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1 Introduction

There is an interesting correspondence pioneered in [1–3], between solutions of some sta-

tistical models (SM) related to conformal field theories (CFT) and spectral properties of

ordinary differential equation (ODE) — see [4] for review. This correspondence uncov-

ers the hidden relation between statistical properties of some 2D systems like six-vertex or

Potts models with the spectral properties of the quantum mechanical (QM) 1D Schrödinger

equation in the potential V (x). In the simple cases one has

V (x) = x2m +
l(l + 1)

x2

The correspondence between two systems involves establishing dictionary of parameters

and the identification of the solution to the Baxter equation at the statistical side to the

spectral determinant at the QM side. The Baxter equation for the transfer matrix (TQ)

itself was identified with the equation on Stokes multiplayers at QM side. The counterpart

of the fusion hierarchy familiar for SM has been found at QM side as well.

The ODE/QM correspondence can be also formulated purely in terms of the integrable

structure behind the relevant conformal field theory (CFT) [2]. The vacuum expectation

value (VEV) of the Q-operator in CFT at finite temperature can be connected to the spec-

tral determinant at the QM side. In the CFT/QM correspondence, the QM parameters

(m, l) are related to the central charge and the dimension of the operator in the corre-

sponding CFT. It was also demonstrated in the CFT framework that the QM problem is

related to the (1+1)D Brownian motion in the constant external field with an additional

periodic potential [5]. The spectral determinants define the VEV of some operators in the

stochastic framework.
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In paper note we reverse the logic traced above, providing the näıve example which

demonstrates how the wave function of a quantum mechanical problem in a specific non-

uniform target space is connected to the spectral determinant at a SM/CFT side and GOE

ensemble. The determinant representation of the wave functions in the quantum mechanics

has been recently recognized in the matrix model setup [6–8], where it was found that the

loop equation of the β-ensemble matrix model with the suitable potential in the Nekrasov-

Shatashvili limit yields Schrödinger equation and the determinant representation for the

wave function.

We show in this paper that the determinant representation of the Hermite polynomials

is closely related to the characteristic polynomial for the transfer matrix on a “super tree”

whose vertex degree changes linearly with the distance from the tree root. We discuss

mapping between the spectral determinant of the transfer matrix and the oscillator wave

functions. When the “vertex degree velocity” (the branching increment between neigh-

boring tree levels) is small, we identify the corresponding model with the (1+1)D lattice

random walk in the transverse constant magnetic field. Apparently the same problem can

be formulated in the symmetric Riemann space with the non-constant radially-dependent

curvature, which is the generalization of the space of constant negative curvature (the

hyperbolic space).

It is well-known that partition function can be equally derived via the path integral

over the trajectories in the coordinate/phase space, or can be represented as a weighted

sum over the Hilbert space of energy eigenfunctions. The wave function can be written

as the path integral with the fixed extremities and it can be similarly derived via the

“path integral” in the Hilbert space. However the notion of the “path representation over

the Hilbert space” has to be precisely specified. That is, we need to define which kind

of paths on which kind of a tree in the Hilbert space are relevant for the wave function

representation. For the simplest example of the oscillator wave function we argue that the

sum over the paths on super trees are relevant for such wave function representation.

To broader extend, our problem seems to be analogous to the problem discussed in

the context of the many-body localization [35]. In that work the wave function of the

interacting many-body system in the coordinate space is approximated by the sum over

the paths having a single degree of freedom on the effective Bethe tree which mimics

the Hilbert Fock space of the many-body system. The node of the Bethe tree represents

the element in the Fock space, while links between the nodes count non-vanishing matrix

elements between the particular states, provided by the interaction term. This picture,

presented in [35] though very approximative, allowed however to make important claims

about the localization properties of many-body interacting systems [37]. In our study, the

representation of the wave function via the trees in the Hilbert space is exact, but we deal

with the oversimplified case of the particle in the external field. Besides, the useful lesson

from our study is that the relevant Fock space even for a simple oscillator case, is essentially

more complicated than the Bethe tree with the constant branching.

Another question of similar nature deals with the Kardar-Parisi-Zhang (KPZ) scaling,

familiar for many growth problems. Usually KPZ scaling emerges in the interacting many-

body systems in the physical space. Once again, we can reverse the logic and ask if the
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KPZ scaling can be recognized in the one-particle propagation problem in the Fock space.

It turns out that indeed the answer is positive.

Intensive study of extremal problems of correlated random variables in statistical me-

chanics has gradually lead mathematicians, and then, physicists, to the understanding that

the Gaussian distribution is not as ubiquitous in nature, as it was supposed over the cen-

turies, and shares its omnipresence with another distribution, known as the Tracy-Widom

(TW) distribution. The important signature of the TW law is the scaling exponent, ν, of

the second moment of the distribution, which is known as the KPZ exponent. For the first

time this critical exponent was determined in the seminal paper [10] (see [11] for review)

in the non-equilibrium one-dimensional directed stochastic growth process.

The breakthrough in understanding the ubiquity of KPZ statistics is connected with

the works [12–14] where it was realized that for flat initial conditions the distribution of

a rescaled surface height, t−1/3(h(i, t)− 2t), in a polynuclear growth converges as t→∞,

where t is the time, to the Tracy-Widom (TW) distribution [15], providing the statistics of

edge states of random matrices belonging to the Gaussian Orthogonal Ensemble (GOE).

In the droplet geometry the statistics of growing surface instead corresponds to the edge

states of the Gaussian Unitary Ensemble (GUE) [13, 14]. Simultaneously, it has been

realized that the TW distribution describes the statistics of the ground state energy of

an one-dimensional directed polymer in a random Gaussian potential and shortly later the

Tracy-Widom distribution was re-derived using the replica formalism typical for disordered

systems with the quenched uncorrelated disorder. Below we ask a natural question: could

we see some other incarnations of a KPZ statistics besides the extremal events in the

nonequlibrium growth? Namely, we perfectly know that the Gaussian exponent, ν = 1
2 ,

appears as a critical exponent in the second-order phase transition in the dependence

ξ ∼ τ−ν , where ξ is the correlation length and τ measures the proximity to the critical

point (at which τ = 0). So, the question is whether there are critical systems which share

the dependence like ξ ∼ τ−ν with ν = 1
3?

