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1 Introduction

First-principles lattice QCD (LQCD) calculations of two-baryon scattering amplitudes,
including the properties of subthreshold bound states, are rapidly progressing (see, e.g.,
refs. [1–11]). This includes the determination of masses and other properties of certain light
nuclei and hypernuclei, albeit at heavier-than-physical quark masses [12–16]. However, less
progress has been made using LQCD to determine the three-nucleon interaction, which
plays an important role for nuclei near the neutron driplines, for nuclear saturation, and in
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determining the neutron-star equation of state [17, 18]. To advance such calculations, a
formalism relating finite-volume energies to infinite-volume forces must be developed.

Such relations often take the form of quantization conditions, which relate the finite-
volume spectrum obtained from lattice calculations to infinite-volume scattering amplitudes.
At this stage, the two-body formalism, based on the seminal work of Lüscher [19, 20], is
very well understood, and its application has become a standard technique in LQCD. The
development of the three-body formalism is an active area of research, with many cases
understood [21–50], and with a rapidly growing number of applications to LQCD results [51–
65]. For recent reviews see refs. [66–70]. Other finite-volume approaches, which we do not
discuss, include formulating EFTs in finite volume [71–75], the finite-volume Hamiltonian
method (see, e.g., ref. [76]), and the HAL-QCD method [15]. Still another approach, which
does not take advantage of finite-volume effects, is to determine multi-hadron observables
via smeared spectral functions, extracted from a regulated estimate of the notoriously
ill-posed inverse Laplace transform [77–82].

To date, the finite-volume three-body formalism has only considered spinless (scalar or
pseudoscalar) particles, including both identical and non-identical particles and, in the latter
case, non-degenerate masses. To study more interesting quantities in the realm of nucleon
and nuclear physics—such as the Roper resonance, the tritium nucleus, or the three-nucleon
force — one must understand how to include particles with spin in the formalism. In this
work we take the first step in this direction by considering three identical spin-1/2 fermions.
This allows us to address the issues arising from the presence of spin in the simplest context.
It also gives access to a very important three-particle system, namely that of three neutrons.
Further generalizations, e.g., to generic three-nucleon systems or the Nπ + Nππ system
needed to describe the Roper resonance, will be left for future work.

We follow the relativistic field theory (RFT) approach, pioneered in refs. [25, 26]. The
main technical complication in the derivation is the description of spin in relativistic systems
of three particles. This is mainly due to the fact that the projection of the spin along
an axis is not Lorentz invariant. This leads to the mixing of spin-1/2 and spin-3/2 three-
neutron states. The complication is absent in the finite-volume formalism for two particles
with arbitrary spin [83], since all pairwise interactions occur at fixed overall two-particle
momentum. In addition, in two-nucleon systems, the total spin is effectively conserved,
since spin-1 or spin-0 states have opposite parities and do not mix.

The formalism is only valid for center-of-momentum frame (CMF) energies up to the
first inelastic threshold, which for the three-nucleon system occurs at the pion production
threshold, 3N → 3N + π. For physical quark masses, this threshold occurs at energies for
which the nucleons are in the nonrelativistic regime. Thus, one might argue that developing
a relativistic formalism is overkill, as the NREFT approach of refs. [28, 30] is simpler.
However, we expect LQCD studies of three nucleons to use heavier-than-physical quarks
in the near term, and in this case the inelastic threshold is higher, with relativistic effects
correspondingly enhanced.1 In addition, as noted above, the complications introduced by

1The relative magnitude of relativistic effects with respect to the leading nonrelativistic contribution
can be quantified by the size of k2/m2

N . In the vicinity of the 3mN + mπ threshold, this quantity can take
values up to 0.5 for a setting such as the one in refs. [9, 11], with mπ ' 700− 800MeV.
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spin must be understood in the relativistic domain to discuss higher baryon resonances
such as the Roper.

As is always the case in the finite-volume three-particle relations, the formalism for
three neutrons involves two steps: (1) deriving the three-neutron quantization condition,
which connects the spectrum to an intermediate K-matrix, Kdf,3; and (2) deriving an
integral equation relating Kdf,3 to the three-neutron scattering amplitude, M3. We find
that the resulting equations can be written in essentially identical form to those for identical
scalars, with the complications from spin leading to additional indices, the presence of signs
resulting from Fermi statistics, and the need for momentum-dependent spin transformation
operators related to Wigner rotations.

A necessary step to analyze lattice QCD data using the quantization condition is to have
parametrizations of the three-particle K-matrix, Kdf,3. As in previous work [25, 32, 34, 46],
we develop an expansion about threshold for the three-neutron amplitude. The constraints
from Fermi statistics significantly restrict the allowed forms that can appear through
next-to-leading order in this expansion.

The remainder of this paper is organized as follows. We begin, in section 2, recalling the
essential features of the RFT formalism for identical scalars, from which the generalization
presented here is developed. This section also introduces the required kinematic notation.
The core of this work is section 3, in which we describe the derivation of formalism for
three identical spin-1/2 particles. We divide this long section into three parts. In the first,
section 3.1, we describe the kinematic modifications that arise in the presence of spin, in
particular due to the need for Wigner rotations. We then, in section 3.2, describe how
the building blocks of the RFT formalism are modified in the presence of spin. Finally, in
section 3.3, we show how these new building blocks appear in the derivation, and discuss
the generalization to all orders in the skeleton expansion. In order to make this paper
more accessible, we present a separate summary of the final results in section 4. The
parametrization of Kdf,3 is described in section 5, and we conclude in section 6. We relegate
technical details to three appendices. In appendix A we describe the way in which the
antisymmetry of three fermion fields alters the derivation, while in appendix B we detail
the specific antisymmetrization of momenta needed to define the relation between Kdf,3 and
M3. Finally, appendix C provides additional technical details concerning the enumeration
of operators appearing in section 5.

2 Recap of the formalism for identical scalars

In this section we review the RFT finite-volume scattering formalism for identical spin-zero
particles, derived in refs. [25, 26]. The derivation assumes a Z2 symmetry that decouples
the sectors with even and odd numbers of particles. For pions in isosymmetric QCD this
symmetry is G-parity, and for nucleons in the energy range below pion production it is
baryon number.

The formalism for spin-zero particles consists of two parts: the first is a quantization
condition relating the finite-volume energy spectrum (in a periodic box with side-length
L) to an intermediate quantity called Kdf,3, and the second is a set of integral equations
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relating this quantity to the physical three-to-three scattering amplitude. Both parts can
be derived using a particular finite-volume correlation function denoted M(u,u)

3,L , which can
be shown to satisfy the following relation:2

M(u,u)
3,L (P ) ≡ D(u,u) + L(u)

L

1
1 +Kdf,3F3

Kdf,3R
(u)
L . (2.1)

All quantities here are matrices on an index space that parametrizes three degenerate
particles of mass m having fixed total energy E and spatial momentum P = (2π/L)nP in
the finite-volume frame. As indicated, the value of P is constrained by the periodicity to be
an integer three-vector (nP ∈ Z3) multiple of 2π/L. The energy and three-momentum are
grouped into the four-vector Pµ = (E,P ) that appears in the argument ofM(u,u)

3,L on the
left-hand side of eq. (2.1). With energy and momentum fixed, one can additionally select
one of the three particles, called the spectator, and denote its on-shell four-momentum by
kµ = (ωk,k) where ωk =

√
k2 +m2. The remaining two particles, sometimes called the

interacting pair or dimer, then have four-momentum Pµ − kµ and their squared energy in
their two-particle CMF is given by

(P − k)2 ≡ E∗22,k = (E − ωk)2 − (P − k)2 . (2.2)

Since this energy is fixed by E, P and k, the same is true for the magnitude of back-to-back
momenta for the two dimer particles. As a result, the only remaining degree of freedom is
directional, and can be decomposed in spherical harmonics with indices `m. Combining the
spherical harmonic indices with the momentum k = (2π/L)n gives a discrete index space
abbreviated as {k`m}. This is the space on which all matrices in eq. (2.1) are defined.3

M(u,u)
3,L depends on Kdf,3, as shown, together with four additional matrices (F3, D(u,u),

L(u)
L and R(u)

L ) that can each be expressed in terms of four more fundamental building
blocks. The first of these is the single-particle energy, ωk, promoted to a matrix in a trivial
way:

ωk′`′m′,k`m ≡ δk′kδ`′`δm′m
√
k2 +m2 . (2.3)

The second building block is K2(E,P ), which encodes the two-to-two scattering that arises
as a subprocess:

K2,k′`′m′,k`m(E,P ) = δk′kK2,`′m′,`m(E∗2,k) = δk′kδ`′`δm′mK
(`)
2 (E∗2,k) , (2.4)

K(`)
2 (E∗2,k)−1 = 1

16πE∗2,k

[
p cot δ(`)(p) + |p|

(
1−H(k)

)]∣∣∣∣
p=q∗2,k

, (2.5)

where δ(`)(p) is the scattering phase shift and

q∗2,k =
√
E∗22,k/4−m2 (2.6)

2In the derivation for three neutrons presented in section 3.3 below, we use a different, though closely
related, correlator to derive the quantization condition, as it is conceptually simpler and has been used
in previous work, e.g. refs. [25, 39]. The connection to the three-particle scattering amplitude is, however,
made using the three-neutron generalization ofM(u,u)

3,L .
3Since we are considering identical particles, only even values of ` contribute. This will not be the case

for three neutrons, due to the spin degree of freedom.
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is the momentum of each of the particles in the dimer in their CMF. We have also introduced
H(k), a smooth cutoff function defined, for example, in eqs. (28)-(29) of ref. [25]. This is
a non-standard part of the K-matrix definition used in this formalism, but is required to
avoid inducing unwanted power-like volume effects, as explained in refs. [25, 26].

