tanβ . 15 Special A4

3 . tanβ . 24 S4

(3.5)

Finally, (δij)CC′ parametrize the MIs and are defined as:

(δij)CC′ =
(m̂2

eCC′)ij

m2
SUSY

, (3.6)
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where the different blocks of the slepton mass matrices m̂2
eCC′ are evaluated in the super-

CKM basis, denoted by the hat. There are two main types of contributions to the MIs

(δij)CC′ : the first one comes from local operators, bilinear in the slepton fields, with in-

sertions of the flavons Φe,ν . They are invariant under the flavour symmetry and represent

the counterpart, in the sparticle sector, of the operators that generate lepton masses in the

theory. After the breaking of the flavour symmetry, we get slepton mass matrices expanded

up to a certain order in 〈Φe,ν〉/Λ, depending on the highest dimensionality of the operators

included:

m̂2 = m̂2
0 + δm̂2

1 + δm̂2
2 + . . . (3.7)

with δm̂2
p of order (〈Φe,ν〉/Λ)p.

The second contribution to the MIs in eq. (3.6) comes from the renormalization group

evolution (RGE). When neutrino masses are generated by the See-Saw mechanism, the

evolution spans two main regions. The first one goes from the cut-off scale Λ where slepton

masses are generated,7 down to the lightest right-handed neutrino mass M1. In our models

the mass scale associated to right-handed neutrinos coincides with the flavour symmetry

breaking scale 〈Φν〉 and, in a leading logarithmic approximation, we get a contribution to

the MIs proportional to y2/(16π2)× log(〈Φν〉/Λ), y representing a typical neutrino Yukawa

coupling. Below M1 the right-handed neutrinos decouple and the running is only affected

by the lightest degrees of freedom, those of the MSSM. This part of the RGE occurs

whether or not neutrino masses originate from the See-Saw mechanism and gives rise to

contributions to the MIs proportional to y2τ/(16π2)× log(〈Φν〉/mSUSY ), yτ denoting the τ

Yukawa coupling.

We now discuss in turn the different contributions to the MIs for the three classes of

models.

3.1 Mass insertions from local operators

Local operators giving rise to slepton masses can be constructed with standard techniques,

see refs. [89–100]. The inclusion of non-renormalizable operators with insertions of the

flavon fields Φe,ν also affects kinetic terms both in the fermion and sfermion sector, pro-

viding an additional source of flavour violation. Here we list the slepton mass matrices in

the super-CKM basis where kinetic terms have been set in the canonical form by means

of appropriate transformations and where fermion mass matrices have been made diago-

nal through unitary transformations acting on the whole supermultiplet. These slepton

masses refer to specific models, taken as representative of the classes analyzed above. For

typical A4 models we will refer to the construction in ref. [71], for special A4 models we

will consider the model of ref. [61] and finally S4 models are exemplified by the model

in ref. [52]. The results given below have been obtained under the assumption that the

underlying parameters are real.

7Depending on the specific type of SUSY breaking mechanism slepton mass generation can occur at a

scale smaller than Λ. Here we assume that slepton masses are produced at the highest scale, like in gravity

mediated SUSY breaking scenarios.
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3.1.1 Typical A4 models

For typical A4 models we get

m̂2
LL =


1 +O(ξ) O(ξ2) O(ξ2)

O(ξ2) 1 +O(ξ) O(ξ2)

O(ξ2) O(ξ2) 1 +O(ξ)

m2
SUSY + . . . (3.8)

m̂2
RR =


O(1) me

mµ
O(ξ) me

mτ
O(ξ)

me
mµ
O(ξ) O(1)

mµ
mτ
O(ξ)

me
mτ
O(ξ)

mµ
mτ
O(ξ) O(1)

 m2
SUSY + . . . (3.9)

m̂2
RL =


O(me) meO(ξ) meO(ξ)

mµO(ξ2) O(mµ) mµO(ξ)

mτO(ξ2) mτO(ξ2) O(mτ )

 mSUSY + . . . (3.10)

where dots stand for negligible SUSY contributions. In m̂2
RL we have neglected a con-

tribution which arises if the F component of the flavon supermultiplets acquires a VEV.

Such a contribution depends on the SUSY breaking mechanism and vanishes under mild

assumptions [96, 101, 102]. A similar contribution will be neglected also in the special A4

and in the S4 models discussed below. We have

(δij)LL = O(ξ2) , (δij)RL =
mi

mSUSY
O(ξ2) ,

(δij)RR =
mj

mi
O(ξ) , (δij)LR =

mj

mSUSY
O(ξ) ,

(3.11)

and

AijL = aLLO(ξ2) + aRLO(ξ2) ,

AijR = aRR
mj

mi
O(ξ) + aRL

mj

mi
O(ξ) .

(3.12)

From ξ ≈ 0.1 and the numerical values of aCC′ we see that the amplitude AijL is the

dominant one. We approximately have

Rij '
48π3α

G2
Fm

4
SUSY

|aLL + aRL|2 O(ξ4) , (3.13)

and we expect the branching ratios of the three transitions to be of the same order of

magnitude:

Rµe ≈ Rτµ ≈ Rτe , (3.14)

at variance with the predictions of most of the other models, where, for instance, Rµe/Rτµ
can be much smaller than one [103–106].
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3.1.2 Special A4 models

For the special A4 model in ref. [61] we get:

m̂2
LL =


1 +O(ξ′2) O(ξ′2) O(ξ′2)

O(ξ′2) 1 +O(ξ′2) O(ξ′2)

O(ξ′2) O(ξ′2) 1 +O(ξ′2)

 m2
SUSY + . . . (3.15)

m̂2
RR =


O(1) me

mµ
O(ξ′2) O(ξ′3)

me
mµ
O(ξ′2) O(1)

mµ
mτ
O(ξ′2)

O(ξ′3)
mµ
mτ
O(ξ′2) O(1)

 m2
SUSY + . . . (3.16)

m̂2
RL =


O(me) meO(ξ′2) meO(ξ′2)

mµO(ξ′2) O(mµ) mµO(ξ′2)

mτO(ξ′2) mτO(ξ′2) O(mτ )

 mSUSY + . . . (3.17)

We have

(δij)LL = O(ξ′2) ,

(δ21)RR =
me

mµ
O(ξ′2) (δ32)RR =

mµ

mτ
O(ξ′2) (δ31)RR = O(ξ′3) ,

(δij)RL =
mi

mSUSY
O(ξ′2) (δij)LR =

mj

mSUSY
O(ξ′2)

(3.18)

and
AijL = aLLO(ξ′2) + aRLO(ξ′2) ,

AijR =

{
aRR

mj
mi
O(ξ′2) + aRL

mj
mi
O(ξ′2) (ij = 21, 32)

aRRO(ξ′3) + aRL
mj
mi
O(ξ′2) (ij = 31) .

(3.19)

Neglecting the subdominant contribution from the AijR amplitude, we have

Rij '
48π3α

G2
Fm

4
SUSY

|aLL + aRL|2 O(ξ′4) , (3.20)

and we expect the branching ratios of the three transitions to be of the same order of

magnitude:

Rµe ≈ Rτµ ≈ Rτe . (3.21)

3.1.3 S4 models

For S4 models we get:

m̂2
LL =


1 +O(ξ) O(ξ) O(ξ)

O(ξ) 1 +O(ξ) O(ξ2)

O(ξ) O(ξ2) 1 +O(ξ)

m2
SUSY + . . . (3.22)
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m̂2
RR =


O(1) me

mµ
O(ξ) me

mτ
O(ξ)

me
mµ
O(ξ) O(1)

mµ
mτ
O(ξ2)

me
mτ
O(ξ)

mµ
mτ
O(ξ2) O(1)

 m2
SUSY + . . . (3.23)

m̂2
RL =


O(me) meO(ξ) meO(ξ)

mµO(ξ) O(mµ) mµO(ξ2)

mτO(ξ) mτO(ξ2) O(mτ )

 mSUSY + . . . (3.24)

We have
(δij)LL = O(ξp) , (δij)RL =

mi

mSUSY
O(ξp) ,

(δij)RR =
mj

mi
O(ξp) , (δij)LR =

mj

mSUSY
O(ξp)

(3.25)

where p = 1 when ij = 21, 31 and p = 2 when ij = 32

AijL = aLLO(ξp) + aRLO(ξp) ,

AijR = aRR
mj

mi
O(ξp) + aRL

mj

mi
O(ξp) .

(3.26)

Neglecting the subdominant contribution from the AijR amplitude, we have

Rij '
48π3α

G2
Fm

4
SUSY

|aLL + aRL|2 ×

{
O(ξ2) (ij = 21, 31)

O(ξ4) (ij = 32) ,
(3.27)

with a suppression of the rate τ → µγ relative to µ→ eγ and τ → eγ by a factor of ξ2:

Rτµ � Rµe ≈ Rτe . (3.28)

Before a more quantitative illustration of these results, we discuss the effects induced by

the RGE from the scale of flavour symmetry breaking down to the electroweak scale.