The paper is structured as follows. In section 2 we remind the matrix model represen-

tation of the wave functions. In section 3 we relate path counting on the super-growing

tree with the unit “branching velocity” to the conventional determinant representation for

Hermite polynomials. In section 4 the paths counting on the generalized super trees with

small branching velocity is compared with the statistics of one-dimensional area-weighted

Dyck paths. In the section 5 the connection of our model to the “averaged matrix ensem-

ble” in the Edelman-Dumitriu formulation is mentioned. Some open issues are discussed

in the Conclusion where we specilate anout possible application of our study to the 1D

Anderson localization.

2 Quantum mechanics from the β-ensemble

In this section we remind the determinant representation of the wave functions in quantum

mechanics following the line of reasoning formulated in [6–8]. Consider the integral over

– 3 –



J
H
E
P
0
8
(
2
0
1
8
)
1
2
3

the eigenvalues of N ×N matrix M

Z =

∫ N∏
i

dλi (λi − λj)β e
β
gs
W (λi) (2.1)

where the “weight function” W (x) is called usually the “superpotential”. It has been

argued in [7, 8] that the matrix element of the operator〈
det(M − x)β

〉
= Z−1

∫ N∏
i

dλi (λi − λj)β det(M − x)β e
β
gs
W (λi) (2.2)

in the large–N limit plays the role of the wave function of the Shrödinger equation. Specif-

ically, at N → ∞, one sets gsβN = const, βN = const and the explicit form of the

Schrödinger equation becomes

~2
d2Ψ(x)

dx2
=

[(
dW (x)

dx

)2

− f(x)

]
Ψ(x) (2.3)

where the function f(x) is the polynomial of degree (d − 2) if W (x) has degree d. The

function f(x) is defined as

f(x) = ~
(
W ′(x) + 2c(x) + d(x)

)
(2.4)

with

c(x) = lim
β→0

[
βN

W ′(x)−W (0)

x

]
, d(x) = ~ lim

β→0

[
βD̂Z

]
(2.5)

where W ′(x) = dW (x)
dx and the operator D̂ acts on the parameters of the polynomial super-

potential W (x) [7]. Effectively, all Virasoro constraints are combined into a single equation.

If β is finite, the non-stationary Schrödinger equation with the same potential emerges.

From the geometric viewpoint one considers the refined topological string in the Calabi-

Yau geometry parametrized by the superpotential W (x) in the IIB model. The matrix

model microscopically describes the refined topological string, for which the β-parameter

of the matrix model is identified as β = − ε1
ε2

where ε1 and ε2 are the standard equivariant

parameters of the Ω-deformation. We are interested in the limit β → 0, which is the

Nekrasov-Shatashvili limit of the refined topological string. It was recognized long time

ago [9] that the operator det(M − z) in the matrix model corresponds to the insertion of

the Lagrangian brane in the Calabi-Yau geometry. Hence, from the geometric viewpoint

we are dealing with the wave function of the Lagrangian brane in the particular geometry.

In the context of the Liouville theory such operator corresponds to the insertion of the

FZZT brane.

The immediate question dealing with the Shrödinger equation concerns the identifi-

cation of the particular energy level in the spectrum. To this aim it is useful to consider

the Gaussian potential W (x) = x2, see [7]. The spectrum of the corresponding oscillator

Hamiltonian can be obtained from the matrix model, it reads

E = ~
(

1

2
+ lim
β→0

[βN ]

)
(2.6)
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where one immediately recognizes the energy level k = limβ→0[βN ]. Therefore, to derive

the energy level and corresponding determinant representation for the wave function, one

has to start from large–N matrices and proceed with the suitable scaling limits.

In the next section we remind that for the oscillator case, the k-th energy level and the

corresponding determinant representation for the wave function can be obtained from the

finite k × k tridiagonal matrix without appealing to the large–N limit. For the oscillator

the k-th wave function is proportional to the k-th Hermite polynomial which has the

representation

Hk(x) ∝ det
k×k

(X̂ − x) (2.7)

where X̂ is the operator of coordinate in the Fock space basis. The trilinear recurrent

relations follows from the quantization of the system in the action-angle (I, φ)-variables for

the oscillator, where x =
√
I cosφ. Upon the quantization, one also has φ = i ddI that is

the eigenvalue equation

X̂Ψx(n) = xΨx(n) , (2.8)

the familiar recurrence for the Hermite polynomials yields immediately.

The n-dependence for the elements of the tridiagonal matrix is potential-dependent.

To illustrate this point, consider the Sutherland potential

H =
1

2
p2 +

l(l − 1)

2 sin2 x
Ĥψn(x) =

n2

2
ψn(x) (2.9)

In this case, the trilinear recurrent relation reads

ψn(x) cosx =
1

2

(
ψn+1(x)

√
1− l(l − 1)

n(n+ 1)
+ ψn−1(x)

√
1− l(l − 1)

n(n− 1)

)
(2.10)

which means that the element of the tridiagonal matrix depends inversely on the row num-

ber.

3 Statistics of paths on super trees

3.1 Transfer matrix for the super tree

Consider the following counting problem: given a regular finite tree, T , compute the par-

tition function, ZN (k), of all N -step trajectories starting at the tree root (k = 0) and

ending at some tree level, k (k = 0, . . . ,K − 1). If T is the standard Cayley tree (or the

Bethe lattice) with the constant branching, p, in each vertex at all tree levels, then this

counting problem has been discussed infinitely many times in the literature in connection

with various physical applications ranging from random walk statistics, polymer topology,

localization phenomena, to questions dealing with the RG flows, holography and the black

hole structure in the quantum field theory. In all mentioned cases, the uniform p-branching

Cayley tree, is regarded as a discretization of the target space possessing the hyperbolic

geometry — the Riemann surface of the constant negative curvature.
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k=0

k=1

k=2

k=3

k=4

Figure 1. Super trees: (a) growing tree T + with p0 branches at the root point and a = 1,

(b) descending tree T − with p0 = 4 branches and a = −1.

In this work we deal with the paths statistics on symmetric finite “super trees”, T +

and T −, of K levels, for which the branching (vertex degree) p is not constant, but linearly

depends on the current level, k (k = 0, 1, 2, . . . ,K − 1), i.e.

pk =

{
p0, for k = 0

2 + ak, for k ≥ 1, a ≥ 0
(3.1)

for “growing trees”, T +, and

pk =

{
p0, for k = 0

p0 + ak, for k ≥ 1, a ≤ 0
(3.2)

for “descending trees”, T −, where “branching velocity”, a, is some integer-valued constant,

and p0 is the branching at the tree root, which is labelled by the index k = 0. The extension

of a to the set of real numbers will be discussed as well. The trees T ± are naturally

to identify in the continuum limit with the symmetric Riemann spaces of non-constant

negative curvature. The growing tree, T +, with p0 = 1 branches at the root point, and

a = 1, is shown in figure 1a, while the descending tree, T −, with p0 = 4 branches at the

root point, and a = −1, is depicted in figure 1b.

