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1 Introduction

The goal of this paper is to give technical details of our calculation of the average light

quark mass mud = (mu+md)/2 and of the strange quark mass ms at the physical mass

point and in the continuum [1]. This calculation is from first principles and sets new

standards in terms of controlling all systematic aspects of a direct calculation of quark

masses. Because the values mu and md are also of fundamental importance, we determine

them by combining our results formud and ms with dispersive information based on η → 3π

decays. A summary of recent determinations of light quark masses in Nf =2 and Nf =2+1

QCD is found in [1].

Let us begin by stating the minimum requirements for a first-principles determination

of mud and ms with fully controlled systematics:

1. The action should belong to the universality class of QCD according to standard

arguments, based on locality and unitarity, and an exact algorithm should be used.

2. The light quark masses should be sufficiently close to their physical values such that an

extrapolation, if necessary, can be performed without adding non-trivial assumptions.

Our simulations are performed “at the physical mass point”, i.e. with values of Mπ

and MK which bracket the physical values; this eliminates the need for a “chiral

extrapolation”.

3. Simulations should be performed in volumes large enough to ensure that finite-volume

effects are well under control (we use box sizes up to L≃6 fm).

4. Simulations should be performed at no less than three lattice spacings a to make

sure that a controlled extrapolation of all results to the continuum, a → 0, can be

performed.

5. All renormalizations should be performed nonperturbatively, and the final result

should be given in a scheme which is well-defined beyond perturbation theory (we

will give our results in the RI/MOM scheme).

6. The scale and other input masses should be set by quantities whose relation to ex-

periment are direct and transparent (we use the masses of the Ω baryon, the pion

and the kaon).

The present work contains additional innovative features which are not required to

give an ab-initio result, but help to keep all systematic errors small:

7. We devise a method, tailored to needs of studies with Wilson-like fermions, to recon-

struct the renormalized quark massesmud andms from the much simpler renormaliza-

tion of the quantities ms/mud and ms−mud. We call it the “ratio-difference method”.

8. We demonstrate a practical solution to the RI/MOM “window-problem”. It is based

on taking a separate continuum limit of the evolution function RS(µ, µ′) of the scalar

density S from a scale µ ∼ 2GeV, where the RI/MOM procedure yields reliable
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Figure 1. Summary of our simulation points. The pion masses and the spatial sizes of the lattices

are shown for our five lattice spacings. The percentage labels indicate regions, in which the expected

finite volume effect [3] on Mπ is larger than 1%, 0.3% and 0.1%, respectively. In our runs this effect

is smaller than about 0.5%, but we still correct for this tiny effect.

results, to a scale µ′∼4GeV where one may make (controlled) contact with pertur-

bation theory.

9. We use an advanced analysis procedure to assess the size of both the statistical and

the systematic uncertainties (the same one as in [2]).

In our view, item 2 marks the beginning of a new era in numerical lattice QCD, because

it avoids an extrapolation in quark masses which, generically, requires strong assumptions,

thus relinquishing the first-principles approach (see the discussion in [1]).

To give the reader an overview of where we are in terms of simulated pion masses Mπ

and spatial box sizes L, a graphical survey of (some of) our simulation points is provided

in figure 1 (with more details given in section 5). We have data at 5 lattice spacings in the

range 0.054−0.116 fm, with pion masses down to ∼ 120MeV and box sizes up to ∼ 6 fm.

Comparison with Chiral Perturbation suggests that our finite volume effects are typically

below 0.5%, and close to the physical mass point (which is the most relevant part) even

smaller. Still, we correct for them by means of Chiral Perturbation Theory [3], and test

the correctness of this prediction through explicit finite volume scaling runs (see below).

The remainder of this paper is organized as follows. In section 2 details are given

concerning the action and algorithm employed, while section 3 specifies how one determines

the HMC force with HEX smeared clover fermions. Our choice of the scale setting procedure

and of the input masses is discussed in section 4, with simulation parameters tabulated in

section 5. Checks of algorithmic stability are summarized in section 6, while autocorrelation
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and (practical) ergodicity issues are reported in section 7. To corroborate the good scaling

properties of our action, explicit tests of the scaling of hadron masses in Nf =3 QCD are

carried out, see section 8. Details of how we control finite volume effects through dedicated

finite volume scaling runs are reported in section 9. To test consistency with SU(2) Chiral

Perturbation Theory the behavior of M2
π/mud and Fπ as a function of mud is investigated

in section 10. Details of how we use the RI/MOM procedure with a separate continuum

limit of the running of the scalar density RS(µ, µ′) are given in section 11. To show the

reliability of this procedure the known value of r0ms in quenched QCD is reproduced, see

section 12. In section 13 it is discussed how one may use input from dispersion theory to

split our value of mud into separate values of mu and md. Section 14 specifies our procedure

to quantify both systematic and statistical uncertainties. Our final result is summarized

in section 15.

2 Action and algorithm details

We use a tree-level O(a2)-improved Symanzik gauge action [4] together with tree-level

clover-improved Wilson fermions [5], coupled to links which have undergone two levels of

HEX smearing. The latter derives from the HYP setup [6], but with stout/EXP smear-

ing [7] as the effective ingredient – see [8] for details. In terms of the original [Uµ(x)] and

smeared [Vµ(x)] gauge links (see below) our action takes the form [4, 5]

S = SSym
g + SSW

f

SSym
g = β

[

c0
3

∑

plaq

ReTr (1 − Uplaq) +
c1
3

∑

rect

ReTr (1 − Urect)

]

SSW
f = SW

f [V ] − cSW

2

∑

x

∑

µ<ν

(ψ σµνFµν [V ]ψ)(x) (2.1)

with σµν = i
2 [γµ, γν ] and SW

f denoting the standard Wilson action, and where the expression

for the field strength derives from the usual clover link arrangement. In SSym
g only the

original thin links Uµ(x) are used. The parameters c0, c1 [4] and cSW [5] are set to their

tree-level values

c1 = −1/12 , c0 = 1 − 8c1 = 5/3 , cSW = 1 . (2.2)

Note that both the hopping part and the clover term in SSW
f use the same type of HEX-

smeared links Vµ(x) ≡ V
(2)
µ (x). Those are constructed from the thin links V

(0)
µ (x) ≡ Uµ(x)

via [8]

Γ(1,n)
µ,νρ (x) =

∑

±σ 6=(µ,ν,ρ)

V (n−1)
σ (x)V (n−1)

µ (x+σ̂)V (n−1)
σ (x+µ̂)†

V (1,n)
µ,νρ (x) = exp

(

α3

2
PTA

{

Γ(1,n)
µ,νρ (x)V (n−1)

µ (x)†
})

V (n−1)
µ (x)

Γ(2,n)
µ,ν (x) =

∑

±σ 6=(µ,ν)

V (1,n)
σ,µν (x)V (1,n)

µ,νσ (x+σ̂)V (1,n)
σ,µν (x+µ̂)†
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Figure 2. Locality of the 6 stout and 2HEX clover operators in the gauge field, i.e. change of

D(0, 0) under a change of a gauge link at distance z. It vanishes for z2> 50, 18, respectively. For

small z there is hardly any difference between the locality properties of the two actions.

V (2,n)
µ,ν (x) = exp

(

α2

4
PTA

{

Γ(2,n)
µ,ν (x)V (n−1)

µ (x)†
})

V (n−1)
µ (x)

Γ(3,n)
µ (x) =

∑

±ν 6=(µ)

V (2,n)
ν,µ (x)V (2,n)

µ,ν (x+ν̂)V (2,n)
ν,µ (x+µ̂)†

V (3,n)
µ (x) = exp

(

α1

6
PTA

{

Γ(3,n)
µ (x)V (n−1)

µ (x)†
})

V (n−1)
µ (x) ≡ V (n)

µ (x) (2.3)

without summation over repeated indices. Here

PTA{M} =
1

2
[M−M †] − 1

6
Tr[M−M †] (2.4)

denotes the traceless anti-hermitean part of the 3×3 matrix M . We use the parameters

α1 = 0.95, α2 = 0.76 and α3 = 0.38. In terms of the standard stout/EXP smearing

convention [7]

Γ(n)
µ (x) =

∑

±ν 6=µ

V (n−1)
ν (x)V (n−1)

µ (x+ν̂)V (n−1)
ν (x+µ̂)†

V (n)
µ (x) = exp

(

ρPTA

{

Γ(n)
µ (x)V (n−1)

µ (x)†
})

V (n−1)
µ (x) (2.5)

the values of αi, i = 1, 2, 3, above correspond to ρ=0.158333, 0.19 and 0.19, respectively.

This smearing differs from the one we used in [2, 9] in that the fermions interact even

more locally with the gauge fields here (cf. the discussion in the supplementary online

material of [2] and the appendix of [8]). Note that the smeared clover operator D(x, y)
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is as ultralocal in position space as the original Wilson operator, since D(x, y) = 0 for

|x−y|> 1, regardless of the amount of smearing. What is more relevant is the locality in

field space, i.e. by how much D(0, 0) changes as the gauge field at a distance z is varied.

In figure 2 we compare the new 2HEX action to the 6 stout action used in [2, 9]. For small

distances there is hardly any difference, but for larger distances the shorter locality range

of the 2HEX variety becomes visible.

As we use the hybrid Monte-Carlo (HMC) algorithm [10], a non-trivial ingredient with

this action is the coding of the molecular dynamics (MD) force, which will be discussed

in the next section. The MD updates are performed in quadruple precision, to ensure

exact reversibility in our target (double precision) accuracy. Further particulars of our

implementation – even-odd preconditioning [11], multiple time-scale integration (“Sexton-

Weingarten scheme”) [12], mass preconditioning (“Hasenbusch trick”) [13], Omelyan in-

tegrator [14], RHMC acceleration with multiple pseudofermions [15] and mixed-precision

solver [9] – have been described in [9]. As has been noted in the literature [16, 17], com-

bining several of these ingredients yields a dramatic reduction of the critical slowing down

that has traditionally been observed for light quark masses. As we show in this paper,

the thorough combination of all these ingredients allows for simulations directly at the

physical mass point, in large volumes, with several lattice spacings, such that a controlled

extrapolation to the continuum can be performed.

3 HMC force with smeared links

We use two steps of HEX smearing [8] in our fermion action Sf , both for the Wilson

and for the clover term. Our Sf depends on the thin (unsmeared) links only through the

smeared links

Sf = Sf (V
(2)(V (1)(V (0) =U))) (3.1)

where V (n) denotes the HEX smeared links, with n indicating the smearing level. Generi-

cally, the fermionic contribution to the HMC force is given by the gauge derivative δSf/δU .

In order to obtain the derivative of Sf with respect to U for our two-step smearing recipe, we

will apply the chain rule twice, which leads us to the following scheme. First one calculates

δSf

δV (2)
(3.2)

which encodes the details of how the fermions are coupled to the smeared gauge fields. This

part of the calculation is not related to the smearing, one just takes δSf [U ]/δU and replaces

U → V (2). The main consequence of the nested dependence (3.1) is the recursion formula

δSf

δV (n−1)
=

δSf

δV (n)
⋆

δV (n)

δV (n−1)
(3.3)

where the proper definition of the star-product and of the second term will be given below.

Thinking in terms of routines of the computer code, one such step takes the previous

derivative δSf/δV
(n) and the links V (n), V (n−1) as input and yields the next derivative

– 6 –
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δSf/δV
(n−1). This procedure needs to be called n times, at the end we obtain the final

fermion force
δSf
δU

=
δSf

δV (0)
. (3.4)

Since the extension to a second and possibly more steps is straightforward, we will only

consider the derivation for one level of HEX smearing in the following.

We now specify the two main ingredients in the derivation of the HMC force for fat-link

actions, that is the gauge derivative and the pertinent chain rule. Since an SU(3) matrix in

the fundamental representation is a complex 3× 3 matrix with only 8 independent degrees

of freedom, it is a structured matrix and the derivative has to be defined properly.

The Lie algebra. For U ∈SU(3) an infinitesimal change can be written as

U → U ′ = exp

(

∑

A

uATA

)

U (3.5)

with real parameters uA and the set {TA|A = 1 . . . 8} forming a basis in the space of the

traceless, anti-hermitian matrices, i.e. of the tangent space of the group. These matrices are

normalized through Tr(TATB) = −δAB . Using the trace, one can define a scalar product

on this vector space; for X =
∑

A xATA and Y =
∑

A yATA in the Lie algebra the scalar

product

〈X,Y 〉 = −Tr(XY ) =
∑

A

xAyA (3.6)

allows one to build a projector which restricts an arbitrary 3×3 matrix, M , to the tangent

space PTA(M) = −∑

A TAReTr(TAM), with PTA(M) defined in (2.4). Furthermore, it is

easy to show that for arbitrary matrices M and N

ReTr(PTA(M)N) = ReTr(PTA(N)M) . (3.7)

Complex valued functions. Let f be a complex valued function on the group SU(3).