3.2 Mass insertions from low-energy RGE

This set of corrections is common to all models irrespective of the assumed existence of RH

neutrinos, i.e. both with or without See-Saw. The running of the slepton mass parameters

from the scale 〈Φe,ν〉 down to the scale mSUSY can be estimated in a leading logarithmic

approximation. The largest effect is a correction to the matrices m̂2
LL and m̂2

RR coming

from electroweak gauge interactions and is proportional to the identity matrix in flavour

space. One finds that the diagonal elements increase in the running from the cutoff scale

down to the electroweak scale. This effect is taken into account in our numerical study.

As for the off diagonal entries the largest corrections are proportional to the square of the

τ Yukawa coupling. Since y2τ/(16π2) ≈ 3 × (10−6 ÷ 10−4) for tanβ = (2 ÷ 15), even in

the presence of the large factor log(〈Φe,ν〉/mSUSY ) ≈ 30, these corrections are negligibly

small compared to the contribution from the local operators discussed above. We can

conclude that the corrections to the off-diagonal entries of the soft mass matrices induced
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by the RGE from 〈Φe,ν〉 down to mSUSY are either negligible or could be absorbed in the

parametrization given in the previous section.

The present bound on the branching ratio of µ→ eγ from the MEG collaboration [64],

BR(µ → eγ) < 2.4 × 10−12, leads to strong constraints on the parameter space of the

models that we are considering in this work. The supersymmetric parameters that are not

constrained by the flavour symmetry, such as the soft SUSY mass scales and the gaugino

and Higgs(ino) sectors, are fixed by our choice of a SUGRA framework: m0 and M1/2 are

the common masses of scalar particles and gauginos at the GUT scale. Thus, at the scale

Λ = 2× 1016 GeV,

M1(Λ) = M2(Λ) = M1/2 , (3.29)

where Mi are the SU(2)×U(1) gaugino masses. The effects of the RG running lead at low

energies to the following masses for the gauginos

M1(mW ) ' α1(mW )

α1(Λ)
M1(Λ) M2(mW ) ' α2(mW )

α2(Λ)
M2(Λ) , (3.30)

where αi = g2i /4π (i = 1, 2) and α1(Λ) = α2(Λ) ' 1/25. We have seen that, among

the RG running effects on the soft mass terms, only those from the electroweak gauge

interactions are relevant. At the cut-off scale the LL and RR blocks of the slepton mass

matrices are given by the eqs. (3.8)–(3.10), (3.15)–(3.17) and (3.22)–(3.24) with mSUSY

identified with m0. The RGE due to electroweak gauge interactions leaves the off-diagonal

entries essentially unaffected, while the diagonal elements at the weak scale, denoted by

m2
L,R(mW ), are given by:

m2
L(mW ) 'm2

0 + 0.54M2
1/2 ,

m2
R(mW ) 'm2

0 + 0.15M2
1/2 .

(3.31)

Notice that this effect modifies the previous estimates of the LL(RR) MIs by a factor

m2
0/(m

2
0 + 0.54(0.15)M2

1/2), thus providing an additional suppression when M1/2 is larger

than m0.

Furthermore, the parameter µ is fixed through the requirement of correct electroweak

symmetry breaking8

|µ|2 ' −
m2
Z

2
+m2

0

1 + 0.5 tan2 β

tan2 β − 1
+M2

1/2

0.5 + 3.5 tan2 β

tan2 β − 1
, (3.33)

so that µ is determined by m0, M1/2 and tanβ up to its sign. We recall that in our model

the low energy parameter tanβ is not a free parameter, as shown in eq. (3.4). We compare

the models at tanβ = 2 and tanβ = 15. In our numerical analysis, we have assumed that

the parameters on the diagonal of the slepton mass matrices (m2
(e,ν)LL)K and (m2

eRR)K are

8The general definition of the parameter µ is

|µ|2 =
m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
− 1

2
m2
Z , (3.32)

that reduces to the expression in eq. (3.33) once considering that in the SUGRA framework the soft Higgs

mass parameters are also given by m0 at the high energy scale, m2
Hu

(Λ) = m2
Hd

(Λ) = m2
0.
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positive in order to get positive definite square-masses and to avoid electric-charge breaking

minima and further sources of electroweak symmetry breaking. The absolute value of the

O(1) parameters is varied between 1/2 and 2. Furthermore, we have imposed the conditions

that the lightest chargino has a mass larger than 100 GeV and that the lightest neutralino

is the lightest supersymmetric a particle (LSP).

The results for the typical A4 models are illustrated in figure 10, where the parameter

ξ is taken equal to 0.076, consistently with the analysis in section 2.1.1. For tanβ = 2

and m0 = 200 GeV, figure 10(a), almost all the points are excluded for M1/2 . 400 GeV.

The corresponding supersymmetric spectrum is rather light: for M1/2 = 400 GeV, the

lightest neutralino has a mass of ∼ 156 GeV, the lightest chargino of ∼ 306 GeV, the

lightest LH charged slepton is in the range [230, 500] GeV and the lightest RH charged

slepton in the range [160, 350] GeV. These mass values are not yet excluded by the LHC

(the limits in the EW sector are not very strong) and they only mark the lower edge of

the region allowed by the µ → eγ bounds. Increasing m0 up to 5000 GeV, figure 10(b),

we see that the MEG bound is well satisfied in this model for the whole plotted range of

M1/2. The corresponding supersymmetric spectrum is heavier: again for M1/2 = 400 GeV,

while the lightest neutralino and chargino have masses very similar to the previous case,

∼ 158 GeV and ∼ 315 GeV, respectively, the lightest LH and RH charged slepton masses

are much higher, being in the range [3850, 7070] GeV and [1800, 6260] GeV, respectively.

Increasing m0 from 200 GeV up to 5000 GeV does not correspond to a uniform decrease

of the branching ratio, as a function of M1/2. The plot with m0 = 5000 GeV is much

flatter compared to the plot where m0 = 200 GeV. This is due to the approximate factor

m2
0/(m

2
0 + 0.54M2

1/2) entering the dominant LL mass insertion, which, for the values of

M1/2 used in our plots, is sharply decreasing for m0 = 200 GeV while it is slowly varying

and close to one for m0 = 5000 GeV. This is a general feature reproduced by all the models

considered here.

Increasing the value of tanβ, figures 10(c)-(d), the number of points below the MEG

bound decreases, but the previous considerations are approximatively still valid: in partic-

ular notice that for m0 = 5000 GeV, there are always points satisfying the MEG bound,

even if the largest number of them falls in the excluded region, especially for smaller M1/2.

Since the dominant contribution to the branching ratio comes from the LL mass insertion

which is proportional to tanβ, the branching ratio is to a good approximation proportional

to tan2 β, as we can see from the plots. Also this feature is common to all models.

For special A4 models the parameter ξ′ is taken equal to 0.184, as analyzed in sec-

tion 2.1.2. The results of our numerical study considering the constraint from BR(µ→ eγ)

for the m0 −M1/2 parameter space are shown in figure 11. The plots in figure 11 are very

similar to those in figure 10. Indeed also for this case, for tanβ = 2 and m0 = 200 GeV,

figure 11(a), almost all the points are excluded for M1/2 . 400 GeV. The supersymmetric

spectrum is also quite similar: the only differences are in the range of masses that the light-

est LH and RH charged sleptons can span, [260, 500] GeV and [180, 340] GeV, respectively.

By increasing m0 up to 5000 GeV, figure 10(b), we can see that for the whole range of M1/2,

the MEG bound is well satisfied in this model, while the corresponding supersymmetric

spectrum is heavier. Special and typical A4 models have a dominant LL mass insertion
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(a) tanβ = 2 and m0 = 200 GeV (b) tanβ = 2 and m0 = 5000 GeV

(c) tanβ = 15 and m0 = 200 GeV (d) tanβ = 15 and m0 = 5000 GeV

Figure 10. Typical A4 Models. Scatter plots of BR(µ→ eγ) as a function of M1/2, for different

values of tanβ, and m0. The parameter ξ is chosen as 0.076 in order to maximize the success rate

of this model. The horizontal line shows the current MEG bound. For Blue (Red) points the LSP

is the lightest neutralino (stau). The percentage in each plot refers to the number of Blue points

that satisfy the MEG bound over the total number of points.

proportional to ξ′2 and ξ2, respectively, which represents the main difference between the

two models, as far as radiative charged lepton decays are considered. The optimal values

of ξ and |ξ′| differ by a factor of about two and we expect that the branching ratios of the

two models should differ by about one order of magnitude, for fixed values of the other

parameters. This effect is barely visible in our plots, due to the spread of the predictions

caused by the unknown order-one coefficients.

