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becomes exponentially light when approaching a point that is at infinite proper distance

in field space. In this paper we investigate this conjecture in the Kähler moduli spaces of

Calabi-Yau threefold compactifications and further elucidate the proposal that the infinite

tower of states is generated by the discrete symmetries associated to infinite distance points.

In the large volume regime the infinite tower of states is generated by the action of the

local monodromy matrices and encoded by an orbit of D-brane charges. We express these

monodromy matrices in terms of the triple intersection numbers to classify the infinite dis-

tance points and construct the associated infinite charge orbits that become massless. We

then turn to a detailed study of charge orbits in elliptically fibered Calabi-Yau threefolds.

We argue that for these geometries the modular symmetry in the moduli space can be used

to transfer the large volume orbits to the small elliptic fiber regime. The resulting orbits

can be used in compactifications of M-theory that are dual to F-theory compactifications

including an additional circle. In particular, we show that there are always charge orbits

satisfying the distance conjecture that correspond to Kaluza-Klein towers along that cir-

cle. Integrating out the KK towers yields an infinite distance in the moduli space thereby

supporting the idea of emergence in that context.

Keywords: Superstring Vacua, F-Theory, Global Symmetries, M-Theory

ArXiv ePrint: 1812.07548

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP08(2019)075

mailto:p.l.j.corvilain@uu.nl
mailto:t.w.grimm@uu.nl
mailto:i.valenzuela@cornell.edu
https://arxiv.org/abs/1812.07548
https://doi.org/10.1007/JHEP08(2019)075


J
H
E
P
0
8
(
2
0
1
9
)
0
7
5

Contents

1 Introduction 1

2 Swampland, emergence of infinite distance and global symmetries 4

2.1 Emergence and global symmetries 5

2.2 Kaluza-Klein circle compactification 8

3 Infinite distances and charge orbits at large volume in Type IIA 10

3.1 Classifying infinite distance limits in the large volume regime 11

3.2 Infinite distances in Kähler moduli space 16

3.3 Infinite charge orbits of states 18

3.4 Infinite distances and charge orbits in elliptic fibrations 23

3.5 Transferring the orbit to small volumes 25

4 On infinite distances and charge orbits in M- and F-theory 28

4.1 6D supergravity circle compactification and F-theory 28

4.2 M-theory on a Calabi-Yau threefold and the F-theory match 31

4.3 Large volume limits in M-theory 33

4.4 F-theory limit and geometric realization of the Kaluza-Klein tower 36

5 Conclusions 38

A Constructing the massless infinite charge orbits 41

A.1 Type A(n) = II 44

A.2 Type A(n) = III 45

A.3 Type A(n) = IV 46

B Fourier-Mukai transformation 49

1 Introduction

The term Swampland [1] refers to those quantum effective field theories which cannot

be UV embedded in a consistent theory of quantum gravity. In particular, there are

several proposals for consistency constraints that any effective theory weakly coupled to

Einstein gravity must satisfy to arise from string theory. In this paper, we will focus on

the Swampland Distance Conjecture (SDC) [2], for which infinite distances in field space

imply an infinite tower of states becoming massless exponentially fast in the proper field

distance. This infinite tower of states is associated to a quantum gravity cut-off that goes

to zero at infinite distance and above which a quantum effective field theory description

weakly coupled to Einstein gravity is no longer possible. Therefore, the conjecture implies
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an upper bound on the scalar field range that any effective theory can accommodate in

terms of the energy scale up to which the effective theory is valid. Such a bound can have

several potential implications for phenomenology especially when constructing models of

large field inflation.

Due to the importance of the swampland criteria to yield non-trivial quantum gravity

constraints at low energies as well as to provide new guidelines to make progress in high

energy physics, it is essential to gather more evidence to prove or disprove these conjectures

in a rigorous way. It is the aim of this paper to continue testing the Swampland Distance

Conjecture in string theory compactifications. As a byproduct of analyzing this conjecture

we further elucidate the very rich underlying geometric structure of the moduli space and

compactification manifolds required for the conjecture to hold. This structure, together

with the understanding of the states arising in string theory, implies highly non-trivial

correlations between the number of light states and field distances. In certain cases, as

we will see, the SDC seems to be satisfied in a conspiratorial way by string theory. This

invites us to continue exploring the SDC to reveal the underlying quantum gravity prin-

ciple responsible for the validity of the conjecture, and hopefully learn new lessons about

quantum gravity itself.

Non-trivial evidence for the SDC was obtained in [3, 4] by studying infinite distance sin-

gularities of the complex structure moduli space of Calabi-Yau manifolds. We also refer the

reader to [5, 6] for a recent general analysis of weak coupling points in F-theory and [7–16]

for a series of previous works analyzing the conjecture in concrete string compactification

setups. The power of the approach followed in [3, 4] was its model independence as the

results are valid regardless the specific Calabi-Yau under consideration. The proposal is

to identify the infinite tower of states with an infinite charge orbit generated by a mon-

odromy action of infinite order. This infinite order monodromy is a necessary condition

for a singular locus to be at infinite field distance. In one-parameter degenerations the

charge orbit was shown in [3] to be populated by an exponentially increasing number of

BPS states that become exponentially light as we approach the singular locus, providing

evidence for the conjecture. Furthermore, it was proposed that the infinite field distance

itself emerges from quantum corrections of integrating out the infinite tower of states. We

will revisit this argument and provide a general field theory computation that highlights

the properties that need to be met by the tower of states. Furthermore, the monodromy

transformation is translated to an axionic discrete shift symmetry in the effective theory

which enhances to a continuous shift symmetry at infinite distance. This provides a new

understanding of the SDC as a quantum gravity obstruction to restore global symmetries.

Everything fits together in a beautiful story linked to the monodromy action. The next

obvious question is how much of this story can be generalized to other moduli spaces.

In this paper, we will explore the Swampland Distance Conjecture in the multi-

dimensional Kähler moduli space of Calabi-Yau compactifications. We will show how

the techniques introduced in [3, 4] can also be used to identify an infinite charge orbit

becoming massless at infinite distance in Kähler moduli spaces. The main focus of our

paper will be on the study of infinite distance loci and charge orbits at the large volume

regime. The monodromy action can be written in full generality in terms of the intersection
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numbers and topological data of the Calabi-Yau threefold, allowing for a classification of

the infinite distance limits at large volume. We will also provide the general result for the

infinite charge orbit becoming massless at these limits. The existence of such orbits was

shown in [4], where it was also argued that this crucially requires to address the issue of

path-dependence by applying the powerful mathematical machinery of [17]. However, in

this work we will be able to determine the charge orbit by studying a comparably simple

set of vector equations. This refined approach is valid more generally and can also be ap-

plied to the complex structure moduli space. Subsequently we will discuss the interesting

phenomenon of transferring the charge orbit to other infinite distance points of the moduli

space away from large volume. In the case of elliptic fibrations, it is possible to carry the

charge orbit from large volume to the small fiber point by applying double T-duality along

the fiber.

The tower of states becomes exponentially light with respect to the Planck scale.

This means that, if we are moving along some path in the moduli space which is also

sending Mpl → ∞, they can become very heavy while still satisfying m/Mpl → 0. This

is a result of the fact that the SDC only gives non-trivial implications in the IR effective

theory if the Mpl is forced to remain finite, while all implications go away when gravity

decouples. This feature is particularly visible when moving in the Kähler moduli space,

since Mpl → ∞ at large volume. Furthermore, there can also be more than one tower of

states becoming exponentially light with respect to Mpl at infinite distance. For instance, if

we consider type IIA compactified on a Calabi-Yau threefold, we get that the infinite charge

orbits generated by the monodromy action at large volume consist of a tower of particles

arising from bound states of D0–D2 branes. Clearly, there will also be Kaluza-Klein towers

of states becoming massless at large volume. However, it is the tower of D0–D2 branes that

appears to be relevant for the proposals of emergence and global symmetries in the Kähler

moduli space. In particular, the infinite field distance can be understood as emerging from

quantum corrections of integrating out D-brane states rather than Kaluza-Klein states in

this case. Notice also that if the infinite distance emerges from integrating out the tower

of states, this emergence interpretation should be equally applicable for the intersection

numbers and topological discrete data of the Calabi-Yau manifold.

There are other instances, though, in which a Kaluza-Klein tower can be responsible

for (at least part of) the infinite field distance. This is, for example, the case in the circle

compactification performed in order to implement the duality of M-theory and F-theory.

The 6D effective theory of F-theory compactified on an elliptically fibered Calabi-Yau

threefold can be derived from compactifying M-theory on the same Calabi-Yau manifold

to five dimensions and sending the volume of the fiber to zero. The limit of shrinking the

elliptic fiber corresponds to decompactifying an additional circle and opening up an extra

dimension in the F-theory side. It is known that quantum corrections from the KK tower

in the circle F-theory compactification are essential to match with the classical M-theory

reduction [18–20].1 In this paper, we will also analyze the infinite distance limits in the

1It was recently shown in [21] that this infinite tower of states is also crucial in order to account for the

entropy of certain F-theory black holes.
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M-theory geometry, and recover the KK tower of the circle compactification of F-theory

from following the infinite charge orbit to the small fiber regime in M-theory. This provides

a geometric realization of the Kaluza-Klein tower in terms of a charge orbit generated by

a monodromy action of infinite order.

The outline of the paper goes as follows. We will start in section 2 discussing the general

properties that the tower of states must satisfy and revisiting the idea of emergence. We

also present a new field theory computation that shows how quantum corrections from

integrating out any infinite tower up to its species scale generates an infinite field distance

(and consequently, an exponential mass behavior) as long as the number of species increases

as we move in field space. We will then discuss the microscopic meaning of the species

bound in Kaluza-Klein compactifications. In section 3 we will analyze infinite distances

in the large volume regime of Calabi-Yau threefold compactifications. We will construct

the infinite charge orbits becoming massless at the different large volume limits and their

microscopic interpretation in terms of type IIA string theory. We will also discuss how to

carry the charge orbit to the small fiber volume in elliptic fibrations. In section 4 we will

discuss infinite distances and charge orbits arising in the duality between M-theory and

F-theory, providing a geometric realization for the KK tower in terms of an infinite charge

orbit in M-theory. Finally, section 5 contains our conclusions.

2 Swampland, emergence of infinite distance and global symmetries

Consider the moduli space of a consistent quantum gravity effective theory parametrized by

the expectation values of the massless scalar fields in the theory. The Swampland Distance

Conjecture [2] states that any low energy effective theory defined at a particular point of

the moduli space is only valid in a finite domain around that point, because there will be an

infinite tower of states becoming exponentially light when moving infinitely far away and

signaling the complete breakdown of the effective theory. More concretely, when starting

with an effective theory defined at a point Q in the moduli space and moving towards

another point P , the mass of this tower of states behaves as

m(P ) ∼ m(Q)e−γ d(P,Q) (2.1)

in the limit d(P,Q) → ∞. Here, d(P,Q) is the geodesic distance between the two points,

and γ is a positive constant which is not specified in generality. This infinite tower implies

the complete breakdown of the effective theory in the sense that quantum gravitational

effects become important and a quantum field theory description with infinitely many

fields weakly coupled to Einstein gravity is not possible. Therefore, not only the low energy

effective theory breaks down because of the presence of new states, but the quantum gravity

cut-off ΛQG also goes to zero exponentially fast. As it stands, the conjecture leaves many

open questions: can we universally specify γ and ΛQG? How do they change if we move

along a non-geodesic trajectory? Is there any universal prescription to identify the tower

of states? What is the underlying quantum gravity principle which forces the conjecture

to hold? For the latter question, there are two recent proposals:
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• The infinite distance itself emerges from quantum corrections of integrating out the

infinite tower of states up to the species bound of the tower [2, 3, 22].

• The infinite tower is a quantum gravity obstruction to restore a global symmetry at

the infinite distance limit [3].

These two proposals find confirmation [3] at the infinite distance loci of the complex struc-

ture moduli space of Type IIB Calabi-Yau compactifications, where it was also proposed a

general prescription to identify the tower of states in terms of a charge orbit generated by

a monodromy action of infinite order. It is the aim of this paper to extend the discussion

to Kähler moduli spaces, and to check whether these two proposals, as well as the afore-

mentioned prescription to identify the tower, are still valid. Before turning to do so, we

will first explain in more detail and revisit these two proposals in view of the new insights

gathered in this paper. Let us remark, though, that the following discussion in this section

is empty without the solid technical work that follows in section 3 and 4. Furthermore,

since moving in the Kähler moduli space usually also implies varying the Planck mass,

there are some subtleties that need to be addressed. Hence, we will first discuss these

subtleties in section 2.2 in a toy model example: a circle Kaluza-Klein compactification.

2.1 Emergence and global symmetries

In the following we will describe in more detail the above two proposals and present a new

computation that shows how the exponential mass behavior (and the infinite field distance)

is an automatic consequence of integrating out any infinite tower of states (regardless their

concrete mass) up to the species bound of the tower, as long as the tower gets compressed

as we move in the moduli space. This leads to a natural identification of the quantum

gravity cut-off with the species bound, as we will next discuss.

Emergence of infinite distance from integrating out a tower. Let us consider a D-

dimensional effective theory of a massless scalar field φ plus a tower of heavy particles h

whose mass depends on φ as mn(φ) = n∆m(φ). We will follow very closely [3, 22] but

without assuming any particular form for ∆m(φ). The power of our results will precisely

reside in this independence of the form of ∆m(φ). The Lagrangian is

L =
1

2
(∂φ)2 +

∑

n

[

1

2
(∂hn)

2 +
1

2
mn (φ)

2 h2n

]

. (2.2)

We are interested in the quantum corrections to the field metric of φ when integrating out

the massive infinite tower of states. However, any tower of states weakly coupled to Einstein

gravity has an associated cut-off scale above which quantum gravitational effects become

important and the quantum field theory description breaks down. Since the procedure of

integrating out can only be performed within the realm of an effective quantum field theory,

we should only integrate out the states up to this quantum gravity scale ΛQG. There is a

very natural candidate for ΛQG known as the species scale [23–27],

ΛQG ≃ Mpl,D

N
1

D−2

QG

, (2.3)
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where NQG is the number of species (i.e. elementary particles weakly coupled to gravity)

present below the energy scale ΛQG, and Mpl,D is the D-dimensional Planck mass. For the

above tower of particles of evenly increasing mass, we have

NQG =
ΛQG

∆m(φ)
(2.4)

implying

ΛQG ≃
(

MD−2
pl,D ∆m(φ)

) 1
D−1

and NQG =

(

Mpl,D

∆m(φ)

)
D−2
D−1

. (2.5)

Therefore, if ∆m depends on the point of the moduli space parametrized by φ, so will

the species scale. In fact if we now consider that the whole tower becomes massless at a

particular point φ0, so ∆mn(φ0) = 0 and NQG → ∞, the species scale will go to zero at

that point, i.e. ΛQG(φ0) = 0.

We can now compute the one-loop quantum corrections to the field metric of φ when

integrating out the tower of massive states, given by [2, 3, 22]

g1-loopφφ ∼
∑

n

mn(φ)
D−4 (∂φmn(φ))

2 . (2.6)

When summing only over the number of species below ΛQG, we get

g1-loopφφ ∼ ND−1
QG ∆m(φ)D−4

(

∂φ∆m(φ)
)2 ∼ MD−2

pl,D

(

∂φ∆m(φ)

∆m(φ)

)2

. (2.7)

The distance between two points of the moduli space φ0 and φ1 is then given by

d(φ0, φ1) =

∫ φ1

φ0

√
gφφ ∼ log

(

∆m(φ1)

∆m(φ0)

)

(2.8)

which indeed diverges if ∆m(φ1) → 0, and the masses decrease exponentially as we ap-

proach the infinite distance point,

∆m(φ0) ∼ ∆m(φ1) e
−γ d(φ0,φ1), (2.9)

where γ encodes all the numerical factors that we have neglected in the above procedure

of integrating out and that will depend on the properties of the tower. Notice that we

did not need to specify the dependence of the masses on φ. The logarithmic divergence of

the proper field distance, and consequently the exponential mass behavior, emerges from

integrating out any tower of states up to its species bound.2 The only thing that matters

is that the tower gets compressed, i.e. ∆m(φ0) goes to zero at the point in question. In

terms of the quantum corrected proper field distance, the number of species then increases

exponentially and the quantum gravity cut-off decreases exponentially fast,

ΛQG ∼ Mpl,D e−λ d(φ0,φ1) (2.10)

2See [3, 22, 28, 29] for the proposal that the Weak Gravity Conjecture is also implied by the idea that

the small gauge coupling emerges from integrating out the massive charged WGC states up to the species

bound.
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where λ ∼ γ/(D − 1). This toy model computation removes part of the mysticism of

the conjecture relating infinite distances and infinite towers of states. If the number of

species increases when approaching a point of the moduli space, quantum corrections from

this tower will automatically generate a logarithmic field distance divergence in terms of

the mass of these states. In [2] it was pointed out that not every infinite massless tower

necessarily generates an infinite field distance. We however think that this will always be

the case as long as they count as different species.