Before we proceed with a partition function derivation, some important comment deal-

ing with the paths statistics on nonhomogeneous graphs should be made. Since the branch-

ing of the tree is not constant, we distinguish between the “path counting” (PC) problem

and a more usual “random walk” (RW) statistics. The difference between PC and RW

consists in different normalizations of the elementary step: for PC all steps enter in the

partition function with the weight one, while for symmetric RW, the step probability de-

pends on the current vertex degree, p: the probability to move along each graph bond

equals p−1. For graphs with a constant p the PC partition function and the RW prob-

ability distribution differ only by the global normalization constant, and corresponding

averages are indistinguishable. However, for inhomogeneous graphs, like super trees T ±,

the distinction between PC and RW is crucial: in the path counting problem “entropic”

localization of the paths may occur at vertices with large p, while it never happens for

– 6 –
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random walks. The distinction between PC and RW, and the entropic localization phe-

nomenon were first reported for self-similar structures in [17] and later were rediscovered

for star graphs in [18]. More recently this phenomenon was studied in [19] for regular lat-

tices with defects, where authors introduced a notion of a “maximal entropy random walk”

which is essentially identical to the path-counting problem. On a tree with one heavy root

the localization phase transition in the path counting problem has been reported in [20].

For a growing tree, the partition function, ZN (k), defined above, satisfies the recursion

(k = 0, 1, . . . ,K − 1):

ZN+1(k) = (pk−1 − 1)ZN (k − 1) + ZN (k + 1) for 2 ≤ k ≤ K − 1

ZN+1(k) = ZN (k + 1), for k = 0

ZN+1(k) = pk−1ZN (k − 1) + ZN (k + 1) for k = 1

ZN+1(k) = (pk−1 − 1)ZN (k − 1), for k = K − 1

ZN=0 = δk,0

(3.3)

To rewrite (3.3) in a matrix form, make a shift k → k+1 and construct the K-dimensional

vector ZN = (ZN (1), ZN (2), . . . ZN (K))>. Then (3.3) sets the evolution of ZN in N :

ZN+1 = T̂ZN ; T̂ =



0 1 0 0 . . . 0

p0 0 1 0

0 p1 − 1 0 1
...

0 0 p2 − 1 0
...

. . .

0 . . . pK−2 − 1 0


; ZN=0 =



1

0

0

0
...

0


(3.4)

Now we proceed in a standard way and diagonalize the matrix T̂ . The characteristic

polynomials, Pk(λ) = det(T̂ − λÎ), of the k × k matrix T̂ satisfy the recursion
Pk(λ) = −λPk−1(λ)− (pk−2 − 1)Pk−2(λ), for 3 ≤ k ≤ K
P1(λ) = −λ,
P2(λ) = λ2 − p0

(3.5)

with pk given by (3.1) or (3.2). The spectral density, ρ(λ), is constructed as follows. We

solve the equation PK(λ) = 0 for a given K, get the set of eigenvalues {λ1, . . . , λK} and

construct the normalized histogram, which counts the degeneracies of each corresponding

eigenvalue. The spectral densities for few different values of p0 and a are shown in figure 2.

Specifically, we have plotted the ρ(λ) for transfer matrices of size K × K for K = 400

and the following sets of parameters: p0 = 800, a = −2 for (a), p0 = 1, a = 1 for (b),

p0 = 1, a = −0.0025 for (c), and p0 = 1, a = 0.0025 for (d).

3.2 Branching velocity a = 1 and the oscillator potential

Now we discuss the analytic solution of (3.5) for a growing tree T + for a special choice

p0 = 1 and a = 1, and analyze the corresponding asymptotics of PK . The characteristic

– 7 –
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p0 = 800, a = -2
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p0 = 1, a = -0.0025
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0
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(d)(c)

(a)

p0 = 1, a = 0.0025

(b)

Figure 2. Samples of transfer matrices spectral densities for trees of K = 400 generations and

various cases: (a) p0 = 800, a = −2; (b) p0 = 1, a = 1; (c) p0 = 1, a = −0.0025; (d) p0 = 1, a =

0.0025.

polynomials, Pk(λ) of the transfer matrix T satisfy the recursion
Pk(λ) = −λPk−1(λ)− (k − 1)Pk−2(λ), for 3 ≤ k ≤ K
P1(λ) = λ,

P2(λ) = λ2 − 1

(3.6)

which coincide with the recursion for the so-called monic Hermite polynomials, Hk(λ), also

known as the “probabilists’ Hermite polynomials”:

Pk(λ) ≡ Hk(λ) = (−1)ke
λ2

2
dk

dλk
e−

λ2

2 ; Hk(λ) = 2−k/2Hk(λ/
√

2) (3.7)

where Hk(λ) are the standard Hermite polynomials. Hence the eigenvalues of the matrix T

of size K ×K (see (3.4)) are the roots of the monic Hermite polynomial, Hk(λ). In [21] it

has been shown that the normalized roots of the Kth monic Hermite polynomial converge

weakly at K � 1 to the Wigner semicircle,

ρ(λ) =
1

2πK

√
4K − λ2 (3.8)
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The behavior of monic Hermite polynomials, Hk(λ), at the spectral edge has been analyzed

in [22]. For λ ≈ 2
√
K, the polynomials Hk(λ) share the following asymptotics

HK(λ) ≈
√

2π 2−K/2 exp

(
K ln(2K)

2
− 3K

2
+ λ
√
K

)
K1/6Ai

(
λ− 2

√
K

K−1/6

)
(3.9)

where Ai(z) =
1

π

∫ ∞
0

cos(ξ3/3 + ξz) dξ is the Airy function. Let a1 > a2 > a3 > . . . be

zeros of the Airy function (ai < 0 for all i). At K � 1 the maximal eigenvalue, λmax, of

the transfer matrix (3.4) has the following leading behavior

λmax = 2
√
K + a1K

−1/6 (3.10)

where a1 ≈ −2.3381. At N � 1 and K � 1 the averaged partition function, ZN =∑K
k=0 ZN (k), can be estimated as follows:

ZN (K) ≈ (λmax)N =
(

2
√
K + a1K

− 1
6

)N
≈ (4K)N/2 e(a1/2)NK

−2/3
(3.11)

where we have used the asymptotic expression (3.10) for the λmax for the maximal eigen-

value of the transfer matrix λmax.