Increasing the value of tanβ, the number of points below the MEG bound decreases,

but the previous consideration are approximatively still valid: the most interesting differ-

ence is in figure 11(c), form0 = 200 GeV, where almost all the points withM1/2 < 1000 GeV

are excluded; furthermore, in figure 11(d), for m0 = 5000 GeV, there are always points sat-

isfying the MEG bound, even if the largest part are excluded, especially for smaller M1/2.

Finally, in the S4 model the parameter ξ is taken equal to 0.172, as required to maximize

the success rate of these models to arrange the three mixing angles in the corresponding

3σ ranges. The results are displayed in figure 12. The plots in figure 12 are very similar to
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(a) tanβ = 2 and m0 = 200 GeV (b) tanβ = 2 and m0 = 5000 GeV

(c) tanβ = 15 and m0 = 200 GeV (d) tanβ = 15 and m0 = 5000 GeV

Figure 11. Special A4 Models. Scatter plots of BR(µ→ eγ) as a function of M1/2, for different

values of tanβ, and m0. The parameter |ξ′| is chosen as 0.184 in order to maximize the success rate

of this model. The horizontal line shows the current MEG bound. For Blue (Red) points the LSP

is the lightest neutralino (stau). The percentage in each plot refers to the number of Blue points

that satisfy the MEG bound over the total number of points.

those in figure 11 and the same comments also apply here. More interestingly, in all the

plots the number of points satisfying the MEG bound is much smaller, especially for large

m0. In particular for tanβ = 15 and m0 = 5000 GeV, only the ∼ 10% of points correspond

to a BR smaller than the MEG bound. The relatively larger branching ratio for µ → eγ

predicted by the S4 model is also a consequence of the scaling of (δµe)LL with respect to ξ:

such a scaling is linear in S4, while it is quadratic in the typical A4 models. Moreover the

optimal value of ξ in S4 is larger than in typical A4 models. This explains the enhancement

by two order of magnitude of the S4 prediction compared to the typical A4 one.

3.3 Mass insertion from high-energy RGE

When neutrino masses originate from a Type I See-Saw mechanism, there is an extra

contribution to the running of the slepton mass matrices, originating from loop diagrams

with the exchange of right-handed neutrinos. Such a contribution is only relevant in the

energy range from the cut-off Λ of the theory down to the right-handed neutrino masses

Mk (k = 1, 2, 3). By focussing on the LL block m2
eLL of the slepton mass matrix, whose
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(a) tanβ = 2 and m0 = 200 GeV (b) tanβ = 2 and m0 = 5000 GeV

(c) tanβ = 15 and m0 = 200 GeV (d) tanβ = 15 and m0 = 5000 GeV

Figure 12. S4 Models. Scatter plots of BR(µ → eγ) as a function of M1/2, for different values

of tanβ, and m0. The parameter ξ is chosen as 0.172 in order to maximize the success rate of this

model. The horizontal line shows the current MEG bound. For Blue (Red) points the LSP is the

lightest neutralino (stau). The percentage in each plot refers to the number of Blue points that

satisfy the MEG bound over the total number of points.

non-diagonal entries dominate the rates of the processes under consideration, in the leading

log approximation we have [107–109](
m2
eLL

)
ij
' − 1

8π2
(
3m2

0 +A2
0

)∑
k

(Ŷ †ν )ik log

(
Λ

Mk

)
(Ŷν)kj , (3.34)

where A0 is the SUSY breaking parameter characterizing the size of the trilinear scalar

mass term for sleptons and the matrix Ŷν denotes the neutrino Yukawa couplings in the

basis where the mass matrices for charged leptons and right-handed neutrinos have been

diagonalized. The above expression for m2
eLL holds at the scale equal to the lightest right-

handed neutrino mass. Below that scale, right-handed neutrinos do not affect the running

any more. In the models we are considering neutrino Yukawa couplings are of order one

and even for relatively small ratios Λ/MK ≈ 100, we may easily get contributions to the

LL mass insertions of order 0.1.

It is interesting to note that if neutrinos transform as an irreducible triplet of the

flavour symmetry then, at the LO in the flavour symmetry breaking parameters, the right-
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hand side of eq. (3.34) can be expressed in term of the light neutrino masses and the matrix

elements of the lepton mixing matrix U . We have

Ŷν = k U † + . . . (3.35)

and (
m2
eLL

)
ij
' −|k|

2

8π2
(
3m2

0 +A2
0

) [
Ui2 log

m2

m1
U∗j2 + Ui3 log

m3

m1
U∗j3

]
+ . . . , (3.36)

where k is a constant of order one and dots stand for non-leading contributions, suppressed

by powers of 〈Φ〉/Λ. This result is completely general. It applies to any model with a flavour

symmetry, independently of the specific flavour group Gf , provided neutrinos are assigned

to an irreducible triplet of the group, like in the models under consideration. First note

that the invariance of the theory under transformations of Gf implies

ρ(g) Y †ν Yν ρ(g)† = Y †ν Yν , (3.37)

ρ denoting the irreducible triplet representation under which the left-handed leptons trans-

form. The combination Y †ν Yν commutes with each group element ρ(g) and, by the Shur’s

First Lemma, Y †ν Yν either vanishes, a case that we exclude, or is proportional to the unit

matrix. We conclude that Yν is proportional to a unitary matrix. This result holds in

any basis, since the invariance of the theory is a basis-independent property. If now we go

to the basis where charged leptons and right-handed neutrinos are mass eigenstates, the

See-Saw relation reads:

mν =
v2

2
Ŷ T
ν M

−1Ŷν (3.38)

and we recognize that in this basis the unitary matrix to which Ŷν is proportional should

coincide with U †. We obtain eq. (3.35) and

M−1 =
2

|k|2v2
(mν)diag (3.39)

By making use of eqs. (3.35), (3.39) and (3.34) we immediately get the result in eq. (3.36).

Thus, up to sub-leading corrections and up to the unknown order-one parameter k, the LL

mass insertions are completely determined by neutrino masses and mixing parameters. At

the LO the MIs do not depend on the cut-off scale Λ, but only on the ratios between light

neutrino masses. For a degenerate neutrino spectrum the LO MIs vanish. On the contrary

the largest MIs are obtained when the spectrum is hierarchical.

We have considered the type I See-Saw version of the previous models and we have

evaluated the slepton mass matrices by including the effects on the running due to right-

handed neutrinos. Our plots and our numerical results have been worked out at the NLO

in the symmetry breaking parameters. RGE equations are solved numerically, making use

of full one-loop beta functions. The evolution starts at Λ = 2×1016 GeV, where we assume

the pattern dictated by the eqs. (3.8)–(3.10), (3.15)–(3.17) and (3.22)–(3.24) with mSUSY

identified with m0. Going down to the electroweak scale the off-diagonal entries of the
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(a) tanβ = 2 and m0 = 200 GeV (b) tanβ = 2 and m0 = 5000 GeV

(c) tanβ = 15 and m0 = 200 GeV (d) tanβ = 15 and m0 = 5000 GeV

Figure 13. Typical A4 Models. Scatter plots of BR(µ → eγ) with running effects due to

right-handed neutrinos, as a function of M1/2, for different values of tanβ, and m0. Light neutrinos

have normal mass ordering witn m1 = 4.4 meV. The parameter ξ is chosen as 0.076 in order to

maximize the success rate of this model. The horizontal line shows the current MEG bound. For

Blue (Red) points the LSP is the lightest neutralino (stau). The percentage in each plot refers to

the number of Blue points that satisfy the MEG bound over the total number of points.

slepton mass matrices are modified by the running due to both right-handed neutrinos and

by the MSSM degrees of freedom. We display our results for the case of normal ordering.

Similar considerations hold when the neutrino mass ordering is inverted. For the lightest

neutrino mass we chose the smallest value allowed by the models under consideration: 4.4

meV for the typical A4 models, 0.4 meV for the special A4 models and 1 meV for S4.

These values can be estimated by analyzing the neutrino masses in the See-Saw version of

the models in refs. [61, 71] and [52], considered in the previous subsections. Choosing the

smallest value of m1 enhances the ratios m2/m1 and m3/m1 in eq. (3.36) and maximizes

the effect of the running due to right-handed neutrinos.