Finally, there are also two possible levels of emergence. It could either be that the

infinite tower generates part of the infinite field distance, a classical divergence being also

present, or that the infinite field distance fully emerges from quantum corrections form

integrating out the tower. In the latter case, the fact that moduli spaces are in general

non-compact would be an IR effect from integrating out infinite towers of states that become

massless at particular points. Why these towers should exist will be the question of the

next section about global symmetries. As a final remark, notice that quantum corrections

will dominate over the classical piece if the tower of states satisfies what was called the

Scalar Weak Gravity Conjecture [12],

g1-loopφφ ≥ gφφ if gφφ
(

∂φ∆m(φ)

∆m(φ)

)2

& 1 (2.11)

where we have used (2.7). Equivalently, the Scalar WGC is automatically satisfied if the

idea of emergence holds. This also provides a motivation to have γ, λ & 1.

Obstruction to global symmetries. A nice relation between the SDC and the absence

of global symmetries was proposed in [3]. As we will explain later on in more detail, the

infinite tower of states is identified with a charge orbit generated by a discrete monodromy

transformation of infinite order. When reaching the infinite distance point, this discrete

transformation enhances to a continuous one, which would imply the presence of a continu-

ous global shift symmetry in the effective theory. The presence of the infinite tower, which

automatically forces the quantum gravity cut-off to go to zero, can then be understood as

a quantum gravity obstruction to restore this global symmetry. This is consistent with the

common lore that global symmetries are not allowed in quantum gravity (recently proved

in the context of AdS/CFT [29, 30]). The key point is that the conjecture states how the

effective theory breaks down when trying to recover a global symmetry in a continuous way.

Therefore, it quantifies how approximate a global shift symmetry can be, by providing a

quantum gravity cut-off above which no effective field theory enjoying that approximate

global symmetry is valid. It also nicely connects with the Weak Gravity Conjecture [31],

which analogously quantifies what goes wrong when trying to recover a U(1) global sym-

metry by sending a gauge coupling to zero. Given that when a global shift symmetry of

a field is broken, the global symmetry of the Hodge dual field is gauged, both conjectures

could just be dual versions of each other.

This intuition of restoring a global symmetry was obtained in [3] by studying infinite

distance singularities in the complex structure moduli space of type IIB Calabi-Yau com-

pactifications. There, the discrete monodromy transformation generating the infinite tower
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translates into a discrete shift symmetry of the axionic complex structure modulus corre-

sponding to the angular coordinate encircling the singularity. In this paper, we will show

how this intuition can be extrapolated to Kähler moduli spaces. In fact, even if the moduli

space is not complex, as M-theory on a Calabi-Yau threefold or the circle compactification

of F-theory, it will still be possible to have a notion of a monodromy transformation which

will generate the tower and will correspond to some p-form discrete shift symmetry in the

effective theory. In particular, we will see that in M-theory Calabi-Yau threefold compact-

ifications, the discrete symmetry enhances to a continuous one-form global symmetry at

infinite distance. This suggests a generalization of the SDC by requiring an infinite number

of massless degrees of freedom (not necessarily particles) at every infinite distance point

at which a generalized global symmetry would be restored (see [32] for a detailed explana-

tion of generalized global symmetries). It would be interesting to further investigate this

relation between the SDC and generalized global symmetries in the future.

2.2 Kaluza-Klein circle compactification

As mentioned, the aim of this paper is to study infinite distance limits in the Kähler moduli

space of a string compactification. The expectation value of the Kähler moduli parametrize

the volumes of non-trivial cycles of the compactification space. Hence, in certain cases,

moving in this moduli space will also correspond to varying the Planck mass as this is given

by the overall volume of the internal space. It is important to remark that the mass of the

tower of states in (2.1) is given in the Einstein frame, which implies that Mpl is assumed

to remain fixed. Otherwise, the mass in (2.1) should be replaced by the ratio m/Mpl. This

implies, in particular, that the tower of states at infinite distance can be very heavy while

still satisfying m/Mpl → 0 if Mpl → ∞ at infinite distance. In other words, the tower of

states only affects the low energy effective theory if Mpl is finite, but any effect disappears

if gravity decouples, as expected from a swampland constraint. The simplest example in

which this happens corresponds to varying the radius of a circle compactification. For this

reason, we will first describe these observations on a Kaluza-Klein circle compactification as

well as the meaning of the species bound in this context, before turning to more complicated

Kähler moduli spaces in string theory in section 3.

To begin with, we consider the effective theory of a complex scalar field in D + 1-

dimensions,

SD+1 = MD−1
pl,D+1

∫

MD+1

{

R̂+ ∂µ
¯̂
φ∂µφ̂

}

⋆̂ 1, (2.12)

and dimensionally reduce it on a circle satisfying dŝ2 = ds2+r2 dy2. Our convention is that

hatted objects are D+1-dimensional, R is the Ricci scalar and Mpl,D is the D-dimensional

Planck mass. A circle has a single modulus r whose expectation value parametrizes the

radius of the circle. The kinetic term for r only appears after performing the Weyl rescal-

ing gEab =
(

r
r0

) 2
D−2 gab to go to the Einstein frame of the D-dimensional theory,

SD = MD−2
pl,D

∫

MD

{

RE+
D − 1

D − 2

1

r2
∂ar ∂

ar+
∑

n∈Z

(

∂aφ̄n ∂
aφn +mn(r)

2φ̄nφn

)

}

⋆E1 , (2.13)
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where the introduction of the scale r0 is required to keep the metric dimensionless and can

be later fixed to the expectation value of r. The field metric for r exhibits infinite distance

singularities at r → 0 and r → ∞; the Planck masses in D and D + 1 dimensions are

related by

MD−2
pl,D ∼ r0M

D−1
pl,D+1. (2.14)

The D + 1-dimensional scalar field leads to a massless scalar field plus a tower of massive

Kaluza-Klein modes of mass mn(r) =
n
r

(

r0
r

) 1
D−2 . This tower of KK modes becomes mass-

less in the decompactification limit r → ∞ and their mass decreases exponentially in terms

of the proper field distance ∆ = α log r, where α =
√

D−1
D−2 ,

mn = n r
1

D−2

0 exp
(

− α∆
)

, (2.15)

consistent with the Swampland Distance Conjecture. The species bound (2.3) for the KK

tower reads

ΛQG .

(

MD−2
pl,D

r0

)
1

D−1
(r0
r

) 1
D−2 ∼ Mpl,D+1

(r0
r

) 1
D−2

, (2.16)

where we have used that ∆m = 1
r

(

r0
r

) 1
D−2 . Therefore, the true quantum gravity cutoff ΛQG

is indeed dictated by Mpl,D+1 and not Mpl,D, which fits with the fact that the UV of the

theory is in fact higher dimensional. In other words, for an observer in D-dimensions,

the presence of the tower of KK modes lowers the quantum gravity cut-off from Mpl,D

to ΛQG ∼ Mpl,D+1 and this matches with the fact that this is also the scale at which

quantum gravitational effects become important for an observer in D + 1. The number of

species present at this scale is

NQG ∼ r

(

MD−2
pl,D

r0

)
1

D−1

∼ rMpl,D+1 . (2.17)

Notice also that the quantum gravity cut-off ΛQG goes to zero only if one insists on keep-

ing Mpl,D fixed. However, in the usual picture one rather keeps Mpl,D+1 fixed so that Mpl,D

goes to infinity as r → ∞.

We can also compute the quantum corrections from the KK tower to the field metric

integrating up to NQG. Notice that this is not a standard regularization method as we

want to explicitly keep the dependence on the UV cut-off. Recall that ΛQG depends on r

and this dependence is crucial to generate the infinite field distance. Using (2.6) we obtain

δg1-loop ∼
NQG
∑

n=−NQG

mn(r)
D−4 ∂φmn(r)

2 ∼ ND−1
QG r0r

−D−1 ∼ MD−2
pl,D

1

r2
(2.18)

which has the same parametric dependence as the classical piece in (2.13). Therefore, we

find that integrating out the infinite tower of KK modes up to the species bound, one

generates a metric that forces the limit r → ∞ to be at infinite distance. This is expected

as it corresponds to a particular case of the general computation performed in the previous

– 9 –
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section. However, notice that this is a mild version of emergence, as the metric already

has a classical divergence. One could wonder if this classical piece could also emerge from

integrating out another infinite tower of states. Even if this is not possible in a Kaluza-

Klein compactification, it might be possible in a consistent theory of quantum gravity.

We will discuss this issue again when studying a circle compactification of 6D F-theory in

section 4. It would also be interesting to study how typical regularization methods applied

to UV-dependent quantities change when we assume that the UV cut-off varies. Let us

also recall that if we keep ΛQG fixed instead and apply usual regularization methods, we

do not get any quantum divergence for the field distance, but in return, the D-dimensional

Planck mass tends to infinity and gravity decouples. Only if we insist on keeping Mpl,D

fixed, we generate the infinite field distance at quantum level.

The possibility of having different towers becoming massless at infinite distance raises

new questions: is there any preferred tower that should be identify as the candidate for the

SDC? Is it always possible to find a tower responsible for the quantum emergence of the

infinite field distance? We think that the best way to identify the tower is to look for the

objects that are charged under the discrete symmetry that becomes continuous at infinite

distance. And this is what will do in the rest of the paper, by identifying the charge orbit

of states generated by a monodromy transformation of infinite order. This monodromy is

part of the discrete duality group of the compactification which enhances to a continuous

group at the infinite field distance singularities. Sometimes this tower will correspond to

KK modes but in general it will consist of more exotic objects, namely wrapping D-branes.

As a final comment, let us recall that the limit r → 0 is also at infinite distance. From

the point of view of this quantum field theory, there is not any additional tower that become

massless in this limit. However, if the theory has a stringy UV-completion, one has indeed

the tower of winding modes becoming massless as r → 0 (this is actually a motivation for

a theory of extended objects [2], if one assumes the SDC to hold). Even if this limit is

usually not accessible in a supergravity effective theory, we can analyze it in the context of

string theory, by making use of the T-duality. Since under T-duality winding modes and

KK states are exchanged, and that the metric 1
r2
(∂r)2 is left invariant, one can conclude

from the above analysis of integrating out the KK-modes that, at small radius values, the

result of integrating out the winding modes will also yield a metric ∼ 1
r2
(∂r)2, thereby also

forcing the limit r → 0 at infinite distance. We will come back to such arguments involving

dualities in section 3.5.

3 Infinite distances and charge orbits at large volume in Type IIA

In this section we shift to the discussion of the SDC in string theory. More precisely, we

will consider Type IIA string theory compactified on a Calabi-Yau threefold Y3. Focusing

vector multiplet sector of the resulting N = 2 four-dimensional theory we study infinite

distances in Kähler moduli space. Note that the Kähler moduli, henceforth denoted by vI ,

parameterize the volumes of geometrical submanifolds of Y3. Limits sending one or more vI

to infinity hence correspond to decompactification limits in generalization of the discussion

of section 2.2. We will classify such limits in subsection 3.1 and show that they always
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lead to infinite distances in subsection 3.2. The candidate charge orbits of states that

become massless in the limits are determined in subsection 3.3. They can be explicitly

constructed and studied for elliptic fibrations, as we show in subsection 3.4. Finally, we

show in subsection 3.5 that in the latter case the orbits can be transferred from large to

small elliptic fiber volume.

3.1 Classifying infinite distance limits in the large volume regime

To start with we briefly review some basic aspects of the Kähler moduli space of Type IIA

Calabi-Yau compactifications. The moduli space MKs is a Kähler manifold of complex

dimension h1,1, where hp,q = dim(Hp,q(Y3,C)) are the Hodge numbers of the Calabi-Yau

threefold Y3. The complexified Kähler structure deformations tI parametrizing MKs are

given by

B2 + iJ = tIωI , I = 1, . . . , h1,1(Y3) , (3.1)

where the ωI ’s form a basis of the harmonic (1,1)-forms of Y3, B2 = bIωI is the NS 2-

form and J = vIωI is the Kähler form, so tI = bI + ivI . The Kähler potential is given

by K = − log 8V with the overall volume V is defined as

V =
1

3!

∫

Y3

J ∧ J ∧ J =
1

3!
KIJKvIvJvK , (3.2)

where the triple intersection numbers are defined as

KIJK =

∫

Y3

ωI ∧ ωJ ∧ ωK . (3.3)

Furthermore it is useful to introduce bI = 1
24

∫

Y3
ωI ∧ c2(Y3), with c2(Y3) being the second

Chern class of the Calabi-Yau threefold. The scalars tI comprise nv = h1,1(Y3) vector

multiplets together with the vectors AI coming from expanding the RR three-form C3 in

the same basis

C3 = AI ∧ ωI + . . . . (3.4)

Note that there is one further vector in the spectrum arising from the dimensional reduction

of the RR one-form C1. This additional vector, or rather an appropriate linear combination

of all vectors, will be part of the gravity multiplet and is often denoted as the graviphoton.

Let us next introduce the machinery to classify the types of infinite distances that

appear in the large volume regime vA ≫ 1 of Calabi-Yau compactifications. The basic idea

is to translate the data specifying the large volume compactification given in (3.3), i.e. the

triple intersection numbers KIJK and the second Chern class bI , into h1,1(Y3) so-called log-

monodromy matrices NI and an anti-symmetric inner product ϑ. Together NI , ϑ capture

all relevant information concerning the metric on the scalar field space spanned by the tI ’s.

To begin with we briefly discuss the construction of a monodromy matrix in Kähler

moduli space by using mirror symmetry. More precisely, recall that under mirror symmetry

the large volume point is mapped to the large complex structure point by identifying the

complexified Kähler structure deformations tI with the complex structure deformations zI
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of IIA and IIB compactifications. The Kähler potential for complex structure moduli space

of the mirror Calabi-Yau threefold Ỹ3 is given by

K(z, z̄) = − log(iΠ̄IϑIJΠ
J ) (3.5)

where ΠI are the periods of the holomorphic (3, 0)-form Ω into a real integral basis γI , I =

1, . . . , h2,1(Ỹ3) + 2 of three-cycles as follows,

Ω = ΠIγI , ϑIJ = −
∫

Ỹ3

γI ∧ γJ . (3.6)

The mirror map implies that, at the large volume point, one can introduce the follow-

ing 2h1,1(Y3) + 2-dimensional period vector Π depending on these complex variables

Π (tI) =

















1

tI

1
2KIJKtJ tK + 1

2KIJJ t
J − bI

1
6KIJKtItJ tK −

(

1
6KIII + bI

)

tI + iζ(3)χ
8π3

















, (3.7)

where χ =
∫

Y3
c3(Y3) is the Euler number of Y3. It is crucial in this identification that we

consider a basis ωI spanning (part of) the Kähler cone. In other words, we need to ensure

that when taking vI > 0, the Kähler form J = vIωI measures a positive volume
∫

C J > 0

for all irreducible proper curves C in Y3. While much of the following discussion is general,

we will assume that the Kähler cone of the considered manifold is simplicial, i.e. spanned

by exactly h1,1(Y3) generators. This implies, in particular, that all KIJK ≥ 0, which will

significantly simply the discussion below.

Then one defines the monodromy transformation to be the matrix arising in the trans-

formation Π(t1, . . . , tA − 1, . . .) = TAΠ(t1, . . . , tA, . . .). From the point of view of the four

dimensional effective theory, this transformation corresponds to a discrete shift of the ax-

ionic field Re(tI). Instead of displaying the matrix TA (see [4] for an explicit expression

and references), we rather show the nilpotent matrix NA obtained from TA by setting

NA = log(TA) . (3.8)

These NA are known as the log-monodromy matrices and can be used to classify singularity

types arising in Calabi-Yau moduli spaces. For the large complex structure periods (3.7)

they are readily determined to be

NA =















0 0 0 0

−δAI 0 0 0

−1
2KAAI −KAIJ 0 0

1
6KAAA

1
2KAJJ −δAJ 0















. (3.9)
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The corresponding pairing ϑ that can be used to contract the periods, takes the form

ϑ =















0 −1
6KJJJ − 2bJ 0 −1

1
6KIII + 2bI

1
2(KIIJ −KIJJ) δIJ 0

0 −δIJ 0 0

1 0 0 0















. (3.10)

where bI was introduced below (3.3). It is important to stress that displayed (2h1,1(Y3) +

2)× (2h1,1(Y3) + 2) matrices NA, ϑ are determined in a special basis of even forms on the

Calabi-Yau manifold Y3, which also requires the Kähler cone condition introduced above.