Let us emphasize that the mean distance,

〈k(N)〉 =

K∑
k=0

kZN (k)

K∑
k=0

ZN (k)

between ends of ensemble of open N -step paths on a tree T + at N � 1 coincides with the

path length, N , i.e.

lim
N→∞

〈k(N)〉
N

= 1 (3.12)

The combinatorial entropy, SN , of the ensemble of N -step paths on the tree T + has the

following asymptotics at large N :

SN = lnZN (K = N) ≈ N

2
ln(4N) +

a1
2
N1/3 (3.13)

Now we can estimate the entropy, S(W ) of the “watermelon” configuration consisting

of two trajectories, 1 and 2, of length N each, both starting at the root point 0 (as shown

in figure 3) and meeting each other at the point A located at the distance K ≈ N along

a tree. The conditional partition function Z
(W )
N of the watermelon configuration can be

written as

Z
(W )
N =

ZN × ZN
K!

∣∣∣∣
K≈N�1

≈ (4N)N ea1N
1/3

√
2πNe−N+N lnN

(3.14)

where the denominator in (3.14) is the number of vertices at the level K of a growing tree

T + and, correspondingly, 1/K! is the probability for two terminal points of trajectories

– 9 –
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O

A

1

2

Figure 3. Watermelon configuration formed by two independent trajectories of N = 10 steps each

(solid and dashed). Both trajectories start from the root 0 and join at the point A on the level K

of a growing tree.

1 and 2 to meet each other in one point at the level K, i.e. to form a watermelon. The

entropy S
(W )
N = lnZ

(W )
N reads

S
(W )
N ≈ cN + a1N

1/3 (3.15)

where c = 2 ln 2 + 1 ≈ 2.3863 and the terms N lnN in nominator and in denominator

of (3.14) cancel each other.

It is worth noting that the asymptotic expression (3.15) with the finite size corrections

controlled by the scaling exponent ν = 1
3 appears in our consideration as a simple one-

particle paths counting problem on a super tree. Recall that typically the behavior (3.15)

emerges in many-body systems sharing the KPZ statistics, as it has been mentioned in

the Introduction. In the model discussed here, we can not claim to receive the full Tracy-

Widom distribution, however the KPZ scaling still is accessible. As we show below, our

model to some extend can be regarded as a mean-field-like description of a random matrix

spectral statistics in the Dumitriu-Edelman setting [23].

3.3 Paths counting generating functions on supertrees T + and T −

To understand better the connection of the spectrum of polynomials Hk(λ) with the path

counting on super trees, consider the generating function

Z(s, k) =

∞∑
N=0

sNZN (k) (3.16)
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Since Z(s, k) ≡ 0 for k < 0 and k > K − 1, rewrite (3.3) for a = 1 and p0 = 1 as follows:
s−1Z(s, k) = kZ(s, k − 1) + Z(s, k + 1) for 1 ≤ k ≤ K − 1

s−1Z(s, 1) = Z(s, 0) + Z(s, 2)

s−1(Z(s, 0)− 1) = Z(s, 1)

(3.17)

The recursion is written for a growing tree T + only, the derivation of recursion for a

descending tree T − is straightforward.

The function Z(s, k = 0) is the generating function of all trajectories returning to

the root point on a growing finite tree T + of K generations, where each step carries the

fugacity s. To shorten notations, define Z(s, k = 0) = Z+
K(s). The function Z+

K(s) being

the solution of the system of linear equations, can be written as the quotient

Z+
K(s) =

det B̂+
K(s)

det Â+
K(s)

(3.18)

where

Â+
K =



1
s −1 0 0 . . . 0

−1 1
s −1 0 . . . 0

0 −2 1
s −1

...
...

. . .
. . .

. . .

0 0 2−K 1
s −1

0 0 0 1−K 1
s


; B̂+

K =



1
s −1 0 0 . . . 0

0 1
s −1 0 . . . 0

0 −2 1
s −1

...
...

. . .
. . .

. . .

0 0 2−K 1
s −1

0 0 0 1−K 1
s


;

(3.19)

One can straightforwardly check that the function Z+
K(s) can be expressed in terms of

the monic Hermite polynomials and the polynomial Rk(s) which satisfy the recursion

Rk+1(s) = Rk(s)− (k + 1)s2Rk−1(s), where R0(s) = R1(s) = 1:

Z+
K(s) =

RK−1(s)

sKHK(s−1)
(3.20)

Thus, we get

Z+(s, k) =
Hk(s−1)RK−1(s)
sKHK(s−1)

(3.21)

The function Z+(s,K − 1) is generating function of trajectories starting from the root

point and terminating at the end of a growing finite tree T + of K generations

Z+(s,K − 1) =
RK−1(s

2)

KsK
d

ds−1
lnHK(s−1) (3.22)

At K � 1 and s−1 ≈ 2
√
K one gets

Z+(s,K − 1) ≈ RK−1(s)

KsK

(
d

ds−1
ln Ai

(
s−1 − 2

√
K

K−1/6

)
+
√
K

)
(3.23)
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For a descending tree T − define px = P − x, where P is the maximal vertex degree of

the tree at the root point, and P coincides with the number of tree generations, i.e. P = K.

The recursions for Z−(s, k) on T − read:
s−1Z−(s, k) = (P − k)Z−(s, k − 1) + Z−(s, k + 1) for 1 ≤ k ≤ P − 1

s−1Z−(s, P − 2) = Z−(s, P − 1) + Z−(s, P − 3)

s−1Z−(s, P − 1) = Z−(s, P − 2)

(3.24)

We are interested in computing the canonical partition function Z−(s, k = 0) ≡ Z−P (s),

which enumerates the trajectories returning to the root point on a descending tree, and

each step is weighted with the fugacity s−1. The function Z−P (s) can be written as (compare

to (3.18))

Z−P (s) =
detB−P (s)

detA−P (s)
(3.25)

where

Â−P =



1
s −1 0 0 . . . 0

1− P 1
s −1 0 . . . 0

0 2− P 1
s −1

...
...

. . .
. . .

. . .

0 0 −2 1
s −1

0 0 0 −1 1
s


; B̂−P =



1
s −1 0 0 . . . 0

0 1
s −1 0 . . . 0

0 2− P 1
s −1

...
...

. . .
. . .

. . .

0 0 −2 1
s −1

0 0 0 −1 1
s


(3.26)

Substituting (3.26) into (3.25), and evaluating the determinants, we get

Z−P (s) =
1

1− (P − 1)s

1− (P − 2)s

1− (P − 3)s

1− . . .