The final two building blocks are two finite-volume quantities denoted F (E,P , L)
and G(E,P , L). These are defined, respectively, in eqs. (22–24) of ref. [25] and eq. (B.3)
of ref. [39].4 We give their respective extensions to spin one-half particles in eqs. (3.36)
and (3.38) (for F ) and eqs. (3.27) and (3.30) (for G) below. With these in hand F3, for
example, can be written as

F3 ≡
1

2ωL3

[
F

3 − F
1

1 +M2,LG
M2,LF

]
, M2,L ≡

1
K−1

2 + F
. (2.7)

The first application ofM(u,u)
3,L is that, up to neglected e−mL effects, the three-particle

finite-volume energies correspond to poles in the factor appearing between L(u)
L and R(u)

L in
eq. (2.1). This leads to the quantization condition

detk`m
[
1 +Kdf,3(E∗3)F3(E3,P , L)

]
= 0 , (2.8)

valid for m < E∗3 < 5m, where we have labeled the energy coordinate by E3 to emphasize
that the result applies for finite-volume energies with three-particle quantum numbers, and
E∗3 =

√
E2

3 − P 2 is the energy in the overall CMF.
Superficially, this looks very similar to the quantization condition for two-particle states,

arising from poles inM2,L with fixed values of the spectator momentum k = k′. In this
case the quantization condition is defined over angular-momentum indices,

det`m
[
1 +K2(E∗2)F2(E2,P 2, L)

]
= 0 , (2.9)

and is valid for 0 < E∗2 < 4m, where (E2,P 2) = (E3 − ωk,P − k) is the two-particle total
energy-momentum, and E∗2 =

√
E2

2 − P 2
2 is the two-particle CMF energy. In this result,

K2(E∗2) = K2,`′m′,`m(E∗2) refers to the quantity in the middle equality of eq. (2.4), i.e. the K
matrix carrying only angular momentum indices, and

F2,`′m′,`m(E2,P 2, L) = Fk`′m′,k`m(E2 + ωk,P 2 + k, L) . (2.10)

To implement the formalism in practice, one must truncate the sum over angular
momentum at some ` = `max in order that the matrices are finite. Calculations to date
have used `max = 0, 1 or 2. For both the two- and three-particle quantization conditions,
solving for the roots at fixed L and P for a given parametrization of K2(E∗2) and Kdf,3(E∗3)
gives a prediction for the finite-volume energies. Conversely, extracting the energies from a
numerical lattice calculation gives constraints on the two K-matrices and fitting to a range
of parametrizations allows one to determine these infinite-volume quantities.

4Alternatively, F (E,P , L) can be obtained from Flab in eq. (3.36) below by multiplying by 2ωkL3/i and
dropping spin indices, while G(E,P , L) can be obtained from Glab in eq. (3.27) by multiplying by −2ωpL

3/i,
and dropping the spin indices.
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It now remains to relate the K matrices to the physical three-particle amplitude. This
is done by usingM(u,u)

3,L to derive an integral equation. To do so requires explicit definitions
for the remaining quantities appearing in eq. (2.1):

D(u,u) ≡ − 1
1 +M2,LG

M2,LGM2,L(2ωL3) , (2.11)

L(u)
L ≡

[
F

2ωL3

]−1
F3 , (2.12)

R(u)
L ≡ F3

[
F

2ωL3

]−1
. (2.13)

With these in hand, the derivation of the integral equations follows in two steps. First
one notes that in definition ofM(u,u)

3,L the external kinematics are treated asymmetrically, as
indicated by the (u, u) superscript. As discussed in refs. [25, 26], and recalled in appendix B,
this is corrected by a symmetrizing step in which one combines the matrix with appropriate
spherical harmonics to obtain a function of the external momenta, and then sums over
separate permutations of the initial and final momenta. We denote this combination by

M3,L(P ) ≡ S
[
M(u,u)

3,L (P )
]
. (2.14)

The quantity on the left-hand side is a symmetric function of the three incoming and three
outgoing momenta, and thus does not have the (u, u) superscript.

The second step is to formally take an ordered double limit in whichM3,L(P ) becomes
the physical scattering amplitude

M3(E∗3) = lim
ε→0+

lim
L→∞

M3,L(E + iε,P ) . (2.15)

In this definition, the energy is made slightly complex so that the L → ∞ limit is well-
defined. The limit can be directly applied to the known functions F and G and, after
sending ε → 0, this leads to integral equations relating K2 and Kdf,3 to the scattering
amplitude. These integral equations are given explicitly in ref. [26], and solved in certain
approximations in refs. [58, 65, 84, 85]. We give the explicit forms of the integral equations
for the three-neutron system in section 4.2 below.

3 Formalism for three spin-half particles

In the following subsections, we present the extension of the formalism reviewed above to
three identical spin-1/2 particles. The section is divided into four subsections. First, in
section 3.1, we introduce the different bases of spin states required to derive and express our
final result. Then, in section 3.2, we work through each of the building blocks mentioned for
spin-0 particles above, and explain how these quantities are modified for the case of spin-1/2
particles. This allows us to efficiently summarize the new derivation, first, in section 3.3,
for the simplest contributing classes of diagrams, and then, in section 3.3.3, extending to
all orders. The final result in then presented in the following section, section 4.
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3.1 Three-body spin states in a relativistic formalism

We begin with a discussion of the construction of spin states in a relativistic framework, and
the transformation properties of such states under Lorentz boosts. An extended discussion
on this can be found, e.g., in ref. [86].

We start by considering the states of a particle at rest, with mass m, spin s and
azimuthal component ms. The states are denoted by |sms〉 where, as usual, we take ẑ as
the quantization axis. These states transform in the usual way under a general rotation R,

U(R) |sms〉 = |sm′s〉D
(s)
m′s,ms

(R) , (3.1)

where U(R) is the unitary operator corresponding to R, D(s)
m′s,ms

(R) is the Wigner matrix
for angular momentum s, and there is an implicit sum over m′s. We then construct states
with nonzero momentum p as

|p, sms〉 = U(L(βp)) |sms〉 , (3.2)

where L(βp) is a pure boost with velocity βp = p/ωp, with ωp =
√
p2 +m2, such that

the boosted state has four-momentum pµ = (ωp,p). In this way, |p, sms〉 is defined
unambiguously without specifying a quantization axis in the moving frame. This is referred
to as the standard basis and corresponds in the spin-1/2 case precisely to the state with
the spinor u(p,ms).

The boost in eq. (3.2) can be represented as

L(βp) = R(θp, n̂p) · L(βpẑ) ·R(θp, n̂p)−1, (3.3)

where R(θp, n̂p) is a rotation that takes a vector in the z-direction to point along the
indicated momentum, i.e. p̂ = R(θp, n̂p)ẑ. Here n̂p defines the axis about which the rotation
is performed and θp is the rotation angle. Using this representation, it is straightforward to
determine the transformation of the states in eq. (3.2) under rotations to be

U(R) |p, sms〉 = |Rp, sm′s〉D
(s)
m′s,ms

(R) . (3.4)

This is advantageous as it is equivalent to the transformations of a nonrelativistic spin state.
The transformation of the states in eq. (3.2) under boosts requires some additional

discussion. This is due to the fact that the azimuthal component of the spin does not
remain unchanged under a generic boost. Consider the transformation

U(L(βk)) |p, sms〉 = U(L(βk))U(L(βp)) |sms〉 , (3.5)

with βk a generic velocity. To work this out, we can use the well-known result that the
product of two boosts is equal to the combination of a single boost and a rotation,

L(βk)L(βp) = L(β′)R(θ, n̂). (3.6)

Here β′ represents the velocity of the resulting boost, while n̂ and θ are, respectively, the
axis and angle of the required rotation, whose expressions we provide below. It follows that

U(L(βk)) |p, sms〉 = |pk, sm′s〉D
(s)
m′s,ms

(R(θ, n̂)), (3.7)

– 7 –
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where pk is the spatial component of the four-momentum resulting from boosting pµ = (ωp,p)
with velocity βk. Since we only consider spin-1/2 particles in this work, we can represent
the Wigner matrices as

D(R(θ, n̂)) = 1 cos θ2 − iσ · n sin θ2 , (3.8)

with σ a vector composed of the Pauli matrices. Here, and for the remainder of the main
text, we suppress the (s) = (1/2) superscript on the Wigner matrices.

It remains to provide the expressions for the axis and angle of the rotation R(θ, n̂),

n̂ =
βk × βp
|βk × βp|

, cos θ = (1 + γp + γk + γ′)2

(1 + γp)(1 + γk)(1 + γ′) − 1, (3.9)

where γk = (1− β2
k)−1/2 and similarly for γp, and

γ′ = γkγp(1 + βp · βk), (3.10)

is the Lorentz factor of the boost L(β′). We also stress that, with these definitions, sin θ ≥ 0.
A result that will be useful later is that if βp and βk lie on the same axis, or if one or both
vanish, then cos θ = 1, and the Wigner matrix is just the identity.

With these identities in hand, we are now in position to define two coordinate systems
that will play an important role in the derivation that follows and in our statement of the
final result for the generalized quantization condition. As noted in the previous section,
on-shell three-particle variables are abbreviated by {k`m}, where k is shorthand for the
spectator momentum k, and `m refer to the decomposition of the remaining pair into
spherical harmonics in their CMF. Here we have the complication of an additional spin
degree of freedom for each of the particles. Two natural choices arise for the definition of
the quantization axes used to define spin degrees of freedom:

1. The lab-frame axis: label the on-shell four-momenta in the finite-volume frame (also
called the lab frame) as k, a and b, so that k + a+ b = P . Define the spin degree of
freedom for all three particles via the boost of eq. (3.2) directly to this frame, i.e. use
the states |k,ms(k)〉 ⊗ |a,ms(a)〉 ⊗ |b,ms(b)〉, where, for example,

|a,ms(a)〉 ≡ U(L(βa)) |0,ms〉 . (3.11)

The notation of matching the momentum label on the state a with that inside ms(a)
indicates that a single boost is applied starting in the particle’s rest frame. As we
will see below, this choice of quantization axis occurs most naturally for Kdf,3.

2. The dimer-frame axis: for k, continue to define the spin degree of freedom in the
finite-volume frame, i.e. to use the state |k,ms(k)〉. For a and b, however, boost the
four-momenta to the two-particle CMF. In this frame the four-momenta are denoted
a∗ and b∗, with |a∗| = |b∗| = q∗2,k fixed by the choices of k and P . Define the spin
degree of freedom for the a∗ state via eq. (3.2),

|a∗,ms(a∗)〉 = U(L(βa∗))|0,ms〉 , (3.12)

– 8 –
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and define |b∗,ms(b∗)〉 analogously. We stress that the notation matches that intro-
duced above, in that the use of a single boost is represented by the presence of a∗ both
in the label of the state and as the argument of ms. The reason for using these states
is that the spin indices rotate like NR spinors in the two-particle CMF, as shown in
eq. (3.4), and are thus naturally combined with the pair orbital angular momentum `.
Altogether, the dimer-frame axis convention uses spin indices ms(k),ms(a∗),ms(b∗).
This choice occurs naturally for K2, and for the kinematic function F .