In figures 13, 14 and 15 we plot the branching ratio for µ→ eγ as a function of M1/2

for the same values of m0 and tanβ shown in figures 10, 11 and 12 to allow for a direct

comparison between the two cases, with and without right-handed neutrinos. As a general

trend, the inclusion of the running due to right-handed neutrinos enhances the branching
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(a) tanβ = 2 and m0 = 200 GeV (b) tanβ = 2 and m0 = 5000 GeV

(c) tanβ = 15 and m0 = 200 GeV (d) tanβ = 15 and m0 = 5000 GeV

Figure 14. Special A4 Models. Scatter plots of BR(µ → eγ) with running effects due to

right-handed neutrinos, as a function of M1/2, for different values of tanβ, and m0. Light neutrinos

have normal mass ordering witn m1 = 0.4 meV. The parameter |ξ′| is chosen as 0.184 in order to

maximize the success rate of this model. The horizontal line shows the current MEG bound. For

Blue (Red) points the LSP is the lightest neutralino (stau). The percentage in each plot refers to

the number of Blue points that satisfy the MEG bound over the total number of points.

ratio by a factor between about one and two orders of magnitude. The allowed region in

the parameter space of the models shrinks, as indicated by the percentage of points that

satisfy the current MEG bound. The largest effect occurs for the special A4 model, also due

to the small value m1 = 0.4 meV, which, for normal hierarchy, enhances the contribution

in eq. (3.36). In the cases of typical A4 models and S4 models, the effect of right-handed

neutrinos is similar. Notice that the slope of the plotted regions for m0 = 200 GeV is much

steeper than for m0 = 5000 GeV which increases the impact of right-handed neutrinos

in the latter case. This is particularly visible in the case of special A4 models. If we

compare the panel (d) of figures 11 and 14, where m0 = 5000 GeV and tanβ = 15, we see

that the points are lying on an almost horizontal strip close to the MEG bound and the

enhancement due to right-handed neutrinos is sufficient to displace almost all the band

above the bound, thus excluding most of the points. In conclusion, running effects due

to right-handed neutrinos can significantly contribute to the off-diagonal terms of slepton
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(a) tanβ = 2 and m0 = 200 GeV (b) tanβ = 2 and m0 = 5000 GeV

(c) tanβ = 15 and m0 = 200 GeV (d) tanβ = 15 and m0 = 5000 GeV

Figure 15. S4 Models. Scatter plots of BR(µ → eγ) with running effects due to right-handed

neutrinos, as a function of M1/2, for different values of tanβ, and m0. Light neutrinos have normal

mass ordering witn m1 = 1 meV. The parameter ξ is chosen as 0.172 in order to maximize the

success rate of this model. The horizontal line shows the current MEG bound. For Blue (Red)

points the LSP is the lightest neutralino (stau). The percentage in each plot refers to the number

of Blue points that satisfy the MEG bound over the total number of points.

mass matrices and can even dominate MIs, especially for a pronounced hierarchy in the

light neutrino mass spectrum. There is a general reduction in the parameter space of the

model and in particular for the special A4 model with the most hierarchical spectrum. A

milder impact is expected for a neutrino mass spectrum close to the degenerate case.

3.4 Correlation with the muon g − 2

The value found for the anomalous magnetic moment of the muon [110]

aEXPµ = 116592080(63)× 10−11 (3.40)

shows a 3.4 σ deviation

δaµ = aEXPµ − aSMµ = +302(88)× 10−11 (3.41)

from the value expected in the SM [111–113]

aSMµ = 116591778(61)× 10−11 . (3.42)
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(a) Typical A4. ξ = 0.076. (b) Special A4. |ξ′| = 0.184. (c) S4. ξ = 0.172.

Figure 16. Correlation plots between δaµ and BR(µ → eγ). The value of tanβ is taken in the

range [2, 15], while m0, M1/2 are chosen between 200 and 5000 GeV. The values of ξ or |ξ′| are

those that maximize the success rates for the three models for the NH case. The colour of the

points refer to the values of tanβ: 2 . tanβ . 7 in blue, 7 . tanβ . 11 in red, 11 . tanβ . 15 in

green. The horizontal line corresponds to the MEG bound, while the vertical lines correspond to

the measurements on δaµ at 3σ.

It is an interesting question whether the presence of SUSY particles can account for this

deviation, once the constrains from the branching ratio of the µ→ eγ decay are taken into

consideration.

Following refs. [114–117], we study the correlation between δaµ and BR(µ→ eγ), for

tanβ ∈ [2, 15] and m0, M1/2 ∈ [200, 5000] GeV, while all the other parameters are treated

according to the previous section. Only points corresponding to scenarios with the lightest

neutralino being the LSP are shown.

As we can see from figure 16, in the whole parameter space of the three models it is

not natural to reproduce the observed deviation of the muon anomalous magnetic moment,

once we consider the present MEG bound on BR(µ→ eγ). This is not a surprise, because

the explanation of the 3.4σ discrepancy needs small values of m0 and M1/2 and larger

values of tanβ, which, however, enhance the branching ratio of the radiative LFV decays.

4 Conclusion

The recent rather precise measurements of θ13 make our present knowledge of the neutrino

mixing matrix, except for the CP violating phases, sufficiently complete to considerably

restrict the class of models that can reproduce the data. In spite of this progress, the range

of possibilities for flavour models remains unfortunately quite wide. On the one extreme,

the rather large value measured for θ13, close to the old CHOOZ bound, has validated

the prediction of models based on anarchy [118, 119], i.e. no symmetry in the leptonic

sector, only chance, so that this possibility remains valid, as discussed, for example, in

ref. [120]. Anarchy can be formulated in a SU(5)⊗U(1) context by taking different Froggatt-

Nielsen [121] charges only for the SU(5) tenplets (for example 10 ∼ (3, 2, 0), where 3 is the

charge of the first generation, 2 of the second, zero of the third) while no charge differences
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appear in the 5̄ (5̄ ∼ (0, 0, 0)). Anarchy can be mitigated by assuming that it only holds

in the 2-3 sector with the advantage that the first generation masses and the angle θ13
are naturally small (see also the recent revisiting in ref. [122]). In models with See-Saw,

one can also play with the charges for the right-handed SU(5) singlet neutrinos. If, for

example, one takes 1 ∼ (1,−1, 0), together with 5̄ ∼ (2, 0, 0), it is possible to get a normal

hierarchy model with θ13 small and also with r = ∆m2
solar/∆m

2
atm naturally small (see,

for example, ref. [123]). In summary, anarchy and its variants, all based on chance, offer a

rather economical class of models that are among those encouraged by the new θ13 result.

On the other extreme, stimulated by the fact that the data suggest some special mixing

patterns as good first approximations (TB or BM, for example), models based on discrete

flavour symmetries, like A4 or S4, have been proposed and widely studied. In these models

the starting LO approximation is completely fixed (no chance), but the NLO corrections

introduce a number of undetermined parameters. The recent data on θ13 and the MEG

new upper bound on the LFV process µ→ eγ impose a reappraisal of these models, which

we have attempted in this paper. In particular, the relatively large value of θ13 introduces

a marked departure from the TB limit, while the values of θ12 and θ23 are very close to it.

The challenge is to produce in a natural way a relatively large correction to θ13 without

affecting too much the other mixing angles. But one must pay attention that these larger

corrective terms introduced to shift θ13 from the TB value could appear in the non-diagonal

elements of the charged lepton (and s-lepton) mass matrix and could induce a too large

µ→ eγ branching ratio.

As a result of our analysis we find that, for reproducing the mixing angles, the Lin

type A4 models have the best performance, as expected, followed by the typical A4 models,

while the BM mixing models lead to an inferior score, as they most often fail to reproduce

θ12. In the latter case, if only one complex parameter perturbs the BM pattern, there is

a strict correlation among the solar and the reactor angle and the success rate increases

considerably by selecting a CP violating Dirac phase close to π.

As for LFV processes we have addressed the problem by adopting the simple CMSSM

framework. While this overconstrained version of supersymmetry is rather marginal after

the results of the LHC searches, more so if the Higgs mass really is around mH = 125 GeV,

we still believe it can be used here for our indicative purposes. We find that the most

constrained versions are the models that start with BM mixing at the LO because, in this

case, relatively large corrections directly appear in the off-diagonal terms of the charged

lepton mass matrix. The typical A4 models turn out to be the best suited to satisfy the

MEG experimental bound, as the non-diagonal charged lepton matrix elements needed to

reproduce the mixing angles are quite smaller. An intermediate, still rather good, score is

achieved by the models of the Lin type, where the main corrections to the mixing angles

arise from the neutrino sector. When the fit to the mixing angles and the bounds on LFV

processes are combined, the A4 models emerge well from our analysis and in particular

those of the Lin type perhaps appear as the most realistic approach to the data among

the models based on discrete flavour groups that we have studied. As for the regions of

the CMSSM parameter space that are indicated by our analysis the preference is for small

tanβ and large SUSY masses (at least one out of m0 and m1/2 must be above 1 TeV). As a
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consequence it appears impossible, at least within the CMSSM model, to satisfy the MEG

bound and, at the same time, to reproduce the muon g − 2 discrepancy.
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A Expression of aCC′

In this section we list the explicit expression of aCC′ in our conventions:

aLL =
g2

16π2

[
f1n(a2) + f1c(a2) +

M2µ tanβ

M2
2 − µ2

(
f2n(a2, b) + f2c(a2, b)

)
+ tan2 θW

(
f1n(a1)−

M1µ tanβ

M2
1 − µ2

f2n(a1, b)−M1 (mSUSY − µ tanβ)
f3n(a1)

m2
SUSY

)]
aRL =

g2

16π2
tan2 θW

M1

mSUSY
2f2n(a1)

aRR =
g2

16π2
tan2 θW

[
4f1n(a1) + 2

M1µ tanβ

M2
1 − µ2

f2n(a1, b)−M1 (mSUSY − µ tanβ)
f3n(a1)

m2
SUSY

]
aLR =

g2

16π2
tan2 θW

M1

mSUSY
2f2n(a1)

(A.1)

where a1,2 = M2
1,2/m

2
SUSY , b = µ2/m2

SUSY and fi(c,n)(x, y) = fi(c,n)(x) − fi(c,n)(y). The

functions fin(x) and fic(x), slightly different from those in ref. [124], are given by:

f1n(x) = (−17x3 + 9x2 + 9x− 1 + 6x2(x+ 3) log x)/(24(1− x)5)

f2n(x) = (−5x2 + 4x+ 1 + 2x(x+ 2) log x)/(4(1− x)4)

f3n(x) = (1 + 9x− 9x2 − x3 + 6x(x+ 1) log x)/(2(1− x)5)

f1c(x) = (−x3 − 9x2 + 9x+ 1 + 6x(x+ 1) log x)/(6(1− x)5)

f2c(x) = (−x2 − 4x+ 5 + 2(2x+ 1) log x)/(2(1− x)4) .