We will not go into details how this basis is derived, but rather stress that the following

considerations are invariant under basis transformations. Let us also notice that the above

nilpotent matrix has also been derived in a different avenue by analysing the structure of

the flux induced scalar potential when written in terms of Minkowski 3-form fields [33–35],

as it also deeply relies on the presence of the discrete axionic shift symmetries.

The crucial point is that we can now associate a log-monodromy matrix to each limit

of the tI taken in the Kähler cone. The simplest situation is to consider only a specific tI

taken to i∞ for some chosen index I. Let us relabel the coordinates such that this is the

direction t1. Then one has to associate the matrix N1 to this limit. However, if one takes

the limit in two directions, which we choose after relabeling to be t1 → i∞ and t2 → i∞,

then one associates the matrix N1+N2, or any other positive linear combination of N1, N2,

to this limit. In general, if one takes the limit of n coordinates labeled by t1, . . . , tn, one

thus associates

t1, . . . , tn → i∞ −→ N(n) = N1 + . . .+Nn , (3.11)

where N(n) is the relevant log-monodromy matrix in this limit. For future reference, we

give here its explicit form in terms of the intersection numbers

N(n) =















0 0 0 0

−∑n
i δiI 0 0 0

−1
2

∑n
i KiiI −∑n

i KiIJ 0 0
1
6

∑n
i Kiii

1
2

∑n
i KiJJ −∑n

i δiJ 0















. (3.12)

Note that in order to extract the crucial properties of the limit one can also replace the

above N(n) with any other linear combination of all N1, . . . , Nn with positive coefficient.

The crucial point about this map is the fact that one now has a handle on classifying

infinite distances by analyzing the associated log-monodromy matrix [3, 4] In fact, since

the allowed log-monodromy matrices can be classified [36] one also finds a classification of

limits in the Kähler cone and of infinite distances.

Let us briefly introduce the general classification of log-monodromy matrices for Calabi-

Yau threefolds. In general these do not have to arise from the large volume regime, even

though we will immediately return to this specific situation after this brief general interlude.

More precisely, they can arise at any limit in an m-dimensional complex structure moduli
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Type
rank of

eigenvalues of ϑN
N N2 N3

Ia a 0 0 a negative

IIb 2 + b 0 0 2 positive, b negative

IIIc 4 + c 2 0 not needed

IVd 2 + d 2 1 not needed

Table 1. Classification of the arising limits and singularities occurring in the complex moduli space

of Calabi-Yau threefolds.

space, of which the large volume regime is just a single patch identified via mirror symmetry.

Let us denote a log-monodromy matrix by N and the inner product by ϑ. The allowed

pairs (N,ϑ) can be classified into 4m types denoted by

Ia , a = 0, . . . ,m ,

IIb , b = 0, . . . ,m− 1 ,

IIIc , c = 0, . . . ,m− 2 ,

IVd , d = 1, . . . ,m .

(3.13)

In fact, these types classify singularities that can arise at the boundaries of the moduli

space. Near such a boundary one can introduce local coordinates tI , and the limits are

taken as above in (3.11). The singularity types are distinguished [4] by the relations

displayed in table 1, where we included the extra condition allowing us to distinguish the

cases Ia and IIb by using only ϑ and N .

Let us stress that the N appearing in table 1 does not have to be the log-monodromy

matrix arising from sending a single coordinate into a limit. Rather, it can be extracted

when sending any number of coordinates tI to i∞ as in (3.11). Hence, we can also study

what happens if we send step-wise one after the other coordinate to i∞. At the jth step

we can determine the singularity type by associating the appropriate N(j) using (3.11), i.e.

we consider

t1, . . . , tj → i∞ −→ N(j) = N1 + . . .+Nj , j = 1, . . . , n , (3.14)

and then determined the type using table 1. As a place-holder for the possible types (3.13)

we will write Type A(j) for the singularity type occurring at the jth step. We then find an

enhancement chain of the form

t1→i∞−−−−−→ Type A(1)
t2→i∞−−−−−→ Type A(2)

t3→i∞−−−−−→ . . .
tn→i∞−−−−−−→ Type A(n) . (3.15)

In fact, one can show that the type only can increase or stay the same, i.e. a general chain

of singularity enhancements takes the form

Ia1 → . . . → Iak → IIb1 → . . . → IIbl →
→ IIIc1 → . . . → IIIcp → IVd1 → . . . → IVdq .

(3.16)
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Type rk(KAAA) rk(KAAI) rk(KAIJ)

IIb 0 0 b

IIIc 0 1 c+ 2

IVd 1 1 d

Table 2. We list the singularity types arising in the large volume regime, when sending a single

coordinate tA → i∞. Note that the ranks rk(KAAA) and rk(KAAI) are either 0 or 1 depending on

whether KAAA and KAAI are vanishing or not.

The precise rules of which enhancements can occur in principle have been worked out

in [36] and a concise summary can be found in [4], table 3.3.

This general classification can immediately be applied to the large volume log-mon-

odromies determined in (3.9) in the limit tA → i∞ for a single coordinate tA. In this

case it is not hard to show by using (3.9), (3.10) together with the fact that KIJK ≥ 0

for a simplicial Kähler cone, that the case Ia actually does not arise in the large volume

regime Im tI ≫ 1. This matches the fact that the Type Ia corresponds to having a finite

distance in moduli space. It arises, for example, at the conifold point in complex structure

moduli space, but not at the large volume regime where all limits are expected to be at

infinite distance. For the remaining three cases, the singularity type of the individual

limits tA → i∞ is evaluated by considering NA given in (3.9), an first computing its square

and cube

N2
A =











0 0 0 0

0 0 0 0

KAAI 0 0 0

0 KAAJ 0 0











, N3
A =











0 0 0 0

0 0 0 0

0 0 0 0

−KAAA 0 0 0











. (3.17)

Then, one can evaluate the ranks of NA, N
2
A and N3

A and use table 1 in order to determine

the singularity types. The results are summarized in table 2.

These results can be straightforwardly generalized to the case of sending multiple tI

to i∞ in Kähler moduli space. As before we relabel the coordinates such that the limit of

interest sends the first n coordinates to i∞. The relevant log-monodromy matrix associated

to this limit is N(n), introduced in (3.12). Introducing the notation

K(n)
IJ ≡

n
∑

i=1

KiIJ , K(n)
I ≡

n
∑

i,j=1

KijI and K(n) ≡
n
∑

i,j,k=1

Kijk , (3.18)

we find

N2
(n) =











0 0 0 0

0 0 0 0

K(n)
I 0 0 0

0 K(n)
J 0 0











, N3
(n) =











0 0 0 0

0 0 0 0

0 0 0 0

−K(n) 0 0 0











. (3.19)

Evaluating the ranks ofN(n),N
2
(n) andN3

(n) and using again table 1, one finds the singularity

type. This yields a generalization of table 2, which is presented in table 3.
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Type rkK(n) rkK(n)
I rkK(n)

IJ

IIb 0 0 b

IIIc 0 1 c+ 2

IVd 1 1 d

Table 3. We list the singularity types arising in the large volume regime, when sending multiple

coordinates t1, . . . , tn → i∞. Note that the ranks rk(number) and rk(vector) are either 0 or 1

depending on whether the number and vector are vanishing or not.

3.2 Infinite distances in Kähler moduli space

Having classified the limits in Kähler moduli space we next study the distances along

paths as measured by the Kähler metric KIJ̄ = ∂tI∂t̄JK. Recall that the length of a path

connecting two points Q,P in moduli space is determined by

dγ(Q,P ) =

∫

γ

√

2KIJ̄ ṫI ˙̄tJ ds , (3.20)

where the path γ is parameterized in local coordinates by tI(s) and we abbreviated ṫI = ∂tI

∂s .

In the following we will show that each path approaching a point P that is located at

t1, . . . , tn → i∞, for some n, is infinitely long.

To begin with, we determine the Kähler potential using (3.5) and inserting the mirror

periods Π given in (3.7) and the intersection form ϑ given in (3.10). This yields the well-

known expression

K = −log

(

1

6
KIJKvIvJvK +

ζ(3)χ

32π3

)

≡ −logVq . (3.21)

Clearly, if we consider simplicial Kähler cones, we can use KIJK ≥ 0 to infer that Vq

diverges and hence K approaches negative infinity for any limit v1, . . . , vn → ∞. If we

want to work more generally and also want to infer the growth of Vq, we can apply a result

determined in [4] based on the growth theorem of [17]. More precisely, one shows that the

leading growth of Vq is

Vq ∼ c
(

v1
)d1 (v2

)d2−d1 · · · (vn)dn−dn−1 . , (3.22)

if one considers the limit v1, . . . , vn → ∞ in the growth sector
{

v1

v2
> λ , . . . ,

vn−1

vn
> λ , vn > λ

}

, (3.23)

for some positive λ. Here c is a positive constant and the symbol ∼ indicates that we

only focus on the leading term. The integers di are simply the types occurring in the

corresponding enhancement chain (3.15), i.e. we identify

Type A(i) IIb IIIc IVd

di 1 2 3
(3.24)

– 16 –



J
H
E
P
0
8
(
2
0
1
9
)
0
7
5

With this identification it is now clear that maximally three vi can appear in (3.22) as

expected from (3.21). It is crucial to point out that the growth of Vq depends on the sec-

tor (3.23) into which that path γ towards P falls. This is not a very restrictive constraint

on the considered paths, since one can reorder the v1, . . . , vn to satisfy the inequalities

in (3.23). Accordingly one then has to also consider an appropriately reordered enhance-

ment chain (3.15) and adjust the di.

Having determined the growth of the Kähler potential, let us now determine the growth

of the length of the path. In the following we will establish a lower bound on this growth.

To do that, let us first assume

2KIK
IJ̄KJ̄ ≤ f−2 , (3.25)

where f is some constant that might depend on the choice of the path γ. We will show

below that this condition is indeed satisfied for the Kähler potential (3.21). In order to find

a lower bound on the length of a cure we use (3.25) and the Cauchy-Schwarz inequality to

derive3

(2KIJ̄ ṫ
I ˙̄tJ)1/2 ≥ f (2KIJ̄ ṫ

I ˙̄tJ)1/2(2KIK
IJ̄KJ̄)

1/2 ≥ f |KI ṫ
I +KJ̄

˙̄tJ | = f |K̇| . (3.26)

Using this estimate in (3.20) we find

dγ(Q,P ) ≥ f

∫

γ
|K̇|ds ≥ f

∣

∣

∣

∫

γ
dK

∣

∣

∣
. (3.27)

We can integrate the last integral to evaluate

dγ(Q,P ) ≥ f |K(P )−K(Q)| , (3.28)

where K(P ), K(Q) is the Kähler potential evaluated at the two endpoints P , Q. This

implies that for a point P with t1, . . . , tn → i∞ we see that the growth of dγ(Q,P ) is

dominated by the divergent contribution near P . Hence, we find that the growth of the

length is dominated by

dγ(Q,P ) & f logVq ∼ f
n
∑

i=1

(di − di−1) log v
i , (3.29)

with d0 = 0, and di, i = 1, . . . , n defined in (3.24). Here we have used the expression (3.22)

for the growth of Vq in a growth sector (3.23). Clearly, this implies that the length is

infinite as soon as we take v1, . . . , vn → ∞. Note, however, that this does not necessarily

imply that every path has a length growing logarithmically in vi, since we only presented

a lower bound.

It remains to show that (3.25) is actually satisfied for the Kähler potential (3.21). By

a straightforward computation one determines

2KIK
IJ̄KJ̄ = 6 + 6

∞
∑

n=1

(

ζ(3)χ

16π3KIJKvIvJvK

)n

. (3.30)

3The Cauchy-Schwarz inequality reads ||v||·||u|| ≥ |〈v, u〉|, where the norm is related to the inner product

by ||v|| =
√

〈v, v〉. In the case at hand one uses v ∼= (ṫI , ˙̄tJ), u ∼= (KIL̄KL̄,K
J̄LKL), with an inner product

determined by the Kähler metric.
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Since the non-constant terms are increasingly suppressed in approaching the point P , this

implies that one can easily find a constant f such that (3.25) is satisfied.

We thus conclude that all limits in the large volume regime are at infinite distance.

While this result is not unexpected, it is satisfying to see that it can be explicitly derived. It

implies that one cannot find finite lengths paths towards t1, . . . , tn → i∞ by using seemingly

appearing cancellations in the volume Vq due to a choice of basis or a consideration of non-

simplicial Kähler cones. It also gives further evidence that limits are at infinite distance if

and only if the arising singularity types are II, III, or IV. These are precisely the types that

arise in the large volume regime, as discussed in subsection 3.1. Note that only the direction

that infinite distance implies type II, III, IV singularities has been proved generally in a

multi-dimensional moduli space [37].

3.3 Infinite charge orbits of states

Having determined the possible infinite distance singularities arsing in the large volume

regime, we next want to identify an infinite set of states that become massless when ap-

proaching such limits. It was suggested in [3] that these states are generated by acting

with the monodromy matrix on a single seed charge q0 to generate an infinite tower. In

higher-dimensional field spaces this can be captured by what was called a charge orbit

denoted by Q(q0|m1, . . . ,mk) in [4]. There are two basic requirements on the charge or-

bit Q(q0|m1, . . . ,mk) for it to generate the states necessary in the SDC. Firstly, the states

have to become massless when approaching an infinite distance point. Secondly, there has

to be infinitely many states with this feature. It was suggested in [3] that such states are

actually BPS states with mass determined by the central charge M(Q) = |Z(Q)|. The

tricky part of this study is to evaluate the behavior of M(Q) along every path approaching

the infinite distance point. This can be done by splitting the moduli space near the infinite

distance points into growth sectors as we discuss in the following.

To begin with we have to determine the growth sector in which a given path γ towards

a point P with t1, . . . , tn → i∞ lies. A general path can be parameterized by local coordi-

nates tI(s), where s labels the position on γ. To check the growth sector into which tI(s)

falls, we first introduce it for a specific ordering t1, . . . , tn. In this simplest situation it

takes the form

R1...n ≡
{

ti = bi + ivi :
v1

v2
> λ , . . . ,

vn−1

vn
> λ , vn > λ , |bi| < δ

}

, (3.31)

for some positive λ, δ. It might be the case that this condition cannot be satisfied for tI(s)

even if we start with very large vi. Then we have to reorder the ti by also exchanging the vi

in (3.31). Once we have determined an appropriate ordering, we get an order (ti1 , . . . , tin)

for performing the limit t1, . . . , tn → i∞. For this ordering one then has to determine the

singularity chain

ti1→i∞−−−−−−→ Type A(1)
ti2→i∞−−−−−−→ Type A(2)

ti3→i∞−−−−−−→ . . .
tin→i∞−−−−−−→ Type A(n) . (3.32)

Clearly, we can always relabel the coordinates ti to make the singularity chain look

like (3.15) and the growth sector takes the form (3.31). In the following we will assume

that such a reordering and relabeling has been performed if necessary.
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Having identified a growth sector and an associated enhancement chain we next want to

determine the charge orbits relevant in the large volume regime. Later on we will apply this

construction to elliptic fibrations. Let us first note that there are h1,1(Y3) log-monodromy

matrices NI arising in the large volume regime. Each is associated to a coordinate tI as

discussed above. Hence, we expect the general charge orbit to be of the form [4]

Q
(

q0|m1, . . . ,mh1,1(Y3)

)

= exp





h1,1(Y3)
∑

I=1

mINI



 q0 , (3.33)

where we take the mI ’s to be non-negative integers. Note that this expression simply

states that we apply mI times the monodromy transformations TI discussed before (3.8)

to a suitable seed charge q0. The challenge is now two-fold: (1) one needs to construct

a suitable q0, which ensures that q0 and Q are massless at P ; (2) one needs to identify

situations when Q describes an infinite set of states. Both of these issues have been

clarified in [4]. However, it should be stressed that the explicit constructions of [4] uses a

significant amount of mathematical technology related to the construction of a special set of

matrices N−
I that are parts of commuting sl(2) algebras. While in this picture the existence

and properties of q0 and Q can be more easily abstractly analyzed, it is technically involved

to construct these special N−
I . We will therefore follow a different route here. We will use

the conditions found in [4] translated to the NI basis and construct the q0 satisfying them.

Let us stress that the construction of q0 is not generally expected to be unique and there

can be various different charge orbits labeling the relevant states for the SDC.