To relate these two choices we need to boost the lab-frame axis states for the dimer to
their CMF,

|a∗,ms(a)〉 ≡ U(L(−βP−k)) |a,ms(a)〉 , (3.13)

and similarly for |b∗,ms(b)〉, where βP−k = (P − k)/(E − ωk). Here we anticipate that
the spin indices after boosting do not match those of the state |a∗,ms(a∗)〉 by using a,
rather than a∗, as the argument of ms in |a∗,ms(a)〉. The relation between spin indices is
obtained using

|a∗,ms(a)〉 = U(L(−βP−k))U(L(βa))|0,ms〉 , (3.14)
= U(L(βa∗))U(Ra)|0,ms〉 , (3.15)
= |a∗,m′s(a∗)〉D(Ra)m′sms . (3.16)

To obtain the first line we have used the definition of |a,ms(a)〉. We have then used the
relation between boosts and rotations, eq. (3.6), to express |a∗,ms(a)〉 as a rotation of
|a∗,ms(a∗)〉. Here Ra = R(θa, n̂a) is defined via eqs. (3.9) and (3.10) with the replacements

βp → βa = a

ωa
, and βk → −βP−k = − P − k

E − ωk
. (3.17)

Detailed expressions for Ra, and the corresponding rotation for b, are given below.
For both of the coordinate systems summarized above, the final step is to project the

dimer-pair to definite orbital angular momentum, always using the quantization axis in the
two-particle CMF. As a result, the orbital-angular momentum and spin axes are aligned in
the dimer-frame convention, but not in the lab-frame convention. In addition, as discussed
below in sections 3.2.4 and 4.3, a better choice is to project onto pair total spin (0 or 1
for two spin-half particles). This, together with the antisymmetry of the three-neutron
state, and parity, decouples the even and odd sectors of orbital angular momentum for
infinite-volume quantities.

3.2 Modifications to the RFT building blocks

We now summarize the modifications to the various quantities entering the generalized RFT
formalism. As we proceed, we provide some intuition regarding these changes, leaving a
more complete explanation to the derivation section below, section 3.3.
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3.2.1 Kdf ,3

As we describe in section 5, the three-particle K-matrix is most naturally expressed using
spin components defined with respect to the lab-frame axis, since the spin components
correspond to those of Dirac spinors. In particular, we are led to consider[

Klab
df,3

]
m′s,ms

= Klab
df,3
(
k′,ms(k′);a′,ms(a′); b′,ms(b′)

∣∣k,ms(k);a,ms(a); b,ms(b)
)
,

(3.18)
where, on the left-hand side, we have collected the spin labels as subscripts, using
the shorthand

m′s =
(
ms(k′),ms(a′),ms(b′)

)
, ms =

(
ms(k),ms(a),ms(b)

)
. (3.19)

For the quantization condition, however, it turns out to be most convenient to use spin
components defined with the dimer-frame axis, as we discuss below. In terms of explicit
coordinates, this is simply given by

[Kdf,3]m′∗s ,m∗s = Kdf,3
(
k′,ms(k′);a′,ms(a′∗); b′,ms(b′∗)

∣∣k,ms(k);a,ms(a∗); b,ms(b∗)
)
,

(3.20)

where we have introduced a second set of abbreviated spin indices, analogous to eq. (3.19)
above, but defined in the dimer-axis frame:

m′∗s =
(
ms(k′),ms(a′∗),ms(b′∗)

)
, m∗s =

(
ms(k),ms(a∗),ms(b∗)

)
. (3.21)

The relation between these two choices can be worked out by repeated use of eq. (3.16).
It is given by a rotation in spin space for fixed values of the momenta,

[Kdf,3]m′∗s ,m∗s ≡ D
(k′,a′)†
m′∗s m

′′
s

[
Klab

df,3

]
m′′s ,m

′′′
s

D(k,a)
m′′′s m

∗
s
, (3.22)

where we have used shorthand for the change-of-basis matrices. For example, the right-most
matrix is given by

D(k,a)
m′′′s m

∗
s

= δm′′′s (k)ms(k)D(R−1
a )m′′′s (a)ms(a∗)D(R−1

b )m′′′s (b)ms(b∗) , (3.23)

where the rotation Ra is defined using eqs. (3.9) and (3.10), with the replacements of
eq. (3.17). The explicit definition is Ra = R(θ, n̂) with

n̂ = −
βP−k × βa
|βP−k × βa|

, cos θ = (1 + γa + γP−k + γ′)2

(1 + γa)(1 + γP−k)(1 + γ′) − 1 ,

γ′ = γP−kγa(1− βP−k · βa) .
(3.24)

Rb is defined in the same way but with βa → βb.
To convert this to the matrix entering the quantization condition, we apply the same

steps that are used in the spin-zero formalism. The dimers (defined with momenta a and
b = P − k − a in the initial state and a′ and b′ = P − k′ − a′ in the final state) are
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projected to definite orbital angular momentum in their two-particle CMFs. This is done
via integration with a spherical harmonic and we express the action as a projection,

P â
∗

`m ◦ f(k,a, b) = 1
4π

∫
dΩâ∗Y ∗`m(â∗)f∗(k,a∗) , (3.25)

for a generic function f . Here a∗ is the spatial part of the four-momentum that results
from boosting aµ = (ωa,a) with boost velocity βk = −(P − k)/(E − ωk) and f∗ is just
f expressed in terms of the new coordinates as shown. (The dependence on b∗ = −a∗ is
redundant and is thus omitted within f∗.) We then define

[Kdf,3]k′`′m′m′∗s ;k`mm∗s
≡ i[P â

′∗

`′m′ ]† ◦ P â
∗

`m ◦ Kdf,3( · · · ) , (3.26)

where the ( · · · ) on the right-hand side indicates the full set of arguments shown in the
first line of eq. (3.20) above. The momenta k′ = k′ and k = k are expressed as indices on
the left-hand side, and it is understood that these are in the finite-volume set. Here we
have also introduced the boldface notation Kdf,3 to represent the matrix version of Kdf,3
within the generalized spin formalism. The factor of i on the right-hand side of eq. (3.26) is
for convenience.5

We now return to the issue of why the dimer-frame axis is the more natural for the
quantization condition. The point is that we wish to be able to combine orbital and spin
angular momenta of the dimer in a simple way, and this is only possible if both are defined
with respect to the same frame. Since orbital angular momenta are defined in the dimer
CMF, the spin variables need to be as well, and this corresponds to using the dimer-frame
axis. We stress that the spin rotation in eq. (3.22) and the partial-wave projection in
eq. (3.25) do not commute, so there is not a simple relation between the matrix forms
of Kdf,3 in the dimer- and lab-frame axes. In particular if the three-body K-matrix is
parametrized in the lab frame, then the angular momentum projection of eq. (3.26) will
include an integral over the angular dependence appearing inside the Wigner-D matrices.

3.2.2 G

Next we consider the kinematic switch function, denoted by G. The defining property of G
is that the spectator particle (and thus also the spectator momentum) differs between the
left and right side of the insertion.

As illustrated in the central portion of figure 1(c), G is defined with an initial state
containing the spectator momentum k and the scattering pair (with momenta p and
bpk = P − p− k), transitioning to a final state containing spectator p and scattering pair
(with momenta k and bpk). Henceforth, in this subsection we will abbreviate bpk by b, in
order to avoid a proliferation of subscripts; this should not be confused with the momentum
labeled b in figure 1(c). The exact definition makes use of momentum coordinates in the
two-particle CMF of the scattering pair, both before and after the switch. Specifically we
define k∗p [p∗k] as the spatial part of the four-momentum arising from boosting kµ = (ωk,k)
[pµ = (ωp,p)] with boost velocity −βP−p [−βP−k]. In addition to the momenta, we require

5The use of boldface for matrix quantities entering the quantization condition follows the conventions of
ref. [39].
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the two-particle CMF energy E∗2,k, defined in eq. (2.2), and the analogous quantity E∗2,p
obtained by replacing k with p. From these one can define the on-shell two-particle CMF
momentum q∗2,k and q∗2,p using eq. (2.6).

We are now ready to give the lab-frame axis version of G for three spin-half particles:

[Glab]p`′m′m′s;k`mms(E,P , L) ≡ −δm′s(p),ms(p)δm′s(k),ms(k)δm′s(b),ms(b)

× i

4ωpωkL6
H(p)H(k)
b2 −m2

4πY`′m′(k∗p)Y∗`m(p∗k)
q∗`
′

2,p q
∗`
2,k

, (3.27)

where Y`m(x) = |x|`Y`m(x̂) is a harmonic polynomial, and

b2 = (E − ωk − ωp)2 − (P − p− k)2 . (3.28)

The smooth cutoff function H(k) was already introduced in eq. (2.5). In the context of
three neutrons, we note that the allowed support for the H function is set by the left-hand
cut arising from t-channel pion exchange in the two-neutron amplitude. A similar situation
is discussed in refs. [48, 64] in the context of the RFT formalism for Kππ and KKπ, see
also ref. [87]. Relative to the spin-zero G function discussed in section 2 [see the explanation
above eq. (2.7)], the definition (3.27) contains an extra factor of i/(2ωpL3), matching the
conventions of ref. [39].

There are two key new features relative to the form for spin-zero particles. The first is
the overall minus sign. This results from the antisymmetry of the fermionic multi-particle
state or, equivalently, from the anti-commutation of Grassmann variables in evaluating
Feynman diagrams. This is discussed in more detail in section 3.3.2 below.

The second new feature is the appearance of a product of Kronecker deltas in the spin
components. This encodes the fact that, for spin components defined in the lab frame, G
simply acts like an identity matrix in spin space, a point that will be discussed further in
section 3.3.1. Strictly speaking this only holds when all three particles are on shell, which
is not the case in general: although k and p are on shell by construction, b is not. This
is potentially problematic because the lab-frame state |b,ms(b)〉, given by eq. (3.11), is
defined only for on-shell four-momenta. In particular, the boost velocity used to define the
state is βb ≡ b/ωb, even though b0 6= ωb in general. The resolution to this issue is that all
that matters for the derivation of the quantization condition is that the choice of state is
correct on shell, i.e. at the pole where b2 = m2. Choices that differ off shell lead to finite
shifts in Kdf,3, since the differences cancel the pole.