(A.2)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.

References

[1] G. Altarelli and F. Feruglio, Models of neutrino masses and mixings, New J. Phys. 6 (2004)

106 [hep-ph/0405048] [INSPIRE].

– 35 –

http://dx.doi.org/10.1088/1367-2630/6/1/106
http://dx.doi.org/10.1088/1367-2630/6/1/106
http://arxiv.org/abs/hep-ph/0405048
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0405048


J
H
E
P
0
8
(
2
0
1
2
)
0
2
1

[2] R. Mohapatra and A. Smirnov, Neutrino Mass and New Physics, Ann. Rev. Nucl. Part.

Sci. 56 (2006) 569 [hep-ph/0603118] [INSPIRE].

[3] W. Grimus, Neutrino Physics - Models for Neutrino Masses and Lepton Mixing,

PoS(P2GC)001 [hep-ph/0612311] [INSPIRE].

[4] M. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept.

460 (2008) 1 [arXiv:0704.1800] [INSPIRE].

[5] G. Altarelli, Status of Neutrino Masses and Mixing in 2009, Nuovo Cim. C32N5-6 (2009)

91 [arXiv:0905.3265] [INSPIRE].

[6] G. Altarelli, Status of Neutrino Masses and Mixing in 2010, PoS(HRMS)022

[arXiv:1011.5342] [INSPIRE].

[7] G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of

leptonic CP-violation searches, arXiv:1205.5254 [INSPIRE].

[8] D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after

recent reactor measurements, arXiv:1205.4018 [INSPIRE].

[9] T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an

Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801

[arXiv:1106.2822] [INSPIRE].

[10] MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to

electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802

[arXiv:1108.0015] [INSPIRE].

[11] DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of

reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108

(2012) 131801 [arXiv:1112.6353] [INSPIRE].

[12] DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance

at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

[13] RENO collaboration, J. Ahn et al., Observation of Reactor Electron Antineutrino

Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802

[arXiv:1204.0626] [INSPIRE].

[14] G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing,

Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].

[15] H. Ishimori et al., Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys.

Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].

[16] P.O. Ludl, On the finite subgroups of U(3) of order smaller than 512, J. Phys. A 43 (2010)

395204 [Erratum ibid. A 44 (2011) 139501] [arXiv:1006.1479] [INSPIRE].

[17] W. Grimus and P. Ludl, Principal series of finite subgroups of SU(3), J. Phys. A 43 (2010)

445209 [arXiv:1006.0098] [INSPIRE].

[18] K.M. Parattu and A. Wingerter, Tribimaximal Mixing From Small Groups, Phys. Rev. D

84 (2011) 013011 [arXiv:1012.2842] [INSPIRE].

[19] W. Grimus and P.O. Ludl, Finite flavour groups of fermions, J. Phys. A 45 (2012) 233001

[arXiv:1110.6376] [INSPIRE].

[20] P. Harrison, D. Perkins and W. Scott, Tri-bimaximal mixing and the neutrino oscillation

data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].

– 36 –

http://dx.doi.org/10.1088/1742-6596/53/1/003
http://dx.doi.org/10.1088/1742-6596/53/1/003
http://arxiv.org/abs/hep-ph/0603118
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0603118
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(P2GC)001
http://arxiv.org/abs/hep-ph/0612311
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0612311
http://dx.doi.org/10.1016/j.physrep.2007.12.004
http://dx.doi.org/10.1016/j.physrep.2007.12.004
http://arxiv.org/abs/0704.1800
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.1800
http://dx.doi.org/10.1393/ncc/i2009-10516-3
http://dx.doi.org/10.1393/ncc/i2009-10516-3
http://arxiv.org/abs/0905.3265
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.3265
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(HRMS)022
http://arxiv.org/abs/1011.5342
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5342
http://arxiv.org/abs/1205.5254
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5254
http://arxiv.org/abs/1205.4018
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.4018
http://dx.doi.org/10.1103/PhysRevLett.107.041801
http://arxiv.org/abs/1106.2822
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2822
http://dx.doi.org/10.1103/PhysRevLett.107.181802
http://arxiv.org/abs/1108.0015
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.0015
http://dx.doi.org/10.1103/PhysRevLett.108.131801
http://dx.doi.org/10.1103/PhysRevLett.108.131801
http://arxiv.org/abs/1112.6353
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6353
http://dx.doi.org/10.1103/PhysRevLett.108.171803
http://arxiv.org/abs/1203.1669
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1669
http://dx.doi.org/10.1103/PhysRevLett.108.191802
http://arxiv.org/abs/1204.0626
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0626
http://dx.doi.org/10.1103/RevModPhys.82.2701
http://arxiv.org/abs/1002.0211
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0211
http://dx.doi.org/10.1143/PTPS.183.1
http://dx.doi.org/10.1143/PTPS.183.1
http://arxiv.org/abs/1003.3552
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.3552
http://dx.doi.org/10.1088/1751-8113/44/13/139501
http://dx.doi.org/10.1088/1751-8113/44/13/139501
http://arxiv.org/abs/1006.1479
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.1479
http://dx.doi.org/10.1088/1751-8113/43/44/445209
http://dx.doi.org/10.1088/1751-8113/43/44/445209
http://arxiv.org/abs/1006.0098
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0098
http://dx.doi.org/10.1103/PhysRevD.84.013011
http://dx.doi.org/10.1103/PhysRevD.84.013011
http://arxiv.org/abs/1012.2842
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2842
http://dx.doi.org/10.1088/1751-8113/45/23/233001
http://arxiv.org/abs/1110.6376
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.6376
http://dx.doi.org/10.1016/S0370-2693(02)01336-9
http://arxiv.org/abs/hep-ph/0202074
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0202074


J
H
E
P
0
8
(
2
0
1
2
)
0
2
1

[21] P. Harrison and W. Scott, Symmetries and generalizations of tri-bimaximal neutrino

mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [INSPIRE].

[22] Z.-z. Xing, Nearly tri bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533

(2002) 85 [hep-ph/0204049] [INSPIRE].

[23] P. Harrison and W. Scott, µ-τ reflection symmetry in lepton mixing and neutrino

oscillations, Phys. Lett. B 547 (2002) 219 [hep-ph/0210197] [INSPIRE].

[24] P. Harrison and W. Scott, Permutation symmetry, tri-bimaximal neutrino mixing and the

S3 group characters, Phys. Lett. B 557 (2003) 76 [hep-ph/0302025] [INSPIRE].

[25] Y. Kajiyama, M. Raidal and A. Strumia, The Golden ratio prediction for the solar neutrino

mixing, Phys. Rev. D 76 (2007) 117301 [arXiv:0705.4559] [INSPIRE].

[26] L.L. Everett and A.J. Stuart, Icosahedral (A5) Family Symmetry and the Golden Ratio

Prediction for Solar Neutrino Mixing, Phys. Rev. D 79 (2009) 085005 [arXiv:0812.1057]

[INSPIRE].

[27] G.-J. Ding, L.L. Everett and A.J. Stuart, Golden Ratio Neutrino Mixing and A5 Flavor

Symmetry, Nucl. Phys. B 857 (2012) 219 [arXiv:1110.1688] [INSPIRE].

[28] F. Feruglio and A. Paris, The Golden Ratio Prediction for the Solar Angle from a Natural

Model with A5 Flavour Symmetry, JHEP 03 (2011) 101 [arXiv:1101.0393] [INSPIRE].

[29] W. Rodejohann, Unified Parametrization for Quark and Lepton Mixing Angles, Phys. Lett.

B 671 (2009) 267 [arXiv:0810.5239] [INSPIRE].

[30] A. Adulpravitchai, A. Blum and W. Rodejohann, Golden Ratio Prediction for Solar

Neutrino Mixing, New J. Phys. 11 (2009) 063026 [arXiv:0903.0531] [INSPIRE].

