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1 Introduction

The main aim of this paper is the search for supersymmetric four-dimensional black holes

in gauged N = 2 supergravities in the presence of hypermultiplets, charged under an

abelian gauge group. In the original references on BPS black holes in D = 4, N = 2 su-

pergravity [1–5], and subsequent literature, see e.g. [6–10], one usually considers ungauged

hypermultiplets, which then decouple from the supersymmetry variations and equations of

motion for the vector multiplet fields. We want to explore how the story changes when

the hypers couple non-trivially to the vector multiplets via gauge couplings and scalar

potentials that are allowed within gauged N = 2 supergravity [11–17]. For the simpler

case of minimally gauged supergravity, where no hypermultiplets are present but only a

cosmological constant or Fayet-Iliopoulos terms, asymptotically anti-de Sitter BPS black

holes can be found. This has been discussed in the literature, starting from the early

references [18, 19], or more recently in [20, 21]. We initiate here the extension to general

D = 4, N = 2 gauged supergravities, including hypermultiplets.

One of our motivations comes from understanding the microscopic entropy of (asymp-

totically flat) black holes. In ungauged supergravity, arising e.g. from Calabi-Yau compac-

tifications, this is relatively well understood in terms of counting states in a weakly coupled

D-brane set-up [22, 23], and then extrapolating from weak to strong string coupling. In

flux compactifications, with effective gauged supergravity actions, this picture is expected

to be modified. The most dramatic modification is probably when the dilaton is stabilized

by the fluxes, such that one cannot extrapolate between strong and weak string coupling.

Another motivation stems from the AdS/CFT correspondence and its applications to

strongly coupled field theories. Here, finite temperature black holes that asymptote to

anti-de Sitter space-time describe the thermal behavior of the dual field theory. Often,

like e.g. in holographic superconductors, see e.g. [24, 25] for some reviews or [26, 27] for

more recent work, charged scalar fields are present in this black hole geometry, providing

non-trivial scalar hair1 that can be computed numerically. Therefore, one is in need to

find large classes of asymptotically AdS black holes with charged scalars. This is one of

the aims of this paper. Although we mostly work in the context of supersymmetric black

holes, some of our analysis in section 3 can be carried out for finite temperature black holes

as well.

The plan of the paper is as follows. First, in section 2, we give a brief summary of the

known black hole solutions in N = 2 supergravity with neutral hypermultiplets, making a

clear distinction between the asymptotically flat and asymptotically AdS space-times. We

then explain the model with gauged hypermultiplets we are interested in and how this fits

within the framework of N = 2 gauged supergravity.

In section 3 we first explain how one can use a Higgs mechanism for spontaneous gauge

symmetry breaking, in order to obtain effective N = 2 ungauged theories from a general

1By scalar hair, in this paper, we mean a scalar field that is zero at the horizon of the black hole,

but non-zero outside of the horizon. According to this definition, the vector multiplet scalars subject to

the attractor mechanism in N = 2 ungauged supergravity, do not form black holes with scalar hair. The

solutions that we discuss in section 5, however, will have hair.
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gauged N = 2 supergravity. We keep the discussion short since these results follow easily

from our previous paper [28]. Then we show how this method can be used to embed already

known black hole solutions into gauged supergravities and explain the physical meaning of

the new solutions. We illustrate this with an explicit example of a static, asymptotically flat

black hole with the well-known STU model and one gauged hypermultiplet (the universal

hypermultiplet). We also give examples of AdS black holes with charged scalars, that may

have applications in the emerging field of holographic superconductivity [24–27].

In section 4 we discuss in more general terms asymptotically flat, stationary space-

times preserving half of the supersymmetries. We analyze the fermion susy variations in

gauged supergravity after choosing a particular ansatz for the Killing spinor. One finds

two separate cases, defined by T−
µν = 0 and P x

Λ = 0, respectively. Whereas the former

case contains only Minkowski and AdS4 solutions, the latter leads to a class of solutions

that generalize the standard black hole solutions of ungauged supergravity. We analyze

this in full detail in section 4.6.2 and give the complete set of equations that guarantees a

half-BPS solution. We then explain how this fits to the solutions obtained in section 3.

Finally, in section 5, we study asymptotically flat black holes with scalar hair. We find

two separate classes of such solutions. One is a purely bosonic solution with scalar hair,

but with the shortcoming of having ghost modes in the theory. The other class of solutions

has no ghosts but along with scalar hair we also find fermionic hair, i.e. the fermions are

not vanishing in such a vacuum.

Some of the more technical aspects of this paper, including explicit hypermultiplet

gaugings, are presented in the appendices.

2 Preliminaries

In the first part of this section, we set our notation and briefly review the BPS black

hole solutions in four-dimensional ungauged N = 2 supergravity. In the second part, we

present the (bosonic) action for N = 2 supergravity coupled to charged hypermultiplets

with abelian gaugings, and review some of the BPS black holes that asymptote to anti-de

Sitter spacetime. For a review of N = 2 (gauged) supergravity we refer to [16], which

notation we closely follow.

2.1 Ungauged supergravity

We start by discussing the N = 2 Lagrangian for ungauged supergravity coupled to

(abelian) vector and hypermultiplets. The scalar fields in both these multiplets are in

this case all neutral. The theory has an action S =
∫

d4x
√−gL, and the bosonic part of

the Lagrangian L is given by

L = 1
2R(g) + gī∂

µzi∂µz̄
̄ + huv∂

µqu∂µq
v + IΛΣ(z)FΛ

µνF
Σµν + 1

2RΛΣ(z)ǫµνρσFΛ
µνF

Σ
ρσ. (2.1)

We keep the same convention for metric signatures and field strengths as in [28]. In

particular, the spacetime metric has signature (+ − −−), and we work in units in which

the gravitational coupling constant is set to one, κ2 = 1.2 The zi (i = 1, ..., nV ) are the

2We corrected the sign in front of the Einstein-Hilbert term compared to the first version in [28].
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complex scalars in the vector multiplets, with special Kähler metric gī(z, z̄). This geometry

is best described in terms of holomorphic sections XΛ(z) and FΛ(z),Λ = 0, 1, ..., nV , such

that the Kähler potential takes the form

K(z, z̄) = − ln
[
i(X̄Λ(z̄)FΛ(z) −XΛ(z)F̄Λ(z̄))

]
. (2.2)

When a prepotential exists, it is given by 2F = XΛFΛ. It should be homogeneous of

second degree, and one must have that FΛ(X) = ∂F (X)/∂XΛ. Our general analysis does

not assume the existence of a prepotential. The complex conjugate of the “period-matrix”

NΛΣ is defined by the matrix multiplication

NΛΣ ≡
(
DiFΛ

F̄Λ

)
·
(
DiX

Σ

X̄Σ

)−1

, (2.3)

with Ki = ∂iK, DiX
Λ = (∂i +Ki)X

Λ, and similarly DiFΛ = (∂i +Ki)FΛ. Their imaginary

and real parts are denoted by

RΛΣ ≡ ReNΛΣ , IΛΣ ≡ ImNΛΣ . (2.4)

The scalars in the hypermultiplet sector parametrize a quaternion-Kähler manifold, whose

metric can be expressed in terms of quaternionic vielbeine. In local coordinates qu;u =

1, ..., 4nH , we have

huv(q) = UAα
u (q)UBβ

v (q) Cαβ ǫAB , (2.5)

where Cαβ , α, β = 1, ..., 2nH and ǫAB, A,B = 1, 2 are the antisymmetric symplectic and

SU(2) metrics, respectively. The value of the Ricci-scalar curvature of the quaternionic

metric is always negative and fixed in terms of Newton’s coupling constant κ. In units in

which κ2 = 1, which we will use in the remainder of this paper, we have

R(h) = −8nH(nH + 2) . (2.6)

We will discuss more on the quaternionic geometry when we introduce the gauging at

the end of this section. Clearly, the hypermultiplet scalars qu do not mix with the other

fields (apart from the graviton) at the level of the equations of motion, and it is therefore

consistent to set them to a constant value.

2.2 Black holes in asymptotically Minkowski spacetime

Asymptotically flat and stationary BPS black hole solutions of ungauged supergravity have

been a very fruitful field of research in the last decades. In absence of vector multiplets

(nV = 0), with only the graviphoton present, the supersymmetric solution is just the well-

known extremal Reissner-Nordström (RN) black hole. This solution was later generalized

to include a number of vector multiplets [1]. The most general classification of the BPS

solutions, including multicentered black holes, was given by Behrndt, Lüst and Sabra [5]

and we will refer to those as BLS solutions. We will briefly list the main points of the

solutions, as they will play an important role in what follows.
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To characterize the black hole solutions, we first denote the imaginary parts of the

holomorphic sections by

H̃Λ ≡ i(XΛ − X̄Λ) , HΛ ≡ i(FΛ − F̄Λ) . (2.7)

We assume stationary solutions with axial symmetry parametrized by an angular coordi-

nate ϕ. The result of the BPS analysis is that the metric takes the form3

ds2 = eK(dt+ ωϕdϕ)2 − e−K (dr2 + r2dΩ2
2

)
, (2.8)

where K is the Kähler potential of special geometry, defined by

e−K = i
(
X̄ΛFΛ −XΛF̄Λ

)
. (2.9)

The metric components and the symplectic vector
(
H̃Λ,HΛ

)
only depend on the radial vari-

able r and the second angular coordinate θ, and the BPS conditions imply the differential

equations on ωϕ

1

r2 sin θ
∂θωϕ = HΛ∂rH̃

Λ − H̃Λ∂rHΛ , − 1

sin θ
∂rωϕ = HΛ∂θH̃

Λ − H̃Λ∂θHΛ . (2.10)

From this follows the integrability condition HΛ�H̃Λ − H̃Λ
�HΛ = 0, where � is the

3-dimensional Laplacian.

What is left to specify are the gauge field strengths FΛ
µν . First we define the magnetic

field strengths

GΛµν ≡ RΛΣF
Σ
µν − 1

2
IΛΣ ǫµνγδF

Σγδ , (2.11)

such that the Maxwell equations and Bianchi identities take the simple form

ǫµνρσ∂νGΛρσ = 0, ǫµνρσ∂νF
Λ
ρσ = 0 , (2.12)

such that (FΛ, GΛ) transforms as a vector under electric-magnetic duality transformations.