=
HP−1(s−1)
sHP (s−1)

=
1

Ps

d

ds−1
lnHP (s−1) (3.27)

At P � 1 and s−1 ≈ 2
√
P the generating function of trajectories returning to the root

point, Z−P (s) can be estimated as follows:

Z−P (s) ≈ 1

Ps

(
d

ds−1
ln Ai

(
s−1 − 2

√
P

P−1/6

)
+
√
P

)
(3.28)

Introducing the new variable

z =
s−1 − 2

√
P

P−1/6
(3.29)

we can rewrite (3.28) near the spectral boundary, i.e at s−1 ≈ 2
√
P as follows

Z−P (s) ≈ 2 +
2

P 1/3

d

dz
ln Ai(z) (z → 0) (3.30)

– 12 –



J
H
E
P
0
8
(
2
0
1
8
)
1
2
3

k

N

Figure 4. The N -step Dyck path on a halfline k ≥ 0 with fixed area below the path measured in

full plaquettes.

4 Small “branching velocity” and magnetic directed paths

4.1 Area-weighted Dyck paths

In the previous section we have discussed the tree with a = 1 branching velocity and

demonstrated that the dual statistical model corresponds to the oscillator potential and

Hermite polynomials. Here we consider the limit of small branching velocity |a| � 1. We

argue that the random walk on such trees is closely related with the area-weighted Dyck

paths where the effective magnetic field on the lattice is related to the branching velocity

via a kind of a T -duality transform. As a by-product we provide the new interpretation of

q-Catalan numbers via the super trees.

The problem of a paths counting on super trees is tightly connected with a well-known

problem of counting one-dimensional Dyck paths with fixed length and area below the

trajectory. Consider a N ×N square lattice and enumerate all N -step trajectories (Dyck

paths) starting at (0, 0), ending at (N,N) and staying above the diagonal of the square (the

path can touch the diagonal, but cannot cross it). Let A be the area between the path and

the diagonal of the square, counted in full plaquettes. For convenience, turn the lattice

by π/4, as shown in figure 4, and consider the partition function of all directed N -step

paths on a half-line, k ≥ 0, with the fixed area, A, being the sum of all full plaquettes,

highlighted in figure 4. Our key object is the area-weighted canonical partition function,

WN (q), defined as follows

WN (q) =
∑

Dyck paths

qA (4.1)

where the summation runs over the ensemble of N -step Dyck paths enclosing the area

A, and q is the fugacity of A. Writing q = eH , we identify H with a “magnetic field”

conjugated to the area A.

Let us introduce the partition function WN (k, q) where k is the height of the path at

step N . The function WN (k, q) satisfies the recursion{
WN+1(k, q) = qk−1WN (k − 1, q) +WN (k + 1, q) for 1 ≤ k ≤ K − 1

WN=0(k, q) = δk,0
(4.2)
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where we have supposed that WN (k, q) = 0 for k ≤ 0 and k ≥ K. The solution of (4.2)

in a matrix form for a K-dimensional vector WN (q) = (WN (1, q), . . . ,WN (X, q))ᵀ (with a

shift k → k + 1), reads:

WN+1(q) = Û(q)WN ; Û(q) =


0 1 0 0 . . .

1 0 1 0

0 q 0 1

0 0 q2 0
...

. . .

 ; W0 =


1

0

0

0
...

 (4.3)

Let us note that the value WN (1, q) defines the partition function of the “Brownian excur-

sion”, since at the very last step the trajectory returns to the starting point. Evaluating

powers of the matrix U(q), we can straightforwardly check that the values of WN (1, q) are

given by the Carlitz-Riordan q-Catalan numbers [24, 25]:

WN (1, q) =

{
CN/2(q) for N = 2m, where m = 1, 2, 3 . . .

0 for N = 2m+ 1, where m = 0, 1, 2, . . .
(4.4)

Recall that the numbers CN (q) satisfy the recursion

CN (q) =

N−1∑
k=0

qkCk(q)CN−k−1(q) (4.5)

which is the q-extension of the standard recursion for Catalan numbers. The generating

function F (s, q) =

∞∑
N=0

sNCN (q) obeys the functional relation

F (s, q) = 1 + sF (s, q)F (sq, q) (4.6)

It is known that the solution of (4.6) can be written as a continuous fraction expansion,

F (s, q) =
1

1− s

1− sq

1− sq2

1− . . .

=
Aq(s)

Aq(s/q)
(4.7)

where Aq(s) is the q-Airy function,

Aq(s) =
∞∑
n=0

qn
2
(−s)n

(q; q)n
; (t; q)n =

n−1∏
k=0

(1− tqk) (4.8)

In the works [26–28] it has been shown that in the double scaling limit q → 1− and s→ 1
4

−

the function F (s, q) has the following asymptotic form (compare to (3.30))

F (z, q) ∼ Freg + (1− q)1/3 d
dz

ln Ai(4z); z =
1
4 − s

(1− q)2/3
, (4.9)
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where Freg is the regular part at
(
q → 1−, s→ 1

4

−)
. The function F(s, 1) is the generating

function for the non-deformed Catalan numbers:

F (s, q = 1) =
1−
√

1− 4s

2s
(4.10)

The generating function F (s, 1) is defined for 0 < s < 1
4 , and at the point s = 1

4 the first

derivative of F (s, 1) experiences a singularity which is interpreted as the critical behavior.

The limit q → 1−, s→ 1
4

−
can be read also from the asymptotic expression for F (s, q). To

define the double scaling behavior and derive the Airy-type asymptotic, the simultaneous

scaling in s and q is required.

To make connection of area-weighted Brownian excursions to the path counting prob-

lem on descending tree, consider the expansion of (4.2) at q → 1. Namely we set q = 1− ε,
where |ε| � 1 and expand (4.2) up to the first term in ε. We arrive at the following system

of equations{
WN+1(k, q) =

(
1− ε(k − 1)

)
WN (k − 1, q) +WN (k + 1, q) for 1 ≤ k ≤ K − 1

WN=0(k, q) = δk,0
(4.11)

Comparing equations (3.3) and (4.11) we can note that they are equivalent upon the

identification a = −ε (where 0 < ε � 1) and p0 = 1. Hence, (4.9) provides the explicit

expression for the path counting on a weakly descending tree with a small non-integer

branching velocity, a, by expanding the solution to (4.11) at q = 1 − ε up to the first

leading term in ε and an identification ε with a.