[31] G. Altarelli, F. Feruglio and I. Masina, Can neutrino mixings arise from the charged lepton

sector?, Nucl. Phys. B 689 (2004) 157 [hep-ph/0402155] [INSPIRE].

[32] M. Raidal, Relation between the neutrino and quark mixing angles and grand unification,

Phys. Rev. Lett. 93 (2004) 161801 [hep-ph/0404046] [INSPIRE].

[33] H. Minakata and A.Y. Smirnov, Neutrino mixing and quark-lepton complementarity, Phys.

Rev. D 70 (2004) 073009 [hep-ph/0405088] [INSPIRE].

[34] P. Frampton and R. Mohapatra, Possible gauge theoretic origin for quark-lepton

complementarity, JHEP 01 (2005) 025 [hep-ph/0407139] [INSPIRE].

[35] J. Ferrandis and S. Pakvasa, Quark-lepton complenmentarity relation and neutrino mass

hierarchy, Phys. Rev. D 71 (2005) 033004 [hep-ph/0412038] [INSPIRE].

[36] S.K. Kang, C. Kim and J. Lee, Importance of threshold corrections in quark-lepton

complementarity, Phys. Lett. B 619 (2005) 129 [hep-ph/0501029] [INSPIRE].

[37] N. Li and B.-Q. Ma, Unified parametrization of quark and lepton mixing matrices, Phys.

Rev. D 71 (2005) 097301 [hep-ph/0501226] [INSPIRE].

[38] K. Cheung, S.K. Kang, C. Kim and J. Lee, Lepton flavor violation as a probe of

quark-lepton unification, Phys. Rev. D 72 (2005) 036003 [hep-ph/0503122] [INSPIRE].

[39] Z.-z. Xing, Nontrivial correlation between the CKM and MNS matrices, Phys. Lett. B 618

(2005) 141 [hep-ph/0503200] [INSPIRE].

[40] A. Datta, L. Everett and P. Ramond, Cabibbo haze in lepton mixing, Phys. Lett. B 620

(2005) 42 [hep-ph/0503222] [INSPIRE].

– 37 –

http://dx.doi.org/10.1016/S0370-2693(02)01753-7
http://arxiv.org/abs/hep-ph/0203209
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0203209
http://dx.doi.org/10.1016/S0370-2693(02)01649-0
http://dx.doi.org/10.1016/S0370-2693(02)01649-0
http://arxiv.org/abs/hep-ph/0204049
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0204049
http://dx.doi.org/10.1016/S0370-2693(02)02772-7
http://arxiv.org/abs/hep-ph/0210197
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0210197
http://dx.doi.org/10.1016/S0370-2693(03)00183-7
http://arxiv.org/abs/hep-ph/0302025
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0302025
http://dx.doi.org/10.1103/PhysRevD.76.117301
http://arxiv.org/abs/0705.4559
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.4559
http://dx.doi.org/10.1103/PhysRevD.79.085005
http://arxiv.org/abs/0812.1057
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.1057
http://dx.doi.org/10.1016/j.nuclphysb.2011.12.004
http://arxiv.org/abs/1110.1688
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.1688
http://dx.doi.org/10.1007/JHEP03(2011)101
http://arxiv.org/abs/1101.0393
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0393
http://dx.doi.org/10.1016/j.physletb.2008.12.010
http://dx.doi.org/10.1016/j.physletb.2008.12.010
http://arxiv.org/abs/0810.5239
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.5239
http://dx.doi.org/10.1088/1367-2630/11/6/063026
http://arxiv.org/abs/0903.0531
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.0531
http://dx.doi.org/10.1016/j.nuclphysb.2004.04.012
http://arxiv.org/abs/hep-ph/0402155
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0402155
http://dx.doi.org/10.1103/PhysRevLett.93.161801
http://arxiv.org/abs/hep-ph/0404046
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0404046
http://dx.doi.org/10.1103/PhysRevD.70.073009
http://dx.doi.org/10.1103/PhysRevD.70.073009
http://arxiv.org/abs/hep-ph/0405088
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0405088
http://dx.doi.org/10.1088/1126-6708/2005/01/025
http://arxiv.org/abs/hep-ph/0407139
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0407139
http://dx.doi.org/10.1103/PhysRevD.71.033004
http://arxiv.org/abs/hep-ph/0412038
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0412038
http://dx.doi.org/10.1016/j.physletb.2005.05.065
http://arxiv.org/abs/hep-ph/0501029
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0501029
http://dx.doi.org/10.1103/PhysRevD.71.097301
http://dx.doi.org/10.1103/PhysRevD.71.097301
http://arxiv.org/abs/hep-ph/0501226
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0501226
http://dx.doi.org/10.1103/PhysRevD.72.036003
http://arxiv.org/abs/hep-ph/0503122
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0503122
http://dx.doi.org/10.1016/j.physletb.2005.05.040
http://dx.doi.org/10.1016/j.physletb.2005.05.040
http://arxiv.org/abs/hep-ph/0503200
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0503200
http://dx.doi.org/10.1016/j.physletb.2005.05.075
http://dx.doi.org/10.1016/j.physletb.2005.05.075
http://arxiv.org/abs/hep-ph/0503222
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0503222


J
H
E
P
0
8
(
2
0
1
2
)
0
2
1

[41] S. Antusch, S.F. King and R.N. Mohapatra, Quark-lepton complementarity in unified

theories, Phys. Lett. B 618 (2005) 150 [hep-ph/0504007] [INSPIRE].

[42] M. Lindner, M.A. Schmidt and A.Y. Smirnov, Screening of Dirac flavor structure in the

seesaw and neutrino mixing, JHEP 07 (2005) 048 [hep-ph/0505067] [INSPIRE].

[43] H. Minakata, Quark-lepton complementarity: A Review, hep-ph/0505262 [INSPIRE].

[44] T. Ohlsson, Bimaximal fermion mixing from the quark and leptonic mixing matrices, Phys.

Lett. B 622 (2005) 159 [hep-ph/0506094] [INSPIRE].

[45] S. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton

unification, JHEP 08 (2005) 105 [hep-ph/0506297] [INSPIRE].

[46] A. Dighe, S. Goswami and P. Roy, Quark-lepton complementarity with quasidegenerate

Majorana neutrinos, Phys. Rev. D 73 (2006) 071301 [hep-ph/0602062] [INSPIRE].

[47] B.C. Chauhan, M. Picariello, J. Pulido and E. Torrente-Lujan, Quark-lepton

complementarity, neutrino and standard model data predict θPMNS
13 = (9+1

−2)◦, Eur. Phys. J.

C 50 (2007) 573 [hep-ph/0605032] [INSPIRE].

[48] K.A. Hochmuth and W. Rodejohann, Low and High Energy Phenomenology of

Quark-Lepton Complementarity Scenarios, Phys. Rev. D 75 (2007) 073001

[hep-ph/0607103] [INSPIRE].

[49] M.A. Schmidt and A.Y. Smirnov, Quark Lepton Complementarity and Renormalization

Group Effects, Phys. Rev. D 74 (2006) 113003 [hep-ph/0607232] [INSPIRE].

[50] F. Plentinger, G. Seidl and W. Winter, Systematic parameter space search of extended

quark-lepton complementarity, Nucl. Phys. B 791 (2008) 60 [hep-ph/0612169] [INSPIRE].

[51] F. Plentinger, G. Seidl and W. Winter, The Seesaw mechanism in quark-lepton

complementarity, Phys. Rev. D 76 (2007) 113003 [arXiv:0707.2379] [INSPIRE].

[52] G. Altarelli, F. Feruglio and L. Merlo, Revisiting Bimaximal Neutrino Mixing in a Model

with S4 Discrete Symmetry, JHEP 05 (2009) 020 [arXiv:0903.1940] [INSPIRE].

[53] R. de Adelhart Toorop, F. Bazzocchi and L. Merlo, The Interplay Between GUT and

Flavour Symmetries in a Pati-Salam ×S4 Model, JHEP 08 (2010) 001 [arXiv:1003.4502]

[INSPIRE].

[54] K.M. Patel, An SO(10)× S4 Model of Quark-Lepton Complementarity, Phys. Lett. B 695

(2011) 225 [arXiv:1008.5061] [INSPIRE].

[55] D. Meloni, Bimaximal mixing and large θ13 in a SUSY SU(5) model based on S4, JHEP 10

(2011) 010 [arXiv:1107.0221] [INSPIRE].

[56] Y. Shimizu and R. Takahashi, Deviations from Tri-Bimaximality and Quark-Lepton

Complementarity, Europhys. Lett. 93 (2011) 61001 [arXiv:1009.5504] [INSPIRE].

[57] Y. Ahn, H.-Y. Cheng and S. Oh, Quark-lepton complementarity and tribimaximal neutrino

mixing from discrete symmetry, Phys. Rev. D 83 (2011) 076012 [arXiv:1102.0879]

[INSPIRE].