In reference [4] it was shown that there are three singularity patterns for which generally

an infinite charge orbit exists that becomes massless at the considered point P . The first

possibility is that P lies on a Type IV locus. In other words, Type A(n) = IV in the

enhancement chain (3.15). The second possibility is that P lies at a Type II locus, i.e.

that Type A(n) = II in (3.15) and along this locus occurs an enhancement II → III or II →
IV in the considered region of field space. Finally, the third possibility is that P lies at

a Type III locus, i.e. Type A(n) = III and this singularity enhances as III → IV in the

considered region of field space. In the large volume regime one of these three possibilities

is satisfied for every infinite distance point P [4]. This can be deduced from the fact that

the highest singularity type in the large volume regime is IVh1,1(Y3). Hence, either one is

directly at a type IV singularity or one inherits the orbit from the large volume point with

IVh1,1(Y3). This implies that at each infinite distance point in the large volume regime there

exists an infinite charge orbit. Notice that, if these intersections of the singular divisors

allowing the enhancement of the type of singularity had not be present, there would not be

possible to identify an infinite charge orbit at type II and III singularities. This exemplifies

how the Swampland Distance Conjecture is realized in a highly non-trivial and intricate

way in Calabi-Yau compactifications. The conjecture does not constrain only the local

structure of the Calabi-Yau but also the global network of enhanced singularities allowed

in the moduli space.

Masslessness conditions. To construct a charge orbit relevant in the large volume

regime let us recall that, since [4]

m(Q) = |Z(Q)| ≤ ‖Q‖ ∼ ‖q0‖ , (3.34)
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a sufficient condition to ensure the masslessness of Q is that q0 has vanishing norm. In

order to achieve this for the enhancement chain (3.15) within the growth sector (3.31), we

first require that for every i = 1, . . . , n there exists some vectors ui, vi and xi satisfying

N2
i vi = 0 and N3

i xi = 0 such that the seed vector takes the form [4]

q0 = vi if Type A(i) = II , (3.35a)

q0 = vi +Niui if Type A(i) = III , (3.35b)

q0 = vi +Nixi if Type A(i) = IV . (3.35c)

These conditions might not be strong enough to generally ensure masslessness, since in

some cases ‖q0‖ might tend to a finite value at the infinite distance point. To make sure

that this does not happen, we need to additionally require that for the last singularity in

the chain (3.15) that ther exists some vectors un and wn satisfying N2
nwn = 0 such that

q0 = Nnun if Type A(n) = II , (3.36a)

q0 = Nnwn if Type A(n) = III , (3.36b)

q0 = Nnwn +N2
nun if Type A(n) = IV . (3.36c)

Roughly speaking the conditions (3.36) ensure the necessary suppression of ‖q0‖ by at least

one coordinate vn that grows to infinity at the infinite distance point.4

Infiniteness conditions. In order to assure that an orbit generated, we need to demand

that the action of the exponential in (3.33) on q0 is non-trivial, i.e. we need that

N(J∗)q0 6= 0 for some J∗ = 1, . . . , h1,1(Y3) . (3.37)

Notice that it is enough if this is satisfied for at least one NJ∗ , J∗ = 1, . . . , h1,1(Y3). In light

of the masslessness conditions (3.35), a simple way how to realize this might be to demand

that it is satisfied for a Type IV singularity. As mentioned above, the large volume point

is a Type IV singularity, so we are ensured that an infinite orbit can be generated, even

if Type A(n) 6= IV. However, let us remark that stricto sensu one does not need to have

a Type IV singularity in order to generate an orbit. Indeed what can happen is that in a

sufficiently small neighborhood E close to the point of interest P , there is another Type II

or III singularity, associated to a coordinate tJ which is not taken to i∞, i.e. J > n. We

do not need to impose (3.35a) for N(J), such that we can have N(J)q0 6= 0, generating an

orbit. Notice that the sum in (3.33) should really be only over the NI ’s present in E .

Constructing the orbit. We now construct explicitly such a seed vector q0. We first

split this 2h1,1(Y3) + 2-dimensional vector into four parts

q0 =
(

q(6), q
(4)
I , q

(2)
I , q(0)

)T
, I = 1, . . . , h1,1(Y3) , (3.38)

4This can be shown by using the results of section 4.3 of reference [4]. A sufficient condition for q0 to be

masslessness at the infinite distance point was given in eq. (4.29). Replacing N−

(i) → N(i) the condition (4.29)

of [4] is satisfied when imposing (3.35) and (3.36).
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where we indicated with the superscript that q(p) will later be interpreted as inducing Dp-

brane charges. Now we enforce the conditions (3.35) and (3.36) by using the explicit forms

of the log-monodromies N(i) given in (3.12). The details of the computations can be found

in appendix A. One immediately finds that one needs to demand

q(6) = 0 for all Type A(n) (3.39)

and

q
(4)
I = 0 for Type A(n) = III or IV . (3.40)

This last condition can also be set for a type II singularity while still satisfying the infinite-

ness condition (3.37). Similarly q(0) is not constrained by the masslessness conditions (3.35)

and (3.36) but since it plays no role in (3.37) it can safely be set to zero. That is, we can

choose

q
(4)
I = 0 for Type A(n) = II (3.41)

q(0) = 0 for all Type A(n) . (3.42)

So we see that the non-trivial sector of these conditions is for q
(2)
I , already hinting that

the infinite orbit will correspond to D2-brane states. The masslessness conditions (3.35)

and (3.36) are then satisfied, for all singularity types, if

q
(2)
I = K(n)

IJ ωJ (3.43)

for some integer vector ωI such that

q
(2)
i = 0 for i < nIII , (3.44)

where nIII labels the first type III singularity, and

n
∑

a=1

q(2)a = K(n)
I ωI = 0 if Type A(n) = III . (3.45)

This last condition is always satisfied if we extend (3.44) to

q
(2)
i = 0 for i < nIV . (3.46)

which we will take for simplicity. Notice that this latter condition is not necessary un-

like (3.44) and (3.45). However, we will see in the appendix that it is possible to find an

infinite charge orbit satisfying (3.46). It would be interesting, though, to investigate what

changes if it is relaxed; but we leave this task for future work.

On the other hand, the condition (3.37) for the orbit to be generated requires that

q
(2)
J∗ 6= 0 for some J∗. (3.47)

We outline in appendix A a concrete approach to find some ωI such that eqs. (3.44)

to (3.47) are satisfied, ensuring that there always exists a massless infinite charge orbit. It
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is expected that this can be always achieved, since the existence of an orbit was already

shown in [4] in a more abstract way. Having determined q0 we can derive the charge orbit

by acting with the log-monodromies NI as in (3.33). This yields

Q =

(

0, 0, . . . , 0, q
(2)
I ,−

∑

I

mIq
(2)
I

)T

, (3.48)

where q
(2)
I meets the above requirements.

In Type II compactifications, this orbit of states has a specific microscopic interpreta-

tion in terms of BPS wrapping D-brane states. For concreteness, in a Type IIB compact-

ification on a Calabi-Yau threefold Ỹ3, q would correspond to the charge of a D3-brane

wrapped on the three-cycles γI and whose mass M = |Z(q)| would be given by the central

charge

Z(q) = e
Kcs
2

∫

Y3

H ∧ Ω =
ΠT ϑq

(

iΠ̄TϑΠ
)1/2

. (3.49)

Here, H is the three-form with coefficients q in the integral basis γI and the periods Π

and the Kähler potential Kcs in the complex structure moduli space are defined in (3.5)

and (3.6). The masslessness conditions (3.35) and (3.36) are obtained from requiring

that Z(Q) = 0 at the infinite distance singularity.

By using the mirror map, it is also possible to translate these results to the Kähler

moduli space of Type IIA Calabi-Yau compactifications. The D3-branes will map to differ-

ent bound states of Dp-branes with even p. More precisely, notice that we have conveniently

chosen a basis for the mirror period vector in (3.7), which is identified with the following

Type IIA K-theory basis of branes,

(OY3 ,ODI
, CJ ,Op), (3.50)

where p are points, DJ are h1,1(Y3) divisors and CJ := ι!OCJ

(

K
1/2

CJ

)

where CI are the

dual h1,1(Y3) curves, so CJ · DI = δJI (see [38], section 2.3 for their precise definition).

Recall that the divisors DI are Poincaré-dual to the two forms ωI in (3.1) and span the

Kähler cone. In practice, this implies that the different components of the charge vector q

correspond to the charge of a D6-, D4-, D2- and D0-brane wrapping the whole threefold Y3,

a 4-cycle, a 2-cycle or a point respectively. Therefore, the massless infinite charge orbit at

large volume consists of D2–D0 bound states.

It might seem surprising that we are identifying the massless tower predicted by the

Swampland Distance Conjecture at the large volume limit of Type IIA with a massless

charge orbit of BPS states consisting of bound states of D-branes instead of Kaluza-Klein

states. Clearly, there can be more than an infinite tower becoming massless at infinite

distance as we will also get a KK tower in this limit. However, it is this charge orbit of

BPS states the one that will be later identified as responsible for emergence of the infinite

distance and restoration of a global symmetry. Let us also remark that these BPS states

only become massless with respect to the Planck scale Mpl, since the central charge gives

the value of the mass in Planck units. Since the Planck mass is also going to infinity in
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the large volume limit, the states become indeed infinitely heavy but their mass diverges

exponentially slower than Mpl. The massless requirement of the Swampland Distance

Conjecture only makes sense then in the Einstein frame, where Mpl is kept finite.

3.4 Infinite distances and charge orbits in elliptic fibrations

In this section we will determine the singularity types and charge orbits arising in elliptic

fibrations with a single section. This analysis will be very useful in the context of the M/F-

theory duality in section 4. In order to do that one first needs to determine the Kähler

cone basis for these geometries. This was done, for example, in ref. [39].

We denote the base of this elliptic fibration by B2 and introduce the map π : Y3 → B2

projecting onto B2. We will assume that B2 admits a simplicial Kähler cone basis, which

we then pull to two-forms ωα on Y3 via π∗. On the threefold Y3 the two-form cohomology

naturally splits as

ω̃I = {ω̃0, ωα} , (3.51)

where ω̃0 is Poincaré-dual to the base divisor B2 and the ωα are Poincaré-dual to divi-

sors Dα = π−1(Db
α), which are inherited from divisors Db

α in the base. This amounts to

say that h1,1(Y3) = h1,1(B2) + 1. One can show that the intersections numbers (3.3) are

then given by

K̃000 = ηαβK
αKβ , K̃00α = ηαβK

β ,

K̃0αβ = ηαβ , K̃αβγ = 0 .
(3.52)

where ηαβ = Db
α · Db

β = B2 · Dα · Dβ is a non-degenerate symmetric matrix with signa-

ture (1, h1,1(B2)− 1) and Kα are the expansion coefficients of the first Chern class of the

base c1(B2) = −Kαωα.
5 In order to obtain a Kähler cone generator in the ω̃0 direction

one has to perform the shift

ω0 = ω̃0 −Kαωα , (3.53)

This implies that intersection numbers in the Kähler cone basis ωI = {ω0, ωα} are given by

K000 = ηαβK
αKβ , K00α = −ηαβK

β ,

K0αβ = ηαβ , Kαβγ = 0 .
(3.54)

We note that all these intersection numbers are positive, as required in the Kähler cone,

for h1,1(B2) ≤ 10, since also
∫

B2
ωα ∧ c1(B2) = −ηαβK

β ≥ 0. The Kähler form can be also

expanded in this basis

J = vIωI = vαωα + v0ω0 , (3.55)

which defines the cone v0, vα > 0.

Using these intersection numbers and the rules in tables 2 and 3 we can read off

the singularity types if some or all of the h1,1(Y3) coordinates are taken into a limit.

Since Kαβγ = 0, the only way to obtain a Type IV singularity is to send v0 → ∞. Consid-

ering first that situation, we find that there are only two cases, depending on whether v0

5Note that in this expansion one actually has to use the two-forms on B2, but we abuse notation slightly.

– 23 –



J
H
E
P
0
8
(
2
0
1
9
)
0
7
5

is the only coordinate taken to infinity or not. In the first case, the singularity is of Type

IVh1,1(B2), while in the second case we find a singularity of Type IVh1,1(Y3), which is the

maximal singularity type, already when a single coordinate is added to the limit. That is,

we have

v0 → ∞ : Type IVh1,1(B2) , (3.56a)

v0, v1, . . . , vn → ∞ : Type IVh1,1(Y3) , (3.56b)

where in the second limit, the number n of coordinates vα is non-zero but otherwise arbi-

trary. The second situation is when v0 stays finite, i.e. we take the limit v1, . . . , vn → ∞
with n arbitrary.6 Here again we find two cases, depending on whether all the ηij vanish

or not:

v1, . . . , vn → ∞ :

{

Type II2 if ηij = 0 ∀ i, j = 1, . . . , n (3.57a)

Type III0 otherwise . (3.57b)

With this at hand, we find that there are only three possible enhancement chains (of

course sub-chains of the last one are also possible)

v0→∞−−−−→ IVh1,1(B2)
vα→∞−−−−→ IVh1,1(Y3) ,

vα→∞−−−−→ II2
v0→∞−−−−→ IVh1,1(Y3) ,

vα→∞−−−−→ II2
vβ→∞−−−−→ III0

v0→∞−−−−→ IVh1,1(Y3) ,

(3.58)

where the conditions on the vα’s for these to happen can easily be read off (3.56) and (3.57).

Having determined the arising singularity types we can use the results of the previous

section to obtain the charge orbit. As described there, this first requires to determine

the growth sector (3.31) in which the considered path tI(s) towards a point P at a lim-

iting point t1, . . . , tn → i∞. This might require to reorder the coordinates, in the sense

that (3.31) is only satisfied along a path if we permute the coordinates in (3.31). In ellip-

tic fibrations the crucial information required to determine the orbit is the growth of v0

compared to the vα’s. Let us first assume that we have picked an ordering of the vα’s such

that the path is in the corresponding growth sector. We then relabel these vα’s, such that

the ordering is simply
(

v1, . . . , vh
1,1(B2)

)

, where we are free to pick any ordering for the

coordinates that are not sent into a limit. We next ask in between which two elements vn̂−1

and vn̂ the v0 lies, i.e. for which n̂ one has

vn̂−1

v0
> λ ,

v0

vn̂
> λ . (3.59)

The integer n̂ determines at which point in the enhancement chain a Type IV singularity

occurs, as explained above. It follows from eq. (3.46) that all q
(2)
1 , . . . , q

(2)
n̂−1 are vanishing,

while q
(2)
0 is the first possibly non-vanishing charge, if we order the charges according to the

6Recall that the ordering of the coordinates is also arbitrary, meaning that we do not impose any

restriction on which of the vα we choose.

– 24 –



J
H
E
P
0
8
(
2
0
1
9
)
0
7
5

order of the coordinates appearing in the growth sector. However, for later convenience,

we will adopt a different ordering, namely that q
(2)
0 is always the last of the q

(2)
I ’s, even

though v0 grows faster than the vi’s with i ≥ n̂, as indicated above. This ordering will

be useful when discussing the interpretation of the charge orbit in F-theory. Using (3.48)

with (3.46), we find

Q =



0, . . . , 0, q
(2)
n̂ , . . . , q

(2)
h1,1(B2)

, q
(2)
0 ,−m0q

(2)
0 −

h1,1(B2)
∑

i=n̂

miq
(2)
i





T

, (3.60)

where at least one of the q
(2)
I has to be non-vanishing, as required by eq. (3.47).

Actually we show in appendix A that it is always possible to choose the wI in (3.43)

such that only q
(2)
0 is non-vanishing. That is to say, for any path towards the large volume

point, one can find the following massless infinite orbit

Q =
(

0, . . . , 0, q
(2)
0 ,−m0q

(2)
0

)T
. (3.61)

Furthermore, the presence of this orbit is independent of the intersection numbers, so it

is valid for any Calabi-Yau threefold. This is one of the central results of this section and

will be especially important in section 4.4 when studying the F-theory limit.

Let us close this section by briefly discussing the sector dependence of these results.

Crucially, as stated in (3.59), the form of the charge orbit (3.60) in general depends on

the growth of v0 relative to the vα. However, it is also immediate from the occurring

singularities listed (3.56) and (3.57) that the relative growth of the vα, α ≤ n̂−1 and vα, α ≥
n̂ is irrelevant to the form of Q. Hence, we find that for elliptic fibrations the large volume

charge orbit (3.60) exhibits a much milder path-dependence than what generally arises

due to the presence of growth sectors. In particular, the special choice of orbit (3.61) is

completely independent of the path.