We stress that the Kronecker deltas in eq. (3.27) cannot be written as δm′sms , because
the order of spin components in the compound labels does not match:

m′s =
(
ms(p),ms(k),ms(b)

)
, ms =

(
ms(k),ms(p),ms(b)

)
. (3.29)

Non-trivial spin structure arises when we transform to the dimer-axis frame. The
transformation is similar to that for Kdf,3 discussed in the previous subsection,

Gp`′m′m′∗s ;k`mm∗s = D(p,k)†
m′∗s m

′′
s
Glab
p`′m′m′′s ;k`mm′′′s D

(k,p)
m′′′s m

∗
s
, (3.30)

where m′′s and m′′′s are summed.
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The change of basis matrices are given explicitly by

D(k,p)
m′′′s m

∗
s

= δm′′′s (k)ms(k)D(R−1
p )m′′′s (p)ms(p∗)D(R−1

bk
)m′′′s (bk)ms(b∗k) , (3.31)

D(p,k)
m′′′s m

∗
s

= δm′′′s (p)ms(p)D(R−1
k )m′′′s (k)ms(k∗)D(R−1

bp
)m′′′s (bp)ms(b∗p) . (3.32)

These depend on a total of four rotations, denoted by Rp, Rbk , Rk and Rbp as shown. Each
of the four is induced by relating two successive boosts to a single boost, via eq. (3.6). Thus
all rotations can be expressed according to eq. (3.9). Specifically, we define

Rp : n̂ = −
βP−k × βp
|βP−k × βp|

, cos θ =
(1 + γp + γP−k + γ′P−k,p)2

(1 + γp)(1 + γP−k)(1 + γ′P−k,p)
− 1 , (3.33)

Rk : n̂ = −
βP−p × βk
|βP−p × βk|

, cos θ =
(1 + γk + γP−p + γ′P−p,k)2

(1 + γk)(1 + γP−p)(1 + γ′P−p,k)
− 1 , (3.34)

where

γ′P−k,p = γP−kγp(1− βP−k · βp) , γ′P−p,k = γP−pγk(1− βP−p · βk) . (3.35)

Rbk is defined as for Rp, but with βp replaced by βb = b/ωb, and γp replaced by γb =√
1/(1− β2

b ). Similarly, Rbp is defined as for Rk, but with βp replaced by βb and γk replaced
by γb. As noted above, since b is off shell in general, the choice of boost velocities is only
unambiguous at the on-shell point. Any off-shell extension choice that is used consistently
is sufficient to perform the derivation, and our choice here is to use βb = b/ωb rather than,
say, b/b0.

3.2.3 F

We next turn to the kinematic function F , which implements the sum-integral difference for
a loop involving two of the three-particles. The definition in the lab-axis frame is obtained
from the standard form for F for scalar particles by adding Kronecker deltas in spin space,

[Flab]k′`′m′m′s;k`mms(E,P , L) ≡ δm′smsδk′k
iH(k)
2ωkL3

1
2

[ 1
L3

∑
a

−p.v.
∫
a

]
× 4πY`′m′(a∗k)Y∗`m(a∗k)

2ωa(b2 −m2)
1

(q∗2,k)`+`
′ , (3.36)

where here the order of the compound spin indices do match, such that we can use

δm′sms = δm′s(k)ms(k)δm′s(a)ms(a)δm′s(b)ms(b) . (3.37)

This definition of F differs from that for scalar particles, given in eqs. (22–24) of ref. [25],
by a factor of i/(2ωkL3), as well as by the addition of the spin factors, and thus follows the
normalization conventions of ref. [39].

The quantities in eq. (3.36) are defined as follows. The four-momentum b is given by
bµ = (E − ωk − ωa,P − k − a), while the on-shell magnitude q∗2,k is defined in eq. (2.6).
Following the usual pattern, a∗k is the spatial part of the four-momentum resulting from
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boosting aµ = (ωa,a) with boost velocity −βP−k. The sum runs over values of a = 2πna/L
where na is a three-vector of integers. The notation p.v. indicates a principal value pole
prescription, including the possible extensions discussed in ref. [38]. Finally, it is understood
that an ultraviolet cutoff must be included to evaluate the sum and integral separately.
Any dependence on the cutoff vanishes in the difference as can be shown using the Poisson
summation formula. The numerical evaluation of the sum-integral difference is discussed in
more detail, e.g., in appendix B of ref. [32] and also in appendix B of ref. [34].

As with G, this quantity must reflect the exchange properties of identical fermions. One
aspect of this is the symmetry factor of 1/2 for the ab loop, which is present exactly as in the
spin-zero case. To understand additional consequences, in particular of the antisymmetry,
it is useful to transition from the lab-axis frame and dimer-axis frame. However, in this
case there is no distinction

F = Flab . (3.38)

This is an important simplification as the change of basis matrices would in fact depend on
the summed coordinate. However, since Flab is diagonal in spectator momentum, the dimer
frame is the same in the initial and final states. As a result the change of basis matrices
exactly cancel.

3.2.4 K2

The final building block is the two-particle K matrix. This quantity is naturally defined in
the dimer-axis frame, and we discuss only this version of the K matrix. It can be written in
a manner analogous to that for scalars, eq. (2.4),

[K2]k′`′m′m′∗s ;k`mm∗s (E,P ) = iδk′k2ωkL3K(`′m′m′∗s ,`mm∗s)
2 (E∗2,k) , (3.39)

with K( ··· )
2 (E∗2,k) on the right-hand side a generalization of the quantity K(`)

2 (E∗2) in eq. (2.4)
to the case of spin one-half particles, with the additional factor of i2ωkL3 to match the
convention in ref. [39]. As above, the superscripts m∗s and m′∗s indicate that the spin
quantization axis is defined in the two-particle CMF. The role of the spectator here is
trivial and the K matrix can be unpacked as

K(`′m′m′∗s ,`mm∗s)
2 (E∗2,k) = δm′s(k)ms(k) K

[`′m′m′s(a′∗)m′s(b′∗)], [`mms(a∗)ms(b∗)]
2 (E∗2,k) . (3.40)

In words, the incoming state is labeled with orbital angular momentum `,m together with
spin components ms(a∗) and ms(b∗), and the outgoing state carries the same set with primes
as indicated.

To parametrize K2, it is more common to work in the basis which diagonalizes the total
spin of the dimer, s. This can take the values s = 0 (spin singlet) or s = 1 (spin triplet).
Enforcing antisymmetry, the singlet can only couple to even values of `, while the triplet
couples only to odd values. Although not mentioned above, these constraints apply also to
Kdf,3, F and G.

In general, s and ` are not conserved by two-particle interactions, and one should
convert to the basis in which the total dimer angular momentum, j, and its azimuthal
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component, µj , are diagonal. One simplification here, however, is that there is no mixing
between s = 0 and 1 states for two identical fermions, because their parities, given by (−1)`,
are opposite. Furthermore, if s = 0 then j = ` and thus ` is also conserved (and takes only
even values). On the other hand, if s = 1, then j = `+ 1, `, `− 1, so that, given that ` is
odd, each odd value of j arises from only a single value of `, while for all even values of j
except zero there are two choices of `.

We now describe in detail the conversions between bases. The first step is to convert to
the basis of total dimer spin s and azimuthal component m:

K(s,`′,m′,µ′s,`,m,µs)
2 δs′s =

∑
m′s(a′∗),m′s(b′∗),ms(a∗),ms(b∗)

〈
s′, µ′s

∣∣∣1/2 m′s(a′∗), 1/2 m′s(b′∗)
〉

×K[`′m′m′s(a′∗)m′s(b′∗)], [`mms(a∗)ms(b∗)]
2

〈
1/2 ms(a∗), 1/2 ms(b∗)

∣∣∣s, µs〉 ,
(3.41)

where the angle-bracketed quantities are standard Clebsch-Gordan coefficients, and the
conservation of s is enforced by the Kronecker delta on the left-hand side. From here one
can reach the final basis via

K(j,s,`′,`)
2 δj′jδµ′jµj =

∑
µs,µ′s

〈
j′, µ′j |`′m′, sµ′s

〉
K(s,`′,m′,µ′s,`,m,µs)

2
〈
`m, sµs|j, µj

〉
. (3.42)

Then one can write6

[K2(E∗2,k)−1](j,s,`′,`) = [M2(E∗2,k)−1](j,s,`′,`) + δ`′,`
|p|
(
1−H(k)

)
+ ip

16πE∗2,k

∣∣∣∣
p=q∗2,k

, (3.43)

with subthreshold analytic continuation following from −ip→ |p| for p2 < 0. HereM2(E∗2,k)
is the standard scattering amplitude.

The parametrization of the resulting scattering amplitudes depends on whether there
is mixing between different values of `. The simplest case is s = 0, which, as discussed
above, always involves only a single channel with even ` = j. Then we write the scattering
amplitude in terms of a phase shift

[M2(E∗2,k)−1](j,s=0,`′,`) + δ`′,`
ip

16πE∗2,k

∣∣∣∣
p=q∗2,k

= δ`′,`
q∗2,k cot δ(j=`,s=0)(q∗2,k)

16πE∗2,k
. (3.44)

This, in turn, can be parametrized with an effective range expansion

p2`+1 cot δ(j=`,s=0)(p) = − 1
a0

+
∞∑
n=1

an(p2)n . (3.45)

Two-channel mixing is possible for s = 1, but only for j = 2, 4, 6, . . . , for which both
` = j ± 1 are possible. In such cases one can parametrize the phase shift using, for example,
the Blatt-Biedenharn parametrization [88, 89]. For j = 0 and 1, however, which arise from
` = 1, there is only a single channel and one can proceed as for s = 0.

6This form assumes that the generalization of the p.v. prescription to include an “IPV term” is not being
made. The generalization to this case can be easily determined from ref. [38].
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3.3 Derivation

In the previous section we have provided the generalization of the four key quantities required
to develop the finite-volume formalism for three identical spin-1/2 particles. The generalized
version for each of the four is written in bold face, in particular Kdf,3 [section 3.2.1], G
[section 3.2.2], F [section 3.2.3] and K2 [section 3.2.4]. In this section, we show how, using
these building blocks, the derivation of refs. [25, 26] can be extended to apply to identical
spin-1/2-particle systems. For simplicity, we use the language of three neutrons in the
following, but emphasize that the formalism we obtain holds for any system of three spin-1/2
particles.