For the full solution it is enough to specify half of the components of FΛ and GΛ, since

the other half can be found from (2.11). In spherical coordinates, the BPS equations imply

the non-vanishing components4

FΛ
rϕ =

−r2 sin θ

2
∂θH̃

Λ , FΛ
θϕ =

r2 sin θ

2
∂rH̃

Λ , (2.13)

and

GΛrϕ =
−r2 sin θ

2
∂θHΛ , GΛθϕ =

r2 sin θ

2
∂rHΛ . (2.14)

From (2.12) it now follows that HΛ and H̃Λ are harmonic functions. With the above

identities we can always find the vector multiplet scalars zi, given that we know explicitly

3Note that all the results are in spherical coordinates, see [5, 9, 10] for the coordinate independent

results.
4The BPS conditions also imply FΛ

rθ = GΛrθ = 0 due to axial symmetry.
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how they are defined in terms of the sections XΛ and FΛ. The integration constants of

the harmonic functions specify the asymptotic behavior of the fields at the black hole

horizon(s) (the constants can seen to be the black hole electric and magnetic charges) and

at spatial infinity.

The complete proof that these are indeed all the supersymmetric black hole solutions

with abelian vector multiplets and no cosmological constant was given in [9, 10]. Note

that the BLS solutions describe half-BPS stationary spacetimes with (only for the multi-

centered cases) or without angular momentum. The near-horizon geometry around each

center is always AdS2 × S2 with equal radii of the two spaces, determined by the charges

of the black hole. All solutions exhibit the so-called attractor mechanism [1]. This means

that the (vector multiplet) scalar fields get attracted to constant values at the horizon of

the black hole that only depend on the black hole charges. As the scalars can be arbitrary

constants at infinity we also find the so-called attractor flow, i.e. the scalars flow from their

asymptotic value to the fixed constant at the horizon. This phenomenon seems not to be

related with supersymmetry, but rather with extremality, since attractor mechanisms have

been discovered also in non-supersymmetric (but extremal) solutions. The full classification

of non-BPS solutions and attractors is, however, more involved and is still in progress.

2.3 Gauged supergravity

We now turn to the bosonic Lagrangian for gauged N = 2 supergravity in presence of

nV abelian vector multiplets and nH hypermultiplets, charged under the abelian gauge

group (see e.g. [16] for further explanation and notation). The effect of the gauging is to

covariantize the derivatives for the hypermultiplet scalars,5 and to add a scalar potential:

L =
1

2
R(g) + gī∂

µzi∂µz̄
̄ + huv∇µqu∇µq

v

+ IΛΣF
Λ
µνF

Σ µν +
1

2
RΛΣǫ

µνρσFΛ
µνF

Σ
ρσ − g2V (z, z̄, q) .

(2.15)

The covariant derivative ∇µq
u ≡ ∂µq

u + gk̃u
ΛA

Λ
µ defines the gauging of some (abelian)

isometries of the quaternionic manifold with Killing vectors k̃u
Λ and coupling constant g.

The scalar potential is given in terms of the Killing vectors and the corresponding triplet

of quaternionic moment maps P x
Λ (see e.g. [16] for more explanation):

V = 4huv k̃
u
Λk̃

v
ΣL̄

ΛLΣ + (gīfΛ
i f̄

Σ
̄ − 3L̄ΛLΣ)P x

ΛP
x
Σ , (2.16)

where

LΛ = eK/2XΛ , fΛ
i = eK/2DiX

Λ . (2.17)

5For abelian gaugings, the covariant derivative on the vector multiplet scalars is the flat derivative,

because the sections XΛ(z) transform in the adjoint representation of the gauge group. One can of course

consider non-abelian gaugings, but this would complicate our black hole analysis in subsequent sections.

We leave this as a possible generalization for future work.

– 6 –
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The action is invariant under the following supersymmetry variations (up to higher order

terms in fermions):

δελ
iA = i∂µz

iγµεA +G−i
µνγ

µνǫABεB + iggīf̄Λ
̄ P

x
Λσ

AB
x εB , (2.18)

δεζα = iUBβ
u ∇µq

uγµεAǫABCαβ + 2g UA
α uk̃

u
ΛL̄

Λ εA , (2.19)

δεψµA = ∇µεA + T−
µνγ

νǫABε
B + igSABγµε

B , (2.20)

where λiA, ζα and ψµA are the gauginos, hyperinos and gravitinos respectively. We have

used the gravitino field strength and mass matrix

T−
µν ≡ 2iFΛ−

µν IΛΣL
Σ , SAB ≡ i

2
(σx)ABP

x
ΛL

Λ , (2.21)

and the decomposition identity

FΛ−
µν = iL̄ΛT−

µν + 2fΛ
i G

i−
µν . (2.22)

The upper index “−” denotes the anti-selfdual part of the field strengths, and in

Minkowski spacetime it is complex. The selfdual part is then obtained by complex con-

jugation. More details are given in appendix A. Details on the supercovariant derivative

∇µεA, that appears in the supersymmetry transformation rules of the gravitinos, are in

appendix B.

The fully N = 2 supersymmetric configurations obtained from (2.18)–(2.20) were an-

alyzed in [28]. Two possibilities arise, namely for zero or nonzero cosmological constant

in the vacuum. For zero cosmological constant, the different supersymmetric spacetimes

are either Minkowski or AdS2 × S2 (or its Penrose limit, the supersymmetric pp-wave),

whereas for nonzero cosmological constant only AdS4 can be fully BPS. In the former case,

additional constraints arise on the scalar fields, namely (for abelian gaugings)

k̃u
ΛL

Λ = 0 , P x
Λ = 0 , (2.23)

together with FΛ
µν = 0 (Minkowski) and k̃u

ΛF
Λ
µν = 0 (AdS2 × S2). In the latter case, for

AdS4, one has the conditions

k̃u
ΛL

Λ = 0 , P x
Λf

Λ
i = 0 , ǫxyzP yP z = 0 , (2.24)

with vanishing field strengths, FΛ
µν = 0, and negative scalar curvature for AdS4 spacetime,

R = −12g2P xP x, where P x ≡ P x
ΛL

Λ. In all these cases, the scalars are constant or

covariantly constant. The fully supersymmetric configurations will play an important role

in the construction of 1/2 BPS black hole solutions, since both their near horizon and

asymptotic region fall into this class. We will discuss this in detail in the following sections.

A particular class of supergravities arises in the absence of hypermultiplets. This

situation is interesting, since it allows for a bare negative cosmological constant in the

Lagrangian through the moment maps P x
Λ that appear in the scalar potential. It is well-

known that, for nH = 0 and abelian gauge groups, these moment maps can be replaced by

constants (similar to Fayet-Iliopoulos terms), giving rise to a potential

V = (gīfΛ
i f̄

Σ
̄ − 3L̄ΛLΣ)P x

ΛP
x
Σ , (2.25)
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with P x
Λ numerical constants. When also nV = 0, one can take the sections LΛ to be

constants as well, such that the potential is negative and given by V = −Λ, with Λ =

3P xP x.

2.4 Asymptotically AdS4 black holes with nH = 0

The construction of BPS black holes in AdS4 spacetimes is technically more involved due

to the presence of the gauged hypermultiplets, and at present there is no complete analysis

for this case. Until now, only the case with no hypermultiplets, nH = 0, but with a bare

cosmological constant or a potential of the type (2.25) has been investigated in the litera-

ture [19–21, 29–31]. Static and spherically symmetric (non-rotating) black hole solutions

preserving some supersymmetry have been constructed, but they seem to suffer from naked

singularities [18, 32, 33]. Recent developments however show a way to construct smooth

solutions [20, 21]. On the other hand there are proper BPS black holes when one allows

for a non-zero angular momentum [19, 34]. The non-BPS and non-extremal solutions,

however, do allow for proper horizons also in the non-rotating case.

Let us illustrate some of these issues in the case of static spacetimes in gauged super-

gravities with no vector multiplets, so there is only a single gauge field, the graviphoton.

Here we have the AdS generalization of the Reissner-Nordström black holes (RNAdS).

More explicitly, the metric in our signature is

ds2 = V dt2 − dr2

V
− r2(dθ2 + sin2 θdϕ2) , (2.26)

with

V (r) = 1 − 2M

r
+
Q2 + P 2

r2
− Λr2

3
. (2.27)

Here, Λ is the (negative) cosmological constant and Q and P are the electric and magnetic

charge respectively. The field strengths are given by

F−
tr =

1

2r2
(Q− iP ) , F−

θϕ =
sin θ

2
(P + iQ) . (2.28)

For the 1/2 BPS solution the magnetic charge is vanishing, P = 0 and M = Q [18]. Of

course, this example describes naked singularities rather than black holes. This is because

V (r) has no zeroes for Λ < 0, so no horizons, and therefore a naked singularity appears at

r = 0. For a genuine AdS4 black hole solution we have to break the full supersymmetry,

i.e. the mass has to be free to violate the BPS bound. If M is within a certain range, as

explained in detail in e.g. [34], the solution has a proper horizon and describes a thermal

AdS4 black hole. There are some BPS generalizations of these solutions to the case of

arbitrary number of vector multiplets [32, 33], but the problem of naked singularities

remains. For some further references on four-dimensional AdS black holes, including the

non-extremal ones, see e.g. [35, 36].

Interestingly, recent developments in the AdS/CFT correspondence suggest that holo-

graphic superconductors are related to non-extremal static black holes in the presence of a

charged scalar. Such cases will arise in N = 2 supergravity only when the hypermultiplets

are gauged. Thus we will be able to give some statements about this interesting class
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of black holes, which we leave for section 3.2.2. In the rest of the paper we will mainly

concentrate on the asymptotically flat BPS solutions with gauged hypers.

3 Black holes and spontaneous symmetry breaking

In this section we explain how to obtain a class of black hole solutions in gauged supergrav-

ity, starting from known solutions in ungauged supergravity. The main idea is simple: In

gauged supergravity, one can give expectation values to some of the scalars (from both the

vector and hypermultiplets) such that one breaks the gauge symmetry spontaneously in a

maximally supersymmetric N = 2 vacua, specified by the conditions (2.23) or (2.24). Let

us suppose for simplicity that the vacuum has zero cosmological constant, the argument

can be repeated for N = 2 preserving anti-de Sitter vacua. Due to the Higgs mechanism

some of the fields become massive, and as a consequence of the N = 2 preserving vacua,

the gravitinos remain massless and the heavy modes form massive N = 2 vector multiplets.