Its derivative with respect to the group element is a vector in the Lie algebra

δf

δU
=

∑

A

TA

[

δf

δU

]

A

(3.8)

where the components are defined as
[

δf

δU

]

A

=
∂f(U ′)

∂uA
= lim

uA→0

[

f(exp(uATA)U) − f(U)

]

/uA = Tr

(

TAU
∂f

∂UT

)

. (3.9)

Throughout, the partial derivative with respect to U under the trace is to be understood as

a derivative with respect to unconstrained matrix elements. In particular, this means that

∂Ucd
∂Uab

= δcaδbd . (3.10)

If f depends on the adjoint matrix U †, then using the identity U † = U−1 this dependence

is converted into a dependence on U , with the consequence that

∂U †
cd

∂Uab
= −U †

caU
†
bd . (3.11)
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Real valued functions. For a real valued function f the group derivative takes the form

δf

δU
=

∑

A

TA

[

δf

δU

]

A

=
∑

A

TATr

(

TAU
∂f

∂UT

)

= −PTA

(

U
∂f

∂UT

)

. (3.12)

SU(3) valued functions. Let V ∈ SU(3) be a function of U , such that V : SU(3) →
SU(3) is a mapping on the group space. If U changes as in (3.5), with small parameters

uA = O(ǫ), then V will also undergo a small change, which may be written as

V → V ′ = V (U ′) = exp(
∑

B

vBTB)V (3.13)

where the small parameters vB = O(ǫ) are real-valued functions of the original parameters

uA. Below we shall need the uA derivative of V ′, that is

∂V ′

∂uA
=
∂(

∑

B vB(u)TB)

∂uA
V (3.14)

which, upon taking the limit uA → 0, implies

[

δV

δU

]

A

=
∑

B

∂vB
∂uA

∣

∣

∣

∣

u=0

TBV . (3.15)

Chain rule. Let the function f depend on U only via V , and let us calculate its derivative

with respect to U . Again, U transforms with infinitesimal parameters uA, resulting in an

infinitesimal change of the variables vB = vB(u) of V . The usual chain rule yields

∂f

∂uA
=

∑

B

∂f

∂vB

∂vB
∂uA

(3.16)

and, after taking the limit uA → 0, we arrive at

[

δf

δU

]

A

=
∑

B

[

δf

δV

]

B

∂vB
∂uA

∣

∣

∣

∣

u=0

. (3.17)

With (3.6) and the definition of the gauge derivative from (3.8), (3.15), this may be rewrit-

ten as
[

δf

δU

]

A

= −Tr

(

δf

δV

[

δV

δU

]

A

V †

)

. (3.18)

This formula is the chain rule for the gauge derivative, which can formally be stated as

δf

δU
=
δf

δV
⋆
δV

δU
. (3.19)

With these ingredients we can now specify the HMC force for a fermion action with

one step of HEX smearing. In the following we will simplify our notation by replacing

V (i,n) with V (i). One HEX smearing, Uµ → V
(3)
µ , is built from three substeps (cf. eq. 2.3)

V (1)
µ,ν,ρ(x) = exp

(

PTA[C(1)
µ,ν,ρ(x)U

†
µ(x)]

)

· Uµ(x)

– 8 –
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V (2)
µ,ν (x) = exp

(

PTA[C(2)
µ,ν(x)U

†
µ(x)]

)

· Uµ(x)

V (3)
µ (x) = exp

(

PTA[C(3)
µ (x)U †

µ(x)]
)

· Uµ(x) (3.20)

where PTA has been defined in (2.4) and C(1), C(2), C(3) represent staples constructed via

C(1)
µ,ν,ρ(x) =

α3

2

∑

±σ 6=(µ,ν,ρ)

Uσ(x)Uµ(x+σ̂)U †
σ(x+µ̂)

C(2)
µ,ν(x) =

α2

4

∑

±σ 6=(µ,ν)

V (1)
σ,µ,ν(x)V

(1)
µ,σ,ν(x+σ̂)V (1)†

σ,µ,ν(x+µ̂)

C(3)
µ (x) =

α1

6

∑

±σ 6=µ

V (2)
σ,µ (x)V (2)

µ,σ (x+σ̂)V (2)†
σ,µ (x+µ̂) (3.21)

with the factors αi/(2(d− 1)) included (for reasons to become obvious below). In the

following we will drop Lorentz indices and space-time arguments for simplicity.

The task is to calculate the HMC force [with V = V (3)]

δSf
δU

=
δSf
δV

⋆
δV

δU
, (3.22)

where δSf/δV is already known. The A component of the star product reads [see (3.18)]

[

δSf
δU

]

A

= −
[

V (3)† δSf

δV (3)

]

ab

[

δV
(3)
ba

δU

]

A

= −Σ
(3)
ab Tr

(

TAU
∂V

(3)
ba

∂UT

)

(3.23)

where Σ(3) contains the part of the force which is already known

Σ(3) = V (3)† δSf (V
(3))

δV (3)
. (3.24)

Since Sf is a real-valued function we can write this in the compact form

δSf
δU

= PTA

(

UΣ
(3)
ab

∂V
(3)
ba

∂UT

)

. (3.25)

To improve readability, let us temporarily denote V (3) by V . The last substep is then

V = exp(A)U , where A = PTA(CU †) and thus

δSf
δU

= PTA

(

UΣab
∂Vba
∂UT

)

= PTA

(

UΣ exp(A)

)

+ PTA

(

UΣab
∂ exp(A)bc
∂UT

Uca

)

. (3.26)

The derivative of the exponential of a traceless anti-hermitian A reads [see eq. (68) of [7]]

d(exp(A)) = Tr(A · dA)B1 + Tr(A2 · dA)B2 + f1dA+ f2A · dA+ f2dA · A (3.27)

with B1,2 being second-order polynomials of A and f1,2 complex constants which depend

on the trace and determinant of A. Using the cyclicity of the trace in the color indices, we

arrive at

PTA

(

UΣab
∂Vba
∂UT

)

= PTA

(

UΣ exp(A)

)

+

PTA

(

U
∂Aab
∂UT

· [Tr(UΣB1)A+ Tr(UΣB2)A
2 + f1UΣ + f2UΣA+ f2AUΣ]ba

)

(3.28)
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where the second term contains the derivative of A=PTA(CU †). We use the identity

PTA

(

U
∂PTA(M)ab

∂UT
Nba

)

= PTA

(

U
∂Mab

∂UT
PTA(N)ba

)

(3.29)

valid for arbitrary M and N [see (3.7)] to shuffle the projector in A= PTA(CU †) to the

matrix in square brackets in (3.28). Next, we use that the derivative of CU † can be

written as

U
∂(CU †)ab
∂UT

PTA[. . .]ba = U
∂Cab
∂UT

(U †PTA[. . .])ba − PTA[. . .] · CU † (3.30)

and introduce a convenient notation for the expression in square brackets in (3.28) by

means of

Z = U †PTA

[

Tr(UΣB1)A+ Tr(UΣB2)A
2 + f1UΣ + f2UΣA+ f2AUΣ

]

. (3.31)

With this at hand, and using the relation exp(A) = V U †, we arrive at the compact

expression

PTA

(

UΣab
∂Vba
∂UT

)

= PTA

(

U(ΣV −ZC)U † + U
∂Cab
∂UT

Zba

)

. (3.32)

Finally, we reintroduce the superscript (3) and note that the U dependence of C(3)

comes exclusively from V (2). With these adjustments, relation (3.32) takes the form

PTA

(

UΣ
(3)
ab

∂V
(3)
ba

∂UT

)

= PTA

(

U(Σ(3)V (3) − Z(3)C(3))U †

)

+ PTA

(

UΣ
(2)
ab

∂V
(2)
ba

∂UT

)

(3.33)

where Σ(2) is defined as

Σ
(2)
ab =

∂C
(3)
cd

∂V
(2)
ba

Z
(3)
dc (3.34)

meaning that the term Σ(2) can be calculated in the similar way as Σ(3). This procedure

can be iterated, and we find for an action with one step of HEX smearing

δSf
δU

=
∑

i=3,2,1

PTA

(

U(Σ(i)V (i) − Z(i)C(i))U †
)

+ PTA

(

UΣ(0)
)

(3.35)

where Σ(i) is defined as

Σ
(i)
ab =

∂C
(i+1)
cd

∂V
(i)
ba

Z
(i+1)
dc for i = 0, 1, 2 . (3.36)

The object ∂C(i+1)/∂V (i) is a straightforward staple derivative, where some care needs

to be taken w.r.t. the Lorentz indices. With this formula, one may implement a routine

which calculates the HMC force for a fermion action with one step of HEX smearing. The

extension to a second smearing step is realized through a second call to this routine as

shown in (3.1).

This calculation of the HMC force with HEX smeared fermion actions extends the

results of [7, 18]. An early treatise of the HMC force for fat-link fermion actions is found

in [19].
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4 Scale setting and input masses

To set the scale and to adjust the light and strange quark masses mud=(mu+md)/2 and

ms to their physical values, we need to identify three quantities which can be precisely

computed on the lattice and measured in experiment. We will use the mass of the Ω

baryon and of the pseudoscalar mesons π,K for this purpose, in the latter case with a

small correction for isospin-breaking and electromagnetic effects (see below).

In other words, at the point where Mπ/MΩ and MK/MΩ agree with the physical

values of these ratios, the measured value of aMΩ is identified with the lattice spacing

times 1.672GeV [20], and this yields a−1. In [2] we used also the Ξ baryon to set the scale.

As discussed there, correlation functions of spin 3/2 baryons are somewhat noisier than

those of spin 1/2 baryons. On the other hand, the more light valence quarks present in

a baryon, the larger the fluctuations. In [2] with Mπ down to 190MeV these two effects

balanced each other, rendering the Ω and the Ξ equally good choices. In the present paper

we go down to Mπ=120MeV, and the Ω with no light valence quark is the better choice.

We use the standard mass-independent scale-setting scheme, in which this lattice spacing

is subsequently attributed to all ensembles with the same coupling β=6/g2
0 and Nf .

Our ensembles bracket the physical quark masses mud and ms in the sense that the

span of simulated M2
π and M2

ss̄ ≡ 2M2
K−M2

π encompass the physical values given below.

As a result, it suffices to use a parametrization of aMΩ as a function of (aMπ)
2 and

(aMss̄)
2 which describes the entire data set. We find that the Taylor ansatz aMΩ =

c0 + c1(aMπ)
2 + c2(aMss̄)

2 + c3(aMss̄)
4 works perfectly.

Since our lattice simulations are performed in the isospin symmetric limit md =mu

and do not account for electromagnetic interactions, the physical input meson masses must

be corrected for these effects. The account of this as given by FLAG [21] is essentially

a refined version of the analysis presented by MILC [22] some time ago. The bottom

line is that in the framework mentioned above one should use the input masses Mπ =

134.8(3)MeV,MK = 494.2(5)MeV, which means that the electromagnetically corrected,

isospin-averaged pseudoscalar input meson masses essentially agree with the PDG values

of Mπ0 and
√

1
2(M2

K+ +M2
K0), respectively.