The derivation proceeds in several steps. First, in section 3.3.1, we define an appropriate
finite-volume correlator, the poles in which give the finite-volume energies. Next, in
section 3.3.2, we analyze the three classes of Feynman diagrams that enter into the skeleton
expansion of the correlator. Third, in section 3.3.3, we explain how the results generalize to
all orders. We also present the result for a related quantity, the finite-volume unsymmetrized
scattering amplitude. These ingredients are then used in the following section, section 4, to
determine the quantization condition and the relation between Kdf,3 and the infinite-volume
scattering amplitude. This basic workflow is analogous to the presentation of ref. [39], in
which the formalism of refs. [25, 26] was generalized to describe all three-pion states with
generic isospin.

3.3.1 Finite-volume correlator

The Minkowski-space finite-volume correlation function is defined as

CL(P ) ≡
∫
L
d4x eiP ·x 〈TO(x)O†(0)〉L , (3.46)

where P · x = Ex0 − P · x, and ∫
L
d4x ≡

∫
dx0

∫
L
d3x , (3.47)

is an integral over the infinite time direction and three finite spatial directions. The operators
O†(0) and O(x) respectively create and annihilate three-neutron states. They are assumed
to have support for a finite range of times around the nominal position of the operator,
and can either be local or delocalized in space. In eq. (3.46), T indicates time ordering,
Pµ = (E,P ) is a four-vector containing the total energy and momentum, and the subscript
L indicates that the quantity is evaluated in a finite cubic spatial volume (with periodicity
L in each of the three spatial directions).

It will be useful for the following derivation to give explicit definitions of the operators
O and O†. Let Nα(x) denote a single-nucleon spin-1/2 field with Dirac index α. We first
define the momentum-space operators

Õ†r1,r2,r3(p1, p2, p3) =
3∏
i=1

{
uriαi(pαi)

∫
L
d4xi e

−ipi·xiNαi(xi)
}
, (3.48)

Õr1,r2,r3(p′1, p′2, p′3) =
3∏
i=1

{
uriαi(p

′
αi)
∫
L
d4xi e

ip′i·xiNαi(xi)
}
, (3.49)
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where each field on the right-hand side is contracted with a spinor uriαi(p
′
αi) or uriαi(pαi),

with ri indicating a specific spin component. We then obtain O(x) by integrating over
momenta, weighted with a “form factor” that depends on the precise form of the operator.
In particular, the Fourier transform of O(x) is given by∫

L
d4x eiP ·xO(x) =

∫
p′1, L

∫
p′2, L

∫
p′3, L

∑
r1,r2,r3

Õr1,r2,r3(p′1, p′2, p′3)f r1r2r3(p′1, p′2, p′3) , (3.50)

where

f r1r2r3(p′1, p′2, p′3) = 2πδ(E − p′01 − p′02 − p′03 )L3δp′1+p′2+p′3,P fr1r2r3(p′1, p′2, p′3) . (3.51)

In eq. (3.50), we are using the finite-volume version of the momentum-space integral,∫
p, L

= 1
L3

∑
p

∫
dp0

2π , (3.52)

in which the sum runs over all values of p = (2π/L)n, where n is a three-vector of integers
(n ∈ Z3). We refer to this set of momenta as the “finite-volume set.” In eq. (3.51), the
first two factors on the right-hand side enforce four-momentum conservation, while f is a
smooth function of momenta that depends on the form of O(x). The detailed form of f is
not important. However, its p0

i dependence must ensure that O(x) is localized in time, as
described above.

Two technical points deserve mention. First, in eq. (3.46), the time ordering applies
to the positions of all the single-particle operators contained in the composite operators
O and O†, and not just to the component x0. In particular, all possible orderings of the
N and N fields arise in general, since these are individually integrated over all positions.
The ordering of interest, in which three neutrons are first created, and then later destroyed,
will be picked out by the choice of E, as discussed shortly. Second, we stress that N
and N are anticommuting Grassmann fields and that time-ordering is also subject to
the usual Grassmann definition, e.g. T{N (x0)N (y0)} = −N (y0)N (x0) for x0 < y0. The
anticommuting property plays an important role in the formalism, as already noted above
in the result for G, eq. (3.27).

In this work we assume that CL(P ) can be represented as an all-orders Feynman
diagrammatic expansion in a relativistic effective field theory (EFT) in which the degrees of
freedom are neutrons, protons and pions. We make no restrictions on the form or strength
of the interaction vertices, other than requiring that they respect Lorentz invariance,
baryon number, and electric charge conservation. We thus expect that the resulting
formalism applies nonperturbatively. Close to the three-neutron threshold, the pions
could be integrated out, leading to a pionless EFT for nucleons, but we do not need to
assume that we are in this regime. What we do assume is that the total CMF energy,
E∗3 =

√
P 2 =

√
E2 − P 2, lies in a regime such that the only on-shell states are those

involving three neutrons. In particular, for isosymmetric QCD we require that√
4m2

N −m2
π +mN < E∗3 < 3mN +mπ . (3.53)
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The upper limit is required to avoid 3N + π on-shell states, while the lower limit avoids the
left-hand cut in two-to-two subprocesses due to single-pion exchange. The latter restriction
is necessary because, as explained in the following, the non-analyticity in K2 from the
left-hand cut leads to power-law finite-volume dependence. We stress that, although proton
degrees of freedom are present in the EFT, they cannot appear in on-shell intermediate
states in the three-neutron correlator for the kinematic regime of eq. (3.53). Instead, they
appear in virtual intermediate states — along with pions that lead, for example, to the
dressing of the neutron propagator — as well as in Bethe-Salpeter kernels.

Our aim in the following is to keep track of all power-like dependence of CL(P ) on L
(typically of the form of powers of 1/L), while neglecting dependence falling faster than
any power of 1/L. With a slight abuse of nomenclature, we will refer to the latter as
“exponentially suppressed”. Indeed, this category includes exponentially-suppressed scaling
of the form e−mπL, where mπ is the mass of the lightest degree of freedom in the system, e.g.
the pion in QCD, and generally not the mass of the spin-1/2 particle, which we denote m
in the following. For large enough L, such exponentially-suppressed terms are numerically
smaller than power-law effects.

The key difference between contributions to the finite- and infinite-volume correlators is
that the former involve sums over finite-volume momenta, while the latter involve integrals.
Local vertices are unchanged. As discussed in ref. [25], one can use the Poisson summation
formula to argue that the difference between finite-volume sums and infinite-volume integrals
is exponentially suppressed unless the summand/integrand is singular. This can happen
either because there is an on-shell intermediate state, or because of a non-analyticity in
the vertex functions such as the above-mentioned left-hand cut. Since in the following
derivation we include the effects only of three-neutron intermediate states, we are led to
the same requirements on E∗3 as given in eq. (3.53). We stress that the localization of O in
time plays an important role here, for it implies that states consisting, say, of two neutrons
and an antineutron, cannot propagate forward in time for an arbitrarily long extent, and
thus cannot lead to on-shell singularities.

The diagrammatic expansion involves the operators O and O† as well as the above-
mentioned vertices. Simple examples are shown in figure 1. The neutron propagators in
these diagrams are given by

∆L,αβ(p) =
∫
L
d4x eip·x 〈TNα(x)N β(0)〉L . (3.54)

They are thus fully dressed, and include loop diagrams that are not shown explicitly.
The subscript L on the expectation value refers to the L-dependence that arises from the
spatial periodicity, which implies that p must be drawn from the finite-volume set, and
that the spatial parts of loop momenta must be summed. However, in the vicinity of the
single-particle pole at p2 = m2, all loop contributions are far off shell, so that L-dependence
is exponentially suppressed, and we can write [90]

∆L,αβ(p) = i
(/p+m)αβ
p2 −m2 + iε

+RL,αβ(p) . (3.55)

– 18 –



J
H
E
P
0
7
(
2
0
2
3
)
2
2
6

Here the first term is L-independent, while the second term is analytic for p0 below the
threshold to create a multi-particle state (a nucleon+pion state in the case of isospin-
symmetric QCD). We have assumed a normalization of the fields N and N so as to give
unit residue at the pole of the dressed propagator, leading to a simple factor of /p+m in
the numerator.

One can apply a final simplification to the numerator of the L-independent part of the
propagator by setting p0 to its on-shell value: p0 = ωp =

√
p2 +m2. This is justified since

the difference cancels the pole, leading to an additional analytic contribution that can be
absorbed by a redefinition of RL,αβ(p). This step is useful as the on-shell version of the
numerator is equal to a sum of spinors,

(/p+m)αβ
∣∣∣∣
p0=ωp

=
∑
r

urα(p)urβ(p) . (3.56)

As noted in the previous section, and discussed further below, it is for this reason that the
finite-volume factors F and G are proportional to Kronecker deltas in spin space in the
lab-axis frame.

Like the momentum sums in the fully-dressed propagator, loop sums in generic Feynman
diagrams for CL contribute only exponentially suppressed L-dependence, as long as the
loops do not allow three-neutron cuts. Such cuts lead to poles in the summand, and
induce power-like volume effects that must be included in (and indeed are the focus of) the
derivation. Heuristically, the intuition is that these physical, on-shell intermediate states
can travel arbitrarily far and thus maximally feel the boundary conditions.

From these considerations, it follows that a skeleton expansion in which all three-neutron
states are explicitly displayed will capture the power-like L dependence in CL(P ). Such an
expansion is built from all diagrams with operator-dependent vertex functions on the far left
and far right, with three neutrons propagating between them, interacting via Bethe-Salpeter
kernels. Examples are shown in figure 1. The two-to-two kernels shown are defined to be
two-particle irreducible in the s channel, so that there are no hidden three-particle states.
There can also be three-to-three Bethe-Salpeter kernels, which are three-particle irreducible
in the s channel. We discuss these kernels further in the remainder of the derivation.