3.5 Transferring the orbit to small volumes

In the previous subsections we have discussed the charge orbits arising in the large volume

regime. In particular, we have generally constructed an infinite orbit Q in (3.48) that

becomes massless at a point P in the large volume regime. We might now ask if we can

carry this orbit to other points in moduli space away from large volume. In general, this

is an extremely hard question, since it requires information about the global properties

of the moduli space and the D-brane states existent at various other points. For elliptic

fibrations, however, there is much literature [39–44] on how to leave the large volume point

using the map v0 → 1/v0, where we recall that v0 is the volume of the elliptic fiber. In the

following, we will use these results to present a charge orbit for the limit

v0 ≡ 1

ṽ0
→ 0 . (3.62)

Note that this corresponds to considering a completely different region in moduli space as

indicated in figure 1. As a byproduct we thus find an example that there can be infinite
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{vα} → ∞

v0 → ∞

v0 → 0

large volume

regime

large base volume

and small fiber

v0 → 1
v0

Figure 1. The large volume regime is related to the small fiber regime by a double T-duality along

the elliptic fiber. This duality is implemented by a Fourier-Mukai transform.

massless orbits at singularities in moduli space that do not satisfy the conditions outlined

in subsection 3.3. It was shown in [45] that the monodromy transformation associated to

the small fiber divisor can be of finite order if the number of sections of the mirror dual is

not high enough. In these cases, the divisor v0 → 0 is of type I (finite distance) and the

intersection point with large base volume will be at most type III0. Hence, there does not

exit any local monodromy operator that can generate a massless infinite charge orbit at

the regime of small fiber, but still there should be an infinite massless tower of states since

the intersection point with large base volume is always at infinite distance. Interestingly, it

turns out that we can still identify an infinite charge orbit which is transferred from points

that satisfy the conditions of subsection 3.3 as suggested in [4]. In particular, the orbit is

transferred from the large volume point as we explain in the following.

Considering first Type IIA string theory on a two-torus of volume v0, it is well-known

that the map v0 → 1/v0 arises from applying T-duality along both torus circles. The basic

idea is to apply this to elliptic fibrations by performing the double T-duality along the fiber.

To implement this transformation one performs a so-called Fourier-Mukai transformation.

This transformation acts as a non-trivial linear map S acting on the K-theory basis of

D-branes

(OY3 ,OD0 ,ODα , Cα, C0,Opt) , (3.63)

which is the specialization of (3.50) to elliptic fibrations. The form of the matrix S can be

explicitly calculated following [39, 46, 47] as we show in detail in appendix B. The resulting

expression acting on the basis (3.63) takes the form

S =

























0 1 0 0 0 0

-1 0 0 0 0 0

Kα 0 0 ηαβ 0 0

−Kα −Kα −ηαβ 0 0 0

0 0 0 1
2

�

Kβ − ηβγηγγ
�

0 1

0 1
2K

γ (ηγγ −Kγ)
1
2 (ηββ −Kβ) 0 -1 0

























, (3.64)
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where Kα = ηαβK
β . One checks that this transformation preserves the symplectic inner

product ϑ given in (3.10), i.e. that STϑS = ϑ. Note that S contains, as indicated with the

boxes, the standard S-duality matrix. As we will see momentarily this is in accord with

the fact that the double T-duality along the fiber maps t0 → −1/t0, which is the non-linear

S-duality transformation of the complex parameter t0. Furthermore, we also stress that S

transforms the D-brane states supported in the elliptically fibered geometry. Recalling it

corresponds to a double T-duality on the elliptic fiber we find, in particular that
(

D2f
D0

)

S−→
(

D0

D2f

)

, (3.65)

where D2f are the D2-branes wrapped on the elliptic fiber.

This duality operation also relates the periods Π valid at the large v0 regime to the

small v0 regime. In particular, it relates the large volume central charges as

∣

∣Z
[

SΠ(tα, t0)
]∣

∣ =

∣

∣

∣

∣

Z

[

Π

(

tα +
1

2
kα,− 1

t0

)]∣

∣

∣

∣

, (3.66)

where S is the matrix given in (3.64). This expression means that one can equate the central

charges (3.66) when either replacing the periods Π → SΠ or evaluating the periods at a

different coordinate location. Note that if the left-hand side are the large volume periods

valid at v0 = Im t0 ≫ 1 and vα = Im tα ≫ 1 the right-hand side is now valid in the

regime Im t̃0 = 1/v0 ≫ 1 and vα ≫ 1. It is non-trivial to show (3.66), since it equates

central charges at different points in moduli space. However, it was argued in [39–44] that

the transformation S effectively maps

t0 7→ − 1

t0
, t̃α 7→ t̃α +

1

2
kα , (3.67)

when explicitly evaluating the power series expansions of the periods. An arising over-

all complex rescaling of Π can be absorbed by a transformation of the Kähler potential

appearing in the central charge Z leading to (3.66).

In the previous section we gave in (3.60) the massless infinite charge orbit at the large

volume point for an elliptic fibration. In particular, this orbit is at large fiber volume, v0 →
∞. In order to obtain the orbit at small fiber volume we note that (3.66) implies that ifQLV

is the large volume orbit massless at t0, t1, . . . , tn → i∞, the orbit

QF = SQLV (3.68)

will be massless at v0 → 0. Using the explicit expressions (3.64) and (3.60) we find

QF =

(

0, 0, ηαiq
(2)
i , 0, −m0q

(2)
0 −

∑

i

miq
(2)
i +

1

2
(Ki − ηiαKαα0)q

(2)
i , q

(2)
0

)T

, (3.69)

where we recall that i ≥ n̂ designates the vα that grow slower than v0 when taking the

limit, see (3.59). In order to read the actual charge, we need to further contract with ϑ

QF · ϑ =

(

−Kiq
(2)
i + q

(2)
0 , −m0q

(2)
0 −

∑

i

miq
(2)
i , 0, ηαiq

(2)
i , 0, 0

)T

. (3.70)
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Hence, the infinite tower of states becoming massless at small volume of the fiber

consists of D2–D0 bound states which differ by the D2-brane charge along the elliptic fiber.

The orbit can also admit a D4-charge although, as remarked in the previous section, is

always possible to choose an infinite orbit in which this D4-charge vanishes. The transfer of

the orbit from the large volume regime to small fiber is highly non-trivial and highlights the

intricate global structure which is required to satisfy the Swampland Distance Conjecture

at any infinite distance point of the moduli space.

4 On infinite distances and charge orbits in M- and F-theory

In this section we will consider M-theory compactified on an elliptically fibered Calabi-Yau

threefold Y3 and the duality of this setting to F-theory on the same threefold Y3 times an

additional circle S1. We will study infinite distances and charge orbits arising near the

large volume point of such an elliptically fibered geometry in M-theory. Subsequently we

generalize the discussion to include the F-theory limit which requires sending the volume of

the elliptic fiber to zero. In the F-theory dual picture this limit corresponds to sending the

radius of the additional S1 to infinity. The resulting effective action then describes F-theory

compactified on the elliptically fibered Y3. This leads us to a dual geometric realization

of the infinite tower of Kaluza-Klein states associated to S1 in terms of an infinite charge

orbit by using the discrete symmetries associated to the large volume regime in M-theory.

These discrete symmetries are captured by monodromy transformations when considering

the complexified Kähler moduli space.

4.1 6D supergravity circle compactification and F-theory

In this subsection we review the circle compactification of the 6D N = (1, 0) supergravity

effective theory obtained from compactifying F-theory on a Calabi-Yau threefold. We first

revisit the classical reduction and then include one-loop corrections from the Kaluza-Klein

tower. Our presentation will closely follow [18], but we refer to [48] for an earlier study of

this setting.

In a generic 6D supergravity with (1, 0) supersymmetry (8 supercharges), one can have

four type of multiplets (restricting to spin less or equal to two): the gravity multiplet, vector

multiplets, tensors multiplets and hypermultiplets. In order to simplify the discussion, we

will consider a theory that has no vector multiplets and contains in addition to a gravity

multiplet nT tensor multiplets as well as nH neutral hypermultiplets. To ensure cancellation

of gravitational anomalies we will set nH = 273− 29nT . Note that this limits the number

of tensor multiplets that one can consider, as it requires nT ≤ 9.

The bosonic field content of the theory under consideration consists of the gravi-

ton ĝµν , nT + 4nH real scalars, one self-dual and nT anti-self-dual two-forms collectively

denoted by B̂α, α = 1, . . . , nT +1, whose field-strengths Ĝα = dB̂α+ 1
2a

αω̂grav contain the

gravitational Chern-Simons form (see e.g. [18] for further details). The bosonic part of the

6D supergravity (pseudo-) action takes the form

S6 = M4
pl,6

∫

M6

1

2
R̂ ⋆̂ 1− 1

4
gαβĜ

α ∧ ⋆̂ Ĝβ − 1

2
gαβ dj

α ∧ ⋆̂ djβ − huv dq̂
u ∧ ⋆̂ dq̂v

−1

4
Ωαβ a

αB̂β ∧ Tr
(

R̂ ∧ R̂
)

,

(4.1)
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where the q̂u, u = 1, . . . , 4nH are the scalars in the hypermultiplets. The nT + 1 real

scalars jα are subject to the constraint

Ωαβj
αjβ = 1, (4.2)

where Ωαβ is a constant SO(1, nT ) metric, leaving effectively nT independent real scalars

that reside in the tensor multiplets. The positive definite, and non-constant, metric gαβ of

scalar manifold is defined as

gαβ = 2jαjβ − Ωαβ ; jα = Ωαβj
β . (4.3)

The (anti)-self-duality conditions for the two forms B̂α in a SO(1, nT ) takes the form

gαβ ⋆̂ Ĝ
β = Ωαβ Ĝ

β and has to be imposed by hand in addition to the equations of motion

derived from the action (4.1). Let us note that there is a convenient way to introduce the

coordinates jα, such that (4.2) is automatically satisfied. More precisely, we can introduce

real unconstraint scalars vαb and define

jα =
vαb

V1/2
b

, Vb = Ωαβ v
α
b v

β
b . (4.4)

Since the vαb are unconstraint there is an extra degree of freedom Vb. It turns out that

in F-theory compactifications it is actually physical and resides in a hypermultiplet as we

discuss below.

We now proceed to reduce action (4.1) on a circle, focusing on the two-derivative part.

The 6D metric and two-forms B̂α are reduced as

dŝ2 = ds2 − r2(dy −A0)2 , B̂α = Bα −Aα(dy −A0) , (4.5)

where A0 is the Kaluza-Klein vector and Bα and Aα are 5D two-forms and one-forms, re-

spectively. Dimensionally reducing the (anti)-self-duality condition to r gαβ⋆G
β = −ΩαβF

β

we can eliminate the two-forms from the 5D action and only retain 5D vectors. The five-

dimensional Einstein frame action at the two derivative level then takes the form7

S5 = r0M
4
pl,6

∫

M5

1

2
R ⋆ 1− huv dq

u ∧ ⋆ dqv − 2

3
r−2 dr ∧ ⋆ dr − 1

4
r8/3r

−2/3
0 F 0 ∧ ⋆F 0

−1

2
gαβ

(

dja ∧ ⋆ djβ + r−4/3r
−2/3
0 Fα ∧ ⋆F β

)

− 1

2
r−1
0 ΩαβA

0 ∧ Fα ∧ F β .

(4.6)

Since such a circle reduction does not break any supersymmetry this is a 5D N = 2

supergravity theory (8 supercharges), with one gravity multiplet and n
(5)
V = nT + 1 vector

multiplets, and nH neutral hypermultiplets. The bosonic field content of such a theory is

one graviton, n
(5)
V +1 vectors8 and n

(5)
V +4nH real scalars. The canonical form of the action

7This requires a Weyl rescaling of the metric gEµν = (r/r0)
2/3gµν .

8The +1 comes from the gravity multiplet, which contains a vector.
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is given by

Scan
5 = M3

pl,5

∫

M5

1

2
R ⋆ 1− huv dq

u ∧ ⋆ dqv

−1

2
GIJ

(

dM I ∧ ⋆ dMJ + F̄ I ∧ ⋆F̄ J
)

− 1

12
CIJKĀI ∧ F̄ J ∧ F̄K ,

(4.7)

where all the vectors are denoted collectively as ĀI , I = 0, . . . , n
(5)
V , and the n

(5)
V + 1 reals

scalars M I are subject to the so-called very special geometry constraint

N ≡ 1

3!
CIJKM IMJMK !

= 1, (4.8)

leaving effectively n
(5)
V reals scalar degrees of freedom. This cubic potential N specifies

entirely the theory at the two derivatives level, the field metric (which coincide with the

gauge coupling function) and the Chern-Simons coefficients being given by

GIJ =

[

−1

2
∂I∂J logN

]

N=1

, CIJK = ∂I∂J∂KN . (4.9)

Also at the four-derivative level a 5D N = 2 action is known that includes the term arising

from the reduction of the last term in (4.1). Concretely, the 5D action with four-derivative

terms presented in [49] includes the term

Sgrav
5 = −1

4

∫

M5

cI Ā
I ∧ Tr (R∧R) . (4.10)

The general action (4.7) matches with the action obtained (4.6) by dimensional reduc-

tion if we identify the nT + 1 vector multiplets (M I , ĀI) as

M0 = r−4/3 , Ā0 = r
−1/3
0 A0 , (4.11a)

Mα = r2/3jα , Āα = r
−1/3
0 Aα , (4.11b)

together with a cubic potential given by

N F
class = ΩαβM

0MαMβ , (4.12)

and finally the 5D Planck mass is related to the 6D one as in (2.14), i.e.M3
pl,5 = r0M

4
pl,6. Us-

ing the definitions (4.11), one directly finds N F
class = Ωαβj

αjβ , such that the constraint (4.2)

indeed implies N = 1. Also straightforward to get from the N F
class defined above is that

the only non-zero Chern-Simons coefficient in (4.7) is C0αβ = 2Ωαβ . Finally, reducing

the higher curvature term in (4.1) and comparing with (4.10) leads to the identification

cα = −12Ωαβa
β, with c0 vanishing in the classical reduction.

The action (4.7) evaluated with (4.12) includes only the zero modes of the circle re-

duction. Higher order massive KK modes have not been written down, however they do

run in the loops and might generate quantum corrections, as we saw in section 2.2. In this

work we are interested by the quantum corrections to the moduli space metric. However,
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because of the very special geometry, the field metric GIJ is related to the Chern-Simons

coefficients CIJK through the cubic potential N , such that all the information is already

encoded in the Chern-Simons coefficients. In the case of interest, only C000 is being gen-

erated by loop corrections, because the KK modes are only electrically charged under A0

and not under Aα. Furthermore supersymmetry tells us that there are no further loop

corrections beyond one-loop. The KK-modes contributing to C000 are massive spin-1/2,

massive spin-3/2 and massive two-form fields. The computation of this one-loop correction

was carried out [20] and shown to yield the contribution

C1-loop
000 =

9− nT

4
. (4.13)

Such a Chern-Simons term leads to a piece in the cubic potential N 1-loop = 1
6C

1-loop
000 (M0)3

which in turn gives a one loop correction to the field metric G1-loop
00 ∼ 1/(M0)2. This

contribution alone already induces an infinite distance singularity at M0 → ∞, which

is thus generated at one-loop level. Adding the classical result (4.12) and the one-loop

result (4.13), we find the following total cubic potential for a circle reduction of a 6D

theory with nT tensor multiplets and without vector multiplets

N F
tot = ΩαβM

0MαMβ +
9− nT

24
(M0)3 . (4.14)

We will now discuss how this result is arising in the dual M-theory compactification on an

elliptically fibered Calabi-Yau threefold.

4.2 M-theory on a Calabi-Yau threefold and the F-theory match

Having discussed the dimensionally reduced a 6D (1, 0) supergravity action arising from

F-theory on a circle, we now briefly recall the match of the resulting effective action with

a reduction of M-theory on an elliptically fibered Calabi-Yau threefold. This implements

the F-theory to M-theory duality. The circle radius will then be part of the Kähler moduli

space such a threefold.

To begin with, we will briefly summarize the dimensional reduction of eleven-dimen-

sional supergravity on a Calabi-Yau threefold. This reduction is well-known, see e.g. [50],

and we will follow the notation of [18]. Eleven dimensional supergravity contains in addition

to the metric also a three-form Ĉ3 as bosonic fields, where the hat now indicates eleven-

dimensional objects. We now reduce this theory on a Calabi-Yau threefold Y3, i.e. we

take M11 = R1,5×Y3. The massless fluctuations around the background Calabi-Yau metric

correspond to complex structure deformations and Kähler structure deformations. The

former are part of hypermultiplets and not be of relevance in the following. Rather we will

focus on the Kähler structure deformations. These are obtained as in (3.1) by expanding

the Kähler form J along harmonic (1, 1)-forms as J = vIωI , where I = 1, . . . , h1,1(Y3).