5 Simulation parameters

An overview of our Nf = 2+1 QCD simulations is presented in table 1. For each en-

semble we indicate the bare parameters, the lattice geometry, and the ensemble length in

τ = 1 units (after thermalization). In addition, the pion mass for the given parameters

(determined with a specific choice of the fitting interval) is given. Note that the quoted

error is only statistical — a detailed account of our procedure to keep track of the sys-

tematic uncertainties is given in section 14. With Wilson fermions negative bare masses

are not disturbing; after renormalization they will evaluate to positive quark masses (see

section 11). We work with spatial volumes as large as L3≃(6 fm)3 and temporal extents up

to T ≃ 8 fm. Besides reducing finite-volume corrections and excited-state contaminations,

large (four-dimensional) volumes tend to decrease statistical uncertainties to the same ex-
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β ambare
ud ambare

s volume # traj. aMπ MπL

3.31

-0.07000 -0.0400 163
× 32 1650 0.3530(12) 5.61

-0.09000 -0.0400 243
× 48 1600 0.2083(08) 5.00

-0.09300 -0.0400 243
× 48 4350 0.1775(06) 4.30

-0.09300 -0.0400 323
× 48 2500 0.1771(05) 5.65

-0.09530 -0.0400 323
× 48 1225 0.1500(13) 4.81

-0.09756 -0.0400 323
× 48 2600 0.1202(11) 4.00

-0.09900 -0.0400 483
× 48 1700 0.0887(06) 4.26

-0.09933 -0.0400 483
× 48 1240 0.0804(13) 3.94

-0.09000 -0.0440 243
× 64 1065 0.2024(10) 4.86

-0.09300 -0.0440 323
× 64 1030 0.1717(08) 5.50

-0.09530 -0.0440 323
× 64 1300 0.1457(09) 4.66

3.5

-0.04800 -0.0023 323
× 64 1500 0.1354(06) 4.33

-0.02500 -0.0060 163
× 32 12000 0.2898(07) 4.62

-0.03100 -0.0060 243
× 48 3000 0.2535(05) 6.07

-0.03600 -0.0060 243
× 48 1800 0.2250(08) 5.41

-0.04100 -0.0060 243
× 48 4000 0.1921(05) 4.61

-0.04370 -0.0060 243
× 48 3900 0.1725(04) 4.13

-0.04900 -0.0060 323
× 64 1100 0.1212(08) 3.90

-0.05294 -0.0060 643
× 64 1100 0.0613(06) 3.92

-0.04100 -0.0120 243
× 64 1020 0.1884(08) 4.52

-0.04630 -0.0120 323
× 64 1065 0.1445(06) 4.62

-0.04900 -0.0120 323
× 64 1000 0.1174(06) 3.76

-0.05150 -0.0120 483
× 64 1200 0.0835(07) 4.01

3.61

-0.02000 0.0045 323
× 48 2100 0.1993(3) 6.36

-0.02800 0.0045 323
× 48 3910 0.1488(4) 4.75

-0.03000 0.0045 323
× 48 2000 0.1322(4) 4.24

-0.03121 0.0045 323
× 48 2200 0.1211(2) 3.87

-0.03300 0.0045 483
× 48 2100 0.1026(4) 4.93

-0.03440 0.0045 483
× 48 1100 0.0864(4) 4.15

-0.03650 -0.0030 643
× 72 1004 0.0468(5) 3.00

-0.02000 -0.0042 323
× 48 1750 0.1969(4) 6.30

-0.03000 -0.0042 323
× 48 1450 0.1297(5) 4.17

3.7

-0.00500 0.0500 323
× 64 1000 0.2227(04) 7.13

-0.01500 0.0500 323
× 64 1170 0.1711(03) 5.48

-0.02080 0.0010 323
× 64 1150 0.1251(04) 4.00

-0.01500 0.0000 323
× 64 1115 0.1644(04) 5.26

-0.02080 0.0000 323
× 64 1030 0.1245(06) 3.98

-0.02540 0.0000 483
× 64 1420 0.0821(03) 3.94

-0.02700 0.0000 643
× 64 1045 0.0603(03) 3.86

-0.02080 -0.0050 323
× 64 1405 0.1249(04) 4.00

-0.02540 -0.0050 483
× 64 1320 0.0806(03) 3.87

3.8

-0.01400 0.0300 323
× 64 1325 0.1242(5) 3.97

-0.01900 0.0300 483
× 64 1045 0.0830(4) 3.99

-0.00900 0.0000 323
× 64 2280 0.1523(4) 4.87

-0.01400 0.0000 323
× 64 1055 0.1249(5) 4.00

-0.01900 0.0000 483
× 64 1080 0.0836(4) 4.01

-0.02100 0.0000 643
×144 1200 0.0598(2) 3.83

Table 1. Overview of our Nf = 2+1 simulations. The scales at β = 3.31, 3.5, 3.61, 3.7, 3.8 are

a−1 = 1.697(6), 2.131(13), 2.561(26), 3.026(27), 3.662(35)GeV, respectively. Accordingly, the mini-

mum pion mass per coupling is Mπ = 136(2), 131(2), 120(2), 182(2), 219(2)MeV.
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Inverse iteration count (1000/Ncg)

β=3.31, Mπ≈135 MeV

 0  0.04  0.08  0.12

β=3.5, Mπ≈130 MeV

β=3.61, Mπ≈120 MeV

 0  0.04  0.08  0.12

β=3.7, Mπ≈180 MeV
β=3.8, Mπ≈220 MeV

Figure 3. Histogram of the inverse iteration count (N−1
CG of the lightest pseudofermion) in the

ensemble with the lightest quark mass per β. The coarser the lattice and the lighter the pion, the

further the tail goes down, but in all cases there is no danger that it stretches out to zero.

tent as increasing the number of trajectories (in a fixed volume) would do. For instance,

in a L4 box 1300 trajectories at MπL=4 are approximately equivalent to 4100 trajectories

at MπL = 3. With an HMC-type algorithm, the effort (at fixed pion mass) grows like

L5. Nevertheless, in view of the increased algorithmic stability (see below), choosing large

four-dimensional volumes is a beneficial strategy.

The integrated autocorrelation times of the smeared plaquette and of the number of

conjugate gradient iterations in the HMC accept/reject step are at most O(10) trajectories.

Depending on this autocorrelation time, the gauge field after every fifth or every tenth

trajectory is stored as a configuration to be used for calculating hadronic observables.

We put sources for the correlation functions on up to eight timeslices. For the precise

form of the meson and baryon interpolating operators see e.g. [23]. To reduce the relative

weight of excited states in correlation functions Gaussian sources and sinks are used, with

a radius of about 0.32 fm, which was found to be a good choice [2].

6 Algorithm stability

To detect potential instabilities of the HMC algorithm, different stability tests need to be

performed. A rather complete battery of such tests was described in [9]. The pion masses

used in this work are considerably smaller than those encountered in [2, 9]. For this reason,
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Figure 4. Evolution of the maximum over the volume of each MD force during the MD integration.

256 steps correspond to one τ = 1 trajectory. The hierarchy among the pseudofermion forces is

FPF0<FPF3<FPF1∼FPF2<FRHMC<FPF4, with the latter being roughly at the level of the gauge

forrce (albeit more spiky). Shown is one production stream of our “physical pion mass” ensemble

at β=3.31. The other streams with the same parameters give a similar picture.

we repeat the relevant stability tests for the smallest-mass ensemble at each β, in particular

for those with the physical pion mass.

With D the smeared Wilson or clover operator, the spectrum of A=D†D has no non-

zero lower bound, i.e. the operator A is positive semi-definite, but not positive definite.

If one could integrate the HMC trajectories exactly, this would not cause any problem,

since an eigenvalue λ of A approaching zero would introduce an unbounded back-driving

force in the HMC, so that the exact zero would be avoided. In practice, the trajectories

are generated with a finite step-size integrator. Therefore, a very small λmin in the MD

evolution may experience a smaller back-driving force than it would in an exact evolution

scheme, and this may trigger an instability.

If a particularly small eigenvalue appears during the molecular dynamics (MD) evo-

lution, the solver in the MD force calculation will require more iterations to arrive at its

target precision. More precisely, the inverse of the iteration count NCG is closely related to

the smallest eigenvalue of A. In a given ensemble, N−1
CG shows an approximately Gaussian

distribution [9]. As long as its median is away from zero by several standard deviations,

the simulation is deemed safe [9, 24]. In figure 3 we show the “worst case scenario”, i.e. the

situation for the smallest quark masses in our set of ensembles. As one can see, even for

pion masses as small as 120−135MeV the inverse iteration count and hence the spectrum

is bounded away from zero.
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∆EMD

Figure 5. Evolution of the energy violation over 250 units of MD time in the same simulation as

in figure 4. All other simulations show similar or smaller energy violations.

Alternatively, one can monitor the magnitude of the various contributions to the MD

force in the MD evolution. This is done in figure 4, where the maximum (over space-time)

of each individual contribution to the total MD force during the MD integration is shown

over a period of 10, 000 MD steps. As usual, the maximum of each contribution to the MD

force fluctuates. However, it is important that the magnitude of these fluctuations is not

too large. The more frequent spikes with large magnitude occur at any given MD step-size,

the lower is the HMC acceptance rate, to the point where the algorithm becomes unstable.

For small pion masses and coarse lattice spacings, the situation becomes even worse. This

is why we show the ensemble with our smallest pion mass (around the physical pion mass)

at the coarsest lattice spacing in figure 4. As one can see there are no dangerously large

fluctuations present.

Finally, it is good practice to monitor the violation ∆EMD of the MD energy conser-

vation. In figure 5 we show again the “worst case scenario”, that is the ensemble with our

smallest pion mass at the coarsest lattice spacing. As one can see, the typical ∆EMD in

this simulation is small. For most of our simulations the acceptance rate is above 90%.

Since the acceptance probability is given by pacc = min(1, exp(−∆EMD)), it is reasonable

to use the data accumulated in the monitoring of the MD energy violation to check that

〈exp(−∆EMD)〉=1 within errors.

In summary, because (a) our algorithm is free of dangerous fluctuations of the clover

eigenvalue spectrum, (b) there are no dangerous fluctuations in the MD forces and (c)

we therefore see that large violations of the MD energy conservation are absent in the

simulation (resulting in high acceptance rates), we conclude that our setup is safe.
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Topological charge β=3.8, mud=-0.02, ms=0

-4

-2
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2
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-1

1

 0  1000  2000  3000  4000  5000

∆EMD

Figure 6. Topological charge history at our finest lattice spacing (β = 3.8 corresponds to a−1 ∼
3.7 GeV) using two vigorous smearings (10 or 30 HYP steps) in the gluonic charge definition.

7 Autocorrelation and ergodicity checks

A known source of concern about HMC simulations in the regime of light quark masses

and/or small lattice spacings is whether the Markov chain manages to sample configuration

space sufficiently well, i.e. whether the algorithm is (in practical terms) ergodic [25–27].

We monitor two cheap gluonic quantities which are supposed to signal suspicious be-

havior, if there is any. The first one is the plaquette and/or Symanzik gauge action.

With the plaquette it makes sense to consider smeared varieties, too, i.e. ReTr Vplaq

where V is a smeared gauge link, as described in section 2. We find integrated auto-

correlation times of such quantities to be at most O(10) in units of unit-length (τ = 1)

trajectories. The second quantity is the bare field-theoretical (global) topological charge

q = a4/(16π2)
∑

x,µ<ν Tr[Fµν(x)F̃µν(x)] where Fµν(x) is constructed from links which have

undergone 10 or 30 steps of HYP smearing [6, 28]. In order to check for the specific

concern of its autocorrelation, we produced a long (5000 trajectories) supplementary run.

This specifically chosen ensemble with small Mπ ∼ 260MeV at our finest lattice spacing

represents the worst-case scenario according to [25–27]. As one can see from figure 6, the

10 HYP and 30 HYP charges are always close to each other. Second, binning them with bin

boundaries at Z/2+1/4 yields a clear abundance of integer centered bins over half-integer

centered bins, and this effect is more pronounced with the more vigorous smearing recipe.

The histogram of either charge is reasonably symmetric after about 5000 trajectories, and
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Figure 7. Autocorrelation plot (top) and integrated autocorrelation time (bottom) of the renor-

malized q2ren (the input quantity for the topological susceptibility in [28]) on the same ensemble as

in figure 6. The autocorrelation analysis was performed with the code provided in [29], and gives

τint = 29.3(8.1). Note that this ensemble features the worst case of a small Mπ ∼ 260 MeV at our

finest lattice spacing a∼ 0.054 fm. This ensemble was specifically produced in order to check the

autocorrelation properties of our action and algorithm. Typical autocorrelation times of ensembles

used in the final analysis are usually much shorter.

the integrated autocorrelation time of q2 is found to be τint = 29.3(8.1) (see figure 7). Since

this ensemble represents the worst case scenario, we see no reason for concerns about the

(practical) ergodicity of our simulations.

One should keep in mind that the topological tunneling rate may depend sensitively on

the details of the action (e.g. whether Wilson, Symanzik or Iwasaki glue is used, whether

smeared or unsmeared links are used in the fermionic part) and on the algorithm (e.g. the

number of time scales and the specific choice of Hasenbusch masses).

8 Nf =3 scaling test for hadron masses

Since the link smearing of the 2HEX action used in the present work differs from the

smearing used in [2, 9], we decided to repeat the entire scaling test, as presented in [9], in

all its detail for the new action.
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Figure 8. Scaling of the nucleon and delta mass, at fixed Mπ/Mρ = 0.67, versus αa and a2.