4.2 “T-duality” and super trees

Let us make some comments concerning the interplay between the super trees and Dyck

paths. The first question concerns the origin of the identification of the branching velocity

a for paths on super trees with the fugacity q for (1+1)D magnetic Dyck paths. The

parameter ln q can be naturally associated with the constant magnetic field, H, transverse

to the lattice, on which the random walk develops. It is also useful to consider this picture

as the Euclidean version of the (1+1)D Minkowski space-time with the constant electric

field E acting along the space coordinate. Upon the Wick rotation the constant electric

field in (1+1)D Minkowski space-time gets transformed into the magnetic field H. Such

rotation for instance, is used to describe the bounce solution to the Euclidean equations of

motion responsible for the creation of the pair in the external electric field.

We have argued above that magnetic field in the Brownian motion picture gets mapped

onto the branching velocity for the super tree. The explanation of this mapping is quali-

tatively provided by a kind of a T -duality transform which can be considered as a general-

ization of a Fourier transform. Let us emphasize that the Brownian motion occurs in the

Hilbert space of QM model, hence the gauge potential in the Hilbert space has a meaning

of the Berry-type connection and is not related to any potential in the x space. Recall

that under the T -duality transform, the “worldvolume” gauge potential along the circle of

circumference R gets interchanged with the “target space” coordinate on the dual circle:

Ax ↔ x, R↔ α′

R
(4.12)

– 15 –



J
H
E
P
0
8
(
2
0
1
8
)
1
2
3

where α′ is the massive parameter related to the string tension in the string theory frame-

work. Therefore, the electric field gets interchanged with the velocity under the T -duality

E =
dAx
dt

↔ vx =
dx

dt
(4.13)

since the time is not touched by transform. The object wrapped around the circle under

the T -duality gets interchanged with the object localized at the dual circle. In particu-

lar the Born-Infeld action for the wrapped string gets interchanged with the action of a

relativistic particle √
1− α′E2 ↔

√
1− v2 (4.14)

How these standard arguments can be applied to our study? Let us assume that the K×K
matrix we are considering, corresponds upon π

4 rotation to the discretization of the (1+1)D

space, which is the target space of Dyck paths in the external magnetic field. Denote the

coordinate along the aside diagonal as x and the coordinate along the diagonal as “time”,

t. (equivalently we could interchange them). The coordinate x belongs to the interval

[−K,K] and we can assume the periodicity in this coordinate. The constant transverse

magnetic field implies the gauge connection along this coordinate in a particular gauge

Ax = Ht. Another gauge is A0 = −Hx and in this case we treat the aside diagonal as

“time coordinate”. Upon the T -duality transform, the gauge connection of large initial

circle gets transformed into the angular coordinate at small dual circle of circumstance

of order K−1, which is proportional to the “band width” of the transfer matrix. The

tridiagonal form of the super tree transfer matrix reflects the smallness of the dual circle.

Remind that the size of the matrix, corresponding to the energy level in terms of the β

ensemble, is K = βN . We obtain upon the duality

p(k) = ak ↔ Ax = Ht (4.15)

which means that the branching p and the gauge potential are the dual variables under

T -duality and indeed the branching velocity coincides with the magnetic field. Since the

branching p is the angular coordinate on the small dual circle, the value of k in p(k) = ak

can be qualitatively treated as the winding number φ = 2πk. Note that the interpretation

of the branching of the tree as the target space coordinate, or equivalently, as the scalar

field, could be useful for the holographic interpretations of super-growing trees.

Can we fit this picture with the ODE/IS duality in the CFT framework [2, 5]? It

was argued there that the spectral problem in quantum mechanics and the VEV of Baxter

operator in the CFT are closely related with the Brownian motion of a (1+1)D particle in

the periodic external potential

U(x) = χ cos (Φb + V x) (4.16)

where Φb is the boundary value of the (1+1)D scalar field, Φ. The quantum scalar field

provides the random environment for the Brownian particle. The argument of the cos-

function corresponds to the gauge potential of a constant electric field which has the same
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meaning for Dyck paths. The parameter V in the potential is related to the parameters in

quantum mechanics as follows [2][
− d2

d2x
+ x2m +

l(l + 1)

x2

]
ΨE(x) = EΨE(x), l =

−2iV

β2
− 1

2
m =

1

β2
− 1 (4.17)

Now we can see which value of the external magnetic field corresponds to the particular

potential. To get the oscillator and hence l = 0, we have to choose

− iVosc =
β2

4
(4.18)

This demonstrates that in our study of Hermite polynomials in the super tree picture,

the non-vanishing branching velocity has occurred. The limit of the small external field

V � 1 corresponds to the particular value of “angular momentum” term in the QM

potential. It would be desirable to check that the recursion relations for wave functions

corresponding to the QM potential for generic (m, l), can be described by the super trees

with the corresponding value of the branching velocity similar to the Hermite polynomials

for (1, 0) QM.

4.3 Super trees and torus knot polynomials

Here we make a remark concerning the interplay between super trees and torus knot in-

variants. We present the explicit expressions for the parameters of family of QM potentials

(m, l) and CFT [2]

c = 1− 6m2

m+ 1
, ∆ =

(2l + 1)2 − 4m2

16(m+ 1)
(4.19)

where ∆ is the highest-weight of the Virasoro module. The oscillator potential corresponds

to the c = −2 logarithmic CFT and the free fermion point from the viewpoint of the

statistical system.

The link with the torus knot invariants goes through their representation via weighted

Dyck paths. Namely, the HOMFLY polynomials Hn,n+1(b, q) of the Tn,n+1 torus knots can

be expressed in terms of the weighted Dyck paths in the n× n square above the diagonal

as follows [32]

Hn,n+1(b, q) =
∑
Dyck

qAbC (4.20)

where A is the area below the path and C is the number of corners on the path. Hence

we can link HOMFLY invariants with the super trees via the Dyck paths. In our case

the size of the lattice corresponds to the level in the QM spectrum hence the (n, n + 1)

knot is related to the nth energy level. We have no corner counting in our study, hence

the relevant object is the lowest row, b = 0, of the HOMFLY polynomial of the (n, n+ 1)

torus knot in the fundamental representation. It is expressed in terms q-deformed Catalan

numbers Cn(q) (see, for instance discussion in [16])

Hn,n+1(b, q) =
∑
k

bk Ak(q), A0(q) = Cn(q) (4.21)
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It is natural to conjecture that the (n, n + 1) torus knot invariant evaluates the weighted

multiplicity of the corresponded energy level in QM. Indeed there exists example of rep-

resentation of the HOMFLY invariants of the torus knot as the multiplicity of the E = 0

states in the Calogero potential although with the different mapping of parameters [33]

which could be useful along this line of reasoning.