Likewise, we expand the three-form Ĉ3 in the same basis

Ĉ3 = AI ∧ ωI + . . . , (4.15)

where the AI are all the vectors of the 5D theory and the dots indicated terms yielding

hypermultiplet scalars irrelevant in the following. We thus find h1,1(Y3) vectors AI , of
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which one resides in the 5D gravity multiplet and n
(5)
V = h1,1(Y3) − 1 reside in 5D vector

multiplets. The h1,1(Y3) scalars v
I are expected to comprise the scalars in the n

(5)
V vector

multiplets. The apparent mismatch in their number is resolved by noting that the overall

volume of the Calabi-Yau threefold V defined in (3.2) actually resides in a hypermultiplet.

Accordingly, to separate the total volume V and the scalars LI in the vector multiplets it

is natural to define

LI =
vI

V1/3
. (4.16)

These fields indeed parametrize only h1,1(Y3)− 1 degrees of freedom, since they satisfy

NM ≡ 1

3!
KIJKLILJLK = 1 . (4.17)

This condition matches the general very-special Kähler constraint (4.8), such that the

fields LI can be identified with the very special coordinates and NM the cubic potential of

the 5D N = 2 in its canonical form. One checks that this potential indeed allows to match

the action obtained by dimensional reduction [50].

As mentioned above, the volume V is one of the scalars of the hypermultiplets sector,

and its kinetic term is

huv dq
u ∧ ⋆ qv ⊃ 1

4
dlogV ∧ ⋆ dlogV . (4.18)

The rest of the hypermultiplet sector will not be relevant for us, so we will only mention that

the number of such multiplets is given by nH = h1,2(Y3)+1, the remaining 4h1,2(Y3)+3 real

scalars coming from the expansion of Ĉ3 (dots in (4.15)) and from the complex structure

deformations of Y3. We refer to e.g. [18] for the full metric.

Up to this point the Calabi-Yau space used in the dimensional reduction was general.

In order apply the duality between M-theory and F-theory we have to further restrict Y3
to be two-torus or elliptically fibered. This will then allow us to match the 5D setting

obtained from M-theory with the F-theory setting discussed in section 4.1. Furthermore,

recalling that we have restricted our considerations to include only no 6D vector multiplets

and only neutral hypermultiplets we further demand that Y3 is a smooth elliptic fibration

(i.e. without exceptional divisors resolving singularities of the fiber) with a single section.

This is the situation described in section 3.4 and we refer to it for the notation used.

In the expansion of the Kähler form J we are free to choose a basis of (1, 1)-forms

and hence either can use the basis (3.51) or the Kähler cone basis (3.53). We will use the

latter in order to easily connect to the analysis of singularities in 3.4, although the former

is usually used in the literature, such as in ref. [18]. Using the intersection numbers (3.54)

in the cubic potential (4.17), we obtain

NM =
1

2
ηαβL

0LαLβ − 1

2
ηαβK

α(L0)2Lβ +
1

6
ηαβK

αKβ(L0)3. (4.19)

The M/F theory duality tells us that we should be able to match this result with

the one of section 4.1. While the first term of (4.19) can be matched with the classical

term (4.12), and the last term can be matched with the loop correction (4.13), the term
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in the middle does not appear for a circle reduction. This implies that the proper duality

match requires to first perform the shift

Ľα = Lα − 1

2
KαL0, (4.20)

and performing a similar redefinition for the vectors Aα. This corresponds in the geometry

to take yet a different basis for the two-forms, namely ω̌0 = ω0+
1
2K

αωα. This shift indeed

removes the second term in (4.19). Finally, to make the matching more transparent, we

note that
∫

Y3
c21(B2) = ηαβK

αKβ = 10− h1,1(B2). The cubic potential now reads

NM =
1

2
ηαβL

0ĽαĽβ +
10− h1,1(B2)

24
(L0)3. (4.21)

This result is now straightforwardly matched with (4.14) by identifying

L0 = M0, Ľα = Mα, ηαβ = 2Ωαβ , and h1,1(B2) = nT + 1. (4.22)

It can also be checked that the overall volume V in the M-theory compactification is

identified with the volume of the base Vb = 1
2ηαβv

α
b v

β
b in the 6D hypermultiplet of the

F-theory compactification,

V = Vb . (4.23)

Notice, though, that V is given in 11D Planck units while Vb is given in string units.

Finally we note for completeness that the Kα have to be matched with the Green-Schwarz

parameters aα present in (4.1) as discussed in [18].

4.3 Large volume limits in M-theory

Infinite distance limits in Kähler moduli space of an elliptically fibered Calabi-Yau threefold

were studied in section 3.4. The same classification obtained at large volume applies

here for a Calabi-Yau threefold compactification of M-theory. However, the microscopic

interpretation of the infinite charge orbits in terms of wrapping branes changes. In this

section, we will discuss the M/F-theory interpretation of the infinite massless charge orbits

obtained at the different large volume limits.

Even if the monodromy transformation has a more obscure meaning in M-theory (since

the 5D moduli space is not complex), it is still a very useful tool to classify the infinite

distance limits and the tower of states becoming massless. When further compactifying on

a circle, we can complexify the moduli space and connect with the IIA interpretation in

which the monodromy transformation corresponds to a discrete shift of the axion partners

of the Kähler deformations vI . These axions arise from dimensionally reducing the 5D vec-

tor bosons AI along the extra circle. Therefore, in the 5D M-theory compactification, the

monodromy transformations capture the change on the geometry under large gauge trans-

formations of these vectors AI . At infinite distance, the axionic discrete shift symmetries

in Type IIA enhance to a continuous global symmetry. Analogously, in M-theory the dis-

crete shifts of the gauge bosons also become continuous and we restore a one-form global

symmetry at infinite distance. The tower of states of the SDC can, therefore, again be

understood as a quantum gravity obstruction to restore this generalized global symmetry.
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For the scope of this section, it is enough to recall that we can borrow the results for

the classification on infinite distance singularities and charge orbits of section 3.4. The

only difference is that the infinite charge orbit becoming massless at infinite distance will

now consist of M2-brane states wrapping certain 2-cycles of the compactification manifold.

Recall that even if their masses generically diverge, they become massless with respect to

the Planck scale (which diverges exponentially faster). Notice also that the charge orbits

obtained in (3.60) imply that the tower consists only of particles coming from wrapping

M2-branes and not strings coming from M5-branes, since the M5-brane has to vanish in

an orbit that satisfies the masslessness conditions (3.35), (3.36).

In the following, we will translate these limits and orbits to the F-theory setup. We

recall that the real scalar fields jα in the 6D tensor multiplets together with the circle

radius r form the coordinates that are identified with the Kähler cone coordinates v0, vα

through (4.22), together with (4.11), (4.16), and (4.20). One finds

v0

V1/3
= r−4/3 ,

vα − 1
2K

αv0

V1/3
= r2/3jα . (4.24)

In addition, we have to consider the volume V of the Calabi-Yau threefold defined in (3.2),

which is part of a 5D hypermultiplet. In terms of the Kähler cone coordinates it reads

V =
1

2
K0αβv

0vαvβ +
1

2
K00αv

0v0vα +
1

6
K000v

0v0v0 . (4.25)

As mentioned in (4.23) this volume has to be identified with the volume Vb in the 6D

hypermultiplet. To recall the charge orbits we stress that the matching with F-theory

should be done in the basis of two-forms ω̌I = {ω̌0, ωα}, as explained in section 4.2. This

basis is related to the Kähler cone basis {ω0, ωα} via

ω̌0 = ω0 +
1

2
Kαωα . (4.26)

The charge of the states in the orbit under the 5D vector bosons AI , I = {0, α}, is given

by qI =
∫

Y3
H∧ ω̌I , where A

0 corresponds to the Kaluza-Klein vector of the circle reduction

and Aα arise from dimensionally reducing the 6D tensor gauge fields B̂α, α = 1, . . . , nT +1.

We begin our analysis of the limits in F-theory moduli space with the large volume

limits, in which one or several vI → ∞. Notice that they always imply V → ∞ and thus

always require to take the limit Vb → ∞ in F-theory. As seen from the kinetic term (4.18)

this limit in the hypermultiplet sector lies at infinite distance. Therefore, these limits are

in general at infinite distance both in the tensor and hypermultiplet sectors. In section 3.4

we analyzed such limits for elliptic fibrations and we found that only four possible types of

singularities were possible, listed in equations (3.56) and (3.57). Here we will study what

these limits correspond to in the F-theory moduli space by determining the associated

behavior of r and jα. For simplicity, we will consider the case that all vαi that are taken to

a limit grow at the same rate, but note that the generalization to specific growth sectors

is straightforward. The results are summarized in table 4.

We stress that the first limit v0 → ∞ in table 4 is special, since it lies at finite distance

in the tensor moduli space. However, as discussed above, it will be still at infinite distance
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growth of growth of

Singularity v0 vαi vαp ηαiαj Type r jαi jαp

(3.56a) λ — — — IVh1,1(B2) — — —

= 0 λ1/4 λ1/2 λ−1/2

(3.56b) κ κα —
6= 0

IVh1,1(Y3)
λ1/2 — λ−1

(3.57a) — λ — = 0 II2 λ1/4 λ1/2 λ−1/2

(3.57b) — λ — 6= 0 III0 λ1/2 — λ−1

Table 4. Large volume singularities in terms of the F-theory coordinates r and j’s. We collectively

denoted vαi , i = 1, . . . , n the coordinates that are taken in the limit and vαp , p = n+1, . . . , h1,1(B2)

those that are not. In the second line, we defined λ = κα/κ and assumed λ → ∞. If λ → 0, the

result is the same as the one of the first line.

in the hypermultiplet sector, since Vb → ∞. All the other limits in table 4 correspond to a

large radius limits r → ∞. In terms of the volumes of the base, for each volume vαi → ∞
there is also a volume of a two-cycle of the base that grows to infinity.

Finally, let us briefly comment on the F-theory interpretation of the charge orbits

arising in the large volume limits in the M-theory. Recall that for Type IIA compactifica-

tions we have determined the infinite charge orbits that become massless at the singularity

in (3.60). Considering either of the two situations displayed in the last three lines of table 4,

the corresponding Type IIA charge orbit reads

Q =



0, 0, . . . , 0, 0, q(2)αp
, q

(2)
0 ,−m0q

(2)
0 −

∑

αp

mαpq
(2)
αp





T

, (4.27)

where we recall that the αp label the directions in the base that are not taken to a limit.

To lift this result to M-theory we note that D2–D0 bound-states correspond to M2-branes

with a certain KK-charge around the circle Ŝ1 connecting Type IIA and M-theory. The last

entry of (4.27) corresponds to the D0 charge, we realize that this orbit simply represents

the KK-tower of an M2-brane state wrapped on the curve q
(2)
αp Cαp + q

(2)
0 C0 in Y3 with all

possible KK-charges along Ŝ1. Further following the duality to F-theory the M2-brane

state encoded by (4.27) maps to a particle arising from a 6D string wrapping the F-theory

circle S1 to 5D, since for q
(2)
0 6= 0 and some q

(2)
αp 6= 0 one finds a charge both under the

Kaluza-Klein gauge vector A0 and the gauge bosons Aαp associated to the base. These

strings arise from D3-branes in Type IIB wrapping the non-trivial two cycles q
(2)
αp Cαp in

the base whose volume is not sent to infinity. Let us remark that each tower of particles

(one per each q
(2)
I 6= 0) lifts to a single 6D string. Since the volume of the base goes to

infinity, all such strings become exponentially light compared to the Planck scale. This

is somewhat analogous to the analysis in [5] in which a 6D string becomes tensionless in

the infinite distance limit of sending the gauge coupling of an open string U(1) to zero.

Note, however, that the latter limit does not correspond to a decompactification limit of
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the internal space and, in particular, keeps Vb finite. To implement such a limit one has to

send some subset of coordinates to infinity, while sending others to zero. We will discuss

an example of such a mixed limit next.

4.4 F-theory limit and geometric realization of the Kaluza-Klein tower

In this final subsection we now turn to the discussion of the F-theory limit of sending

the fiber volume v0 to zero. Our aim is to show how the infinite charge orbit obtained

in section 3.4 corresponds to the Kaluza-Klein tower associated to the circle reduction

in the F-theory side. Note that the F-theory limit corresponds to decompactifying the

circle r → ∞ while keeping Vb finite. In this limit we recover the 6D effective theory of

F-theory compactified on a Calabi-Yau threefold with all 6D fields not taken to any limit

in stark contrast to the limits discussed in subsection 4.3.

To begin with we discuss the F-theory limit in more detail and the map to the M-

theory side. This limit corresponds to sending r → ∞ while keeping all jα and Vb fixed.

For convenience, let us assume that the radius diverges as r ∼ λ → ∞. From (4.24)

and (4.25) we find that it is implemented in the 5D M-theory moduli space spanned by the

coordinates v0, vα as

vα ∼ λ2/3 → ∞, v0 ∼ λ−4/3 → 0 . (4.28)

In other words, all vα become large while v0 vanishes at a rate vα/v0 ∼ λ2 → ∞. This

also implies that the overall volume V in Planck units stays finite and so does the volume

of the base Vb in string units on the F-theory side. From the definition of jα in (4.4), one

then finds that vαb scales as

vαb ∼ √
v0 v

α (4.29)

in the r → ∞ limit. This is perfectly consistent with (4.23).

Our next task is to compute the infinite charge orbit in the limit (4.28) of the M-

theory geometry. Note that the limit (4.28) is just a special case of the limits studied

in subsection 3.5. In fact, we can use the Fourier-Mukai transform introduced in (3.64)

and (3.67) to transfer the orbits at v0 → ∞ to v0 → 0 by sending v0 → 1/v0. Furthermore,

since we know the precise growth of vα and v0, we can infer which large volume limit we

need to consider. To avoid confusion, let us call the large volume variable ṽ0 = 1/v0.

Then (4.28) corresponds to the large volume limit

vα ∼ λ2/3 → ∞, ṽ0 ∼ λ4/3 → ∞ . (4.30)

In other words, the fiber volume grows faster than all coordinates vα. This determines the

relevant charge orbit at large volume as discussed in subsection 3.4. Furthermore, we can

employ the transformation (3.68) to transfer the orbit to small fiber volume yielding

QF =

(

0, 0, ηαβq(2)α , 0, −m0q
(2)
0 −

∑

α

mαq
(2)
α +

1

2
(Kα − ηαβKββ0)q

(2)
α , q

(2)
0

)T

, (4.31)

which is a special case of the orbit given in (3.69). It was a central result of subsection 3.4

that one is allowed to set q
(2)
α = 0, for all α = 1, . . . , h1,1(B2) and take q

(2)
0 6= 0 to generate
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an infinite orbit becoming massless in the limit (4.30) and valid for any Calabi-Yau. Making

this choice in (4.31) one finds

QF =
(

0, 0, 0, 0, −m0q
(2)
0 , q

(2)
0

)T
. (4.32)

Before turning to the interpretation of this orbit, let us stress that it does not satisfy the

conditions outlined in subsection 3.3 in the small fiber volume regime, since in certain

cases there is no monodromy operator that can generate an infinite massless orbit in this

regime. The orbit is rather transferred from the large volume regime and involves an Sl(2,Z)

rotation of the charges (recall figure 1 in which the F-theory limit corresponds indeed to

small fiber and large base volume).

Finally, let us interpret the orbits (4.31) and (4.32). To begin with, we note that,

as in the previous subsection, the orbits are actually Type IIA orbits and hence their

entries correspond to charges of Dp-branes. Connecting the M-theory setting of this section

with the Type IIA orbit, we compactify on a further Ŝ1. The last entry of the orbits

corresponds to D0-brane charge in Type IIA and lifts to KK-momentum of an M2-brane

state in M-theory. In fact, the orbits also admit non-trivial M2-brane charge as soon as

q
(2)
I 6= 0 and thus describe M2-branes on the specified curves. The very special orbit (4.32)

has in addition to D0-charge only D2-charge corresponding to a brane wrapped on the

curve −m0q
(2)
0 C0. In M-theory one thus finds an M2-brane tower wrapping multiple times

the elliptic fiber and having a certain KK-momentum around Ŝ1. Clearly, we can also

proceed for more general orbits in (4.31) that admit D4-brane charge. This indicates that

M5-branes wrapped on Dαη
αβq

(2)
β and Ŝ1 will be relevant in the limit.