To this end, we run a number of Nf = 3 simulations at various lattice spacings and

various Mπ/Mρ ratios. For each β we interpolate the (common) octet and decuplet baryon

mass, i.e. MN/Mρ and M∆/Mρ, to the point where Mπ/Mρ assumes the value 0.67. The

latter value coincides with [2(Mphys
K )2 − (Mphys

π )2]1/2/Mphys
φ , hence providing a way to

tune to a quark mass which roughly corresponds to the physical strange quark mass. The

results for MN/Mρ and M∆/Mρ at this interpolation point are then extrapolated, linearly

in αa and a2, to the continuum. Throughout this report, α= g2/(4π) denotes the strong

coupling constant. For g2 we use the perturbative values, at our lattice spacings, at 4-loop

order (see below). The result of this procedure is shown in figure 8. Three points are worth

emphasizing. First of all, the data are consistent with either scaling hypothesis over a large

range of lattice spacings (out to a≃0.15 fm), with a slight preference for O(a2) over O(αa)

scaling, and this suggests that our tree-level value of cSW (see section 2 for the definition

and details) is close to the nonperturbative value (which is not known for our action). This

finding is in accordance with the results of [8]. Next, the continuum extrapolated values

shown in figure 8 are in perfect agreement with the continuum extrapolated baryon masses

found in [9] with a different action. Last but not least, the slope in either panel of figure 8

is small,1 and an action which shows generically a flat slope in scaling quantities is useful

for obtaining precise predictions in the continuum.

In summary we find that both the 6stout action used in [2, 9] and the 2HEX action

used in the present work exhibit small cut-off effects on standard hadron masses over a

broad range of lattice spacings.

9 Finite volume corrections

For a fixed set of bare parameters, β,mud,ms, energies and matrix elements of hadronic

states depend on the spatial size L of the lattice. Typically, the finite volume tends to

increase the effective mass and to decrease the decay constant, relative to their infinite

volume counterparts. As a first step it is important to assess by how much such effects

1The deviation of the result on the coarsest lattice from the continuum is 2.0% at most [∆ with

O(αa) ansatz].
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Figure 9. Dedicated finite-volume analysis at β = 3.31, with Mπ ≃ 250 MeV (lower set of data)

and Mπ ≃300 MeV (upper set). Results are compared to the prediction from Chiral Perturbation

Theory. The fit to (9.1) is shown by solid red curves and the prediction of ChPT [3] is the green

set of dashed curves. The steep dotted lines indicate the boundaries MπL=3 and MπL=4.

would affect the data. For the theoretical treatment of these finite-volume effects it makes

a difference whether the state considered is stable under strong interactions (despite the

fact that, in a finite volume, the energy spectrum of all states is discrete). The respective

frameworks have been established by Lüscher, both for stable [30, 31] and unstable [32, 33]

states. They allow us to quantify and eventually correct for finite-volume effects in a

self-consistent manner.

The structure of these corrections is most transparent for the case of a pion at 1-loop

order in Chiral Perturbation Theory (ChPT) [34–36]. Up to higher order terms, the relative

shift is

Rπ(L) ≡ Mπ(L)

Mπ
− 1 = const ·M2

π · g̃1(MπL) (9.1)

where the shape function g̃1(x) has a well behaved expansion in terms of a Bessel function

of the second kind, which itself has a large-x expansion of the form

g̃1(x) =
24K1(x)

x
+

48K1(
√

2x)√
2x

+ . . . (9.2)

K1(x) =

(

π

2x

)1/2

exp(−x)
[

1 +
3

8x
+ . . .

]

(9.3)

implying that finite volume corrections are exponentially suppressed at large L [30]. Higher

loop orders for Rπ(L) have been worked out in [3]. For completeness we mention that
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Figure 10. M2
π/m

PCAC
ud (left) and Fπ (right) versus mPCAC

ud (cf. section 11) for our 4 lightest

ensembles at β=3.5, at fixed ams =−0.006, which is close to mphys
s . A joint fit to the NLO chiral

ansatz (10.1), (10.2) yields reasonable values of the low-energy constants. Error bars are statistical.

analytic results for finite volume corrections of the nucleon are given in [37, 38]. The

second reference predicts that for physical quark masses and L= 5 fm box size (which is

what we use in our smallest box at the physical mass point, the one at β=3.61, cf. table 1)

the nucleon experiences just a 2 permil finite-size shift. The point is that ChPT predicts

the numerical value of “const” in (9.1). In the chiral literature, the low-energy constants

that enter “const” are pinned down from experiment (at leading order it is Fπ).

To avoid using external input, we decide to stay content with just using the functional

form of (9.1). This is permissible, since the shape function g̃1(x) is just the free Green’s

function of a massive scalar particle, summed over all spatial mirror copies (due to periodic

boundary conditions in the spatial directions) [34], see also the discussion in [3]. We find

that we can establish a global fit to all of our data in various volumes if we adjust the free

coefficient in (9.1). A similar conclusion is reached for other stable hadrons, albeit with a

different numerical value of the constant. For the case of the pion, we test the fitting ansatz

and the analytic prediction [3] by comparing them to dedicated finite-volume scaling runs,

as shown in figure 9. Both the fit (full line) and the prediction from ChPT [3] (dashed

curve) agree with the data. The latter prediction has a limited range, since ChPT becomes

questionable in boxes with MπL< 3 [3]. It is important to emphasize that the data with

MπL < 4 in figure 9 have been generated to test our treatment of finite-volume effects,

they do not enter the final analysis.

These results are consistent with our rule of thumb that simulations with MπL ≥ 4

and/or L>∼5 fm yield infinite-volume masses within statistical accuracy. An overview of

the expected size of RMπ
in our simulations is given in figure 1. In all of these points the

mass correction is less than about 5 permil, and for points close to Mphys
π (which dominate

our analysis) it is even smaller. Nevertheless, we include these (tiny) shifts into our global

analysis (cf. section 14).

10 Chiral behavior of pion mass and decay constant

To illustrate the quality of our results obtained in lattice QCD calculations with physical

or larger than physical values of the quark mass mud=(mu+md)/2, we briefly investigate
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here whether the mud dependence of the pion mass and decay constant can be described

by ChPT [39, 40] in this range of quark masses.

To this end we compare our results for M2
π and Fπ versus mud at fixed (nearly physical)

ms (cf. table 1) to the NLO predictions of the SU(2) framework. The latter read [39]

M2
π = M2

[

1 +
1

2
x log

(

M2

Λ2
3

)]

(10.1)

Fπ = F

[

1 − x log

(

M2

Λ2
4

)]

(10.2)

with x=M2/(4πF )2 and M2 =2Bmud a shorthand expression for the light quark mass (up

to the factor 2B, with B=Σ/F 2). The NNLO expressions can be found in [41]. In all of

these expressions F,Σ, B refer to the pion decay constant, the absolute value of the quark

condensate and the condensate parameter in the 2-flavor chiral limit mud → 0 with ms

held fixed. The terms in the square brackets proportional to x0, x1 represent the tree-level

and 1-loop contributions respectively, and Λ3,Λ4 encode low-energy constants (LECs).

In figure 10 the quantities M2
π/m

PCAC
ud and Fπ are plotted versus the PCAC quark

mass mPCAC
ud (see below) at an intermediate lattice spacing (β = 3.5), where we reach

down to Mπ≃130MeV (cf. table 1). We find that our results with Mπ<400MeV can be

jointly fitted with the NLO chiral formulae (10.1), (10.2), with acceptable χ2/d.o.f. and

reasonable values of the low-energy constants. However, the extraction of Gasser-Leutwyler

coefficients is beyond the scope of this paper and will be left for future publications.

11 RI/MOM renormalization of quark masses

Our primary goal is to determine the average up-down quark mass mud = (mu+md)/2 and

the strange quark mass ms at the physical mass point in a “continuum” renormalization

scheme, such as RI/MOM or RGI, using first-principles lattice computations.

In a lattice study quark masses and the running coupling have a different status than

other observables, such as hadron masses and decay constants, since they are input parame-

ters to the simulation. Consequently, one has to tune these parameters until the low-energy

spectrum of the theory agrees with experiment (cf. [2] and section 4), before one may read

them off from the results of the simulation. To turn them into observables, one has to

convert them from the original cut-off scheme (which is specific to the gluon and quark

action combination used) to a scheme where the scale µ is not tied to the lattice spacing a.

The remainder of this section is organized as follows. In 11.1 our “ratio difference

method” for extracting quark masses in the theory with Wilson fermions is explained,

using standard terminology for the renormalization and improvement coefficients. It is

important to notice that in the dynamical theory there is a subtlety in the renormalization

pattern, due to quark line disconnected diagrams [42–44], but our “ratio difference method”

steers around this complication, as explained in 11.2. In subsection 11.3 details of how

we determine the flavor non-singlet scalar renormalization constant ZS(µ) via the Rome-

Southampton RI/MOM method [45] are given. In 11.4 it is specified how we control the

systematics that arise from the dedicated Nf = 3 computations needed in the RI/MOM

procedure. In 11.5 a summary is given.
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11.1 Ratio-difference method in a nutshell

With Wilson-type fermions there are two options for obtaining the renormalized quark

mass. On the one hand, one may start from the mass parameter ambare, as present in the

Lagrangian, and apply both additive and multiplicative renormalization to build the VWI

quark mass

mVWI =
1

ZS

[

1 − 1

2
bSam

W +O(a2)

]

mW where mW = mbare −mcrit (11.1)

and VWI means2 “vector Ward identity”. Here ZS = ZS(µ) denotes the lattice-to-

continuum renormalization factor of the scalar density (it depends on the chosen scheme

and scale, e.g. MS and µ=2GeV), bS is an improvement coefficient (see below), and mcrit

specifies the additive mass renormalization, i.e. the bare quark mass at which the pion

becomes massless.

The other way to obtain the renormalized quark mass is as follows. For a pseudoscalar

meson made out of valence quarks ψ1, ψ2 with Lagrangian masses mbare
i or Wilson masses

mW
i (i = 1, 2), respectively, the sum of the (unrenormalized) PCAC quark masses is de-

fined as

mPCAC
1 +mPCAC

2 =

∑

~x〈∂̄µ[Aµ(x) + acA∂̄µP (x)]O(0)〉
∑

~x〈P (x)O(0)〉 (11.2)

where Aµ and P denote the axial current and the pseudoscalar density, respectively, O

represents an arbitrary operator which couples to the meson (usually O=P to maximize

the signal), and ∂̄µφ(x)=[φ(x+aµ̂)−φ(x−aµ̂)]/(2a) is the symmetric derivative. Then only

a multiplicative renormalization is needed to form the (renormalized) “AWI quark mass”

mAWI =
ZA
ZP

1 + bAam
W +O(a2)

1 + bPamW +O(a2)
mPCAC (11.3)

where AWI stands for “axial Ward identity”. Here ZA and ZP = ZP (µ) denote the

lattice-to-continuum renormalization factor of the axial current and the pseudoscalar

density, respectively.

The coefficients bS , bA, bP , cA in (11.1 - 11.3) are part of the improvement program.

If properly set, O(a2) scaling of phenomenological quantities can be achieved, but they

may be set to zero if one is content with O(a) scaling. We use (11.1 - 11.3) with tree-level

values of the improvement coefficients, that is bS = bA = bP = 1 and cA = 0 . Formally,

our results thus show cut-off effects proportional to αa, but in the scaling tests presented

above cut-off effects proportional to a2 seem to be numerically dominant. At this point we

cannot anticipate whether a similar statement holds true for renormalized quark masses,

and we shall thus consider both possibilities (i.e. leading cut-off effects proportional to αa

or a2). In any case the difference (in a given scheme, at a given µ) scales away with a→0,

hence mAWI =mVWI in the continuum.