3.3.2 Contributing diagrams

Continuing to follow the basic structure of the argument of ref. [39], we now analyze the
three diagrams shown in figure 1 in turn, beginning with 1(a). Denoting the contribution of
this to CL as C [1(a)]

L , we have

C
[1(a)]
L = 1

6

∫
a,L

∫
k,L

σα1α2α3(a,k)∆L,α1β1(a)∆L,α2β2(b)∆L,α3β3(k)σ†β1β2β3
(a,k) , (3.57)

where b = P − k − a, and we have introduced the “endcap” σα1,α2,α3(a, k), defined by

σα1α2α3(a, k) =
∑
p∈P

sig(p)× ur1
α1(a)ur2

α2(b)ur3
α3(k)× p[fr1r2r3(a, b, k)] . (3.58)
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(a)

(c)

(b)

(d)

Figure 1. Diagrams relevant for the derivation of the quantization condition for three neutrons in
a finite volume. Lines with arrows indicate fully-dressed neutron propagators. (We envision time
flowing from right to left to match the ordering of incoming and outgoing states in the expressions
of the main text.) The tall ellipses indicate the σ functions arising from the interpolating operators
while the circles indicate two- and three-particle Bethe-Salpeter kernels.

Here P is the set of six permutations acting on the momentum and spin indices. For
example if we define p1↔2 as the permutation exchanging both the indices r1 and r2 and
the corresponding momenta a and b, then

p1↔2[fr1r2r3(a, b, k)] = fr2r1r3(b, a, k) . (3.59)

The factor sig(p) is 1 for a cyclic permutation and −1 otherwise. As a result, only the
antisymmetric part of fr1r2r3(a, b, k) contributes in eq. (3.58).

To analyze eq. (3.57), one next uses the identity of eq. (3.55) to evaluate the k0 and a0

integrals within
∫
a, L and

∫
k, L. This yields

C
[1(a)]
L (P ) = C̃ [1(a)]

∞ (P )

+ 1
6

1
L6

∑
a,k

σα1α2α3(a,k) i(/a+m)α1β1 (/b +m)α2β2 (/k +m)α3β3

2ωa2ωk(b2 −m2) σ†β1β2β3
(a,k) ,

(3.60)

where C̃ [1(a)]
∞ (P ) is a quantity with negligible (exponentially suppressed) L dependence.

(The tilde is used as we will require a redefinition to reach our final quantity, C [1(a)]
∞ (P ).)

To reach eq. (3.60) we have used the result that all contributions containing at least
one factor of RL,αβ(p) lead to exponentially suppressed volume dependence. In the term
proportional to 1/[(a2 −m2)(b2 −m2)(k2 −m2)] we have evaluated the a0 and k0 integrals
by closing the contours in the complex plane, encircling poles at a0 = ωa and k0 = ωk.
This also results in the numerator factors (/a+m) and (/k +m) being evaluated on-shell,
allowing the subsequent use of the result eq. (3.56), as explained below. We also note that
the four-momenta in the arguments of σ and σ† are set on shell, and, with some abuse of
notation, we denote this by changing the arguments to three-vectors. All other poles that
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contribute to the a0 and k0 integrals can be seen to lead to intermediate states that cannot
go on shell for our range of E∗3 , and thus give nonsingular summands, for which the sums
can be replaced by integrals, so that the contributions can be absorbed in C̃ [1(a)]

∞ (P ).
The remaining momentum bµ = (E−ωk−ωa,P−k−a) is generally not on the mass shell,

but the summand can be expanded about the on-shell point, i.e. about E = ωk + ωa + ωb,.
This expansion, together with a few additional manipulations explained below, yields

C
[1(a)]
L (P ) = C [1(a)]

∞ (P ) + 1
6

1
L3

∑
k

H(k)
[ 1
L3

∑
a

−p.v.
∫
a

]

× σlab
r1r2r3(a,k)

iδr1r′1
δr2r′2

δr3r′3

2ωa2ωb2ωk(E − ωa − ωb − ωk)
σlab,†
r′1r
′
2r
′
3
(a,k) , (3.61)

where

σlab
r1r2r3(a,k) = σα1α2α3(a,k)ur1

α1(a)ur2
α2(b)ur3

α3(k) , (3.62)

= (2m)3 ∑
p∈P

sig(p)p[fr1r2r3(a, b,k)] . (3.63)

In the second line, the middle argument of f remains a four-vector b, since this momentum
is not yet on shell. The superscript lab emphasizes that the spin components are defined
with respect to the lab-frame axis. The additional steps to reach eq. (3.61) include the
subtraction of the integral, which is then added back in through a redefinition of C [1(a)]

∞ (P ),
which is allowed since the p.v. integral yields a smooth function of k, allowing the sum
over k to be replaced by an integral. A similar redefinition allows us to introduce the
cutoff function H(k), (whose form is discussed following eq. (2.5) above). These steps are
explained in detail in the original derivation of the quantization condition [25]. We can
now use the expansion of the summand about the on-shell point to replace /b + m and
other factors, with their on-shell values, for the difference cancels the pole and leads to a
sum-integral difference that is exponentially suppressed. We can then apply eq. (3.56) to
the Dirac factors to write each as a product of spinors, leading to the expression shown
for σlab.

At this stage we could directly use the sum-integral identity given in eq. (A1) of ref. [25]
to rewrite C [1(a)]

L (P ) in terms of the geometrical function Flab given in eq. (3.38),

C
[1(a)]
L = C [1(a)]

∞ − 1
3σ

labFlabσlab,† . (3.64)

The overall 1/3 arises because Flab contains a factor of 1/2, and the product leads to the
1/6 in eq. (3.61). The bold-faced σlab indicates that a factor of i has been absorbed into
σ, that this quantity has been set on shell, and projected onto spherical harmonics using
eq. (3.25). σlab also includes the lab-frame axis spin indices, which, as shown in eq. (3.61),
are unchanged by the three-particle cut.7

However, this form is not used in our analysis, which is carried out in the dimer-axis
frame. Instead, we must first rotate to the dimer-axis frame using the transformation given

7Note that we use a different labelling of the spin indices here (ri) compared to those used in the definition
of Flab (ms), but this is just for notational convenience — the indices are the same.
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in eqs. (3.22) and (3.23); and then apply the sum-integral identity discussed above, which
involves projecting the resulting endcaps onto spherical harmonics using eq. (3.25), and
then setting them on shell. These steps lead to

C
[1(a)]
L = C [1(a)]

∞ − 1
3σFσ

† , (3.65)

i.e. a result with the same form as the lab-axis frame version eq. (3.64). We stress that
this identity of form hides a nontrivial difference. In particular, since the transformation
connecting the lab- and dimer-axis frames depends on the momenta, it does not commute
with the projection onto spherical harmonics. Thus, one cannot directly relate eqs. (3.64)
and (3.65), but must instead must go back to the starting point of eq. (3.61).

We now explain these steps in more detail. The basis rotation involves one subtlety,
namely that the momentum b is off shell, while the rotation described in eqs. (3.22) and (3.23)
assumes that all momenta are on shell. Thus, we must extend the definition of the rotation
to the off-shell case, and this we do by setting βb = b/ωb in the definition of Rb needed in
eq. (3.23). This is the same extension already used in section 3.2.2 when describing the
form of G.

The second step is to use the sum-minus-integral identity from ref. [25], leading to
endcaps that are projected, using eq. (3.25), onto definite orbital angular momentum `m in
the dimer CMF, and then set fully on shell. Since k is only sampled at discrete finite-volume
values, it can also be viewed as an index, such that σ is promoted to a vector in the combined
index space of r1, r2, r3, `,m,k, where {ri} are spin indices in the dimer-axis frame, which
were denoted {ms(k),ms(a∗),ms(b∗)} earlier. We abbreviate the quantity labelled by all
these indices as σ (with the symbol in bold), which also includes an additional factor of i.
This leads to eq. (3.65), in which the second term on the right-hand side is a matrix product
built from the vector σ and its conjugate, together with the matrix F defined in eq. (3.36).
This result has the same form as in the case of three pions of arbitrary isospin [39], except
that here the flavor indices are replaced with (dimer-axis) spin indices.

We now turn to figure 1(b). In this diagram a Bethe-Salpeter kernel, denoted B, is
inserted to scatter two of the three neutrons propagating across the diagram. The functional
form is given by

C
[1(b)]
L (P ) = 1

4
1
L9

∑
k,a,a′

∫
da0

2π

∫
da′0

2π

∫
dk0

2π σα1α2α3(a′, k) ∆α1α′1
(a′)∆α2α′2

(b′)δα3α′3

× iBα′1α′2,β′1β′2(a′, b′; a, b) ∆α′3,β
′
3
(k) ∆β′1β1(a)∆β′2β2(b) δβ′3β3 σ

†
β1β2β3

(a, k) .
(3.66)

Now, in contrast to the analysis of figure 1(a), here we only aim to identify the maximally
singular contribution to the diagram. The less singular parts will be absorbed into re-
definitions of factors such as σ and σ† appearing in eq. (3.65).

Because figure 1(b) admits two distinct cuts across three-neutron states, the maximally
singular contribution contains two poles. To isolate these we perform the k0, a′0, and a0

contour integrals and expand the partially on-shell propagators about the physical energy
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points E = ωa′ + ωb′ + ωk and E = ωa + ωb + ωk to reach

C
[1(b)]
L (P ) = 1

4
1
L3

∑
k

[ 1
L3

∑
a′

−
∫
a′

][ 1
L3

∑
a

−
∫
a

]

× σlab
r1r2r3(a′,k)

iδr1r′1
δr2r′2

δr3r′3
H(k)

2ωa′2ωb′2ωk(E − ωa′ − ωb′ − ωk)
i[2ωk]Blab

r′1r
′
2,s
′
1s
′
2
(a′, b′;a, b)δr′3s′3

×
iδs′1s1δs′2s2δs′3s3H(k)

2ωa2ωb2ωk(E − ωa − ωb − ωk)
σlab,†
s1,s2,s3(a,k) + · · · , (3.67)

where the ellipsis denotes less singular terms that we do not track explicitly. Here we have
already mimicked the steps performed for figure 1(a) above including (i) replacing the sums
over a and a′ with integrals and sum-integral differences (and discarding the integrals as
these lead to less singular terms) (ii) inserting the identity 1 = H(k) + [1−H(k)] and again
dropping the second contribution as it is less singular (iii) expanding all Dirac structures
about the on-shell point to recover outer products of spinors that are then contracted with
the endcaps and with the Bethe-Salpeter kernel.

The final steps, again in a direct imitation of the analysis for figure 1(a), are to expand
the endcap factors and Bethe-Salpeter kernel about their on-shell points, to perform a
momentum-dependent change of basis to the dimer-axis frame, and then to decompose
all quantities in angular momentum in the dimer-axis frame. The result takes a very
compact form

C
[1(b)]
L = −σFB2 Fσ† + · · · , (3.68)

where B2 is analogous to K2, defined in eq. (3.39) above, but based on the Bethe-Salpeter
kernel rather than the full K matrix.