[58] I.d.M. Varzielas and G.G. Ross, Discrete family symmetry, Higgs mediators and θ13,

arXiv:1203.6636 [INSPIRE].

[59] C. Hagedorn and M. Serone, Leptons in Holographic Composite Higgs Models with

Non-Abelian Discrete Symmetries, JHEP 10 (2011) 083 [arXiv:1106.4021] [INSPIRE].

– 38 –

http://dx.doi.org/10.1016/j.physletb.2005.05.026
http://arxiv.org/abs/hep-ph/0504007
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0504007
http://dx.doi.org/10.1088/1126-6708/2005/07/048
http://arxiv.org/abs/hep-ph/0505067
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0505067
http://arxiv.org/abs/hep-ph/0505262
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0505262
http://dx.doi.org/10.1016/j.physletb.2005.07.003
http://dx.doi.org/10.1016/j.physletb.2005.07.003
http://arxiv.org/abs/hep-ph/0506094
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0506094
http://dx.doi.org/10.1088/1126-6708/2005/08/105
http://arxiv.org/abs/hep-ph/0506297
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0506297
http://dx.doi.org/10.1103/PhysRevD.73.071301
http://arxiv.org/abs/hep-ph/0602062
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0602062
http://dx.doi.org/10.1140/epjc/s10052-007-0212-z
http://dx.doi.org/10.1140/epjc/s10052-007-0212-z
http://arxiv.org/abs/hep-ph/0605032
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0605032
http://dx.doi.org/10.1103/PhysRevD.75.073001
http://arxiv.org/abs/hep-ph/0607103
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0607103
http://dx.doi.org/10.1103/PhysRevD.74.113003
http://arxiv.org/abs/hep-ph/0607232
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0607232
http://dx.doi.org/10.1016/j.nuclphysb.2007.09.016
http://arxiv.org/abs/hep-ph/0612169
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0612169
http://dx.doi.org/10.1103/PhysRevD.76.113003
http://arxiv.org/abs/0707.2379
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.2379
http://dx.doi.org/10.1088/1126-6708/2009/05/020
http://arxiv.org/abs/0903.1940
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.1940
http://dx.doi.org/10.1007/JHEP08(2010)001
http://arxiv.org/abs/1003.4502
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.4502
http://dx.doi.org/10.1016/j.physletb.2010.11.024
http://dx.doi.org/10.1016/j.physletb.2010.11.024
http://arxiv.org/abs/1008.5061
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.5061
http://dx.doi.org/10.1007/JHEP10(2011)010
http://dx.doi.org/10.1007/JHEP10(2011)010
http://arxiv.org/abs/1107.0221
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0221
http://dx.doi.org/10.1209/0295-5075/93/61001
http://arxiv.org/abs/1009.5504
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.5504
http://dx.doi.org/10.1103/PhysRevD.83.076012
http://arxiv.org/abs/1102.0879
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0879
http://arxiv.org/abs/1203.6636
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6636
http://dx.doi.org/10.1007/JHEP10(2011)083
http://arxiv.org/abs/1106.4021
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4021


J
H
E
P
0
8
(
2
0
1
2
)
0
2
1

[60] C. Hagedorn and M. Serone, General Lepton Mixing in Holographic Composite Higgs

Models, JHEP 02 (2012) 077 [arXiv:1110.4612] [INSPIRE].

[61] Y. Lin, Tri-bimaximal Neutrino Mixing from A4 and θ13 ∼ θC, Nucl. Phys. B 824 (2010)

95 [arXiv:0905.3534] [INSPIRE].

[62] I. de Medeiros Varzielas and L. Merlo, Ultraviolet Completion of Flavour Models, JHEP 02

(2011) 062 [arXiv:1011.6662] [INSPIRE].

[63] L. Calibbi, Z. Lalak, S. Pokorski and R. Ziegler, Universal Constraints on Low-Energy

Flavour Models, arXiv:1204.1275 [INSPIRE].

[64] MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay

µ+ → e+γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].

[65] R.d.A. Toorop, F. Feruglio and C. Hagedorn, Discrete Flavour Symmetries in Light of T2K,

Phys. Lett. B 703 (2011) 447 [arXiv:1107.3486] [INSPIRE].

[66] R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite Modular Groups and Lepton

Mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].

[67] S.-F. Ge, D.A. Dicus and W.W. Repko, Z2 Symmetry Prediction for the Leptonic Dirac CP

Phase, Phys. Lett. B 702 (2011) 220 [arXiv:1104.0602] [INSPIRE].

[68] S.-F. Ge, D.A. Dicus and W.W. Repko, Residual Symmetries for Neutrino Mixing with a

Large θ13 and Nearly Maximal δD, Phys. Rev. Lett. 108 (2012) 041801 [arXiv:1108.0964]

[INSPIRE].

[69] D. Hernandez and A.Y. Smirnov, Lepton mixing and discrete symmetries,

arXiv:1204.0445 [INSPIRE].

[70] G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in

extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [INSPIRE].

[71] G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A4 and the modular symmetry,

Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE].

[72] G. Altarelli and D. Meloni, A Simplest A4 Model for Tri-Bimaximal Neutrino Mixing, J.

Phys. G 36 (2009) 085005 [arXiv:0905.0620] [INSPIRE].

[73] F. Bazzocchi, L. Merlo and S. Morisi, Fermion Masses and Mixings in a S4-based Model,

Nucl. Phys. B 816 (2009) 204 [arXiv:0901.2086] [INSPIRE].

[74] F. Bazzocchi, L. Merlo and S. Morisi, Phenomenological Consequences of See-Saw in S4

Based Models, Phys. Rev. D 80 (2009) 053003 [arXiv:0902.2849] [INSPIRE].

[75] G.-J. Ding, Fermion Masses and Flavor Mixings in a Model with S4 Flavor Symmetry,

Nucl. Phys. B 827 (2010) 82 [arXiv:0909.2210] [INSPIRE].

[76] D. Meloni, A See-Saw S4 model for fermion masses and mixings, J. Phys. G 37 (2010)

055201 [arXiv:0911.3591] [INSPIRE].

[77] F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Tri-bimaximal Neutrino Mixing and Quark

Masses from a Discrete Flavour Symmetry, Nucl. Phys. B 775 (2007) 120 [Erratum ibid.

836 (2010) 127] [hep-ph/0702194] [INSPIRE].

[78] S. King, Parametrizing the lepton mixing matrix in terms of deviations from tri-bimaximal

mixing, Phys. Lett. B 659 (2008) 244 [arXiv:0710.0530] [INSPIRE].

– 39 –

http://dx.doi.org/10.1007/JHEP02(2012)077
http://arxiv.org/abs/1110.4612
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4612
http://dx.doi.org/10.1016/j.nuclphysb.2009.08.018
http://dx.doi.org/10.1016/j.nuclphysb.2009.08.018
http://arxiv.org/abs/0905.3534
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.3534
http://dx.doi.org/10.1007/JHEP02(2011)062
http://dx.doi.org/10.1007/JHEP02(2011)062
http://arxiv.org/abs/1011.6662
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.6662
http://arxiv.org/abs/1204.1275
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.1275
http://dx.doi.org/10.1103/PhysRevLett.107.171801
http://arxiv.org/abs/1107.5547
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5547
http://dx.doi.org/10.1016/j.physletb.2011.08.013
http://arxiv.org/abs/1107.3486
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3486
http://dx.doi.org/10.1016/j.nuclphysb.2012.01.017
http://arxiv.org/abs/1112.1340
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1340
http://dx.doi.org/10.1016/j.physletb.2011.06.096
http://arxiv.org/abs/1104.0602
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0602
http://dx.doi.org/10.1103/PhysRevLett.108.041801
http://arxiv.org/abs/1108.0964
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.0964
http://arxiv.org/abs/1204.0445
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0445
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.005
http://arxiv.org/abs/hep-ph/0504165
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0504165
http://dx.doi.org/10.1016/j.nuclphysb.2006.02.015
http://arxiv.org/abs/hep-ph/0512103
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0512103
http://dx.doi.org/10.1088/0954-3899/36/8/085005
http://dx.doi.org/10.1088/0954-3899/36/8/085005
http://arxiv.org/abs/0905.0620
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0620
http://dx.doi.org/10.1016/j.nuclphysb.2009.03.005
http://arxiv.org/abs/0901.2086
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.2086
http://dx.doi.org/10.1103/PhysRevD.80.053003
http://arxiv.org/abs/0902.2849
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.2849
http://dx.doi.org/10.1016/j.nuclphysb.2009.10.021
http://arxiv.org/abs/0909.2210
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.2210
http://dx.doi.org/10.1088/0954-3899/37/5/055201
http://dx.doi.org/10.1088/0954-3899/37/5/055201
http://arxiv.org/abs/0911.3591
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.3591
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.002
http://arxiv.org/abs/hep-ph/0702194
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0702194
http://dx.doi.org/10.1016/j.physletb.2007.10.078
http://arxiv.org/abs/0710.0530
http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.0530


J
H
E
P
0
8
(
2
0
1
2
)
0
2
1

[79] L.J. Hall, V.A. Kostelecky and S. Raby, New Flavor Violations in Supergravity Models,

Nucl. Phys. B 267 (1986) 415 [INSPIRE].