2Strictly speaking the vector Ward identity constrains only quark mass differences. Below we will use

mVWI only in such differences, and by doing so the dependence on mcrit will persist only in an O(a)-

suppressed term.
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In principle, mphys
s and mphys

ud may be determined using either definition of the quark

mass, but in practice it proves beneficial to combine the specific advantages of the VWI and

AWI approaches. Let us assume, for a moment, that we were to set all improvement coef-

ficients to zero. Since the Lagrangian quark mass mbare is an exact input quantity which,

after a universal shift has been applied, multiplicatively renormalizes with the unproblem-

atic scalar density [cf. (11.1)], it is natural to use mW for quark mass differences, where the

additive renormalization term mcrit drops out. On the other hand, the PCAC quark mass

mPCAC is perfectly suited to measure quark mass ratios, since in the ratio the multiplicative

renormalization constants cancel [cf. (11.3)]. It is thus natural to measure the difference

ms−mud via the Wilson or Lagrangian mass difference d≡amW
s −amW

ud=ambare
s −ambare

ud

and the ratio ms/mud via the PCAC mass ratio r ≡ mPCAC
s /mPCAC

ud . In this case one

obtains the renormalized masses through

amscheme
ud =

1

Zscheme
S

d

r − 1
, amscheme

s =
1

Zscheme
S

rd

r − 1
(11.4)

and we shall refer to this strategy as the “ratio-difference method”. The renormalization

scheme will be specified below. In practice, things are slightly more involved, as we intend

to maintain tree-level improvement. Setting cA = 0 and bA = bP = 1 does not change

anything in (11.2), (11.3), but having a quadratic term in (11.1) through bS=1 means that

the differencemW
1 −mW

2 does no longer coincide withmbare
1 −mbare

2 . In the next subsection we

will show that even with improvement, the renormalized quark masses are given by (11.4)

with d→ dimp, r → rimp, where the latter quantities are defined in (11.14), (11.15).

11.2 Ratio-difference method in full QCD with improvement

In the dynamical theory, the renormalization pattern of quark masses is slightly more

involved than the familiar equations (11.1), (11.3) suggest [44], but it turns out that our

“ratio difference method” gets rid of these complications and the final relation is unchanged.

We now discuss how the findings of [44] apply to our method, using their notation,

except that we do not use a “hat” to denote renormalized quantities, since they will come

with a superscript “VWI” or “AWI”, just as in the previous subsection. Equations (26, 48)

of [44] read

mVWI
j =

1

ZS
mW
j

[

1 − 1

2
bSam

W
j − b̄SaTr(M) +O(a2)

]

+ . . . (11.5)

mAWI
j =

ZA
ZP

mPCAC
j

[

1 + (bA−bP )amW
j + (b̄A−b̄P )aTr(M) +O(a2)

]

(11.6)

where ZJ is the flavor non-singlet renormalization constant (J=S,A, P ) , and bJ =1+O(α),

b̄J =O(α2), cA=O(α) denote improvement coefficients (which now depend on Nf ). Finally,

mW
j = mbare

j −mcrit, with mcrit defined as the Nf = 3 critical mass (i.e. in the unitary

direction), mPCAC just as in (11.2), and the ellipses in (11.5) denote terms which depend

on the quark masses only through Tr(M),Tr(M2),Tr2(M), whereM is the (flavor diagonal)

quark mass matrix. The new feature of formulas (11.5), (11.6) is the terms proportional

to mj times Tr(M) =
∑

f m
W
f . These terms make the renormalized quark mass of flavor
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j depend on all other quark masses, too. Evidently, these terms come from quark loops

in the functional determinant, and the perturbative expansion of the new improvement

coefficients b̄S, b̄A, b̄P shows that they start out at order g4
0 , which means that they come

through two-loop effects (one quark loop and a gluon loop which attaches it to the quark

line whose renormalization is studied).

Upon considering the difference of two VWI masses and the ratio of two AWI masses

mVWI
j −mVWI

k =
1

ZS
(mW

j −mW
k )

[

1 − 1

2
bSa(m

W
j +mW

k ) − b̄SaTr(M) +O(a2)

]

(11.7)

mAWI
j

mAWI
k

=
mPCAC
j

mPCAC
k

[

1 + (bA−bP )a(mW
j −mW

k ) +O(a2)

]

(11.8)

the term proportional to aTr(M) disappears from the second relation, and the term pro-

portional to bS involves only the sum of the Wilson masses. Applying these formulas to

ms and mud in Nf =2+1 QCD, with d≡ambare
s −ambare

ud and r≡mPCAC
s /mPCAC

ud defined

as before, one has

amVWI
s − amVWI

ud =
1

ZS
d

[

1 − 1

2
bSa(m

W
s +mW

ud) − b̄Sa(m
W
s +2mW

ud) +O(a2)

]

(11.9)

mAWI
s

mAWI
ud

= r

[

1 + (bA−bP )a(mW
s −mW

ud) +O(a2)

]

(11.10)

where we have used d and r only in the leading term, so far. The point is that

amW
s + amW

ud = (amW
s −amW

ud)
mW
s /m

W
ud + 1

mW
s /m

W
ud − 1

≃ d
r + 1

r − 1
(11.11)

amW
s +2amW

ud = (amW
s −amW

ud)
mW
s /m

W
ud + 2

mW
s /m

W
ud − 1

≃ d
r + 2

r − 1
(11.12)

where the approximately equal sign means “up to terms of order O(a2)”. Accordingly, we

can express the difference of the VWI masses and the ratio of the AWI masses through d

and r as

amVWI
s − amVWI

ud =
1

ZS
dimp ,

mAWI
s

mAWI
ud

= rimp (11.13)

where dimp and rimp are defined as

dimp = d

[

1 − 1

2
bSd

r + 1

r − 1
− b̄Sd

r + 2

r − 1
+O(a2)

]

(11.14)

rimp = r

[

1 + (bA−bP )d+O(a2)

]

. (11.15)

In total this means that one finds amscheme
ud and amscheme

s via (11.4) with d→ dimp, r → rimp.

In our analysis, the tree-level improvement strategy makes all subleading terms in the

square brackets of (11.14), (11.15) disappear, except for the one proportional to bS (with

bS=1).
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11.3 Determination of the scalar RI/MOM renormalization factor

Having laid out our overall strategy for obtaining the renormalized quark masses mphys
ud (µ),

mphys
s (µ) at the physical mass point in a standard scheme at a given scale µ, we now give de-

tails of how we compute the single renormalization factor needed, ZS(µ). We implement the

nonperturbative Rome-Southampton method which defines the regularization-independent

(RI/MOM) scheme [45], with several practical refinements (see below). In the terminology

of [42–44] the result is the non-singlet renormalization factor ZNS
S (µ). In the RI/MOM

scheme the running of ZS(µ) is known perturbatively to 4-loop order [46]. However, this

is only relevant for the conversion to other schemes, e.g. MS at µ = 2GeV. Our main

result, mud and ms in the RI/MOM scheme at µ= 4GeV is derived without reference to

perturbation theory.

In the RI/MOM scheme, renormalization conditions are defined in Landau gauge and

require the forward, truncated quark Green’s function of an operator to be equal to its

tree-level value at a Euclidean four-momentum p, whose magnitude is chosen to be the

renormalization scale. Given a quark bilinear operator OΓ
12 = ψ̄2Γψ1, where ψ1 and ψ2 are

mass-degenerate quark fields and Γ is a Dirac matrix, the relevant Green’s function is

ΛΓ(p) ≡ 〈S(p)〉−1

{
∫

d4xd4y eip(x−y) 〈ψ2(y)O
Γ
12(0)ψ̄1(x)〉

}

〈S(p)〉−1 . (11.16)

In this equation, S(p) is the propagator of quark flavors 1 and 2. Now, defining a projec-

tor PΓ such that tr{PΓΓ} = 1 (the trace is over spin×color), the renormalization condi-

tion reads

ZΓ(µ) = Zψ(µ) /ΓΓ(p)|p2=µ2 (11.17)

where Zψ is the wavefunction renormalization factor and

ΓΓ(p) ≡ tr{PΓΛΓ(p)} . (11.18)

To determine ZS from the RI/MOM condition (11.17) with Γ= I, one needs to know

Zψ. In the original publication [45] the procedure was supplemented with a recipe to

obtain Zψ from the momentum dependence of the trace of the inverse propagator. Here

we avoid the determination of this wave-function renormalization constant all together, by

calculating the ratio ZS(µ)/ZV via the RI/MOM procedure and by combining it with ZV
from the 3-point function with a vector-current insertion. In other words, on each ensemble

we compute ZS(µ)/ZV using

ZS,β,m(µ)

ZV,β,m
=

ΓV (p)

ΓS(p)

∣

∣

∣

∣

p̂2=µ2

(11.19)

where the dependence on the coupling and the Nf = 3 quark mass is indicated with sub-

scripts. The bosonic momentum definition p̂ν = (2/a) sin(apν/2) is used, and a standard

cylinder cut around hyperdiagonal momenta is applied [47]. In addition, we determine ZV
from the ratio

ζ(t) ≡ 〈P (T/2)V4(t)P̄ (0)〉
〈P (T/2)P̄ (0)〉 (11.20)
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Figure 11. The ratio ζ(t) as defined in (11.20). The gauge coupling in this Nf =3 run is β=3.61,

the quark mass is am=−0.0045. This procedure yields a stable plateau for ZV .

where

P (t) =
∑

~x

(ψ̄2γ5ψ1)(~x, t) , P̄ (t) =
∑

~x

(ψ̄1γ5ψ2)(~x, t) , V4(t) =
∑

~x

(ψ̄1γ4ψ1)(~x, t)

(11.21)

and T denotes the temporal extent of the lattice. With tree-level improvement one has [44,

48]

ZV,β,m (1 + amW) = [ζ(t1) − ζ(t2)]
−1 for 0<t1< T/2<t2<T (11.22)

where bV =1, b̄V =0 have been used, and figure 11 shows the plateau from which we extract

ZV,β,m. Combining this factor with the result of (11.19) yields ZS,β,m(µ), much in the spirit

of [49, 50].

11.4 Controlling the systematics in the RI/MOM procedure

RI/MOM is a mass independent scheme. Applied to the numerical data for ZRI
S (µ) this

means that we have to extrapolate all three flavors to vanishing sea and valence quark

mass. For this reason, we have generated a series of dedicated Nf = 3 lattices (i.e. with

three degenerate quarks), where the action S=SSym
g +SSW

f and the couplings β=6/g2 are

the same as in the phenomenological ensembles. The bare parameters and statistics of these

runs are summarized in table 2. The specifics of the extrapolation will be discussed below.

In order to obtain tree-level O(a)-improved results with Wilson fermions, one has to

improve not only the action, but also the interpolating fields. For standard correlators this

has been discussed in the previous two subsections. In addition, in the RI/MOM procedure,
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3.31 163×32 3.5 243×48 3.61 243×48 3.7 323×64 3.8 323×64

-0.04 4780 -0.006 2560 -0.0045 4620 -0.0060 1010 0.000 505

-0.06 3320 -0.010 3140 -0.0085 3680 -0.0085 1050 -0.004 635

-0.07 2420 -0.012 2580 -0.0100 4140 -0.0110 1020 -0.008 500

-0.08 2500 -0.020 2700 -0.0200 3140 -0.0140 1290 -0.012 1030

-0.035 1090 -0.0250 1230 -0.0160 1020 -0.014 1000

Table 2. Bare masses and number of trajectories of our dedicated Nf =3 simulations for RI/ MOM

renormalization. The β-values are the same as in our phenomenological runs, cf. table 1.

0 10 20 30 40
µ2

[GeV
2
]

0.5

0.6

0.7

0.8

0.9

Z^
SR

I (µ
2 )

β=3.8
β=3.7
β=3.61
β=3.5
β=3.31

Figure 12. Renormalization factors ZRI
S,β(µ2) as a function of the bosonic momentum squared. For

each β momenta µ≤π/(2a) are included. The data from the coarser lattices have been multiplied

by a µ-independent factor to match those at β=3.8. The solid line represents a Pade ansatz where

the 1-loop anomalous dimension is built in as a constraint.

one has to remove an O(a) contact term in the quark propagator [45]. We apply here the

trace subtraction described in [51–54], which has the added benefit of greatly improving the

signal to noise ratio. This subtraction is implemented by replacing the condition (11.17)

by one in which the modified propagator S̄(p) = S(p)−Tr(S(p))/4 is used to define the

amputated Green’s function, where the trace is in spinor space.

In order to reliably extract the renormalization constants and to convert the resulting

quark masses mRI(µ) to other schemes without loosing precision, several conditions should

be met:

(a) the scale µ at which we take the continuum limit of the RI/MOM renormalized

masses needs to be substantially below the momentum cutoff of the coarsest lattice

µ≪2π/a,
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2
]

0.9
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1.1

pu
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β=3.8
β=3.7
β=3.61
β=3.5
β=3.31

Figure 13. Pull plot to exhibit the deviation of the data in figure 12 from the Pade approximant

which, for µ2>20 GeV2, is indistingushible from the perturbative running.

(b) the conversion to a perturbative scheme has to be done at a scale µ′ which is suffi-

ciently large, such that perturbation theory is reliable, i.e. at µ′≫ΛQCD,

(c) the effect of the chiral extrapolation m→0 needs to be fully controlled.