Since our QM has interplay with CFT it is natural to ask if these CFT data are

consistent with the representation of HOMFLY invariant of the knot K in terms of the

VEV of Wilson loop in the SU(N) Chern-Simons theory at the level k

HK(b, q) =

∫
D{A}P exp

{∮
K
Adx+ ikSCS(A)

}
(4.22)

where q = e
2πi
k+cv , b = qN , and P is ordering operator. In our study q → 1 limit corresponds

to the semiclassical c→∞ limit in CFT while at the CS representation it corresponds to

the semiclassical limit k →∞ as well.

5 Random matrices in a Dumitriu-Edelman setting

I. Dumitriu and A. Edelman have shown in [23] that the spectral statistics of various

matrix ensembles coincides with the spectral statistics of appropriately chosen ensembles of

symmetric tri-diagonal matrices, whose matrix elements are uniformly distributed along the

main diagonal, while non-uniformly distributed along two sub-diagonals. In particular, the

spectral density of the Gaussian Orthogonal Ensemble (GOE) coincides with the spectral

density of the ensemble of tri-diagonal symmetric matrices of the following form

M̂ =



a11 b12 0 0 0 . . .

b21 a22 b23 0 0

0 b32 a33 b34 0

0 0 b43 a44 a45
0 0 0 b54 a55
...

. . .


(5.1)

where the diagonal elements akk (k = 1, . . . ,K) are distributed with the normal distri-

bution, N(µ, σ), while the sub-diagonal elements bk,k+1 ≡ bk+k,i (k = 1, . . . ,K) share

the χk-distribution. The normal and the χ-distributions have the following probability

densities for a random value, x, representing the matrix element:
f(x|µ, σ) =

1√
2πσ

e−
(x−µ)2

2σ2 for a normal distribution

f(x|n) =
xn−1e−

x2

2

2
n
2
−1Γ

(
n
2

) , x ≥ 0 for a χ-distribution

(5.2)

where Γ(z) is the Gamma-function.

The symmetric matrix (5.1) (where bij = bji) allows a straightforward interpretation

as the transfer matrix of a path counting problem on a random symmetric super tree. To
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proceed, introduce the “shifted” matrix M̂ ′, where

M̂ ′ =



a11 1 0 0 0 . . .

b221 a22 1 0 0

0 b232 a33 1 0

0 0 b243 a44 1

0 0 0 b254 a55
...

. . .


(5.3)

We can immediately see that for any distribution of matrix elements

det M̂ = det M̂ ′

Thus, we can deal with the matrix M̂ ′ and consider it as a transfer matrix of a random

super tree constructed as follows:

(i) All nodes at the generation k of a super tree carry one and the same random N(µ, σ)-

distributed weight;

(ii) The branching (vertex degree) of all vertices at the generation k of a super tree is a

χk-distributed random variable.

For the path counting problem on thus defined random super tree, the condition (i) gives

the normally distributed diagonal matrix elements, while the condition (ii) ensures the

correct χ-distributed weights for passages between adjacent generations of the tree (from

k to k + 1).

Now, let us find a “mean tree”, where the averaging is taken over the ensemble of

random trees. It can be easily seen that such a “mean tree” is nothing else as the super-

growing tree discussed at length of our paper. Instead of considering the spectral density

of the ensemble of random matrices M̂ , we pay attention to the eigenvalue distribution of

the mean matrix
〈
M̂
〉

, obtained by replacing each matrix element of M̂ by its mean value.

The mean values of all diagonal elements are 0 since the probability density, f(x|µ, σ),

is symmetric at µ = 0, while the mean values (the expectations) of off-diagonal random

elements are given by the following expression

Eχ(k)
(x) =

√
2 Γ
(
k+1
2

)
Γ
(
k
2

) (5.4)

For k � 1 the expectation Eχ(k)
(x) has the asymptotic expression

Eχ(k)
(x)
∣∣
k�1

=
√
k (5.5)

Thus, the averaged matrices
〈
M̂
〉

and
〈
M̂ ′
〉

have the following forms

〈
M̂
〉
≈



0
√

1 0 0 0 . . .√
1 0

√
2 0 0

0
√

2 0
√

3 0

0 0
√

3 0
√

4

0 0 0
√

4 0
...

. . .


;
〈
M̂ ′
〉
≈



0 1 0 0 0 . . .

1 0 1 0 0

0 2 0 1 0

0 0 3 0 1

0 0 0 4 0
...

. . .


(5.6)
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Since det
〈
M̂
〉

= det
〈
M̂ ′
〉

= det T̂ , where T̂ is the transfer matrix of the super tree

defined in (3.4), we can interpret the spectral statistics of path counting on super trees

as a suitable mean-field model describing spectral properties of random matrix ensembles,

which captures the KPZ scaling near the spectral edge.

6 Conclusion

We have touched at length of this paper some aspects of a path counting problem on

“super trees” T ± whose branching linearly grows or decreases with the generation of the

tree. It was argued that such super trees emerge naturally in some statistical models or

CFT describing the Hilbert space of some QM problems. This has been demonstrated

in the simplest oscillator case, in which the super-growing tree with the “velocity” a =

1 emerges naturally. It would be interesting to get the super-growing tree determinant

representation for another potentials. Generically the super-growing trees which reflect

the recurrence between the wave functions involve more complicated “time dependent”

branching velocities. The super tree with small branching velocity turns out to be related

via a kind of T -duality transform with the area-weighted Dyck paths and therefore with

some particular case of HOMFLY polynomials for torus knots.

It is worth mentioning few immediate questions for further research. First, note that

a new type of spin chains has been formulated recently in [38–40] in which the interaction

term in the Hamiltonian involves spins at three neighboring sites. The ground states of

such spin chain [38] are in one-to-one correspondence with Dyck paths, while the ground

states in the generalized spin chain model [39, 40] are in bijection with the area-weighted

Dyck paths. It would be interesting to recognize the place of the super-growing tree in

the generalized spin chain model and to describe their entanglement properties in terms of

statistics of paths on super trees.

Another interesting issue concerns the possible holographic role of super-growing trees.

The standard Cayley tree is used for the modeling the hyperbolic 2D geometry. The

super-growing tree certainly modifies AdS2 geometry. Since the parameter of modification

corresponds to the coefficient in front of the r−2-term in the QM potential, it is worth

reminding that such a potential emerges for a particle nearby the black hole horizon. Hence

one could speculate that the super-growing tree could be relevant for the discretization of

the metric of BH in AdS2. Such a metric in Jackiw-Teitelboim gravity implies that the

branching number should be related to the value of the effective 2D dilaton field with linear

behavior in radial coordinate.