We finally reach figure 1(c), which we also write out in detail to fully explain the
pattern of the derivation that we are identifying. The diagram can be expressed as

C
[1(c)]
L (P ) = (−1)1

4
1
L12

∑
k,p,a,a′

∫
da0

2π

∫
da′0

2π

∫
dk0

2π

∫
dp0

2π

×
[
σα1,α2,α3(a′, p) ∆α1α′1

(a′)∆α2α′2
(b′)δα3α′3

× iBα′1α′2,β′1β′2(a′, b′; k, bpk) ∆α′3β
′
3
(p)

×∆β′2γ
′
2
(bpk)δβ′1γ′3δβ′3γ′1

× iBγ′1γ′2σ′1σ′2(p, bpk; a, b) ∆γ′3σ
′
3
(k)

×∆σ′1σ1(a)∆σ′2σ2(b) δσ′3σ3 σ
†
σ1σ2σ3(a, k)

]
,

(3.69)

where the initial (−1) arises from the anti-commutation of Grassmann fields in the correlation
function defining the diagram.

Each line of the lengthy expression in square brackets corresponds to a specific segment
of the diagram. In particular, the first and last lines correspond to the two endcap factors,
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each with the two propagators that are contracted between an endcap and its adjacent
Bethe-Salpeter kernel. The second and fourth lines then correspond to the two kernels
themselves, each accompanied by the spectator propagator, i.e. the propagator that is not
scattered by that kernel. Finally, the middle line corresponds to the distinctive feature of
figure 1(c), namely the change in the particle that is spectating. This switch leads to the
bpk-dependent propagator as well as the set of Kronecker deltas, δβ′1γ′3δβ′3γ′1 , that encode the
interchange of indices with 1 and 3 subscripts.

Again identifying the most singular term in the expression, and performing steps
discussed in detail in ref. [25], we reach

C
[1(c)]
L (P ) = 1

4
1
L6

∑
p,k

[ 1
L3

∑
a′

−
∫
a′

][ 1
L3

∑
a

−
∫
a

]

× σlab
r1r2r3(a′,p)

iδr1r′1
δr2r′2

δr3r′3
H(p)

2ωa′2ωb′2ωp(E − ωa′ − ωb′ − ωp)
× i[2ωp]Blab

r′1r
′
2,s
′
1s
′
2
(a′, b′;k, bpk)δr′3s′3

× (−1)δs′2t′2δs′1t′3δs′3t′1
i

4ωpωk
H(p)H(k)
b2
pk −m2

× i[2ωk]Blab
t′1t
′
2,z
′
1z
′
2
(p, bpk;a, b)δt′3z′3

×
iδz′1z1δz′2z2δz′3z3H(k)

2ωa2ωb2ωk(E − ωa − ωb − ωk)
σlab,†
z1z2z3(a,k)

+ · · · .

(3.70)

The key observation here is that all structures appearing in this long equation have already
been used above except for the line beginning with ×(−1)δs′2t′2δs′1t′3δs′3t′1 · · · . Again this is
the line that encodes the switch in which pair is scattering.

We once again repeat the now usual steps of expanding about the on-shell point, per-
forming the momentum-dependent change of basis to the dimer-axis frame and decomposing
all quantities in spherical harmonics. Because the two-particle momenta differ on either side
of the switch factor, the change of basis matrices do not cancel. This leads to the nontrivial
form of G given in eq. (3.30). In our notation, the final result for the most singular-part of
figure 1(c) takes a very compact form:

C
[1(c)]
L = −σFB2 GB2 Fσ† + · · · (3.71)

This completes our analysis of the three key diagrams of figure 1. In the following
section we illustrate how these lead to a generalized quantization condition for finite-volume
three-nucleon systems.

3.3.3 All orders generalization

To reach our final form for CL(P ), the correlation function introduced in eq. (3.46), we
need to analyze all contributions to the skeleton expansion. We stress that in the following
we are explaining the logic and structure of the full derivation, but many details are left
out. For these we refer to the derivation for identical particles given in refs. [25, 26]. One
feature that changes compared to that derivation is the need for amplitudes involving three
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identical fermions to be antisymmetric under particle exchange, rather than symmetric.
The impact of this change is discussed in appendix A.

An important building block entering the expansion that we have not considered so far
is the three-particle Bethe-Salpeter kernel. An example of a diagram containing this kernel
is shown in figure 1(d). When represented as a function of momenta and spin indices, the
kernel is denoted by B3 in analogy to the two-particle Bethe-Salpeter kernel, B [appearing,
for example, in eq. (3.66)]. B3 is defined as the sum over the set of all Feynman diagrams
with three incoming and three outgoing neutrons that do not contain any three-neutron
cuts intersecting the flow of total energy and momentum (s-channel cuts).8

B3 depends on the same kinematical and spin variables as Kdf,3, allowing the description
in section 3.2.1 to carry over. If the outgoing spin indices and the outgoing momenta of
B3 are fixed, then the incoming degrees of freedom exactly match those of σ, the leftmost
endcap function used extensively in the previous section. From this it follows that the steps
leading to the on-shell projection of σ and the rotation to the dimer-frame axis can also be
followed for B3. If these steps are applied to both the incoming and outgoing kinematics,
then B3 can be represented as a matrix in the same space as K2, F, and G. After absorbing
a factor of i this matrix is denoted by B3.

Returning to the main analysis, we follow the same logic as in the original RFT
derivation for identical spin-zero particles [25] by noting that every diagram generates a
maximally singular piece as well as contributions with fewer singularities. The latter arise
when the loop momenta associated with poles are integrated using the principal value
prescription rather than summed, and from finite terms that result when expanding the
coefficients of poles about their on-shell values. Such nonmaximally singular terms can be
incorporated through redefinitions of infinite-volume quantities σ, B2, and B3. For example,
figure 1(a) has a single pole in its maximally singular contribution whereas figure 1(b) (which
has two poles in its maximally singular term) can also generate single-pole contributions
when either a or else a′ (but not both) is integrated. The single-pole parts of figure 1(a)
and (b) are ultimately combined through redefinitions of σ and σ†, in a step that collects
an infinite set of single-pole terms into a single contribution to CL(P ).

We now identify all contributions to CL(P ), beginning with the rule for identifying
the maximally singular piece in each diagram.9 To explain the rule it is convenient to
first introduce the notion of a two-to-two sub-process sector, defined as any section of
skeleton-expansion diagram that appears between insertions of σ, B3 or σ† (and does not
contain any such factors). For example, the three diagrams analyzed so far each contain
exactly one two-to-two subprocess sector as no B3 factors are included. Within each such
sector, one can identify the number of times that the pair of scattering nucleons changes

8Unlike for the case of pions, there are no diagrams with s-channel cuts containing a single neutron,
due to baryon-number conservation. Thus, an additional complication in the construction of B3 that was
addressed for pions and similar particles in ref. [25] is avoided here.

9We emphasize that the presentation here follows a different strategy for reviewing the derivation of
the RFT quantization condition, as compared, e.g., to refs. [25, 39]. This difference is not related to the
consideration of particles with spin; indeed an analogous approach could also have been applied in earlier
works. We think that the present approach allows a straightforward understanding of the essential features
of the final results, although it hides many details explained in ref. [25].
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(the number of switches, Nswitch) or, similarly, the number of elastic two-to-two sections,
Nelast = Nswitch + 1, in which pairwise scattering occurs for a given nucleon pair. We
also adopt the convention that Nelast = 0 if no pairwise scattering occurs in a particular
two-to-two subprocess sector, as in figure 1(a).

The maximally singular contribution of any subprocess sector, denoted by S(n)
L (P )max,

then takes a simple form

S(n)
L (P )max =


F/3 Nelast = 0 ,(∏Nelast

k=1

([
FB2

]n(k)GB2
))

B−1
2 G−1F Nelast> 0 ,

(maximally singular),

(3.72)
where n is a vector of length Nelast., populated with positive integers counting the number
of B2 factors in each elastic two-to-two section, and n(k) is its kth component. Here it is
understood that the k = 1 factor is on the far left and the k = Nelast. on the far right. Note
that G appears Nelast. − 1 = Nswitch times.

In eq. (3.72) we have used the subscript max to indicate that the right-hand side is
only part of the contribution. This is because we intend S(n)

L (P ), with no max subscript, to
contain all contributions with a set of poles described by a given n. We are missing the
non-maximally-singular terms that arise when some coordinates are integrated, as well as
those associated with expanding the coefficients of poles. As is shown in ref. [25], including
the former has the effect of promoting the Bethe-Salpeter kernel, B2, to the K-matrix, K2,
defined in section 3.2.4 and in particular in eq. (3.39) above. These can thus be incorporated
by making the simple adjustment

S(n)
L (P ) =


F/3 Nelast = 0 ,(∏Nelast

k=1

([
FK2

]n(k)GK2
))

K−1
2 G−1F Nelast> 0 ,

(all terms). (3.73)

The next step is to sum over Nelast. values and over all positive integer components of the
vectors n. This gives a quantity denoted by F3:

F3 =
∞∑

Nelast.= 0

∑
n∈(Z+)Nelast.

S(n)
L (P ) . (3.74)

Evaluating the sum explicitly, one finds

F3 = F
3 + F 1

1−M2,LG
M2,LF , M2,L = 1

K−1
2 − F

. (3.75)

This matches the definition in refs. [25, 39].
A more subtle issue is the impact of finite terms obtained when the coefficients of poles

are expanded about their on-shell values. We have done such an expansion, for example, in
the analysis of figure 1(c), when we replaced the pole with the factor of G, and set adjacent
quantities on shell. The terms that are dropped effectively sew the adjacent Bethe-Salpeter
kernels together creating a contribution to the three-particle K matrix. It turns out that
such contributions can be absorbed into changes in B3, although this requires the use of a
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symmetrization procedure that is discussed in appendix A. This allows one to proceed by
ignoring this issue for now, and adding in such terms after discussing the role of B3.