The difficulty to fulfill, in one simulation, the first two conditions is sometimes referred to

as the “window problem” of the RI/MOM procedure. In the following we show how we

can simultaneously satisfy all three requirements.

Ad (a): to renormalize our quark masses and to extrapolate them to the continuum we

choose a convenient renormalization scale µ=2.1GeV. This scale satisfies µ<π/(2a) for all

our lattices (on the coarsest one this figure is about 2.7GeV). When plotting the running

of ZS,β(µ) at different β on top of each other (see figure 12), one finds that discretization

effects are below our statistical accuracy in this region, and that the form of the running

is almost identical for our five β values. The black line in figure 12 is a Pade ansatz which

obeys the leading perturbative constraint. In the relevant region µ2>(2.7GeV)2≃7.3GeV2

we see no cut-off effects, as illustrated in figure 13.

Ad (b): with the procedure described above and by taking the continuum limit we obtain

a fully nonperturbative determination of the quark masses in the RI/MOM scheme at

µ= 2.1GeV. In principle, we could stop here, quoting this as our main result. However,

if one wants to convert this result to another scale or another scheme, it is evident from

figure 14 that doing so perturbatively would introduce an uncertainty in the 1−2% range.

– 28 –



J
H
E
P
0
8
(
2
0
1
1
)
1
4
8

2 4 6 8 10
µ[GeV]

0.6

0.7

0.8

0.9

1

ZS(2-loop)/ZS(1-loop)

ZS(3-loop)/ZS(2-loop)

ZS(4-loop)/ZS(3-loop)

ZS(4-loop/ana)/ZS(4-loop)

2 4 6 8 10
µ[GeV]

0.6

0.7

0.8

0.9

1

ZS(2-loop)/ZS(1-loop)

ZS(3-loop)/ZS(2-loop)

ZS(4-loop)/ZS(3-loop)

ZS(4-loop/ana)/ZS(4-loop)

Figure 14. Ratio of the perturbatively evaluated ZRI
S (µ) (top panel) and ZMS

S (µ) (bottom panel) at

different loop orders. The renormalization group equations have been numerically integrated, using

1-loop through 4-loop anomalous dimensions. To estimate the remaining uncertainty in the 4-loop

running, we employ the analytic expression at 4-loop level [46], which differs from the numerically

integrated one by 5-loop effects. In the labels this is called “4-loop/ana”.
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Figure 15. Ratio of the nonperturbative ZRI
S to the perturbative prediction at 4-loop level. The

momentum range shown extends to µmax = π/(2a) at β= 3.8. For µ≥ 4 GeV the data agree with

the plateau within errors.

Therefore we use our renormalization data to run our quark mass results, nonperturbatively,

to the scale µ′=4GeV, where this perturbative uncertainty is in the 0.5% range and hence

subdominant. At µ′ =4GeV we still have 3 different β values which satisfy the condition

µ′ <π/(2a). More specifically, we use our data to extrapolate the ratio ZRI
S,β(µ)/ZRI

S,β(µ
′)

to the continuum, with an extremely mild effect (as one can see from figures 12 and 13,

in this interval the three curves lie essentially on top of each other). The resulting ratio

provides us with the nonperturbative running of the scalar renormalization constant, in

the continuum, between µ=2.1GeV and µ′=4GeV. Accordingly

RRI
S (µ, 4GeV) = lim

β→∞

ZRI
S,β(4GeV)

ZRI
S,β(µ)

(11.23)

is the continuum extrapolated ratio which allows us to evolve data from all our lattices,

including the coarser ones, to µ′ = 4GeV, where we perform the final continuum extrap-

olation. This is similar to the step-scaling ideas introduced in [55, 56] with a somewhat

different focus.3 Through this procedure we obtain fully nonperturbatively renormalized

quark masses in the RI/MOM scheme at µ′ = 4GeV, which represent our main result.

3Refs. [55, 56] introduced (different) approaches to deal with the issue that, when distinct Fourier modes

are used at several lattice spacings, O(4) breaking effects make the continuum extrapolation of a vertex

function challenging. Ref. [55] subtracts a perturbatively calculated O(g2a2) correction, while ref. [56]

applies twisted boundary conditions to select a single momentum direction which, in turn, allows for a fully

non-perturbative extrapolation of a vertex function to the continuum.
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For the reader’s convenience we also convert them to other schemes. To this end we use

4-loop perturbative running to convert to the RGI framework (where we use the conven-

tions of [57] with b0, d0 adjusted to Nf = 3), and subsequently to the MS scheme (which

is perturbatively defined). The uncertainty introduced by this perturbative conversion is

negligible compared to the other systematics. As is evident from figure 15, the data above

µ′ = 4GeV are fully consistent with the perturbative running within the small statistical

errors (on the few per mill level). This indicates that within this accuracy we have made

contact with the perturbative regime.

Ad (c): as mentioned above, the RI/MOM scheme is a massless renormalization scheme.

Since the dedicated Nf =3 simulations as listed in table 2 use finite quark masses (roughly

in the range mphys
s /3<m<mphys

s ), we have to perform a chiral extrapolation at some point.

In the procedure described in the previous paragraph, the numerical data for ZRI
S,β,m(µ) were

first extrapolated to the chiral limit to give ZRI
S,β(µ). Based on this the renormalized quark

masses mRI
β (µ) and the ratios ZS,β(µ

′)/ZS,β(µ) were extrapolated to the continuum, as de-

tailed in (a) and (b), respectively. To give a reliable estimate of the systematic uncertainties

involved, we supplement this procedure with a second one where we interchange the order of

limits. Technically, this means that one defines an intermediate MOM scheme, which is not

a massless one, but instead based on a fixed reference quark mass. We use mRGI
ref =70MeV,

since, for all β, this value can be reached by interpolation. In this scheme the renormal-

ized light and strange quark masses are determined at the scales µ∈ {1.3, 2.1}GeV, and

extrapolated to the continuum. This yields mMOM
ud,mref

(µ) and ditto for ms. Staying in this

massive scheme, these quark masses are evolved to the scale µ′=4GeV. In this step a fully

controlled continuum extrapolation can be performed, since we have three lattice spacings

satisfying µ′<π/(2a). At this point we have the renormalized quark mass in the form

mMOM
ud,mref

(µ′) = mMOM
ud,mref

(µ) · ZS,mref
(µ)

ZS,mref
(µ′)

(11.24)

where either factor has been extrapolated to the continuum. In the last step, we switch

from the intermediate massive MOM scheme to the massless RI/MOM scheme by multiply-

ing (11.24) with the continuum extrapolated ratio ZS,mref
(µ′)/ZS(µ′). This yields the same

mRI
ud(µ

′),mRI
s (µ′) as before, except that the order of limits has been interchanged. Note

that all continuum extrapolations are entirely flat and the effect of the mass extrapolation

is about 1%, implying that all limiting procedures are fully controlled. Having obtained our

main result, the RI/MOM masses at µ′=4GeV, we can transform them to other schemes

as described under (b).

11.5 Summary of RI/MOM renormalization

Let us summarize this section. We compute the quark masses mphys
ud and mphys

s through

the “ratio-difference method” in the RI/MOM scheme at the scale µ′=4GeV, nonpertur-

batively and with extrapolation to the continuum.

The mild quark mass dependence of the renormalization factors is eliminated through

a chiral extrapolation. Also cut-off effects are removed through a continuum extrapolation.
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β L3×T (ms+mud)r0
5.7366 123×24 0.3070(50)

5.8726 163×32 0.2801(50)

5.9956 203×40 0.2758(52)

6.1068 243×48 0.2654(42)

6.3000 323×64 0.2685(29)

Table 3. Details of the quenched overall test. The quark masses are in the MS scheme at 2 GeV.

In this step we are extremely conservative — we do not only consider the formally leading

cut-off effects O(αa), but also subleading effects proportional to O(a2), counting the spread

towards the final systematic error (see section 14). We think this is necessary, since even

with a set of 5 lattice spacings, we cannot exclude the possibility that the subleading O(a2)

cut-off effects largely affect the continuum extrapolation. If we were to consider only the

leading O(αa) cut-off effects, our systematic error would be significantly smaller.

The quark masses in the RI/MOM scheme at the scale µ′ = 4GeV are our main

result, obtained in a way which guarantees that they are truly nonperturbative. Using

perturbation theory in a regime where it is well behaved, we convert them to the uni-

versal RGI prescription and subsequently to the perturbatively defined MS scheme at the

scale µ=2GeV.

12 Quenched overall check

To demonstrate that our 2-step HEX smeared clover action (2.1) and the nonperturbative

renormalization of the quark mass yield reliable results in the continuum, we repeat the

quenched benchmark calculation [57] of the quantity ms+mud, using our setup.

We use pure Wilson glue at five couplings between β= 5.7366 and β=6.3, each time

saving about 600 well-decorrelated configurations for the analysis (i.e. 200 for the Z-factors

and 400 for the masses). The couplings and geometries have been chosen to realize a fixed

physical box size of about L = 1.84 fm, see table 3 for details. On each set at least 4

quark masses are used to safely interpolate to the point MP r0 = 1.229, where MP is the

pseudoscalar meson mass and where the numerical value has been chosen to match Mphys
K r0

with r0 =0.49 fm [58].

The computation closely follows the dynamical case. We renormalize the VWI quark

mass sum with the methods described in the previous section, and we use the same pro-

cedure to convert to the MS scheme. In more detail, we begin with measuring mPCAC as

a function of the bare mass mbare, which shows a linear relationship. The intercept with

the x-axis yields mcrit and thus mW as defined in (11.1). Next, we determine ZS(µ) via

RI/MOM [45] to obtain mVWI according to (11.1). It is easy to see that this is the flavor

non-singlet ZS(µ), since all quark disconnected contributions vanish in the quenched the-

ory. In close analogy with our phenomenological analysis, we choose the matching scales

µ=2.1GeV and µ′=3.5GeV. Combining the continuum extrapolated ratio ZS(µ′)/ZS(µ)

with ZS,β(µ), we obtain ZS,β(µ
′) and the renormalized mass mVWI(µ′) in the RI/MOM
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Figure 16. Quenched continuum extrapolation of (ms+mud)r0 in the MS scheme at µ= 2 GeV,

assuming O(αa) [top] or O(a2) [bottom] scaling. One data-point outside the scaling regime (β =

5.7366) is shown. The difference counts towards the systematic error (see text for details).

scheme at the scale µ′=3.5GeV. Finally, we use perturbation theory to convert to the MS

scheme at 2GeV scale. The result is identified with ms+mud in this scheme, at the given

lattice spacing, and multiplied with r0 to obtain a dimensionless quantity (cf. table 3). We

find that we can extrapolate these values linearly in αa or a2, with the data showing a slight
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preference for the latter option, as can be seen from the two panels in figure 16. Using the

machinery for propagating both statistical and systematic errors that will be described in

section 14, the combined result in the continuum reads (ms+mud)r0 = 0.2609(39)(28) in

the MS scheme at µ=2GeV.

Our result is in perfect agreement with the continuum value (ms+mud)r0 = 0.261(9)

quoted by the ALPHA collaboration [57]. It is consistent, within less than 1σ, with the

result 0.274(18) given by JLQCD [59] and, within less than 2σ, with the value 0.312(28)

obtained in a computation with quenched overlap fermions that includes a continuum ex-

trapolation [60]. There is some tension with the result 0.293(6) by CP-PACS [61], but one

should keep in mind that the systematic uncertainty due to the perturbative renormaliza-

tion is not included in their error. In short, we find good agreement with the most precise

results in the literature. We take this as evidence that the renormalization procedure

described in section 11 yields reliable results.

13 Using dispersive input to obtain mu and md

For decades the most reliable source of information on light quark masses has been current

algebra, in particular in its modern form, known as Chiral Perturbation Theory (ChPT).

A major drawback of this framework is that only information on quark mass ratios can

be extracted, not on absolute values. This is a consequence of the fact that in the chiral

Lagrangian all quark masses appear in the combination B0mq and the condensate param-

eter B0 does not occur in any other instance. We have determined mud≡(mu+md)/2 and

ms in MeV units. Accordingly, by comparing our value of the ratio ms/mud to theirs, we

can learn something about the convergence pattern of SU(3) ChPT. Furthermore, one may

combine our values for mud and ms with the best available information on another ratio

(Q, see below) to obtain a result for the individual quark masses mu,md.