As a second step, we can set the heavy fields to zero, and the theory gets truncated to

an ungauged N = 2 supergravity. These truncations are consistent due to the fact that

supersymmetry is unbroken. Black hole solutions can then be found by taking any solution

of the ungauged theory and augmenting it with the massive fields that were set to zero.

In fact, it is clear from this procedure that one can even implement a non-BPS black hole

solution of the ungauged theory into the gauged theory. It is also clear that this proce-

dure works for non-abelian gaugings, as long as it is broken spontaneously to an abelian

subgroup with residual N = 2 supersymmetry. But for simplicity, and to streamline with

subsequent sections, we will however only consider abelian gaugings. What is perhaps less

clear, is to see if this procedure gives the most general black hole solutions. In other words,

one can look for other solutions in which the massive scalars are non-trivial (i.e. with scalar

hair). This is the subject of section 4.6.2, where we investigate the conditions for which

new BPS black holes with scalar hair exist.

Let us now illustrate the above mechanism in some more detail. We restrict ourselves

first to spontaneous symmetry breaking in Minkowski vacua, where one has 〈P x
Λ〉 = 0

and 〈k̃u
ΛL

Λ〉 = 0 according to (2.23). At such a point, the resulting potential is zero,

see (2.16), as required by a Minkowski vacuum. After the hypermultiplet scalar fields take

their vacuum expectation value, the Lagrangian (2.15) contains a mass-term for some of

the gauge fields, given by

LV
mass = MΛΣA

Λ
µA

µΣ , MΛΣ ≡ g2〈huvk̃
u
Λk̃

v
Σ〉 . (3.1)

There is no contribution to the mass matrix for the vector fields coming from expectation

values of the vector multiplet scalars, since the gauging was chosen to be abelian. The

number of massive vectors is then given by the rank of MΛΣ, and as huv is positive definite,

one has rank(MΛΣ) = rank(k̃u
Λ). Hence, the massive vector fields are encoded by the linear

combinations k̃u
ΛA

Λ
µ . Similarly, some of the vector and hypermultiplet scalars acquire a

mass, determined by expanding the scalar potential,

V = 4huv k̃
u
Λk̃

v
ΣL̄

ΛLΣ + (gīfΛ
i f̄

Σ
̄ − 3L̄ΛLΣ)P x

ΛP
x
Σ , (3.2)
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to quadratic order in the fields. Then one reads off the mass matrix, and in general there

can be off-diagonal mass terms between vector and hypermultiplet scalars. Massive vector

multiplets can then be formed out of a massive vector, a massive complex scalar from the

vector multiplet, and 3 hypermultiplet scalars. The fourth hypermultiplet scalar is the

Goldstone mode that is eaten by the vector field. We will illustrate this more explicitly in

some concrete examples below.

Upon setting the massive fields to zero (or integrating them out), one obtains a su-

pergravity theory with only massless fields. Because of 〈P x
Λ〉 = 0, the mass matrix for the

gravitinos is zero as follows from (2.21). Therefore, the resulting theory is an ungauged

supergravity theory of the type discussed in section 2.1. Black hole solutions can then be

simply copied from the results in section 2.2. By going through the Higgs mechanism in

reverse order, one can uplift this solution easily to the gauged theory by augmenting it

with the necessary expectation values of the scalars. It is then clear that the black hole

solution is not charged with respect to the gauge fields that acquired a mass.

The situation for spontaneous symmetry breaking in an AdS vacua is similar. To

generate a negative cosmological constant from the potential (2.16), we must have a 〈P x
Λ〉 6=

0 in the vacuum. The conditions for unbroken N = 2 supersymmetry are given in (2.24).

After expanding the fields around this vacuum, one can truncate the theory further to

a Lagrangian with a bare cosmological constant, in which one can construct black hole

solutions of the type discussed in section 2.4. We will discuss an example at the end of

this section.

3.1 Solution generating technique

We now elaborate on constructing the black hole solutions more explicitly. As explained

above, the general technique is to embed a (BPS) solution in ungauged supergravity into a

gauged supergravity. The considerations in this subsection also apply for the more general

case of non-abelian gaugings, although we are mainly interested here in the abelian case.

First, to illustrate the systematics of our procedure, we analyze a simpler setup in which

we embed solutions from pure supergravity into a model with vector multiplets only. Then

we extend the models to include both hypermultiplets and vector multiplets, i.e. the most

general (electrically) gauged supergravities. We always consider solutions with vanishing

fermions, i.e. the discussion concerns only the bosonic fields.

3.1.1 Vector multiplets

We start from pure N = 2 supergravity, i.e. only the gravity multiplet normalized as

L = 1
2R(g) − 1

2FµνF
µν − Λ. Let us assume we have found a solution of this Lagrangian,

which we denote by g̊µν , F̊µν . We can embed this into a supergravity theory with only

vector multiplets as follows. If we have a theory with (gauged) vector multiplets we can

find a corresponding solution to it by satisfying

∇µz
i = 0 , Gi

µν = 0 , ki
ΛL̄

Λ = 0 . (3.3)
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Note that the integrability condition following from ∇µz
i = 0 is always satisfied given the

other constraints.6 We further have the relations

gµν = g̊µν ,
√

2IΛΣL̄ΛL̄Σ T−
µν = F̊−

µν . (3.4)

The last equality is to be used for determining T−
µν . Then we can find the solution for our

new set of gauge field strengths by FΛ−
µν = iL̄ΛT−

µν since we already know that Gi
µν = 0.

The new configuration will, by construction, satisfy all equations of motion of the the-

ory and will preserve the same amount of supersymmetry (if any) as the original one. This

can be checked explicitly from the supersymmetry transformation rules (2.18) and (2.20)

combined with the results from our previous paper [28]. Indeed (3.3) comes from imposing

the vanishing of (2.18), while (3.4) is required by the Einstein equations. We will give a

more explicit realization of this procedure in section 3.2.2.

3.1.2 Hypermultiplets

Given any solution of N = 2 supergravity with no hypermultiplets, we can obtain a new

solution with (gauged) hypermultiplets preserving the same amount of supersymmetry as

the original one. We require the theory to remain the same in the other sectors (vector

and gravity multiplets with solution g̊µν , F̊
Λ
µν , z̊

i) and impose some additional constraints

that have to be satisfied in addition to the already given solution. We then simply require

the fields of our new theory to be

gµν = g̊µν , FΛ
µν = F̊Λ

µν , zi = z̊i , (3.5)

under the following restriction that has to be solved for the hypers. Here we are left

with two cases: the original theory was either with or without Fayet-Iliopoulos (FI) terms

(cosmological constant). In absence of FI terms, a new solution after adding hypers is

given by imposing the constraints:

∇µq
u = 0 ⇒ k̃u

ΛF
Λ
µν = 0 , P x

Λ = 0 , k̃u
ΛL

Λ = 0 , (3.6)

while in the case of original solution with FI terms we have a solution after adding hypers

(thus no longer allowing for FI terms but keeping P x
ΛL

Λ the same) with:

∇µq
u = 0 ⇒ k̃u

ΛF
Λ
µν = 0 , P x

Λf
Λ
i = 0 , ǫxyzP y

ΛP
z
ΣL

ΛL̄Σ = 0 , k̃u
ΛL

Λ = 0 . (3.7)

The new field configuration (given it can be found from the original data) again satisfies all

equations of motion and preserves the same amount of supersymmetry as the original one.

This is true because the susy variations of gluinos and gravitinos remain the same as in

the original solution, and also the variations for the newly introduced hyperinos are zero.

6Also note that we have used the Killing vectors ki
Λ that specify a gauged isometry ∇µzi = ∂µzi +gki

ΛAΛ
µ

on the vector multiplet scalar manifold. These automatically vanish if the isometry is abelian, and therefore

will not be discussed further in this paper. The formulas here are still valid for any gauged isometry.
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3.1.3 Vector and hypermultiplets

This case is just combining the two cases above. If we start with no FI terms the new

solution will be generated by imposing equations (3.6) and (3.3). If we have a solution with

a cosmological constant we need to impose (3.7) and (3.3). Then the integrability condition

following from ∇µq
u = 0 is automatically satisfied in both cases, using relations (3.4).

3.2 Examples

3.2.1 The STU model with gauged universal hypermultiplet

Here we discuss an example to illustrate explicitly the procedure outlined above. Let

us consider an N = 2 theory with the universal hypermultiplet. Its quaternionic metric

and isometries are given in C, and isometry 5 is chosen to be gauged. This allows for

asymptotically flat black holes, since we can find solutions of (3.6), as we shall see below.7

The quaternionic Killing vector and moment maps are given by

k̃Λ = aΛ (2R∂R + u∂u + v∂v + 2D∂D) , (3.8)

~PΛ = aΛ

{
− u√

R
,
v√
R
,−D

R

}
, (3.9)

with aΛ arbitrary constants.

In the vector multiplet sector we take the so-called STU model, based on

the prepotential

F =
X1X2X3

X0
, (3.10)

together with zi = Xi

X0 ; i = 1, 2, 3. The gauge group is U(1)3, but it will be broken to U(1)2

in the supersymmetric Minkowski vacua, in which we construct the black hole solution.

The conditions for a fully BPS Minkowski vacuum require F vev
µν = 0, zi,vev = 〈zi〉 = 〈bi〉 +

i〈vi〉, uvev = vvev = Dvev = 0, Rvev = 〈R〉, with arbitrary constants 〈zi〉 and 〈R〉. Moreover,

from (2.23), the vector multiplets scalar vevs must obey aΛL
Λ,vev = 0 (which is an equation

for a the 〈zi〉’s). Then, after expanding around this vacuum, the mass terms for the scalar

fields are given by the quadratic terms in (3.2). Now, if we make the definition z ≡ aΛL
Λ,

we have zvev = 0. Expanding the first term in (3.2) gives the mass term for z,

(
4huv k̃

u
Λk̃

v
ΣL̄

ΛLΣ
)quadratic

= 16zz̄.