In the next step one has to dualize the M-theory states to F-theory. Following the

standard M/F-duality an M2-brane state on the elliptic fiber dualizes to a fundamental

Type IIB string with KK-momentum along the circle S1 connecting the 5D M-theory

setting with the 6D F-theory setting. This implies that the orbit (4.32) labels the KK-

tower of the 6D fields. To see this explicitly we need to change into the basis of two-forms

as discussed around (4.26). The Kaluza-Klein vector associated to the S1 circle reduction

comes from expanding C3 as C3 = AKK ∧ ω̌0. The charge of the infinite orbit under the

KK vector AKK is then given by

∫

HF ∧ ω̌0 = QI
F ϑIJ

(

δJ1 +
1

2
KαδJα

)

= −m0q
(2)
0 , (4.33)

whereHF is an even form with coefficientsQI
F. Analogously, it is not hard to check that the

charge under any of the other 5D gauge boson Aα is zero since (QF ·ϑ)JδJα = 0. Therefore,

the tower of states only differ by their charge under the KK photon associated to the circle

compactification of the 6D F-theory effective action to five dimensions. More generally, for

the orbit (4.31) one has to also follow M5-branes through the M/F-duality. Since these

M5-branes wrap the elliptic fiber they dualize to D3-branes wrapping a curve in B2. These

D3-branes yield string states in the 6D effective theory which couple to the tensor fields.

This matches with the fact that in 5D they are charged under Aα, i.e. the vector arising

from the 6D tensor fields B̂α. We leave a more detailed analysis of these strings for the
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future. At the moment, we conclude this section by remarking the identification of the

Kaluza-Klein tower of the F-theory circle with the universal infinite massless charge orbit

in the M-theory geometry.

5 Conclusions

In this paper we have investigated the Swampland Distance Conjecture, and the associated

notion of emergence of infinite field distances, in the context of Kähler moduli spaces of

Calabi-Yau manifolds. For the conjecture to hold there should exist an infinite tower of

states near every infinite distance locus of the moduli space whose mass decreases expo-

nentially fast in terms of the proper geodesic field distance to this locus. The proposal

of [3] is to identify this tower with an infinite orbit of states charged under the discrete

infinite symmetries which are part of the duality group of the string compactification. More

concretely, this discrete symmetry corresponds to the monodromy transformation that the

mirror period vector undergoes when circling the infinite distance locus. As these mon-

odromies enhance to a continuous transformation at infinite distance, the infinite tower can

then be understood as a quantum gravity obstruction to restore a global symmetry. We

have also further elucidated the more speculative proposal of [3] that quantum corrections

from integrating out the SDC tower are responsible for generating the infinite field distance

itself.

It was explained in reference [4] that powerful mathematical orbit theorems and the

theory of limiting mixed Hodge structures allows one to classify the infinite distance loci

and construct the massless infinite charge orbits in the complex structure moduli space

of Calabi-Yau threefolds in complete generality. While this gives a general proof of the

existence of an orbit under the stated assumptions, the constructions presented in [4]

are technically involved and hard to apply to explicit examples. In this paper, we have

shown that the same mathematical technology can be used to state the masslessness and

infiniteness conditions as vector equations that then can be solved for concrete examples.

In particular, our approach allowed us to construct the infinite charge orbits at the infinite

distance loci of Kähler moduli spaces. In the large volume regime, the generic form of the

log-monodromies and symplectic form is fully determined by the topological data of Calabi-

Yau manifold, namely its intersection numbers and Chern classes. We have argued that one

can thus classify the possible singularity types and possible singularity enhancement chains

corresponding to partial decompactification limits entirely using the intersection numbers.

With these at hand, we then identified the infinite charge orbits that are massless when

approaching any infinite distance point in the large volume regime. We provided the general

form of the orbit, in terms of the singularity type, valid for any Calabi-Yau threefold and

identified the corresponding D-brane states. This provides yet another strong piece of

evidence for the SDC in the context of String Theory.

Having discussed the general charge orbit in the large volume regime, we then further

focused our study to the cases in which the Calabi-Yau manifold is elliptically fibered. The

special intersection pattern of these geometries allowed us to give a detailed account of

the arising large volume charge orbits. In particular, we were able to identify a universal

orbit that is generically massless if the volume of the elliptic fiber is send to infinity. We
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then further exploited the geometry of elliptic fibrations, to ague that the orbits from the

large volume regime can be transferred to regime of small fiber and large base volumes.

This is done by applying two T-dualities along the elliptic fiber and a so-called operation

Fourier-Mukai transformation on the D-brane charges. In this manner, we are able to

obtain infinite charge orbits becoming massless at the small-fiber regime. We stress that

this is the first construction that goes beyond analyzing the SDC in a local region of the

moduli space (see also [51] for a very recent analysis of the SDC beyond perturbative level

also using modular symmetries). It explicitly realizes the transfer of a charge orbit from

a region in moduli space which allows for a local construction to a different regions of the

moduli space where no such local construction is possible.

It is important to stress that, as our above constructions show, the infinite charge orbit

does not always have the interpretation of a Kaluza-Klein tower, even if this is the naive

candidate for an infinite tower becoming massless at large volume. In fact, depending on

the particular string theory setup, it can also correspond to particles or strings coming

from wrapping branes. If we consider Type IIA compactified in a Calabi-Yau threefold,

the charge orbit at large volume consists of particles arising from bound states of D0–

D2 branes wrapping certain two-cycles, which lift to M2-brane states in M-theory. Even

if they get heavy at the large volume limit, they are exponentially light compared to the

Planck scale and hence become massless if we force the Planck mass to remain finite. There

are, therefore, two equivalent ways to avoid the restoration of the global symmetry, either

gravity decouples (Mpl → ∞) or the infinite tower of states becomes massless leading to an

exponential drop-off of the quantum gravity cut-off. For the case of Type IIA, this global

symmetry corresponds to an axionic continuous shift symmetry that is lifted to a one-form

global symmetry in M-theory.

In the second part of this paper we also analysed the F-theory interpretation of the

infinite massless charge orbit at the different infinite distance loci. For the large volume

limits each charge orbit corresponds to a 6D string wrapping the F-theory circle to five

dimensions. Each such 6D string in turn arises from a D3-brane in Type IIB, which is

wrapping a non-trivial two-cycles in the base of the elliptic fibration whose volume is

not sent to infinity. The identification of this string with an infinite orbit in M-theory

makes manifest the fact that the string should count as infinitely many different particles.

This suggests a potential application of these infinite charge orbits beyond the SDC, as a

promising tool to count the number of different massless excitations of extended objects

in F-theory. We then investigate the interpretation of the infinite massless charge orbits

at the small fiber regime, which maps to decompactifying the additional circle of the F-

theory compactification. We find that the infinite massless charge orbits at the F-theory

limit always differ by their charge under the KK photon of the F-theory circle, hinting

the existence of the extra dimension. In particular, we show that there always exists a

universal infinite orbit regardless of the specific intersection numbers of the Calabi-Yau,

that maps to the Kaluza-Klein tower of the 6D fields in F-theory. This provides a geometric

realization of the KK tower in terms of an infinite massless charge orbit in M-theory. We

also get that there could be other infinite towers identified with 6D strings coming from

M5-branes, whose analysis is left for future work.
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Last but not least, we pay special attention to whether the infinite field distance can

emerge from integrating out the infinite tower of states. First, we present a general field

theory computation to show that, as long as the tower gets compressed as we move in the

moduli space, quantum corrections from integrating out the tower up to its species bound

will generate the infinite field distance. Remarkably, they will generate a logarithmic

divergence of the field distance as a function of the mass of the tower, regardless of the

specific form of the mass, and yielding the exponential mass behavior required by the SDC.

We find that the condition for these quantum corrections to dominate over the classical

piece in the IR matches with the constraint on the mass spectrum imposed by the Scalar

Weak Gravity Conjecture [12]. If we apply this reasoning to a Kaluza-Klein circle reduction

in field theory, the species bound associated to the KK tower turns out to be the Planck

mass of the higher dimensional theory. However, quantum corrections from the KK tower

can only account at most for part of the infinite field distance as the radius goes to infinity.

The situation changes when considering similar setups in string theory. As mentioned,

the infinite tower of states becoming massless at large volume of Type IIA Calabi-Yau

compactifications consists of D0–D2 branes which could in fact completely generate the

infinite field distance. Notice that this means that the field metric in the Kähler moduli

space, and consequently the intersection numbers and topological discrete data of the

Calabi-Yau, would be emergent from integrating out these D0–D2 bound states. Finally,

the emergence of the classical quantities in the M-theory reduction from integrating out

states has also a clear interpretation in the context of the M/F-theory duality. There, it is

known [20, 52] that some of the Chern-Simon terms arising in the M-theory dimensional

reduction at classical level can only be recovered in the F-theory side upon taking into

account quantum corrections from integrating out the KK tower associated to the F-theory

circle. These Chern-Simon terms are related to the field metric by supersymmetry, so at

least part of the metric yielding the infinite field distance in the F-theory limit arises form

integrating out the KK tower. While this nicely supports the idea of emergence in this

context, it is only a first step to show that the infinite distance entirely emerges from

integrating out these infinite towers. To confirm the emergence conjecture one likely needs

to keep track of any possible tower of states becoming massless in this limit as they might

all contribute to generate the full divergence of the distance.

There are also a few further points that are interesting to address in future work.

First, we have assumed that the Kähler cone is simplicial, so the natural next step is to

remove this assumption and generalize the classification of singularities and charge orbits

to non-simplicial cones. Secondly, while we have focused on identifying explicit universal

charge orbits that are present for any Calabi-Yau manifold at the different types of infinite

distance singularities, the structure of all possible existing massless charge orbits is more

complicated and can depend on the topological discrete data of the manifold. It would

be interesting to perform a detailed study of all existing orbits and their microscopic

interpretation in string theory, as well as their possible role in the emergence of the infinite

distance. Lastly, we have not shown yet if the charge orbits are populated by physical

states as we approach the singular point. The monodromy transformation guarantees the

presence of an infinite number of physical states at the singularity as long as a single
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charge of the orbit is populated. However, the question remains how the stability of the

states changes when approaching the singularity. It would be then important to realize an

analysis of possible walls of marginal stability, as performed in [3], to check that the number

of physical states populating the tower indeed increases exponentially as we approach the

singularity, as the species bound and the idea of emergence suggest.

Finally, in this paper we have focused on the Swampland Distance Conjecture, but

recent works are pointing to an interesting emerging network of relations between the

different Swampland Conjectures (see [53] for a relation with the de Sitter swampland

conjecture [54]). In particular, the above infinite distance limits can also correspond to

weak coupling limits for the gauge bosons completing the N = 2 vector multiplets. In

that case, the infinite charge orbit would also correspond to the states satisfying the Weak

Gravity Conjecture [31], as discussed in [3, 5, 6]. We leave for future work a more detailed

analysis of their charge to mass ratio, which can help to properly define the WGC in the

presence of both scalar and gauge fields.
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A Constructing the massless infinite charge orbits

In this appendix, we derive the masslessness conditions (3.35) and (3.36) presented in

the main text, and explicitly construct orbits satisfying them, as well as the infiniteness

condition (3.37).

As explained in the main text, since

m(Q) = |Z(Q)| ≤ ‖Q‖ ∼ ‖q0‖ , (A.1)

having ‖q0‖ → 0 is sufficient to ensure masslessness of the BPS states with charge vector

Q. Note that since m(q0) = |Z(q0)| ≤ ‖q0‖, the states corresponding to q0 is also

massless. In [4] it was established that for a singularity ti → ∞, i = 1, . . . ,∞ a q0 ∈
Wl1(N

−
1 ) ∩Wl2(N

−
2 ) ∩ . . . ∩Wln(N

−
n ), where the li’s are the smallest values for which this

is true, has a vanishing norm if the following condition is satisfied

ln < 3 and l1, . . . , ln−1 ≤ 3 . (A.2)

The conditions for a vector to belong to certain Wl =
⊕

p+q≤l I
p,q depend on the Ip,q

of the considered singularity. The Ip,q naturally split into primitive parts P p,q and non-

primitive parts, of the form NkP p,q. This decomposition is given explicitly for the different

singularity types in table 5, from which one can also read the conditions for q0 to belong

to W2 or W3. We refer the reader to [3, 4] for more details.
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Sing. type Ip,q decomposition q0 ∈ W3 q0 ∈ W2

I

0

0 0

0 P 2,2 0

P 3,0 P 2,1 P 1,2 P 0,3

0 NP 2,2 0

0 0

0

q0 = v q0 = Nu

II

0

0 0

P 3,1 P 2,2 P 1,3

0 P 2,1 P 1,2 0

NP 3,1 NP 2,2 NP 1,3

0 0

0

q0 = v q0 = Nu

III

0

P 3,2 P 2,3

0 P 2,2 0

0 P 2,1 ⊕NP 3,2 P 1,2 ⊕NP 2,3 0

0 NP 2,2 0

N2P 3,2 N2P 2,3

0

q0 = v +Nu q0 = Nw

IV

P 3,3

0 0

0 P 2,2 ⊕NP 3,3 0

0 P 2,1 P 1,2 0

0 NP 2,2 ⊕N2P 3,3 0

0 0

N3P 3,3

q0 = v +Nx q0 = Nw +N2u

Table 5. We present for each singularity type the explicit splittings of the Ip,q in term of the prim-

itive subspaces P p,q, namely Ip,q = ⊕i≥0 N
iP p+i,q+i. From these one can read off the conditions

for q0 ∈ W2 or q0 ∈ W3, which are then given in the third and fourth column, where the vector u

is unconstrained, while the vectors v, w and x satisfy Nv = 0, N2w = 0 and N3x = 0.
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Masslessness conditions. Applying these conditions to (A.2), we find that the condi-

tions for the seed vector q0 to be massless are those stated in the main text, namely (3.35)

and (3.36), which we recall here again for convenience

Type A(i) q0 Type A(n) q0

II vi II Nnun

III vi +Niui III Nnwn

IV vi +Nixi IV Nnwn +N2
nun

(A.3)

where Nivi = 0, N3
i xi = 0 and N2

nwn = 0.

Infiniteness conditions. In addition, we recall the condition (3.37) for the orbit to be

generated

NJ∗q0 6= 0 for some J∗ = 1, . . . , h1,1(Y3) . (A.4)

We now proceed to satisfy those conditions, that is, to explicitly give the vectors vi,

ui, xi, un and wn such that eqs. (A.3)–(A.4) hold. Before specializing to the different

singularity types, let us recall here the explicit form of the matrix Ni and its powers (given

in eqs. (3.12) and (3.19) for i = n)

Ni =















0 0 0 0

−∑i
a δaI 0 0 0

−1
2K

[i]
I −K(i)

IJ 0 0
1
6K[i] 1

2K
(i)
JJ −∑i

a δaJ 0















N2
i =















0 0 0 0

0 0 0 0

K(i)
I 0 0 0

0 K(i)
J 0 0















N3
i =















0 0 0 0

0 0 0 0

0 0 0 0

−K(i) 0 0 0















.

(A.5)

where we defined K[i]
I =

∑i
a=1KaaI and K[i] =

∑i
a=1Kaaa. With these at hand, we find

their action on a generic vector q = (q6,q4
I ,q

2
I ,q

0)T — a convention will also adopt for

the vectors u, v, w and x throughout this appendix — to be

Niq =



















0

−∑i
a δaI q

6

−1
2K

[i]
I q6 −K(i)

IJ q
4,J

1
6K[i]q6 + 1

2K
(i)
JJ q

4,J −∑i
a q2,a



















, N2
i q =

















0

0

K(i)
I q6

K(i)
I q4,I

















, N3
i q =















0

0

0

−K(i) q6















.