13.1 Comparing our value of ms/mud to the one in ChPT

As a starting point one might ignore higher-order terms in the chiral expansion and elec-

tromagnetic corrections all together. Upon identifying the left-hand sides in

M2
π = B0(mu +md) (13.1)

M2
K± = B0(mu +ms) (13.2)

M2
K0 = B0(md +ms) (13.3)

M2
η = B0(mu +md + 4ms)/3 (13.4)

with the experimentally measured meson masses,4 one obtains three predictions. On the

one hand, the Gell-Mann-Okubo relation

3M2
η +M2

π ≃ 2M2
K± + 2M2

K0 (13.5)

4Pseudoscalars without superscript refer to isospin averages: M2
π = 1

2
(M2

π±+M2

π0), M2
K = 1

2
(M2

K±+M2

K0).
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evaluates to 0.919GeV2 ≃ 0.983GeV2, which amounts to a 7% accuracy. On the other hand

(M2
K± +M2

K0)/M
2
π = (ms +mud)/(mud) (13.6)

M2
η /M

2
π = (2ms +mud)/(3mud) (13.7)

yield ms/mud ≃ 25.1 and ms/mud ≃ 23.4, respectively. This spread suggests again a

precision of a few percent. Upon noticing that the η undergoes significant mixing with the

η′ and, as a result, that (13.6) should be preferred over (13.7), one arrives at the estimates

mu

md
=
M2
K± −M2

K0 +M2
π

M2
K0 −M2

K± +M2
π

≃ 0.66 (13.8)

ms

md
=
M2
K± +M2

K0 −M2
π

M2
K0 −M2

K± +M2
π

≃ 20.8 (13.9)

which do not take into account electromagnetic contributions to isospin breaking.

The chiral framework may be extended to include interactions with photons. At leading

order in αem and in the 3-flavor chiral limit the electromagnetic contribution to the excess

of the charged kaon mass squared is the same as for the pion, i.e. [M2
π±−M2

π0]em = [M2
K±−

M2
K0 ]em, known as “Dashen’s theorem” [62]. This leads to the improved relations5 [63]

mu

md
=
M2
K± −M2

K0 + 2M2
π0 −M2

π±

M2
K0 −M2

K± +M2
π±

≃ 0.56 (13.10)

ms

md
=
M2
K± +M2

K0 −M2
π±

M2
K0 −M2

K± +M2
π±

≃ 20.2 (13.11)

which account for electromagnetism at leading order (LO) in the chiral expansion. From

this one obtains ms/mud = 2/(md/ms + mu/md ·md/ms) ≃ 25.9 as the LO result in

ChPT. Comparing this to our value (13.15) [see below] indicates that – for this quantity –

subleading contributions yield only about 6% of the total result.

13.2 Using dispersive information on Q to split mud into mu and md

As mentioned in the previous subsection, ChPT is well suited to address the ratios ms/md

and mu/md. A way to encode such information on quark mass ratios which, from the

ChPT viewpoint, is particularly robust is to introduce the double ratio

Q2 ≡ m2
s −m2

ud

m2
d −m2

u

(13.12)

since this quantity is unaffected by next-to-leading order (NLO) effects in the chiral ex-

pansion. Modulo a tiny correction, (13.12) can be put into a form known as “Leutwyler’s

ellipse” [63]

1

Q2

(

ms

md

)2

+

(

mu

md

)2

= 1 (13.13)

5The numerical values are based on the latest edition of the PDG [20] and differ from those given in [63].
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and relying on Dashen’s theorem [62] or refinements thereof (see e.g. [21]), one might

attempt to determine the value of Q from the masses of the charged and neutral

kaon and pion.

Since we intend to use (13.12) to predict the isospin splittings in QCD (i.e. without

electromagnetism), it seems more advisable to build on the long tradition in the phe-

nomenological literature to determine Q from the rate for η → 3π decays or from the

branching ratio of ψ′ → ψπ0 versus ψ′ → ψη decays. The former amplitude seems par-

ticularly interesting, as it violates isospin, while being barely affected by electromagnetic

corrections [64]. Evidently, this renders it sensitive to the effect of md−mu 6= 0, which

is exactly what we are interested in. In the following, we restrict ourselves to the disper-

sive treatment of the η → 3π amplitude, as given by Kambor-Wiesendanger-Wyler [65],

Anisovich-Leutwyler [66], and Colangelo-Lanz-Passemar [67]. In the first place we note

that the central value found in these works has been remarkably consistent over one and a

half decades. Let us also emphasize that a dispersive treatment is, conceptually, as much

from first principles as a lattice computation – dispersion theory rests exclusively on the

axioms of quantum field theory. In a world with perfect experimental data, this would be

the complete story. However, with presently available data, additional input is required

(see e.g. [67]). To account for such provisional effects, Leutwyler has assigned his estimate

Q=22.3(8) [68] a much larger error bar than claimed in some of the publications it is based

on. In our view this is the most accurate value available, if one is not willing to resort to

model calculations, and we shall thus stay content with its rather conservative error bar.

We now extend our lattice determinations of mud and ms/mud to all three quark

masses, using this dispersive information. Upon rewriting (13.12), (13.13) in the form

1

Q2
= 4

(

mud

ms

)2 md −mu

md +mu
(13.14)

it follows that the above-mentioned value of Q and our lattice result

ms

mud
= 27.53(20)(08) (13.15)

yield the light quark mass asymmetry parameter

md −mu

md +mu
= 0.381(05)(27) (13.16)

where the error on Q is considered a systematic error. As an aside we mention that this

asymmetry parameter is equivalent to mu/md = 0.448(06)(29). Combining (13.16) with

our result mud = 3.503(48)(49)MeV, we obtain

mu = 2.17(04)(10)MeV, md = 4.84(07)(12)MeV (13.17)

with all masses given in the RI/MOM scheme at the scale µ= 4GeV. These values and

our original results for ms and mud (along with their counterparts in the RGI and MS

schemes) are summarized in table 5 (see section 15) and quoted in [1].

To summarize the technical part, let us say that we have determined mu and md,

based on our lattice value of mud, our lattice value of the ratio ms/mud and the dispersive
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treatment of Q. Given that our simulation points bridge the physical values of mud and

ms (cf. section 5), the chiral framework is no longer needed in the first two quantities,

and the use of ChPT is thus limited to a subdominant contribution in a mostly dispersive

framework to determine Q.

13.3 Physics implication, robustness issues and precision outlook

Physicswise, an important conclusion is that our result (13.16) for the light quark mass

asymmetry parameter excludes a vanishing up-quark mass by 22.1 standard deviations.

This is a consequence of the dispersive determination of Q being entirely inconsistent with

13.8, the value of Q which relation (13.14) and our result for ms/mud would enforce if

mu = 0. As can be seen from (13.14), the asymmetry parameter depends strongly on

the ratio ms/mud, which is the quantity that we have determined to sub-percent preci-

sion. The bottom line is that our precise lattice results and the dispersive processing of

phenomenological information which excludes very large corrections to Dashen’s theorem,

when combined, rule out the simplest proposed solution to the so-called “strong CP prob-

lem”. This corroborates previous findings [63].

Note that the way in which we have used phenomenological information is designed to

make sure that the so-called “Kaplan-Manohar ambiguity” is circumvented in our deriva-

tion of mu and md. This ambiguity expresses the fact that a redefinition of the quark

condensate and of certain low-energy constants allows one to move on Leutwyler’s el-

lipse [69]. It represents an accidental symmetry of those Green’s functions in the effective

theory which determine pseudoscalar masses, scattering amplitudes and matrix elements

of the vector and axial-vector currents [63]. However, the aspect ratio of Leutwyler’s ellipse

is not affected by this ambiguity, and it is this shape informatio6 which is encoded in Q.

In consequence, relation (13.14) ensures that the high precision that we have reached in

ms/mud, together with the robust value of Q that we use, leads to a determination of the

asymmetry parameter (13.16) and thus of the individual u and d quark masses which is

unaffected by the Kaplan-Manohar ambiguity.

We stress that, in our view, there is not much conceptual difference between using only

Mπ,MK as input quantities versus including Q, too. To compute mud,ms, we needed two

(polished) experimental input numbers to adjust the average light and the strange quark

masses, apart from MΩ to set the overall scale (cf. section 4). To compute mu,md,ms,

evidently, we need a third one, and we are well advised to choose one which is sensitive to

the effect we want to quantify. We select Q for its large sensitivity to QCD-induced isospin

breaking, thus requiring very little theoretical polishing, and for this little bit resting on

dispersion theory which is well founded. Still, there is room for improvement, as can be

seen from the fact that our value of mud had 2% precision, while mu and md have only

5% and 3% accuracy, respectively. The problem is that the current value of Q determines

6We remark that Q as defined in (13.12) picks up, under a Kaplan-Manohar transformation, terms of

order NNLO and a change proportional to md−mu. The latter “deficiency” could be cured by defining

Q2
1 =(m2

s−m2
d)/(m

2
d−m2

u) [70]. Note, however, that the numerical difference between Q and Q1 [or Q2, the

quantity that shows up in (13.14)] is about one permil, i.e. more than an order of magnitude smaller than

the uncertainty that we have assigned to Q.
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the asymmetry parameter (13.16) to only about 7% precision. While improvements on the

value of Q obtained in this way may be possible [67], reaching accuracies of mu,md below

the few percent level will most probably require a different approach, even more heavily

based on lattice field theory. Indeed, once simulations become available with Nf =1+1+1

physical quark flavors (i.e. with non-degenerate up, down, and strange quark masses, each

of which is taken at its physical value) and with an additional abelian gauge field7 to account

for electromagnetic interactions, it will become possible to take full advantage of the very

accurately known K+ and K0 masses to determine mu and md with even higher precision.

14 Assessment of systematic errors

Our approach is to establish one global fit to interpolate our 11 + 12 + 9 + 9 + 6 = 47

simulations at 5 different lattice spacings (cf. table 1) to the physical mass point (i.e.

physical Mπ and MK) and to extrapolate to zero lattice spacing (i.e. a→ 0). In order to

obtain a reliable estimate of the systematic error involved, we repeat the entire analysis

with a large selection of interpolation formulae, mass cuts, discretization terms, fit ranges,

and renormalization procedures.

In order to extrapolate or interpolate a given quantity to the physical quark mass point,

one needs to expand it around some pion and kaon mass point. Often the Nf =2 or Nf =3

chiral limit is chosen as an expansion point and hence SU(2) or SU(3) ChPT [39, 40] as the

theoretical framework. Expressing the dependence on the light quark mass as a dependence

on Mπ, this kind of expansion leads, for a quantity which vanishes in the chiral limit, to

a quadratic term ∝M2
π and higher order chiral logs, e.g. ∝M4

π log(M2
π/Λ

2), with known

prefactors but unknown scale Λ. In many cases the practical usefulness of knowing the

prefactors is limited, since they contain other quantities (e.g. the axial coupling gA for

octet baryons) which may not be available from the same simulation and which one may

not want to borrow from phenomenology. Furthermore, it is rather difficult for a fit to tell,

e.g., a pure M4
π contribution from an M4

π log(M2
π/Λ

2) chiral log. Accordingly, choosing an

expansion point for an interpolation somewhere in the middle of the region where one has

data (or in the middle of the region defined by the data points and the target point in case

of an extrapolation) and using a simple Taylor expansion in M2
π leads to rather similar

results [2].

To flesh out the meaning of these statements, let us consider the quantities of interest,

mud and ms. In our analysis we use the NLO mass formulae (10.1) from SU(2) ChPT [39],

albeit in reversed form, so that it expresses mud as a function of Mπ. To the order we are

working at, this can be done in several ways [the difference is an NNLO effect]; we use

the relations

mud =
M2
π

2B
·
{

1 − 1

2

M2
π

(4πFπ)2
log

(

M2
π

Λ2
3

)}

·
(

1 + cs∆

)

(14.1)

mud =
M2
π

2B

/{

1 +
1

2

M2
π

(4πFπ)2
log

(

M2
π

Λ2
3

)}

·
(

1 + cs∆

)

(14.2)

7For recent progress in this field see e.g. [71].
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where we have introduced a hadronic quantity

∆ = 2M2
K −M2

π − [2M2
K −M2

π ]
phys (14.3)

to parametrize the small deviation of our strange quark mass from its physical value [2].

Alternatively, for the light quark mass we use a Taylor expansion of the form

mud = c1 + c2M
2
π + c3M

4
π + c4∆ (14.4)

while the strange quark mass is always parametrized as

ms = c5 + c6M
2
π + c7∆ + c8∆

2 . (14.5)

We have tried to augment these formulas by higher order terms, both in M2
π and ∆, but we

found those coefficients to be consistent with zero, with the given precision of our data. This

yields 3 options for the mass interpolation or extrapolation of the pseudoscalars. Similarly,

for the Ω baryon that serves to set the scale, a Taylor ansatz in M2
π and 2M2

K−M2
π is used

(cf. section 4). In total we have 3 functional ansaetze to interpolate our data.