Expanding the second term to quadratic order gives the mass for three of the hypers:

(
gīfΛ

i f̄
Σ
̄ P

x
ΛP

x
Σ

)quadratic
=

a2
i 〈vi〉2

〈v1v2v3〉〈R〉

(
u2 + v2 +

D2

〈R〉

)
, (3.11)

while the third term vanishes at quadratic order and does not contribute to the mass matrix

of the scalars.
7A suitable combination of isometries 1 and 4 would also do the job. Note that typically in string

theory isometry 5 gets broken perturbatively while 1 and 4 remain also at quantum level. For the present

discussion it is irrelevant which one we choose since we are not trying to directly obtain the model from

string theory.
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Therefore two of the six vector multiplet scalars become massive (i.e. the linear combi-

nation given by our definition for z), together with three of the hypers. The fourth hyper

R remains massless and is eaten up by the massive gauge field aΛA
Λ
µ (with mass 4 given

by (3.1)). Thus we are left with an effective N = 2 supergravity theory of one massive and

two massless vector multiplets and no hypermultiplets, which can be further consistently

truncated to only include the massless modes. One can then search for BPS solutions in

the remaining theory and the prescription for finding black holes is again the one given by

Behrndt, Lüst and Sabra and explained in section 2.2.

We now construct the black hole solution more explicitly, following the solution gen-

erating technique of section 3.1. For this, we need to satisfy (3.5) and (3.6). The condition

P x
Λ = 0 fixes u = v = D = 0 and the remaining non-zero Killing vectors are kR

Λ = 2RaΛ.

Now we have to satisfy the remaining conditions k̃u
ΛX

Λ = 0 and k̃u
ΛF

Λ
µν = 0. To do so, we

use the BLS solution of the STU model. For simplicity we take the static limit ωm = 0,

discussed in detail in section 4.6 of [5]. The solution is fully expressed in terms of the

harmonic functions

H0 = h0 +
q0
r
, H̃ i = hi +

pi

r
, i = 1, 2, 3 , (3.12)

under the condition that one of them is negative definite. The sections then read

X0 =

√

−H̃
1H̃2H̃3

4H0
, Xi = −iH̃

i

2
, (3.13)

with metric function

e−K =

√
−4H0H̃1H̃2H̃3 . (3.14)

In this case F 0
mn = 0 and the F i

mn components (here m,n are the spatial indices) are

expressed solely in terms of derivatives of H̃ i. After evaluating the period matrix we

obtain F i
mt = 0 and F 0

mt are given in terms of derivatives of H0, H̃
i. Thus the equations

k̃R
ΛX

Λ = 0 and k̃R
ΛF

Λ
µν = 0 lead to

a0 = 0 , aih
i = 0 , aip

i = 0 . (3.15)

The solution is qualitatively the same as the original one, but the charges pi and the

asymptotic constants hi are now related by (3.15). So effectively, the number of indepen-

dent scalars and vectors is decreased by one, consistent with the results from spontaneous

symmetry breaking. The usual attractor mechanism for the remaining, massless vector

multiplet scalars holds while for the hypermultiplet scalars we know that u = v = D = 0

and R is fixed to an arbitrary constant everywhere in spacetime with no boundary condi-

tions at the horizon. In other words, the hypers are not “attracted”.

Our construction can be generalized for non-BPS solutions as well. In the particular

case of the STU model, we can obtain a completely analogous, non-BPS, solution by

following the procedure described in [37]. We flip the sign of one of the harmonic functions

in (2.7) such that

e−K =

√
4H0H̃1H̃2H̃3 . (3.16)
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This solution preserves no supersymmetry, but it is extremal. By following our procedure

above, we can embed this solution into the gauged theory.

3.2.2 Asymptotically AdS black holes

Here we give a simple but yet qualitatively very general example of how to apply the

procedure outlined above to find asymptotically anti-de Sitter black hole solutions with

gauged hypers, starting from already known black hole solutions without hypers. In this

case we start from a solution of pure supergravity and add abelian gauged vector multiplets

and hypermultiplets. Alternatively, one can think of it as breaking the gauge symmetry

such that all hyper- and vector multiplets become massive, and one is left with a gravity

multiplet with cosmological constant. Here we already know the full classification of black

hole solutions, as described in section 2.4.

An already worked out example in section 4.2 of [28] is the case of the gauged supergrav-

ity, arising from a consistent reduction to four dimensions of M-theory on a Sasaki-Einstein7

manifold [38]. The resulting low-energy effective action has a single vector multiplet and a

single hypermultiplet (the universal hypermultiplet). The special geometry prepotential is

given by

F =
√
X0(X1)3 ,

with XΛ = {1, τ2}, where τ is the vector multiplet scalar, and the isometries on the UHM

are given by

k̃0 = 24∂D − 4v∂u + 4u∂v , k̃1 = 24∂D , (3.17)

which is combination of isometries 1 and 4 from appendix C. The corresponding moment

maps are given by

P 1
0 =

4v√
R
, P 2

0 =
4u√
R
, P 3

0 = 4 − 12 + 4(u2 + v2)

R
, (3.18)

P 1
1 = 0 , P 2

1 = 0 , P 3
1 = −12

R
. (3.19)

Maximally supersymmetric AdS4 vacua were found in [28]. The condition (2.24) fixes

the values of the vector multiplet scalar τvev ≡ (τ1 + iτ2)
vev = i and two of the four

hypers uvev = vvev = 0. The third ungauged hyper, which is the dilaton, is fixed to the

constant non-zero value Rvev = 4. The remaining hypermultiplet scalar is an arbitrary

constant Dvev = 〈D〉. All the gauge fields have vanishing expectation values at this fully

supersymmetric AdS4 vacuum. If we now expand the scalar field potential (3.2) up to

second order in fields we obtain the following mass terms

V quadratic = −12 + 138(τ2
1 + τ2

2 ) +
3

4
R2 + 6Rτ2 + 10(u2 + v2) . (3.20)

We can see that three of the hyperscalars and the (complex) vector multiplet scalar acquire

mass. There is also a mass term m2 = 36 for the gauge field A0 + A1, this field thus eats

up the remaining massless hyperscalar D. So we observe the formation of a massive N = 2

vector multiplet consisting of one massive vector and five massive scalars, and we can
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consistently set all these fields to zero. The resulting Lagrangian is that of pure N = 2

supergravity with a cosmological constant Λ = −12. Using the static class of black hole

solutions of (2.26), it is straightforward to provide a solution of the gauged supergravity

theory. All the solutions described in section 2.4 will also be solutions in our considered

model as they obey the Einstein-Maxwell equations of pure supergravity.

4 1/2 BPS solutions

In this section we will take a more systematic approach to studying the supersymmetric

solutions of (2.15). We search for a solution where the expectation values of the fermions

are zero. This implies that the supersymmetry variations of the bosons should be zero.

The vanishing of the supersymmetry variations (2.18)–(2.20) then guarantees some amount

of conserved supersymmetry. Depending on the number of independent components of the

variation parameters εA we will have different amount of conserved supersymmetry. Here

we will focus on particular solutions preserving (at least) 4 supercharges, i.e. half-BPS

configurations. A BPS configuration has to further satisfy the equations of motion in order

to be a real solution of the theory, so we also impose those. The fermionic equations of

motion vanish automatically, so we are left with the equations of motion for the graviton

gµν , the vector fields AΛ
µ , and the scalars zi and qu. We will come to the relation between

the BPS constraints and the field equations in due course, but we first introduce some more

relations for the Killing spinors εA.

4.1 Killing spinor identities

We will make use of the approach [39] where one first assumes the existence of a Killing

spinor. From this spinor, various bilinears are defined, whose properties constrain the form

of the solution to a degree where a full classification is possible. We use this method in

D = 4, N = 2, which is generalizing the main results of [9, 10] to include hypermultiplets in

the description. As it later turns out, we cannot completely use this method to classify all

the supersymmetric configurations, but the method nevertheless gives useful information.

We define εA to be a Killing spinor if it solves the gravitino variation δεψµA = 0,

defined in (2.20), and assume εA to be a Killing spinor in the remainder of this article.

Such spinors anti-commute, but we can expand them on a basis of Grassmann variables

and only work with the expansion coefficients. This leads to a commuting spinor, which

we also denote with εA, and we define8

εA ≡ i(εA)†γ0 ,

X ≡ 1

2
ǫABεAεB ,

Vµ
A

B ≡ iεAγµεB ,

ΦABµν ≡ εAγµνεB .

(4.1)

We now show that this implies that V µ ≡ Vµ
A

A is a Killing vector. For its derivatives

we find

∇µVν
A

B =iδA
B(T+

µνX − T−
µνX̄) − gµν(SACǫCBX − SBCǫ

ACX̄)

− i(ǫACT+
µ

ρΦCBρν + ǫBCT
−
µ

ρΦAC
νρ) − (SACΦCBµν + SBCΦAC

µν) .
(4.2)

8We will be brief on some technical points of the discussion, and refer to [9, 10] for more information.
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The second and third term are traceless, so they vanish when we compute ∇µVν . The other

terms are antisymmetric in µν, so this proves

∇µVν + ∇νVµ = 0 , (4.3)

thus Vµ is a Killing vector. We make the decomposition V A
Bµ = 1

2Vµδ
A

C + 1√
2
σxA

BV
x
µ

and using Fierz identities one finds

Vµ
A

BVν
B

A = VµVν − 1

2
gµνV

2 . (4.4)

One can show that VµV
µ = 4|X|2, which shows that the Killing vector Vµ is timelike or

null. For the remainder of this paper we restrict ourselves to a timelike Killing spinor

ansatz, defined as one that leads to a timelike Killing vector. We make this choice, as our

goal is to find stationary black hole solutions, which always have a timelike isometry.9 In

this case, by definition, VµV
µ = 4|X|2 6= 0, so we can solve (4.4) for the metric as

gµν =
1

4|X|2
(
VµVν − 2V x

µ V
x
ν

)
. (4.5)

It follows that

Vµ = gµνV
ν = Vµ − 1

2|X|2V
x
µ (V x

ν V
ν) , (4.6)

so V x
µ V

µ = 0. We define a time coordinate by V µ∂µ =
√

2∂t, which implies V x
t = 0.