The key property used in our study is the possibility to develop the simple path

representation of the Hilbert space of the one-body QM models. Certainly this property is

due to the representation of the Hilbert space in terms of the group representation. This is

familiar property of all QM models with algebraization of the spectrum. The same analysis

and the path representation of the wave functions of the integrable many-body systems

suggests that the degeneration of the spectrum can be related with the knot invariants via

the super-tree — Dyck path correspondence in a more general situation.
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It would be interesting to develop representation for all QM ingredients is terms of

the trees with varying degrees. In particular it is interesting to get the tree representation

for the Wigner function defined on the phase space, Moyal product on the trees, Witten

index in SUSY QM, matrix elements of the different operators etc. We shall discuss these

issues elsewhere.

Another issue providing some geometrical interpretation of path counting on super

trees deals with a deep connection of this model with the spectral determinant of Gaussian

Orthogonal Ensembles. This connection sheds some light on physically puzzling interpreta-

tion of integrals over random GOE matrices as expectations of special random tri-diagonal

matrices taken from non-uniform χ-ensemble, discovered by A. Edelman and I. Dumir-

tiu [23].

One more possible development concerns the interpretation of the 1D Kardar-Parisi-

Zhang scaling with the critical exponent ν = 1
3 . Let us look at KPZ-type scaling which

appears in our model from a slightly different perspective. We might be interested in man-

ifestations of a KPZ-type scaling in other physical phenomena, happen (at least) in physics

of one-dimensional disordered systems. In particular, we could ask whether there is a con-

nection of the one-dimensional Anderson localization with the KPZ-type scaling behavior?

It seems that the answer is positive. To provide the idea behind this connection, let us

recall that the behavior of the density of states, r(E), of the one-dimensional Anderson

model (tight-binding model with randomness on the main diagonal) at E → 0, has the

asymptotics known as the “Lifshitz singularity”

r(E) ∼ e−
α√
E (6.1)

where E is the energy of the system and α is some positive constant (see [29, 30] for more

details). Consider the canonical ensemble, in which E is controlled only in average by the

conjugated Legendre variable, N . In this case the density of states, r(E), gets converted

into r(N) via the Laplace transform:

r(N) =

∫ ∞
0

r(E) e−NE dE

∣∣∣∣
L�1

∼ ϕ(N) e−( 3α
2 )

2/3
N1/3

(6.2)

where atN � 1 we pay attention to the exponential asymptotics only and neglect the power

law corrections such as ϕ(N) ∼ N−5/6. Correspondingly, the density of states, r(E), can

be restored from r(N) via the inverse Laplace transform. Let us associate r(N) with the

partition function Z
(W )
N = eS

(W )
N defined in (3.14)–(3.15) (which is meaningful since the

density of states plays the role of a properly normalized partition function). Substituting

Z
(W )
N for r(N), we get

r(E) =
1

2πi

∫ γ+i∞

γ−i∞
eS

(W )
N eNE dN ≈ 1

2πi

∫ γ+i∞

γ−i∞
ea1N

1/3
eN(E+c) dN ∼ e−

β√
E+c (6.3)

where β = 2
3 |a1|

3/2 (recall that a1 ≈ −2.33811) and the presence of the linear term cN in

the entropy S
(W )
N shifts the singularity of the function r(E) to the value −c.
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KPZ extremal statistics

x

t

(1+1)D vicious walks

x

t

(1+1)D walks above semicircle

x

t

(1+1)D magnetic Dyck paths

paths counting on super tree

Figure 5. KPZ scaling, appearing in a set of interconnected models: vicious walks, directed paths

evading the semicircle, “inflated” magnetic Dyck paths, closed paths on descending super tree.

It is known [31] that the leading exponential asymptotic (6.2), appeared in the litera-

ture under various names, like “stretched exponent”, “Griffiths singularity”, “Balagurov-

Waks trapping exponent”, is nothing else as the Laplace-transformed Lifshitz tail of one-

dimemsional disordered systems possessing Anderson localization. We claim that KPZ-type

behavior can also be regarded as an incarnation of a specific “optimal fluctuation” for one-

dimensional Anderson localization. The appearance of KPZ scaling in a set interconnected

models is schematically shown in figure 5. The fluctuations of the top line in a bunch of

vicious walks in the mean-filed setting can be modelled either by the random walk statistics

above the impenetrable semicircle, or by sufficiently “inflated” magnetic Dyck paths, or by

statistics of closed paths on descending super tree. In all mentioned cases the KPZ statistics

occurs when the system is pushed to the “large deviation” region, i.e. the KPZ behavior is

seen in the very untypical sub-ensemble of the ensemble of whole available paths. In pore

details some examples will be discussed at length of the forthcoming paper [34].

One more remark concerning the possible relevance of our study for the issue of An-

derson localization goes as follows. It was suggested in [35] that the problem of Anderson

localization for the many-body systems with interaction can be translated into the one-

particle Anderson localization in the Hilbert space of the interacting system. The idea

was to approximate the Hilbert space of the many-body system by the Bethe tree and use

the exact results concerning the one-particle localization on the tree [36]. It was shown
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later [37] shown that the many-body localization which prevents the thermalization of the

interacting systems can be formulated within this approach.

In this note we have built the tree which captures the information about the recursion

properties of the wave functions for the (m, l) family of the QM models. These models can

be considered as a particle in the external potential or the relative motion of two interacting

particles. Our super trees provide the proper parametrization of the Hilbert space of the

QM system in sense of [35]. However, it turns out that the tree is not a Bethe tree even

for the simplest Hilbert space of the harmonic oscillator- it is the tree with the varying

branching of nodes. In the (m, l) series of potentials besides the l = −1
2 case, the super

trees govern the Hilbert spaces and the branching velocity is fixed by the coefficient in

front of the x−2 term in the potential. Curiously the branching of the tree itself behaves

like a scalar field with particular radial behavior.

Hence, in our sample model the localization of the single degree of freedom in the

interacting system is more complicated because the tree generically is not homogeneous.

The randomness in the initial potential generically could yield apart from the simple on-

site disorder the randomization of the valencies of the nodes. Our example of the constant

branching velocity seems to be one of the simplest cases. Remark that the wave function of

the QM mechanics corresponds to the characteristic polynomial of the transfer matrix of

statistical model on the tree hence the localization properties of the particle in the physical

space encoded in the inverse participation ration gets mapped precisely into the properties

of the moments of the spectral density of the matrices of the walking at the super tree.
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