A standard way to test the functional ansatz is to prune the data with mass cuts. We

use Mπ<{380, 480}MeV for the scale setting and Mπ<{340, 380}MeV for the quark mass

determination, thus a total of 4 mass cuts.

A source of error which, in practice, often proves dominant is the contamination of the

ground state in the two-point correlator by excited states. To reduce this contamination

we use a Gaussian source and sink with a fixed width of about 0.32 fm. We tested 1-state

and 2-state fits, and found complete agreement if the 1-state fits start at tmin≃0.7 fm for

the PP,PA4, A4P,A4A4 meson channels and from tmin ∼ 0.8 fm for the Ω. In lattice units

this amounts to atmin={6, 8, 9, 11, 13} for β={3.31, 3.5, 3.61, 3.7, 3.8} (and ∼20% later for

baryons). In order to estimate any remaining excited state effects, we repeated our analysis

with an even more conservative meson fit range (starting at atmin = {7, 9, 11, 13, 15} and

again ∼ 20% later for baryons). The end of the fit interval was always chosen to be

atmax = 2.7×atmin or T/2− 1 for lattices with a time extent shorter than 5.4×atmin. In all

cases, the fits were performed in a correlated way. In total this gives 2 different fit ranges

to make sure that contamination by excited states is under control.

As a result of the tree-level value cSW =1 our action has formally O(αa) cut-off effects.

However, due to the smearing the coefficient in front of this term is small, and the formally

sub-leading O(a2) contributions might numerically dominate over the O(αa) part. To

account for this we augment our global fit by cutoff terms which stipulate either O(αa)

or O(a2) deviation from the continuum. This ambiguity comes into play in the evolution

function (11.23) and in the continuum extrapolation of the quark masses in the RI/MOM

scheme, which yields 4 options.

Besides the variations described above, we consider 3 options in the nonperturbative

renormalization procedure (scale µ, massless versus massive intermediate scheme), see sec-

tion 11.

All of this serves the goal of quantifying potential systematic effects on our final results.

In addition, there are standard methods to assess the size of the statistical error. Apart

from the autocorrelation analysis detailed in section 7, we used different blocking sizes on
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cen. val. σstat σsyst plateau scale set fit form mass cut renorm. cont.

3.503 0.048 0.049 0.330 0.034 0.030 0.157 0.080 0.926

96.43 1.13 1.47 0.207 0.005 0.031 0.085 0.085 0.970

27.531 0.196 0.083 0.513 0.200 0.023 0.320 — 0.771

Table 4. Split-up of the total systematic uncertainty of mphys
ud , mphys

s and mphys
s /mphys

ud (from

top to bottom) into the various contributions. Quark masses are given in MeV and refer to the

RI/MOM scheme at µ = 4 GeV. Columns 4-9 indicate the relative share of the systematic error

given in column 3 (the squares of these numbers add up to 1). The headers of these columns refer

to the plateau range in the primary observables, the overall scale setting, the interpolation ansatz

to tune to the physical mass point, the cut in the pion mass, the details of the renormalization

procedure (read-off scale, chiral extrapolation), and the continuum extrapolation.

our ensembles, ranging from 1 to 10 configurations, where two adjacent configurations are

separated by ten τ = 1 MD updates (cf. section 5). Last but not least, we found that

artificial thermalization cuts (where we ignore the first 20-100 configurations of the ther-

malized ensembles) induce no noticeable change in our results, and therefore we conclude

that possible residual thermalization effects are irrelevant for the error analysis.

Putting everything together we have 3 ansaetze for the interpolation of the quark

masses to the physical point, 4 mass cuts in the scale setting and the quark mass determi-

nation, 2 different fit intervals for the primary observables, 4 ansaetze for the continuum

extrapolation, and 3 ways of doing the RI/MOM renormalization. This gives a total of

3 · 4 · 2 · 4 · 3 = 288 analyses.

In order to quote a final result, we follow the procedure used in [2]. It is essential to

note that we have no a priori reason to favor one of these fits over another. Therefore

the analysis method should represent the full spread of all reasonable and theoretically

justified treatments of our data. In other words, we use all 288 procedures, and weigh the

results by the quality of fit Q = Γ(n/2, χ2/2) to form a histogram. Next, we compute

the mean and standard deviation of the distribution, and this yields the central value and

the systematic error which we quote. Finally, we repeat this extensive procedure on 2000

bootstrap samples. The standard bootstrap error of the mean gives the statistical error.

An additional benefit of our method to treat systematic effects is that we can tem-

porarily suppress one of the variations considered (i.e. abandon one of the factors who’s

product leads to the 288 procedures) to learn about the contribution of this individual

factor to the total error. The total “error budget” compiled in this way is shown in table 4.

Evidently, it exhibits the cut-off effects as the dominant source of systematic uncertainty

in our results.

All together, our procedure to assess both statistical and systematic errors (which was

already used in [2]) is an automated way of systematically counting the spread that emerges

from different (reasonable) options in the analysis procedure towards the systematic error.

15 Summary

We have carried out a precise determination of the average light quark mass mud=(mu+

md)/2 and of the strange quark mass ms, using nonperturbative Nf = 2+1 lattice QCD
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Figure 17. Continuum extrapolation of mud (top), ms (middle), ms/mud (bottom) versus αa, for

one of our 288 analyses with a good fit quality (cf. discussion in section 14).

and nonperturbative renormalization throughout. Our data cover 5 lattice spacings in the

range 0.054−0.116 fm, with pion masses down to ∼120 fm and box sizes up to 6 fm. This

allows for a safe extrapolation to the continuum (a→0) and to infinite volume (L→∞).

We have devised a number of innovative methods, most notably a scheme to exploit
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ms mud mu md

RI/MOM(4GeV) 96.4(1.1)(1.5) 3.503(48)(49) 2.17(04)(10) 4.84(07)(12)

RGI 127.3(1.5)(1.9) 4.624(63)(64) 2.86(05)(13) 6.39(09)(15)

MS(2GeV) 95.5(1.1)(1.5) 3.469(47)(48) 2.15(03)(10) 4.79(07)(12)

Table 5. Renormalized quark masses in the RI/MOM scheme at µ=4 GeV, and after conversion

to RGI and the MS scheme at µ= 2 GeV. The RI/MOM values are fully nonperturbative, so the

first line is our main result. The first two columns emerge directly from our lattice calculation,

the last two build, in addition, on dispersive information on Q. The precision of ms and mud

is somewhat below the 2% level, for mu and md it is about 5% and 3%, respectively. The ratio

ms/mud = 27.53(20)(08) is independent of the scheme and accurate to better than 1%.

the different renormalization pattern of Wilson and PCAC quark masses with tree-level

O(a)-improved clover quarks and a procedure to overcome the RI/MOM window problem

by taking a separate continuum limit of the running of the scalar density RS(µ, µ′).

Our main result, ms and mud in the RI/MOM scheme at renormalization scale µ=

4GeV (cf. table 5), is from first principles and fully nonperturbative. To ease comparison

with the literature, these values are converted to RGI conventions and, subsequently, to

the MS scheme. In this step reference to perturbation theory is unavoidable, but we

do this in a controlled way, since we show that the 4-loop anomalous dimension of the

scalar density is consistent with our nonperturbative running for µ>∼4GeV. The ratio

ms/mud is scheme and scale invariant. It turns out that our action entails favorable scaling

properties not just for hadron masses, but also for renormalized quark masses, as the

plot of a representative continuum extrapolation in figure 17 shows. The combination of

using pion masses down to (and even below) the physical value and having precise and

fully nonperturbative renormalization factors allows us to determine ms and mud with a

precision of better than 2%, and their ratio to better than 1%.

A determination of the individual light quark masses mu and md by lattice methods

alone is beyond the scope of this paper. Nevertheless, the precision of our values of mud and

ms/mud allows for a fruitful use of the result of the dispersive analysis of the double ratio

Q (cf. discussion in section 13). By combining these pieces of information, we obtain values

of the individual quark masses mu and md with a precision of 5% and 3%, respectively (cf.

table 5).
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[51] D. Becirevic, V. Giménez, V. Lubicz and G. Martinelli, Light quark masses from lattice quark

propagators at large momenta, Phys. Rev. D 61 (2000) 114507 [hep-lat/9909082] [SPIRES].

[52] S. Capitani et al., Renormalisation and off-shell improvement in lattice perturbation theory,

Nucl. Phys. B 593 (2001) 183 [hep-lat/0007004] [SPIRES].

[53] G. Martinelli et al., Non-perturbative improvement of lattice QCD at large momenta,

Nucl. Phys. B 611 (2001) 311 [hep-lat/0106003] [SPIRES].

[54] V. Maillart and F. Niedermayer, A specific lattice artefact in non-perturbative

renormalization of operators, arXiv:0807.0030 [SPIRES].

[55] RBC collaboration, R. Arthur and P.A. Boyle, Step Scaling with off-shell renormalisation,

Phys. Rev. D 83 (2011) 114511 [arXiv:1006.0422] [SPIRES].

– 45 –

http://dx.doi.org/10.1103/PhysRevD.82.034506
http://arxiv.org/abs/1005.1485
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1005.1485
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA,158,142
http://dx.doi.org/10.1016/0550-3213(85)90492-4
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B250,465
http://dx.doi.org/10.1016/S0550-3213(01)00147-X
http://arxiv.org/abs/hep-ph/0103088
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0103088
http://dx.doi.org/10.1016/j.physletb.2006.06.036
http://arxiv.org/abs/hep-ph/0409312
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0409312
http://dx.doi.org/10.1016/j.nuclphysBPS.2004.11.360
http://arxiv.org/abs/hep-lat/0411036
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-LAT/0411036
http://dx.doi.org/10.1103/PhysRevD.73.034504
http://arxiv.org/abs/hep-lat/0511014
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-LAT/0511014
http://dx.doi.org/10.1016/0550-3213(95)00126-D
http://arxiv.org/abs/hep-lat/9411010
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-LAT/9411010
http://dx.doi.org/10.1016/S0550-3213(00)00331-X
http://arxiv.org/abs/hep-ph/9910332
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9910332
http://dx.doi.org/10.1103/PhysRevD.58.031501
http://arxiv.org/abs/hep-lat/9803015
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-LAT/9803015
http://dx.doi.org/10.1016/j.physletb.2003.11.050
http://arxiv.org/abs/hep-lat/0305014
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-LAT/0305014
http://dx.doi.org/10.1016/0550-3213(91)90538-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B358,212
http://dx.doi.org/10.1016/0370-2693(93)90562-V
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B311,241
http://dx.doi.org/10.1103/PhysRevD.61.114507
http://arxiv.org/abs/hep-lat/9909082
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-LAT/9909082
http://dx.doi.org/10.1016/S0550-3213(00)00590-3
http://arxiv.org/abs/hep-lat/0007004
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-LAT/0007004
http://dx.doi.org/10.1016/S0550-3213(01)00342-X
http://arxiv.org/abs/hep-lat/0106003
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-LAT/0106003
http://arxiv.org/abs/0807.0030
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.0030
http://dx.doi.org/10.1103/PhysRevD.83.114511
http://arxiv.org/abs/1006.0422
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1006.0422


J
H
E
P
0
8
(
2
0
1
1
)
1
4
8

[56] ETM collaboration, M. Constantinou et al., Non-perturbative renormalization of quark

bilinear operators with Nf = 2 (tmQCD) Wilson fermions and the tree-level improved gauge

action, JHEP 08 (2010) 068 [arXiv:1004.1115] [SPIRES].

[57] ALPHA collaboration, J. Garden, J. Heitger, R. Sommer and H. Wittig, Precision

computation of the strange quark’s mass in quenched QCD, Nucl. Phys. B 571 (2000) 237

[hep-lat/9906013] [SPIRES].

[58] R. Sommer, A new way to set the energy scale in lattice gauge theories and its applications to

the static force and αs in SU(2) Yang-Mills theory, Nucl. Phys. B 411 (1994) 839

[hep-lat/9310022] [SPIRES].

[59] JLQCD collaboration, S. Aoki et al., Non-perturbative determination of quark masses in

quenched lattice QCD with the Kogut-Susskind fermion action,

Phys. Rev. Lett. 82 (1999) 4392 [hep-lat/9901019] [SPIRES].
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