We decompose Vµdxµ = 2
√

2XX̄(dt + ω), where the factor in front of dt follows from

V 2 = 4XX̄ and ω has no dt component. The metric is then given by

ds2 = 2|X|2(dt+ ω)2 − 1

2|X|2 γmndxmdxn , (4.7)

where |X|, ω and γmn are independent of time.

Now we are ready to make a relation between the susy variations (2.18)–(2.20) and

the equations of motion, using an elegant and simple argument of Kallosh and Ortin [40]

that was later generalized in [9, 10]. Assuming the existence of (any amount of) unbroken

supersymmetry, one can derive a set of equations relating the equations of motion for

the bosonic fields with derivatives of the bosonic susy variations. For our chosen theory

these read:

Eµ
Λif

Λ
i γµε

AǫAB + EiεB = 0 ,

Eµ
a (−iγaεA) + Eµ

Λ

(
2L̄ΛεBǫ

AB
)

= 0 ,

EuUu
αAε

A = 0 ,

(4.8)

where E is the equation of motion for the corresponding field in subscript. More precisely,

Eµ
a is the equation for the vielbein eaµ (the Einstein equations), Eµ

Λ corresponds to AΛ
µ (the

9We furthermore assume, or restrict to the cases, that the stationary BPS black hole has a time-like

Killing vector which can be written as a bilinear in the Killing spinor.
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Maxwell equations), Eu corresponds to qu and Ei to zi. Now, let us assume that the Maxwell

equations are satisfied, Eµ
Λ = 0. If we multiply from the left each of the remaining terms

in the three equations by εB and εBγν and use the fact that the Killing spinor is timelike

such that X 6= 0 we directly obtain that the remaining field equations are satisfied. So,

apart from the BPS conditions, only the Maxwell equations

ǫµνρσ∂νGΛρσ = −ghuv k̃
u
Λ∇µqv , (4.9)

need to be explicitly verified.

4.2 Killing spinor ansatz

Contracting the gaugino variation (2.18) with εA we find the condition

0 = −2iX̄∇µz
i + 4iG−i

ρµV
ρ − igki

ΛL̄
ΛVµ −

√
2ggīf̄Λ

̄ P
x
ΛV

x
µ . (4.10)

Using this to eliminate ∇µz
i and plugging back into δλiA = 0 we find10

Gi−
ρµγ

µ
(
2iV ρεA − X̄γρǫABεB

)
+ ggīf̄Λ

̄ P
x
Λ

(
− 1√

2
V x

µ γ
µεA + iX̄σxABεB

)
= 0 . (4.11)

It is here that we find an important difference with the ungauged theories. In the latter

case, g = 0, and the second term is absent. Then, assuming that the gauge fields Gi−
ρµ are

non-zero, one can rewrite equation (4.11) as

εA + ie−iαγ0ǫ
ABεB = 0 , (4.12)

where eiα ≡ X
|X| . One has thus derived the form of the Killing spinor, which is not an

ansatz anymore.

In gauged supergravity, g 6= 0, so there are various ways to solve equation (4.11). One

could, for instance, generalize (4.12) to

εA = bγ0ǫABεB + ax
mγ

mσxABεB . (4.13)

Plugging this back into (4.11), one obtains BPS conditions on the fields which one can then

try to solve. While this is hard in general, it has been done in a specific case. Namely,

the ansatz used for the AdS-RN black holes in minimally gauged supergravity (with a bare

cosmological constant), as analyzed by Romans [18], fits into (4.13), but not in (4.12). In

fact, we will see later that with (4.12) one cannot find AdS black holes.

In the remainder of this article, we will use (4.12) as a particular ansatz, hoping to

find new BPS black hole solutions that are asymptotically flat. The reader should keep

in mind that more general Killing spinors are possible, even for asymptotically flat black

holes, and therefore our procedure will most likely not be the most general. The search for

BPS black holes that asymptote to AdS4, and their Killing spinors, will be postponed for

future research.

10One could, as done in e.g. [9, 10], eliminate the gauge fields Gi−
ρµ to obtain an equivalent relation.
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4.3 Metric and gauge field ansatz

We will further make the extra assumption that the solution for the spacetime metric, field

strengths and scalars, is axisymmetric, i.e. there is a well-defined axis of rotation, such that

ω = ωϕdϕ lies along the angle of rotation (we choose to call it ϕ) in (4.7). For a stationary

axisymmetric black hole solution the symmetries constrain the metric not to depend on t

and ϕ. These symmetries also constrain the scalars and gauge field strengths to depend

only on the remaining coordinates, which we choose to call r and θ. We further assume

FΛ
rθ = 0, such that (after also using the gauge freedom) we can set AΛ

r = AΛ
θ = 0 for all Λ.

4.4 Gaugino variation

Plugging the ansatz (4.12) into the gaugino variation δλiA = 0 gives

P x
Λf

Λ
i = 0 , (4.14)

and
(
e−iα∂µz

iγµγ0 +G−i
µνγ

µν
)
εA = 0 . (4.15)

The latter condition can be simplified further, but we will see in what follows that it

automatically becomes simpler or gets satisfied in certain cases, so we will come back

to (4.15) later. We will make use of condition (4.14) when solving the gravitino integrabil-

ity conditions.

4.5 Hyperino variation

With the ansatz (4.12), setting the hyperino variation to zero gives the condition

e−iα∇µq
uγµγ0 + 2gk̃u

ΛL̄
Λ = 0 . (4.16)

Using the independence of the gamma matrices, one finds

∇rq
u = ∇θq

u = 0 ,

∇ϕq
u = ωϕ∇tq

u ,

∇tq
u = −

√
2gk̃u

Λ

(
XL̄Λ + X̄LΛ

)
,

0 = k̃u
Λ

(
X̄LΛ −XL̄Λ

)
.

(4.17)

Using axial symmetry and the gauge choice for the vector fields, AΛ
r = AΛ

θ = 0, it follows

that ∇rq
u = ∂rq

u and ∇θq
u = ∂θq

u, and these both vanish from the BPS conditions.

Furthermore, the hypers cannot depend on t and ϕ, because this would induce such depen-

dence also on the vector fields and complex scalars via the Maxwell equations (4.9). Thus

the hypers cannot depend on any of the space-time coordinates, so they are constant. This

will be important when we analyze the gravitino variation.
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4.6 Gravitino variation

The gravitino equation reads

∇µεA = −e−iα
(
T−

µργ
ρδA

C + gSABǫ
BCγµ

)
γ0εC . (4.18)

We study the integrability condition which follows from this equation. The explicit com-

putation is presented in appendix B. The main result that we will first focus on is equa-

tion (B.9),

T−
µνP

x
ΛL

Λ = 0 , (4.19)

so that there are two separate cases: T−
µν = 0 or P x

ΛL
Λ = 0. We will study these two cases

in different subsections.

4.6.1 T−
µν = 0

In this case the integrability conditions imply that the space-time is maximally symmetric

with constant scalar curvature P x
ΛL

Λ, as further explained in appendix B.1. This corre-

sponds either to Minkowski space when P x
ΛL

Λ = 0, or AdS4 when the scalar curvature is

non-zero. Although there might be interesting half BPS solutions here, they will certainly

not describe black holes.

4.6.2 P x
Λ = 0

The second case is P x
ΛL

Λ = 0. We combine this identity with P x
Λf

Λ
i = 0 from (4.14). We

now obtain

P x
Λ

(
L̄Λ

fΛ
i

)
= 0 . (4.20)

The matrix between brackets on the left hand side is invertible. This follows from the

properties of special geometry, and we used it also in the characterization of the maximally

supersymmetric vacua in [28]. We therefore conclude that P x
Λ = 0. Next, we show that

in this case we have enough information to solve the gravitino variation and give the

metric functions.

From the definition (B.1) for ∇µεA, the quaternionic Sp(1) connection ωµA
B vanishes,

as the hypers are constant by the arguments in section 4.5. Combining this with P x
Λ = 0,

we see that the gravitino variation (2.20) is precisely the same as in a theory without

hypermultiplets and vanishing FI-terms. Thus our problem reduces to finding the most

general solution of the gravitino variation in the ungauged theory. The answer, as proven

by [9, 10], is that this is the well-known BLS solution [5] for stationary black holes (or

naked singularities and monopoles in certain cases). Thus we can use the BLS solution,

which in fact also solves the gaugino variation (4.15). We now only have to impose the

Maxwell equations, which are not the same as in the BLS setup, due to the gauging of

the hypermultiplets.

The sections are again described by functions HΛ and H̃Λ, as in (2.7), although not all

of them are harmonic. The metric and field strengths are given by (2.8), (2.13) and (2.14).
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In terms of our original description (4.7), we have that γmn is three-dimensional flat

space and

eK = 2|X|2 . (4.21)

In the ungauged case the Maxwell equations have no source term and the field strengths are

thus described by harmonic functions, while now in our case they will be more complicated.

We can then directly compare to the original BLS solution described in section 2.2 and

see how the new equations of motion change it. At this point we have chosen the phase

α in (4.12) to vanish, just as it does in the BLS solution. We can do this without any

loss of generality since an arbitrary phase just appears in the intermediate results for the

symplectic sections (2.7), but drops out of the physical quantities such as the metric and

the field strengths.

We repeat that the Maxwell equations are given by (4.9),

ǫµνρσ∂νGΛρσ = −ghuv k̃
u
Λ∇µqv , (4.22)

with Gµν defined as in (2.11). Since our Bianchi identities are unmodified, and the same as

in BLS, we again solve them by taking the H̃Λ’s to be harmonic functions. The difference

is in the Maxwell equations.

We plug in the identities from (4.17), (2.8) and (2.14). The components of (4.22) with

µ 6= t are then automatically satisfied. The only non-trivial equation follows from µ = t,

and reads

�HΛ = −2g2e−Khuvk̃
u
Λk̃

v
ΣX

Σ , (4.23)

where � is again the three-dimensional Laplacian in flat space. The left hand side is real,

and so is the right hand side, as a consequence of the last equation in (4.17) and the fact

that we have chosen the phase in X/|X| (see (4.12) to vanish. In other words, X is real,

and therefore also k̃u
ΛX

Λ is real.