[80] I. Masina and C.A. Savoy, Sleptonarium: Constraints on the CP and flavor pattern of

scalar lepton masses, Nucl. Phys. B 661 (2003) 365 [hep-ph/0211283] [INSPIRE].

[81] P. Paradisi, Constraints on SUSY lepton flavor violation by rare processes, JHEP 10 (2005)

006 [hep-ph/0505046] [INSPIRE].

[82] J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi and T. Yanagida, Lepton flavor violation in

the supersymmetric standard model with seesaw induced neutrino masses, Phys. Lett. B

357 (1995) 579 [hep-ph/9501407] [INSPIRE].

[83] J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed

neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996)

2442 [hep-ph/9510309] [INSPIRE].

[84] J. Hisano and K. Tobe, Neutrino masses, muon G-2 and lepton flavor violation in the

supersymmetric seesaw model, Phys. Lett. B 510 (2001) 197 [hep-ph/0102315] [INSPIRE].

[85] T. Fukuyama, A. Ilakovac and T. Kikuchi, Lepton flavor violating leptonic/semileptonic

decays of charged leptons in the minimal supersymmetric standard model, Eur. Phys. J. C

56 (2008) 125 [hep-ph/0506295] [INSPIRE].

[86] E. Arganda and M.J. Herrero, Testing supersymmetry with lepton flavor violating τ and µ

decays, Phys. Rev. D 73 (2006) 055003 [hep-ph/0510405] [INSPIRE].

[87] G. Isidori, F. Mescia, P. Paradisi and D. Temes, Flavour physics at large tanβ with a

Bino-like LSP, Phys. Rev. D 75 (2007) 115019 [hep-ph/0703035] [INSPIRE].

[88] M. Endo and T. Shindou, Lepton-flavour violation in the light of leptogenesis and muon

g-2, arXiv:0805.0996 [INSPIRE].

[89] K. Hamaguchi, M. Kakizaki and M. Yamaguchi, Democratic (S)fermions and lepton flavor

violation, Phys. Rev. D 68 (2003) 056007 [hep-ph/0212172] [INSPIRE].

[90] A. Mondragon, M. Mondragon and E. Peinado, Lepton masses, mixings and FCNC in a

minimal S3-invariant extension of the Standard Model, Phys. Rev. D 76 (2007) 076003

[arXiv:0706.0354] [INSPIRE].

[91] N. Kifune, J. Kubo and A. Lenz, Flavor Changing Neutral Higgs Bosons in a

Supersymmetric Extension based on a Q6 Family Symmetry, Phys. Rev. D 77 (2008)

076010 [arXiv:0712.0503] [INSPIRE].

[92] H. Ishimori et al., Soft supersymmetry breaking terms from D4 ×Z2 lepton flavor symmetry,

Phys. Rev. D 77 (2008) 115005 [arXiv:0803.0796] [INSPIRE].

[93] F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton Flavour Violation in Models with A4

Flavour Symmetry, Nucl. Phys. B 809 (2009) 218 [arXiv:0807.3160] [INSPIRE].

[94] H. Ishimori, T. Kobayashi, Y. Omura and M. Tanimoto, Soft supersymmetry breaking terms

from A4 lepton flavor symmetry, JHEP 12 (2008) 082 [arXiv:0807.4625] [INSPIRE].

[95] H. Ishimori, T. Kobayashi, H. Okada, Y. Shimizu and M. Tanimoto, ∆(54) Flavor Model

for Leptons and Sleptons, JHEP 12 (2009) 054 [arXiv:0907.2006] [INSPIRE].

[96] F. Feruglio, C. Hagedorn and L. Merlo, Vacuum Alignment in SUSY A4 Models, JHEP 03

(2010) 084 [arXiv:0910.4058] [INSPIRE].

– 40 –

http://dx.doi.org/10.1016/0550-3213(86)90397-4
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B267,415
http://dx.doi.org/10.1016/S0550-3213(03)00294-3
http://arxiv.org/abs/hep-ph/0211283
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0211283
http://dx.doi.org/10.1088/1126-6708/2005/10/006
http://dx.doi.org/10.1088/1126-6708/2005/10/006
http://arxiv.org/abs/hep-ph/0505046
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0505046
http://dx.doi.org/10.1016/0370-2693(95)00954-J
http://dx.doi.org/10.1016/0370-2693(95)00954-J
http://arxiv.org/abs/hep-ph/9501407
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9501407
http://dx.doi.org/10.1103/PhysRevD.53.2442
http://dx.doi.org/10.1103/PhysRevD.53.2442
http://arxiv.org/abs/hep-ph/9510309
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9510309
http://dx.doi.org/10.1016/S0370-2693(01)00494-4
http://arxiv.org/abs/hep-ph/0102315
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0102315
http://dx.doi.org/10.1140/epjc/s10052-008-0625-3
http://dx.doi.org/10.1140/epjc/s10052-008-0625-3
http://arxiv.org/abs/hep-ph/0506295
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0506295
http://dx.doi.org/10.1103/PhysRevD.73.055003
http://arxiv.org/abs/hep-ph/0510405
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0510405
http://dx.doi.org/10.1103/PhysRevD.75.115019
http://arxiv.org/abs/hep-ph/0703035
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0703035
http://arxiv.org/abs/0805.0996
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.0996
http://dx.doi.org/10.1103/PhysRevD.68.056007
http://arxiv.org/abs/hep-ph/0212172
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0212172
http://dx.doi.org/10.1103/PhysRevD.76.076003
http://arxiv.org/abs/0706.0354
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.0354
http://dx.doi.org/10.1103/PhysRevD.77.076010
http://dx.doi.org/10.1103/PhysRevD.77.076010
http://arxiv.org/abs/0712.0503
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.0503
http://dx.doi.org/10.1103/PhysRevD.77.115005
http://arxiv.org/abs/0803.0796
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.0796
http://dx.doi.org/10.1016/j.nuclphysb.2008.10.002
http://arxiv.org/abs/0807.3160
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3160
http://dx.doi.org/10.1088/1126-6708/2008/12/082
http://arxiv.org/abs/0807.4625
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4625
http://dx.doi.org/10.1088/1126-6708/2009/12/054
http://arxiv.org/abs/0907.2006
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2006
http://dx.doi.org/10.1007/JHEP03(2010)084
http://dx.doi.org/10.1007/JHEP03(2010)084
http://arxiv.org/abs/0910.4058
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.4058


J
H
E
P
0
8
(
2
0
1
2
)
0
2
1

[97] F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton Flavour Violation in a

Supersymmetric Model with A4 Flavour Symmetry, Nucl. Phys. B 832 (2010) 251

[arXiv:0911.3874] [INSPIRE].

[98] C. Hagedorn, E. Molinaro and S. Petcov, Charged Lepton Flavour Violating Radiative

Decays `i → `j + γ in See-Saw Models with A4 Symmetry, JHEP 02 (2010) 047

[arXiv:0911.3605] [INSPIRE].

[99] L. Merlo, S. Rigolin and B. Zaldivar, Flavour violation in a supersymmetric T ′ model,

JHEP 11 (2011) 047 [arXiv:1108.1795] [INSPIRE].

[100] J. Chakrabortty, P. Ghosh and W. Rodejohann, Lower Limits on µ→ eγ from new

Measurements on Ue3, arXiv:1204.1000 [INSPIRE].

[101] G.G. Ross and O. Vives, Yukawa structure, flavor and CP-violation in supergravity, Phys.

Rev. D 67 (2003) 095013 [hep-ph/0211279] [INSPIRE].

[102] S. Antusch, S.F. King, M. Malinsky and G.G. Ross, Solving the SUSY Flavour and CP

Problems with Non-Abelian Family Symmetry and Supergravity, Phys. Lett. B 670 (2009)

383 [arXiv:0807.5047] [INSPIRE].

[103] V. Cirigliano, B. Grinstein, G. Isidori and M.B. Wise, Minimal flavor violation in the lepton

sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001] [INSPIRE].

[104] S. Davidson and F. Palorini, Various definitions of Minimal Flavour Violation for Leptons,

Phys. Lett. B 642 (2006) 72 [hep-ph/0607329] [INSPIRE].

[105] B. Grinstein, V. Cirigliano, G. Isidori and M.B. Wise, Grand Unification and the Principle

of Minimal Flavor Violation, Nucl. Phys. B 763 (2007) 35 [hep-ph/0608123] [INSPIRE].

[106] R. Alonso, G. Isidori, L. Merlo, L.A. Muñoz and E. Nardi, Minimal flavour violation
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