(A.6)

This will allow us to translate the conditions in (A.3) into conditions on the components

of the vectors. The analysis depends on the type of the last singularity in the considered

chain, i.e. Type A(n) in (3.15). We now specialize to the different possible singularity types.
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A.1 Type A(n) = II

The first and simplest situation is when Type A(n) = II, where the masslessness conditions

are, as can be read from (A.3),

qII
0 = vi where Nivi = 0 for i ≤ n , (A.7a)

qII
0 = Nnun . (A.7b)

Eq. (A.7b) implies

qII
0 =



















0

−∑n
a δaI u

6
n

−1
2K

[n]
I u6

n −K(n)
IJ u

4,J
n

1
6K[n] u6

n + 1
2K

(n)
JJ u

4,J
n −∑n

a u
2,a
n



















. (A.8)

Acting on this qII
0 with Ni we find

Niq
II
0 =



















0

0
∑i

aK
(n)
aI u6

n

−1
2

∑i
aK

(n)
aa u6

n −∑i
a

(

−1
2K

[n]
a u6

n −K(n)
aI u

4,I
n

)



















. (A.9)

Since Type A(n) = II, one has K(n) = K(n)
I = 0 which implies

K(n)
aa = K[n]

a = K(n)
aI = 0 for a, b ≤ n , (A.10)

such that the condition (A.7a) is automatically satisfied. This means that qII
0 in (A.8) is the

generic form of a massless seed vector. On the other hand The infiniteness condition (A.4)

gives

NJ∗qII
0 =



















0

0
∑J∗

a K(n)
aI u6

n

−1
2

∑J∗

a K(n)
aa u6

n −∑J∗

a

(

−1
2K

[n]
a u6

n −K(n)
aI u

4,I
n

)



















6= 0 . (A.11)

Since rkK(n)
IJ 6= 0, there are some I∗ and J∗ such that K(n)

I∗J∗ > 0, eq. (A.11) can be satisfied,

both if u6
n 6= 0 or

∑J∗

a K(n)
aI u

4,I
n 6= 0, in particular one can have a solution with u6

n = 0.9 As

mentioned in the main text, the last entry of q0 plays no role and can safely be set to zero,

here by choosing
∑n

a u
2
n = 1

2K
(n)
JJ u

4,J
n . Making those choices and renaming ωI = −u

4,I
n ,

we find

qII
0 =

(

0, 0,K(n)
IJ ωJ , 0

)T
. (A.12)

9For instance choosing u
4,I
n = 1 for all I a possible solution, but it is of course not the only one.

– 44 –



J
H
E
P
0
8
(
2
0
1
9
)
0
7
5

A.2 Type A(n) = III

The next situation is Type A(n) = III, where the masslessness conditions are, as can be

read from (A.3),

qIII
0 = vi where Nivi = 0 i < nIII , (A.13a)

qIII
0 = vj +Njuj nIII ≤ j < n , (A.13b)

qIII
0 = Nnwn where N2

nwn = 0 , (A.13c)

where nIII is the first place where a type III singularity occurs. Equations (A.13) lead to

qIII
0 =















0

v4
i I

v2
i I

v0
i















=



















0

v4
j I −

∑j
a δaI u

6
j

v2
j I − 1

2K
[j]
I u6

j −K(j)
IJ u

4,J
j

v0
j +

1
6K[j] u6

j +
1
2K

(j)
JJ u

4,J
j −∑j

a u2
j a



















=

















0

0

−K(n)
IJ w

4,J
n

1
2K

(n)
JJ w

4,J
n −∑n

a w
2,a
n

















,

(A.14)

where i < nIII and nIII ≤ j < n, and the components of wn and vi satisfy, for all i < n,

K(n)
I w4,I

n = 0 (A.15)

K(i)
IJv

4,J
i = 0 (A.16)

K(i)
II v

4,I
i = 2

i
∑

a=1

v2
i a . (A.17)

From (A.14) we must impose q
III,4
0 = 0, such that

v
4,I
i = 0 for i < nIII (A.18a)

v
4,I
i =

i
∑

a

δaIu
6
i for nIII ≤ i < n . (A.18b)

Condition (A.16) then implies

u6
i K(i)

I = 0, nIII ≤ i < n , (A.19)

which leads to u6
i = 0 for nIII ≤ i < n, since for a type III singularity K(n)

I 6= 0. Eq. (A.18)

then implies that v4,I
i = 0 for all i’s. Condition (A.17) then becomes for nIII ≤ i < n

i
∑

a

K(n)
aI w4,I

n = K(i)
I u

4,I
i , (A.20)

which can always be satisfied since u4
i is arbitrary and K(n)

I is non-vanishing. So it does

not constrain w4
n. As before we choose q(0) to vanish by an appropriate choice of v0

i , u
2
i

and w2
n and rename ωI = −w

4,I
n such that

qIII
0 =

(

0, 0,K(n)
IJ ωJ , 0

)T
, (A.21)
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together with the conditions (A.17) for i < nIII and (A.15) that now read

K(n)
iI ωI = 0 i < nIII , (A.22)

n
∑

a=1

K(n)
aI ωI = 0 , (A.23)

while the condition (A.4) for the orbit to be generated

J∗

∑

a=1

K(n)
aI ωI 6= 0 for some J∗ . (A.24)

An easy way to satisfy these equations is to choose

ωI =

{

1 I ≤ n

0 I > n
, (A.25)

which leads to q
(2)
I = K(n)

I ; this is non-vanishing for a type III singularity, meaning that

indeed (A.24) is satisfied, and since in addition K(n) = 0 for a type III, one has K(n)
iI = 0

for all i ≤ n, such that (A.22) and (A.23) are also satisfied.

A.3 Type A(n) = IV

Finally, when Type A(n) = IV, the masslessness conditions are, as can be read from (A.3),

qIV
0 = vi where Nivi = 0 i < nIII (A.26a)

qIV
0 = vi +Niui nIII ≤ i < nIV (A.26b)

qIV
0 = vi +Nixi where N3

i xi = 0 nIV ≤ i < n (A.26c)

qIV
0 = Nnwn +N2

nun where N2
nwn = 0 , (A.26d)

where nIV is the first place where a type IV singularity occurs. Equations (A.26) lead to

qIV
0 =















0

v4
i I

v2
i I

v0
i















=



















0

v4
j I −

∑j
a δaI u

6
j

v2
j I − 1

2K
[j]
I u6

j −K(j)
IJ u

4,J
j

v0
j +

1
6K[j] u6

j +
1
2K

(j)
JJ u

4,J
j −∑j

a u2
j a



















=



















0

v4
kI

v2
kI −K(k)

IJ x
4,J
k

v0
k +

1
6K[k] x6

k +
1
2K

(k)
JJ x

4,J
k −∑k

a u2
ka



















=

















0

0

−K(n)
IJ w

4,J
n +K(n)

I u6
n

1
2K

(n)
JJ w

4,J
n −∑n

a w
2,a
n +K(n)

I u
4,I
n

















,

(A.27)
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where i < nIII, nIII ≤ j < nIV, and nIV ≤ k < n and as in the previous case the components

of wn and vi satisfy, for all i < n,

K(n)
I w4,J

n = 0 , (A.28)

K(i)
IJv

4,J
i = 0 , (A.29)

K(i)
II v

4,I
i = 2

i
∑

a=1

v2
i a . (A.30)

From (A.27) we must impose q
III,4
0 = 0 such that

v
4,I
i = 0 for i < nIII and nIV ≤ i < n , (A.31a)

v
4,I
i =

i
∑

a

δaIu
6
i for nIII ≤ i < nIV . (A.31b)

Condition (A.29) then implies

u6
i K(i)

I = 0, nIII ≤ i < n , (A.32)

which leads to u6
i = 0 for nIII ≤ i < nIV, since for a type III singularity K(n)

I 6= 0.

Eq. (A.31) then implies that v
4,I
i = 0 for all i’s. Relabeling x4

i = u4
i when nIV ≤ n < n,

condition (A.17) then becomes for nIII ≤ i < n

i
∑

a

K(n)
aI w4,I

n −K(n)
a u6

n = K(i)
I u

4,I
i , (A.33)

which can always be satisfied since u4
i is arbitrary and K(n)

I is non-vanishing. So it does

not constrain w4
n or u6

n. As before we choose q
(0) to vanish by an appropriate choice of v0

i ,

u2
i and w2

n. And defining

ωI = w4,I
n −

{

u6
n i ≤ n

0 i > n ,
(A.34)

we find

qIV
0 =

(

0, 0,K(n)
IJ ωJ , 0

)T
, (A.35)

together with the conditions (A.30) for i < nIII and (A.28) that now read

K(n)
iI ωI = 0 i < nIII , (A.36)

n
∑

a=1

K(n)
aI ωI = −u6

nK(n) . (A.37)

Since K(n) is non vanishing for a type IV singularity and u6
n is arbitrary, (A.37) can always

be satisfied by an appropriate choice of u6
n and does not put any further constrain on ωI .
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So the only non-trivial masslessness constraint is (A.36), to be satisfied together with the

condition (A.4) for the orbit to be generated, that is, one needs to find a solution to

K(n)
iI ωI = 0 i < nIII , (A.38a)

J∗

∑

a=1

K(n)
aI ωI 6= 0 for some J∗ . (A.38b)

Of course if Type A1 = III, i.e. nIII = 1, there is no condition (A.38a) and the state

corresponding to the seed vector (A.35) is automatically massless. We thus need to show

that it is possible to solve the system (A.38) when Type A1 = II. We will show this

explicitly in the case where have only two moduli, and in the case of an elliptic fibration.

We leave the general case for a future analysis, but point out that, the more moduli we

have, the bigger becomes the orthogonal space to
∑j

i=1K
(n)
iI , such that it increases the

room for solving the system (A.38).

• Two moduli

We first consider a case with two moduli, v1 and v2, and the associated enhancement

chain

Type A1 + Type A2 −→ Type A(2). (A.39)

As mentioned above, we need Type A1 = II and, of course, Type A(2) = IV, that is we

have, from table 3, K(1) = K111 = 0 and K(2) = K222+3K122 > 0. The system (A.38)

then becomes

q
(2)
1 = K(2)

1J ω
J = K122 ω

2 = 0 ,

q
(2)
2 = K(2)

2J ω
J = K122 ω

1 + (K122 +K222)ω
2 6= 0 .

(A.40)

It is always possible to find a solution to this system of equations. Indeed, there are

2 possibilities

– K122 = 0, in which case K222 6= 0 and the system is satisfied with ω2 6= 0,

– K122 6= 0, in which case the system is satisfied with ω2 = 0 and ω1 6= 0.

• Elliptic fibrations

We now turn to the case of an elliptic fibration, which is the most relevant for our

analysis, in particular for sections 3.4–3.5 and 4.3–4.4. We refer to section 3.4 for the

notations and the possible enhancement chains. Recall that we have the moduli v0,

vα’s, with corresponding singularities types Type A0 = IV and Type Aα 6= IV. We

show that we can always choose

q
(2)
0 6= 0 and q(2)α = 0, (A.41)

which is actually stronger than eqs. (A.38). Using the intersection numbers (3.54),

we find for the charges in (A.35)

q(2)α = K(n)
αJw

J = ηαβw
β − (Kα − ηα)w

0, (A.42a)

q
(2)
0 = K(n)

0J wJ = (Kα − ηα)(K
αw0 − wα), (A.42b)
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where we defined ηα =
∑

β ηαβ and Kα = ηαβK
β . Since ηαβ can be inverted (and we

denote the inverse by ηαβ), we can choose wα = ηαβ(Kβ − ηβ)w
0, which yields

q
(2)
0 =

∑

α

(Kα − ηα)w
0, (A.43a)

q(2)α = 0. (A.43b)

since Kα ≤ 0 and ηα > 0, we have q
(2)
0 6= 0 and equation (A.41) holds, and there-

fore (A.38) as well.

Finally, let us remark that we could also choose wα = Kαw0, leading to

q
(2)
0 = 0, (A.44a)

q(2)α = ηαw
0. (A.44b)

However, this choice would only be compatible with (A.38)if there are no type II

in the chain, i.e. if the first singularity is associated to either a coordinate vα with

ηαα 6= 0, or to v0.

B Fourier-Mukai transformation

Let Db
α be the divisors generating the Kähler cone of the base B2 while the dual basis

of curves generating the Mori Cone is denoted by C ′α. For a Calabi-Yau threefold Y3
corresponding to an elliptic fibration over this base, we can define the curves

Cα = E π−1C ′α, α = 1, . . . , h1,1(B2) (B.1)

where E is the zero-section of the elliptic fiber. A basis of the Mori cone of the Calabi-Yau

is then given by {CI} = {C0, Cα} where [C0] is the class of the generic fiber. The Kähler

cone is generated by the dual basis {DI} = {D0, Dα} where

Dα = π∗Db
α D0 = E + π∗c1(B2) (B.2)

such that DI ·CJ = δJI . The intersection numbers KIJK = DI ·DJ ·DK were given in (3.52),

which we recall here for convenience

K000 = ηαβK
αKβ , K00α = ηαβK

β ,

K0αβ = ηαβ , Kαβγ = 0 .
(B.3)

where ηαβ = Db
α · Db

β is the intersection form on the base and the Kα appear in the

expansion of the canonical class of the base

K = −c1(B2) = −
∑

α

KαDb
α = −

∑

α

KαC
′α, (B.4)

such that Kα = c1(B2)D
b
α.

Following the conventions of refs. [39, 41, 55, 56], we choose as basis of branes

Oε = (OY3 ,OE ,ODα , Cα, C0,Opt) (B.5)

– 49 –



J
H
E
P
0
8
(
2
0
1
9
)
0
7
5

where CJ := ι!OCJ

(

K
1/2

CJ

)

. This basis coincides with the one in (3.51). The Chern-

characters of the 4-branes are [56]

ch(ODI
) = DI −

1

2
D2

I +
1

6
D3

I (B.6)

which yields

ch(OE) = E +
1

2
c1E +

1

6
c21E

ch(ODα) = Dα − 1

2
ηααC

0,

(B.7)

while ch(CI) = CI .

The Chern character for a general brane Oε can be decomposed as follows

ch0(Oε) = n,

ch1(Oε) = nEE + F,

ch2(Oε) = EB + neC
e,

ch3(Oε) = s,

(B.8)

where n, nE , ne, s ∈ Q and can be obtained for our basis of branes by comparing these

equations with the above Chern-characters in eqs. (B.7). Upon performing a Fourier-Mukai

transformation, the Chern-character of the transformed brane reads [46, 47]

ch0(S(Oε)) = nE ,

ch1(S(Oε)) = −nE +B − 1

2
nE c1,

ch2(S(Oε)) =

(

1

2
n c1 − F

)2

E +

(

s− 1

2
Bc1E,+

1

12
nE c21E

)

C0,

ch3(S(Oε)) = −1

6
n c21E − ne +

1

2
E c1F.

(B.9)

where c1 = π∗c1(B2). Applying to the basis (B.5), we find

ch(S(OY3)) = − ch(OE) +Kα ch(Cα),

ch(S(OE)) = ch(OY3),

ch(S(ODα)) = −ηαβ ch(Cβ) +
1

2

(

ηαα +Kα

)

ch(Opt),

ch(S(C0)) = − ch(Opt),

ch(S(Opt)) = ch(OC0).

(B.10)
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This implies that the Fourier-Mukai matrix S acting on the basis of branes (B.5) takes the

following matrix form

S =



























0 −1 0 Kα 0 0

1 0 0 0 0 0

0 0 0 −ηαβ 0 1
2(ηαα +Kα)

0 0 ηαβ 0 1
2(K

α − ηαβηββ) 0

0 0 0 0 0 −1

0 0 0 0 1 0



























. (B.11)

This matrix leaves invariant the pairing ϑ, i.e. STϑS = ϑ, where ϑ, introduced in (3.10),

takes the form

ϑT =



























0 −2bαK
α − 2b0 − 1

6K000 −2bα 0 0 −1

2bβK
β + 2b0 +

1
6K000 0 1

2(K00α −K0αα) Kα 1 0

2bβ
1
2(K0ββ −K00β) 0 δαβ 0 0

0 −Kβ −δαβ 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0



























(B.12)

in the basis (B.5).

In the main text, we use a basis of branes different than (B.5), namely we use the

Kähler cone basis (3.50)

O′
ε = (OY3 ,OD0 ,ODi , CJ , C0,Opt) (B.13)

containing OD0 instead of OE . Those two basis are related by (3.53), which in terms of

the dual divisors reads

E = D0 −KαDα. (B.14)

In matrix notation, this change of basis takes the form

T =



















1 0 0 0 0 0

0 1 −Kα 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



















. (B.15)

– 51 –



J
H
E
P
0
8
(
2
0
1
9
)
0
7
5

The Fourier-Mukai transformation in this basis, given by S′ = T−1ST , reads

S′T =

























0 1 0 0 0 0

−1 0 0 0 0 0

Kα 0 0 ηαβ 0 0

K00α −Kα −ηαβ 0 0 0

0 0 0 1
2(K

α − ηαβK00β) 0 1

0 1
2K

α(K00α +K0αα)
1
2(K00α +K0αα) 0 −1 0

























(B.16)

where we have displayed the transpose matrix for convenience in the paper. Notice that,

in this derivation, we have considered that the coefficient matrix of the branes transforms

when going to the small fiber regime, while in the main text we work all the time assuming

that the basis transform instead. In practice, this implies that we should work with ST

instead of S.
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