We furthermore have a consistency condition for the field strengths. The gauge poten-

tials appear in (4.17), but also in (2.14), and these should lead to the same solution. These

consistency conditions were not present in the ungauged case, since in that case there are

no restrictions on FΛ from the hyperino variation. The constraints can be easily derived

from the integrability conditions of (4.17), and are given by

k̃u
ΛH̃

Λ = 0 ,

k̃u
ΛF

Λ
rϕ = −k̃u

Λ∂r

(
ωϕeKXΛ

)
,

k̃u
ΛF

Λ
θϕ = −k̃u

Λ∂θ

(
ωϕeKXΛ

)
,

k̃u
ΛF

Λ
rt = −k̃u

Λ∂r

(
eKXΛ

)
,

k̃u
ΛF

Λ
θt = −k̃u

Λ∂θ

(
eKXΛ

)
.

(4.24)

The first condition can always be satisfied as it merely implies that some of the har-

monic functions H̃Λ depend on the others (remember that the hypermultiplet scalars are
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constant, and therefore also the Killing vectors k̃u
Λ). In more physical terms, this constraint

decreases the number of magnetic charges by the rank of k̃u
Λ. The other constraints have to

be checked against the explicit form of the field strengths (2.13) and (2.14). This cannot

be done generically and has to be checked once an explicit model is taken.

In section 3, we explained how the vanishing of k̃u
ΛL

Λ and k̃u
ΛAµ led to a BPS solution

using spontaneous symmetry breaking. We can see that also from the equations of this

section. When k̃u
ΛL

Λ = 0, the right hand side of (4.23) is zero. This equation is then

solved by harmonic functions HΛ. Furthermore, as k̃u
Λ is constant, we can move it inside

the derivatives in (4.24), so the right hand sides are zero. The left hand sides are zero as

well, as k̃u
ΛF

Λ
µν = 0. Finally, the condition k̃u

ΛH̃
Λ = 0 is satisfied as k̃u

ΛL
Λ is already real.

5 Solutions with scalar hair

In this section, we search for solutions of the above BPS conditions that do not fall in the

class described in section 3. They describe asymptotically flat black holes and would have

non-trivial profiles for the massive vector and scalar fields, i.e. they would be distinguishable

by the scalar hair degrees of freedom outside the black hole horizon. Remarkably, we could

not find models with pure scalar hair solutions without the need to introduce some extra

features, such as ghost modes or non-vanishing fermions. Below, we describe two examples

of solutions that lead to at least one negative eigenvalue of the Kähler metric. We show that

if we require strictly positive definite kinetic terms in the considered models, one cannot

find scalar hair solutions, but only the ones described in section 3. It is of course hard to

justify these ghost solutions physically. However, there have been cases in literature where

this is not necessarily a problem, e.g. in Seiberg-Witten theory [41, 42] one has to perform

duality transformation such that the kinetic terms remain positive definite. Whether a

similar story holds in our case remains to be seen. If such duality transformations exist

they will have to map the ghost black hole solutions of our abelian electrically gauged

supergravity to proper black hole solutions, possibly of magnetically gauged supergravity.

However, we cannot present any direct evidence for such a possibility.

5.1 Ghost solutions

Before we present our examples, we start with a general comment. We can obtain some

more information from the Einstein equations. The trace of the Einstein equations reads

R = T q + T z + 4V , (5.1)

where R is the Ricci scalar, and we have defined

T q = −2huv∇µq
u∇µqv , T z = −2gī∂µz

i∂µz̄̄ . (5.2)

Using the BPS conditions in (4.17), one quickly finds T q = −2V . Furthermore, as ∂tz
i =

0, we find11 T z ≥ 0, and V ≥ 0 by equations (2.16) and the condition P x
Λ = 0. We

11Recall that our spacetime signature convention is (+,−,−,−).
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therefore find

R = T z + 2V ≥ 0 , (5.3)

as long as the metric gī is positive definite. So the BPS conditions forbid the Ricci

scalar R to become negative. In our examples below, the metric components will show

some oscillatory behavior, as a consequence of the non-linear differential equation (4.23).

Therefore, their derivatives, and hence the Ricci scalar, will oscillate between positive and

negative values. This would contradict the positivity bound (5.3), unless the Kähler metric

gī contains regions in which it is not positive definite. We now discuss this in detail with

two examples.

5.1.1 Quadratic prepotential

We start with two simple models, which have only one vector multiplet. They are described

by the two prepotentials

F = − i

2

(
X0X0 ±X1X1

)
. (5.4)

These lead to the special Kähler metrics

gzz̄ =
∓1

(1 ± zz̄)2
, (5.5)

where z ≡ X1/X0. With the upper sign, we therefore get a negative definite Kähler metric

and the vector multiplet scalar is a ghost field. With the lower sign, we obtain a positive

definite metric. We couple this to the universal hypermultiplet, and gauge isometry 5 from

appendix C, using A1
µ as the gauge field. The condition P x

Λ = 0 fixes u = v = D = 0 and

the only non-vanishing component of the Killing vectors is then k̃R
1 = 2Ra1, where a1 is

a constant.

From the relations (2.7) it follows that X0 = 1
2(H0 − iH̃0) and X1 = 1

2(±H1 − iH̃1).

The Kähler potential (2.9) is then

e−K = 2
(
X0X̄0 ±X1X̄1

)
. (5.6)

As we do not use A0
µ for the gauging, X0 remains harmonic, such that even if the solution

for X1 is considerably different, we still have hope of producing a black hole by having

X1 as a small perturbation of the leading term X0 in the metric function e−K. For sim-

plicity, we restrict ourself to the spherically symmetric single-centered case, so now our

constraints (4.24) lead to H̃1 = 0 and k̃u
ΛF

Λ
rt = −k̃u

Λ∂r

(
eKXΛ

)
. The latter eventually im-

plies that H̃0 is constant. Since we can absorb this constant by rescaling H0, we will set

H̃0 = 0. Thus we are left with 2X0 = H0 =
√

2+ q0

r (q0 > 0), where we set the constant of

the harmonic function to
√

2 to obtain canonically normalized Minkowski space as r → ∞.

The metric is given by (2.8), where

e−K =
1

2

((√
2 +

q0
r

)2
±H2

1

)
. (5.7)
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The only undetermined function is H1, which is subject to the only equation left to be

satisfied, (4.23), which in this case is given by

�H1 = ∓e−KH1 = ∓1

2

((√
2 +

q0
r

)2
±H2

1

)
H1 , (5.8)

after setting g|k̃| = 1. Besides the trivial solution H1 = 0 (belonging to the class solutions

from section 3), we could not find an analytic solution to these equations. We can analyze

the differential equation as r → 0 and r → ∞. As r → ∞, we require e−K → 1, to

obtain flat space at infinity.12 Likewise, we require, as r → 0, that e−K → q2r−2, to obtain

AdS2 ×S2 at the horizon. The constant q (which is not necessarily equal to q0) determines

the (equal) radii of AdS2 and S2. If we solve (5.8) for large values of r, we have to solve

�H1 = ∓H1; for small values of r we have to solve �H1 = ∓1
2q

2r−2H1.

• With the upper sign (the ghost model), we find the general solution

H1 = A
cos(r)

r
+B

sin(r)

r
, r → ∞ , (5.9)

H1 = Cr−
1

2
− 1

2

√
1−4q2

+Dr−
1

2
+ 1

2

√
1−4q2

, r → 0 . (5.10)

As long as 4q2 < 1, all the asymptotics are fine.

• With the lower sign (the non-ghost model), we find the general solution

H1 = A
e−r

r
+B

er

r
, r → ∞ , (5.11)

H1 = Cr−
1

2
− 1

2

√
1+4q2

+Dr−
1

2
+ 1

2

√
1+4q2

, r → 0 . (5.12)

When B is nonzero, this violates the boundary condition that e−K → 1 as r → ∞,

so we have to set B = 0. Likewise, we have to set C = 0. We will now prove that

imposing such boundary conditions implies H1 = 0. To do this, we use the identity

∫ ∞

0
(rH1)∂

2
r (rH1) dr = −

∫ ∞

0
∂r(rH1)∂r(rH1) dr + (rH1)∂r(rH1)

∣∣∣
r=∞

r=0
. (5.13)

Using (5.11) and (5.12) one finds that, for B = C = 0, the boundary term vanishes.

On the left-hand side, we use (5.8), and we obtain (using �H1 = r−1∂2
r (rH1))

∫ ∞

0
H1e

−KH1 dr = −
∫ ∞

0
∂r(rH1)∂r(rH1) dr . (5.14)

The left-hand side is non-negative, whereas the right-hand side is non-positive, so

this proves H1 = 0. This argument can easily be repeated for solutions with only

axial symmetry.

12Perhaps one can relax this requirement, and generalize this analysis to include BPS domain walls, which

have different boundary conditions. For a discussion in four dimensions, see e.g. [47].
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(a) The function z = H1/H0.
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(b) The Kähler potential e−K.

Figure 1. Plots of the solution to the differential equation (5.8) for q0 = 1, using boundary

conditions H1(1) = 10 and H ′
1
(1) = 1. The scalar z approaches zero at the horizon at r = 0, and

the Kähler potential e−K approaches 1 as r → ∞.

We can plot the solution with the upper sign numerically with generic starting condi-

tions, and the result is shown on figure 1(a). The metric function gets oscillatory pertur-

bations, while having its endpoints fixed to the desired values as shown on figure 1(b).

The function H1 approaches zero as r → ∞ in an oscillatory fashion, which can be

seen in figure 1(a). To investigate the behavior near the horizon at r = 0, we also checked

that rH1 approaches zero, and hence H1 diverges slower than 1/r. Both are in agreement

with the asymptotic analysis above.

The numerics further show that the metric function for negative values of r yields the

expected singularity at r = − q0√
2
. We conclude that this is indeed a black hole space-time,

having one electric charge q0, and the fluctuations around the usual form of the metric are

due to the effect of the abelian gauging of the hypermultiplet.

Let us now try to give a bit more physical interpretation of this new black hole space-

time. After more careful inspection of the solution, we see that at the horizon and asymp-

totically at infinity we again have supersymmetry enhancement, since the vector multiplet

scalars are fixed to a constant value. It is interesting that the electric charge, associated to

the broken gauge symmetry vanishes at the horizon, i.e. the black hole itself is not charged

with q1 exactly as in the normal case without ghosts. Yet there is a non-zero charge density

for this charge everywhere in the spacetime outside the black hole, which is the qualita-

tively new feature of the ghost solutions. Clearly the fact that there is non-vanishing charge

density everywhere in space-time does not change the asymptotic behavior, but it seems

that it is physically responsible for the ripples that can be observed in the metric function

on figure 1(b) (of course this is all related to the fact that we have propagating ghost

fields). We should note that these are not the first rippled black hole solutions, similar

behavior is found in the higher derivative ungauged solutions, e.g. in [43], where also one

finds ghost modes in the resulting theory. The detailed analysis in section 4 of [43] holds

in our case, i.e. the main physical feature of the ripples is that gravitational force changes

from attractive to repulsive in some space-time points.
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5.1.2 Cubic prepotential

The example above shows already the general qualitatively new features of this class of

black holes with ghost fields, but is still not interesting from a string theory point of view,

since Calabi-Yau compactifications lead to cubic prepotentials of the form

F = −κijkX
iXjXk

6X0
. (5.15)

The simplest case one can consider is the STU model of section 3.2.1. We coupled it

to the universal hypermultiplet with a single gauged isometry and found it impossible to

produce any new solutions. However, other choices of κijk allow for interesting numerical

solutions of (4.23). For this purpose we consider a relatively simple model with three

vector multiplets:

F =
(X1)3 − (X1)2X2 −X1(X3)2

2X0
. (5.16)

We again use the universal hypermultiplet and gauge the same isometry as before, but we

now use only A3
µ for our gauging. Again, the condition P x

Λ = 0 fixes u = v = D = 0,

and the only non-vanishing component of the Killing vector is k̃R
3 = 2Ra3. In parts of

moduli space this model exhibits proper Calabi-Yau behavior, i.e. the Kähler metric is

positive definite, but there are regions where gī has negative eigenvalues (or e−K becomes

negative). There is no general expression for this so-called positivity domain; one has to

analyze an explicit model to find the conditions.

For simplicity, we set H̃ i = H0 = 0, so the non-vanishing functions are Hi and H̃0.

Inverting (2.7) we obtain for the Kähler potential

e−K =
√

2H2

√
H̃0

(
H1 +H2 +

H2
3

4H2

)
. (5.17)

We see that, as is commonly encountered in these models, one has to choose the signs of

the functions Hi and H̃0 such that this gives a real and positive quantity. With these we

satisfy all conditions in (4.24) and are left to solve (4.23) that explicitly reads:

�H3 = −a2
3H̃

0

(
H1 +H2 +

H2
3

4H2

)
H3 , (5.18)

where H̃0,H1 and H2 are harmonic functions, and we have set g|k̃| = 1 for convenience.

We impose the same boundary conditions, so as r → ∞, we require e−K → 1, to

obtain flat space at infinity. Likewise, we require, as r → 0, that e−K → q2r−2, to obtain

AdS2 × S2 at the horizon. Using (5.17), we then find that we have to solve

�H3 = −a2
3q

2r−2H3 , as r → 0 ,

�H3 = −a2
3c

2H3 , as r → ∞ ,

where c2 is also a constant, specified by the asymptotics of H̃0,H1 and H2. We therefore

again find

H3 = A
cos(a3cr)

r
+B

sin(a3cr)

r
, as r → ∞ . (5.19)
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These functions are oscillating; therefore the Kähler potential (5.17) will also oscillate. This

causes the Ricci scalar to become negative, which is in violation of the bound (5.3). There-

fore, there is always a negative eigenvalue of the metric, corresponding to a ghost mode.

We could only find a numerical solution to this equation, and the results are qualita-

tively the same as the ones on figure 1, so we will omit them for this model.

It is therefore possible to find black hole solutions in these Calabi-Yau models, but

they do contain regions in which scalars become ghost-like.

5.2 Fermionic hair

There is a different way of generating scalar hair with properly normalized positive-definite

kinetic terms. As such, we can thereby avoid the ghost-like behavior of the previously

discussed examples. The idea is simple and works for any solution that breaks some

supersymmetry. By acting with the broken susy generators on a bosonic solution, we will

turn on the fermionic fields to yield the fermionic zero modes. These fermionic zero modes

solve the linearized equations of motion and produce fermionic hair. In turn, the fermionic

hair sources the equations of motion for the bosonic field, and in particular, the scalar

field equations will have a source term which is bilinear in the fermions. The solution of

this equation produces scalar hair and can be found explicitly by iterating again with the

broken supersymmetries. This iteration procedure stops after a finite number of steps and

produces a new solution to the full non-linear equations of motion. By starting with a BPS

black hole solution of the type discussed in section 3, one therefore produces new solutions

with both fermionic and scalar hair. For a discussion on this for black holes in ungauged

supergravity, see [44].

The explicit realization of this idea is fairly complicated since it requires to explicitly

find the Killing spinors preserving supersymmetry. This can sometimes be done also just

by considering the possible bosonic and fermionic deformations of the theory, as done in

e.g. [45, 46] for black holes in ungauged supergravity. The extension of this hair-analysis

to gauged supergravities would certainly be an interesting extension of our work.

6 Outlook

In this paper, we initiated the study of BPS black holes in N = 2,D = 4 gauged super-

gravities. An interesting class of solutions can be found through spontaneous symmetry

breaking. They can be constructed explicitly by embedding known solutions of ungauged

supergravity into the gauged theory. We also investigated the possibility of more general

BPS black hole solutions, with scalar hair. Remarkably, we could not find static solutions

without ripples in the spacetime geometry and ghost-like behavior for some of the scalar

fields. It would be interesting to understand this better, prove a no-go theorem or see if

there are ways to circumvent the ghost-problem, e.g. along the lines of section 5.2.

The BPS black hole solutions we considered in the second half of the paper were, as

a consequence of the Killing spinor ansatz (4.12), asymptotically flat. To find solutions

which asymptote to anti-de Sitter space, one needs to generalize the Killing spinor ansatz
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to for instance, (4.13). Perhaps the coupling to the hypermultiplets then allows for BPS

black hole solutions in AdS4 which do not contain any naked singularities.

Finally, one would like to go beyond the two-derivative approximation and study the

effects of higher order curvature terms in gauged supergravities. This is interesting since the

thermodynamics of the black hole, in particular the Bekenstein-Hawking law, will change.

As a consequence, the microscopic interpretation within flux compactifications of string

theory, might also reveal new interesting phenomena for black hole physics and quantum

gravity in general.
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A Conventions

We mainly follow the notation and conventions from [16], so we use a {+,−,−,−} signature

for the spacetime metric. Self-dual and anti-self-dual tensors are defined as

F±
µν =

1

2

(
Fµν ± i

2
ǫµνρσF

ρσ

)
, (A.1)

where ǫ0123 = 1, and Fµν ≡ 1
2(∂µAν − ∂νAµ) for abelian gauge fields.

Our gamma matrices satisfy

{γa, γb} = 2ηab ,

[γa, γb] ≡ 2γab ,

γ5 ≡ −iγ0γ1γ2γ3 = iγ0γ1γ2γ3 .

(A.2)

In addition, they can be chosen such that

γ†0 = γ0, γ0γ
†
i γ0 = γi, γ†5 = γ5, γ∗µ = −γµ , (A.3)

and an explicit example of such a basis is the Majorana basis, given by

γ0 =

(
0 σ2

σ2 0

)
, γ1 =

(
iσ3 0

0 iσ3

)
, γ2 =

(
0 −σ2

σ2 0

)
,

γ3 =

(
−iσ1 0

0 −iσ1

)
, γ5 =

(
σ2 0

0 −σ2

)
, (A.4)

where the σi are the Pauli matrices.
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B Integrability conditions

The supercovariant derivative in (2.20) is defined as

∇µεA =

(
∂µ − 1

4
ωab

µ γab

)
εA +

i

2
AµεA + ωµA

BεB . (B.1)

The connections Aµ and ωµA
B are associated to the special Kähler and quaternion-Kähler

manifolds, respectively; we refer to [16] for more details. The curvature computed from

these expressions is, in a theory with neutral vector multiplet scalars, given by [28]

[∇µ,∇ν ]εA = − 1

4
Rµν

abγabεA − gī∂[µz
i∂ν]z

̄εA

+ 2iΩuvA
B∇[µq

u∇ν]q
vεB + igσx

A
BFΛ

µνP
x
ΛεB .

(B.2)

If εA is a Killing spinor, it obeys

∇µεA = −ǫABT
−
µργ

ρεB − igSABγµε
B , (B.3)

hence the commutator is

[∇µ,∇ν ]εA = − ǫABDµT
−
νργ

ρεB +
g

2
σx

AB∇µP
xγνε

B − (µν)

+ T−
νργ

ρT+
µσγ

σεA − (µν)

− g

2
T−

νργ
ργµP

x
ΛL̄

Λσx
A

CεC +
g

2
T+

µργνγ
ρP x

ΛL
Λσx

A
CεC − (µν)

+
g2

2

(
δA

CP xP x − iǫxyzσx
A

CP yP z
)
γµνεC .

(B.4)

One can now equate (B.4) to (B.2). We use (4.12) to eliminate εA in terms of εA and

for convenience define b ≡ −ieiα and P x ≡ P x
ΛL

Λ. The remaining equation should hold for

any choice of εA. We can then use the independence of the gamma matrices and the SU(2)

matrices ǫAB, σ
x
AB to find the following list of conditions:

1. Terms proportional to ǫAB , with no gamma matrices,

bDµT
−
ν0 − (µν) = −gī∂[µz

i∂ν]z
̄ . (B.5)

2. Terms proportional to ǫAB , with two gamma matrices,

bDµT
−
νργ

ρ0 + T−
νρT

+
µσγ

ρσ − (µν) +
g2

2
P xP xγµν = −1

4
Rµν

abγab . (B.6)

3. Terms proportional to σx
AB , no gamma matrix,

g

2
b∇µP

xgν0 − (µν) + gT−
µνP

x + gT+
µνP

x

= g
(
LΛT+

µν − L̄ΛT−
µν − 2ifΛ

ı̄ G
i+
µν + 2ifΛ

i G
i−
µν

)
P x

Λ ,
(B.7)
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where we used that −Ωx
uv∇[µq

u∇ν]q
v = 0, which follows from (4.17). Using fΛ

i P
x
Λ = 0

from (4.14) we therefore find

g

2
b∇µP

xgν0 − (µν) = −2gT−
µνP

x
ΛL̄

Λ . (B.8)

We now take components µ = θ and use ∇θP
x = 0 and gθ0 = 0. We then find

T−
θνP

x = 0, whence P x = 0 or T−
θν = 0. In the latter case also T−

µν = 0, because of

the anti-self-duality property, and then Tµν = 0. We conclude

T−
µνP

x
ΛL

Λ = 0 . (B.9)

4. Terms proportional to σx
AB , two gamma. Using (B.9) we find

ǫxyzP yP zγµν = 0 . (B.10)

To summarize: we found two cases, one with T−
µν = 0, the other with P x = 0. We now

list the remaining conditions for each case.

B.1 Case A: Tµν = 0

The remaining conditions are

g2

2
P xP xγµν = −1

4
Rµν

abγab ,

gī∂[µz
i∂ν]z

̄ = 0 ,

ǫxyzP yP z = 0 .

(B.11)

The first condition implies that the spacetime is maximally symmetric, with constant

curvature ∝ P xP x. This case is discussed in section 4.6.1.

B.2 Case B: P x
ΛL

Λ = 0

The remaining conditions are

bDµT
−
ν0 − (µν) = −gī∂[µz

i∂ν]z
̄ ,

bDµT
−
νργ

ρ0 + T−
νρT

+
µσγ

ρσ − (µν) = −1

4
Rµν

abγab .
(B.12)

From the second condition we find the Riemann tensor

Rµνρσ =R−
µνρσ +R+

µνρσ ,

R−
µνρσ = − bDµT

−
νρe

0
σ + T−

νρT
+
µσ − (µν)

− bDνT
−
µσe

0
ρ + T−

µσT
+
νρ − (µν)

+ biǫρσ
λκDµT

−
νλe

0
κ + iǫρσ

λκT−
νλT

+
µκ − (µν) .

This case is discussed in section 4.6.2.
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C The universal hypermultiplet

The metric for the universal hypermultiplet is known to be

ds2 =
1

R2

(
dR2 +R (du2 + dv2) +

(
dD +

1

2
udv − 1

2
vdu

)2
)
. (C.1)

It describes the coset space SU(2, 1)/U(2) and therefore there are eight Killing vectors

spanning the isometry group SU(2, 1). In the coordinates of (C.1), they can be written as

ka=1 = ∂D , (C.2)

ka=2 = ∂u − v

2
∂D , (C.3)

ka=3 = ∂v +
u

2
∂D , (C.4)

ka=4 = −v∂u + u∂v , (C.5)

ka=5 = 2R∂R + u∂u + v∂v + 2D∂D , (C.6)

ka=6 = 2Rv∂R + 2(uv −D)∂u + (−2q + v2 − u2)∂v + (uq +Dv)∂D , (C.7)

ka=7 = 2Ru∂R + (−2q + u2 − v2)∂u + 2(D + uv)∂v + (−vq +Du)∂D , (C.8)

ka=8 = 2DR∂R + (Du− vq)∂u + (Dv + uq)∂v + (D2 − q2)∂D , (C.9)

where q ≡ R+ 1
4(u2 + v2).

The moment maps are computed from

P x = Ωx
uvD

ukv . (C.10)

The quaternionic two-forms Ωx satisfy ΩxΩy = −1
4δ

xy + 1
2ǫ

xyzΩz, and can be written as

Ω1 =
1

2r3/2

(
dr ∧ du+ dv ∧ dD +

v

2
du ∧ dv

)
,

Ω2 =
1

2r3/2

(
−dr ∧ dv + du ∧ dD +

u

2
du ∧ dv

)
,

Ω3 =
1

2r2

(
dr + dD − 1

2
vdr ∧ du+

1

2
udr ∧ dv + rdu ∧ dv

)
.

(C.11)

We then find the moment maps

Pa=1 =

{
0, 0,− 1

2R

}
, (C.12)

Pa=2 =

{
− 1√

R
, 0,

v

2R

}
,

Pa=3 =

{
0,

1√
R
,− u

2R

}
,

Pa=4 =

{
v√
R
,
u√
R
, 1 − u2 + v2

4R

}
,

Pa=5 =

{
− u√

R
,
v√
R
,−D

R

}
,

– 30 –



J
H
E
P
0
8
(
2
0
1
0
)
1
0
3

Pa=6 =

{
2(D − uv)√

R
,
2(q − u2)√

R
,
−Dv − u(3q − u2 − v2)

R

}
,

Pa=7 =

{
2(−q + v2)√

R
,
2(D + uv)√

R
,
−Du+ v(3q − u2 − v2)

R

}
,

Pa=8 =

{
v
(
−4R+ u2 + v2

)
− 4Du

4
√
R

,
−2qu+ u3 + 2Dv + uv2

2
√
R

,
2R(u2 + v2) − q2 −D2

2R

}
.

These formulae are needed for some of the examples that we consider in the main text of

this paper.
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[17] B. de Wit, M. Roček and S. Vandoren, Gauging isometries on hyperKähler cones and

quaternion- Kähler manifolds, Phys. Lett. B 511 (2001) 302 [hep-th/0104215] [SPIRES].

[18] L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological

Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [SPIRES].

[19] V.A. Kostelecky and M.J. Perry, Solitonic black holes in gauged N = 2 supergravity,

Phys. Lett. B 371 (1996) 191 [hep-th/9512222] [SPIRES].

[20] S.L. Cacciatori and D. Klemm, Supersymmetric AdS4 black holes and attractors,

arXiv:0911.4926 [SPIRES].

[21] D. Klemm and E. Zorzan, The timelike half-supersymmetric backgrounds of N = 2, D = 4

supergravity with Fayet-Iliopoulos gauging, arXiv:1003.2974 [SPIRES].

[22] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy,

Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].

[23] J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory,

JHEP 12 (1997) 002 [hep-th/9711053] [SPIRES].

[24] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics,

Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

[25] G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [SPIRES].

[26] J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory,

Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].

[27] J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic

superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].

[28] K. Hristov, H. Looyestijn and S. Vandoren, Maximally supersymmetric solutions of D = 4

N = 2 gauged supergravity, JHEP 11 (2009) 115 [arXiv:0909.1743] [SPIRES].

[29] S.L. Cacciatori, D. Klemm, D.S. Mansi and E. Zorzan, All timelike supersymmetric solutions

of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets,

JHEP 05 (2008) 097 [arXiv:0804.0009] [SPIRES].

[30] M. Huebscher, P. Meessen, T. Ort́ın and S. Vaula, N=2 Einstein- Yang-Mills’s BPS

solutions, JHEP 09 (2008) 099 [arXiv:0806.1477] [SPIRES].

[31] D. Klemm and E. Zorzan, All null supersymmetric backgrounds of N = 2, D = 4 gauged

supergravity coupled to abelian vector multiplets, Class. Quant. Grav. 26 (2009) 145018

[arXiv:0902.4186] [SPIRES].

[32] W.A. Sabra, Anti-de Sitter BPS black holes in N = 2 gauged supergravity,

Phys. Lett. B 458 (1999) 36 [hep-th/9903143] [SPIRES].

– 32 –

http://dx.doi.org/10.1016/0370-2693(84)92019-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B136,354
http://dx.doi.org/10.1016/0550-3213(85)90154-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B255,569
http://dx.doi.org/10.1016/0550-3213(91)90077-B
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B359,705
http://dx.doi.org/10.1016/S0393-0440(97)00002-8
http://arxiv.org/abs/hep-th/9605032
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9605032
http://dx.doi.org/10.1016/S0370-2693(01)00636-0
http://arxiv.org/abs/hep-th/0104215
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0104215
http://dx.doi.org/10.1016/0550-3213(92)90684-4
http://arxiv.org/abs/hep-th/9203018
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9203018
http://dx.doi.org/10.1016/0370-2693(95)01607-4
http://arxiv.org/abs/hep-th/9512222
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9512222
http://arxiv.org/abs/0911.4926
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0911.4926
http://arxiv.org/abs/1003.2974
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1003.2974
http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://arxiv.org/abs/hep-th/9601029
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9601029
http://dx.doi.org/10.1088/1126-6708/1997/12/002
http://arxiv.org/abs/hep-th/9711053
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9711053
http://dx.doi.org/10.1088/0264-9381/26/22/224002
http://arxiv.org/abs/0903.3246
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.3246
http://arxiv.org/abs/1002.1722
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1002.1722
http://dx.doi.org/10.1103/PhysRevLett.103.151601
http://arxiv.org/abs/0907.3796
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.3796
http://dx.doi.org/10.1007/JHEP02(2010)060
http://arxiv.org/abs/0912.0512
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0912.0512
http://dx.doi.org/10.1088/1126-6708/2009/11/115
http://arxiv.org/abs/0909.1743
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.1743
http://dx.doi.org/10.1088/1126-6708/2008/05/097
http://arxiv.org/abs/0804.0009
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.0009
http://dx.doi.org/10.1088/1126-6708/2008/09/099
http://arxiv.org/abs/0806.1477
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.1477
http://dx.doi.org/10.1088/0264-9381/26/14/145018
http://arxiv.org/abs/0902.4186
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.4186
http://dx.doi.org/10.1016/S0370-2693(99)00564-X
http://arxiv.org/abs/hep-th/9903143
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9903143


J
H
E
P
0
8
(
2
0
1
0
)
1
0
3

[33] A.H. Chamseddine and W.A. Sabra, Magnetic and dyonic black holes in D = 4 gauged

supergravity, Phys. Lett. B 485 (2000) 301 [hep-th/0003213] [SPIRES].

[34] M.M. Caldarelli and D. Klemm, Supersymmetry of anti-de Sitter black holes,

Nucl. Phys. B 545 (1999) 434 [hep-th/9808097] [SPIRES].
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