To explain this role, we iterate the insertion of F3 — corresponding to a two-to-two
subprocess sector — with the objects that break up these sectors, namely σ, B3, and σ†.
This leads to the following naive result for CL(P ),

CL(P ) = C∞(P )−
∞∑
n=0

σF3
[
B3F3

]n
σ† (incomplete) , (3.76)

where we have stressed that this summation is still incomplete. To complete it we need
to include the above-discussed finite contributions from expanding pole coefficients about
the on-shell point, as well as contributions in which momentum arguments σ, B3, and σ†

are integrated. The combined effect is that one must make replacements analogous to the
B2 → K2 replacement discussed above. Here these are as follows: B3 → Kdf,3, σ → A′3,
σ† → A3. The first of the new quantities, Kdf,3, is discussed in section 3.2.1, and the full
definition is given in section 4.2 below via the integral equations that relate this quantity to
the physical scattering amplitude. Similarly, as was shown in ref. [91], A′3 and A3 satisfy
integral equations that define them in terms of matrix elements of the operators entering
CL(P ). These latter two quantities play no role in the quantization condition and are not
discussed further in this work.

Putting everything together we find that eq. (3.76) is replaced with an equally sim-
ple series,

CL(P ) = C∞(P )−
∞∑
n=0

A′3F3
[
Kdf,3F3

]nA3 , (3.77)

that evaluates to the final form for the finite-volume correlator

CL(P ) = C∞(P )−A′3F3
1

1−Kdf,3F3
A3 . (3.78)

This result is symbolically equivalent to those of previous works on different three-particle
systems, differing only in the detailed meaning of Kdf,3, F3 and the various matrices making
up the definition of the latter, in particular F, G and K2.

Before concluding this section we consider an alternative finite-volume correlation
function that is useful for deriving the relation between the two- and three-body K-matrices
and the physical three-to-three scattering amplitude. This is the generalization to spin-1/2
particles of the quantity M(u,u)

3,L introduced in eq. (2.1). It is a finite-volume analog of a
scattering amplitude, with three incoming and three outgoing nucleons. It can be obtained
from the diagrams contributing to CL(P ) by removing the endcaps and amputating external
propagators. One additional technicality is required in the case where the outermost
interaction, adjacent to the incoming or outgoing state, is a two-to-two rather than a
three-to-three Bethe-Salpeter kernel. In this case the incoming momentum k and the
outgoing momentum p are always assigned to the external nucleon not connected to the
outermost B2 factor. Thus it is an unsymmetrized quantity, on both incoming and outgoing
sides, as indicated by the superscript (u, u). It can be written using the same matrix indices
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as for the matrices in the quantization condition. Absorbing a factor of i, the resulting
matrix is denoted M(u,u)

3,L (P ).
A finite-volume decomposition directly analogous to that for CL(P ) can then be

performed for this quantity and leads to the following result:

M(u,u)
3,L (P ) ≡ D(u,u) + L(u)

L

1
1−Kdf,3F3

Kdf,3R(u)
L , (3.79)

where

D(u,u) ≡ 1
1−M2,LG

M2,LGM2,L , (3.80)

L(u)
L ≡ F−1 · F3 , (3.81)

R(u)
L ≡ F3 · F−1 . (3.82)

Note that these results have similar form as those for identical scalars, eqs. (2.11), (2.12),
and (2.13) above, with the differences resulting from the factors of i, 2ω and L3 that have
been absorbed into our boldface definitions.

4 Summary of results and implementation

In this section we present the final results from the derivation of the previous section. We
also comment briefly on the issues that will arise when implementing the formalism.

4.1 Relating finite-volume energies to Kdf ,3

In direct analogy to previous derivations, see e.g. refs. [25, 92], the condition that CL(P )
contains a pole in E (at fixed P and L) implies the following finite-volume quantization
condition

det
k,`,m,m∗s

[
1−Kdf,3F3

]
= 0 . (4.1)

Here the subscripts on the determinant indicate that it is taken in the space on which all
matrices are defined, which is a Kronecker-product space of the spectator momentum k

(discretized by the finite volume as k ∈ (2π/L)Z3), the orbital angular momentum of the
two-particle pair, `,m, as well as the azimuthal spin components in the dimer-axis frame,
m∗s. This result has the by-now standard form for quantization conditions in the RFT
formalism, exemplified by eq. (2.8), aside from a sign difference arising from our boldface
notation. All the complications introduced by spin are contained in the form of the building
blocks Kdf,3, G, F, and K2, which are discussed, respectively, in sections 3.2.1, 3.2.2, 3.2.3,
and 3.2.4.

To use the quantization condition in practice, one must truncate the sum over angular
momentum. This can be achieved, following ref. [25], by setting K2 and Kdf,3 to zero for
` > `max, since this has the effect of truncating also the contributions of F and G. Such
a truncation is reasonable near to threshold, where angular-momentum barriers suppress
interactions for larger values of `. In principle, one can envisage using a different maximum
angular momentum cutoff for K2 and Kdf,3, although it is plausible that they should be
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related. In any case, since the sum over k is automatically truncated by the cutoff function,
the truncation in ` leads to finite-dimensional matrices, and implementing the determinant
condition becomes tractable.

A further practical step is to decompose the matrices into irreducible representations
(irreps) of the appropriate finite-volume symmetry group, which allows the matrix in the
quantization condition to be block diagonalized. The group depends on the total momentum
P . In the case of three neutrons, one must use fermionic irreps, and the construction of the
projectors that block-diagonalize the matrices involves Wigner D matrices representing the
effect of Wigner rotations. Details on irrep projection for the three-particle quantization
condition for scalars have been discussed in refs. [34, 53]. Applying the same procedure for
particles with spin should be straightforward.

4.2 Relating Kdf ,3 to the scattering amplitude

The second step of the formalism provides a relation between the two- and three-particle K
matrices, determined as outlined in the previous section, and the three-particle scattering
amplitude,M3. We obtain this relation using the correlator M(u,u)

3,L , whose decomposition
is given in eq. (3.79) above. We first antisymmetrize the correlator to yield

M3,L(P ) ≡ A
[
M(u,u)

3,L (P )
]
. (4.2)

The antisymmetrization step sums over all permutations of momenta on the external legs
with appropriate signs and is described in detail in appendix B.

Second, we formally perform an infinitesimal shift in the total energy into the complex
plane, denoted by iε, and then take an ordered double limit,

M3(E,P ) = lim
ε→0+

lim
L→∞

M3,L(E + iε,P ) . (4.3)

The quantity on the left-hand side is the full three-neutron scattering amplitude, defined
as the sum of all diagrams in the skeleton expansion with a standard iε pole prescription
in propagators. The limit on the right-hand side yields a set of infinite-volume integral
equations.

To spell this out in more detail, we begin with the two-to-two amplitude that appears
as a subprocess of three-to-three scattering. We define this via the two-particle K-matrix
but introduce a version of the latter that is rescaled relative to that in section 3.2.4. We
denote this by K2(p), where p is the spectator momentum, defining

[K2]`′m′m′∗s ;`mm∗s (p) ≡ iK(`′m′m′∗s ,`mm∗s)
2 (E∗2,p) . (4.4)

Comparing to eq. (3.39), note that here we have dropped a factor of 2ωpL3 and the Kronecker
delta. We next define the corresponding phase-space factor

[ρ]`′m′m′∗s ;`mm∗s (p) = δm′∗s m∗sδ`′`δm′m
−i|q∗2,p|

(
1−H(p)

)
+ q∗2,p

16πE∗2,p
, (4.5)

such that the two-to-two scattering amplitude is given by

M2(p) = 1
K2(p)−1 − ρ(p) . (4.6)
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Up to the rescaling by 2ωpL3, this is the ordered double limit (L→∞ followed by ε→ 0+)
of M2,L, defined in eq. (3.75).

The next step is to evaluate the ordered limit for D(u,u); we denote the result of this
by D(u,u)

∞ (p,k), where the spectator-momentum indices have been promoted to arguments
of the function. As described, for example, in eq. (85) of ref. [26], the result of the limit can
be expressed via an integral equation

D(u,u)
∞ (p,k) ≡M2(p)G∞(p,k)M2(k) + M2(p)

∫
k′
G∞(p,k′)D(u,u)

∞ (k′,k) , (4.7)

where
∫
k =

∫
d3k[(2π)3(2ωk)]−1, and G∞(p,k), the exchange factor appropriate for the

integral equation, is given by

[G∞]`′m′m′∗s ;`mm∗s (p,k) = 4ωpωkL6 Gp`′m′m′∗s ;k`mm∗s , (4.8)

which is just a rescaled version of the finite-volume analog with the spectator-momentum
indices promoted to arguments of the function. Note that, although the convention for

∫
k

differs as compared to ref. [26], this is compensated by differences elsewhere such that the
convention for D(u,u)

∞ (p,k) is the same.
Once D(u,u)

∞ (p,k) is determined via the integral equation, one can readily evaluate the
left and right dressing functions via

L(u)
∞ (p,k) =

[1
3 + M2(k)ρ(k)

]
δ̃(p− k) + D(u,u)

∞ (p,k)ρ(k) (4.9)

R(u)
∞ (p,k) =

[1
3 + ρ(k)M2(k)

]
δ̃(p− k) + ρ(p)D(u,u)

∞ (p,k) , (4.10)

where δ̃(p− k) = 2ωp(2π)3δ3(p− k). [See eqs. (92) and (94) of ref. [26]. However, for these
quantities our convention differs by factors of 2ω from that work.] Either of these can then
be used to construct a final integral equation for a quantity denoted by T(p,k) that sums
an infinite series of Kdf,3 insertions:

T(p,k) = Kdf,3(p,k) +
∫
p′

∫
k′
Kdf,3(p,p′)ρ(p′)L(u)

∞ (p′,k′)T(k′,k) . (4.11)

[See also eq. (91) of ref. [26], where the convention here matches without rescaling.] This
differs from the final amplitude because it is missing contributions from pairwise scattering
outside the Kdf,3 factors and in the Kdf,3-independent term. Restoring these contributions
and anti-symmetrizing gives

M3(E,P ) = A
[
D(u,u)
∞ (p,k) +

∫
p′

∫
k′
L(u)
∞ (p,p′)T(p′,k′)R(u)

∞ (k′,k)
]
. (4.12)

This is the final result for the three-neutron scattering amplitude.
Dedicated studies concerning the solution to the corresponding integral equations for

scalar particles can be found in refs. [84, 85], and we expect many of the practical details
to carry over to the three-neutron case.
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4.3 Change of basis and specific truncations

In this subsection we consider additional practical aspects of implementing the quantization
condition, focusing on those that are particular to the presence of spin degrees of freedom.

We first note that it will be useful, in many cases, to rotate all matrices to the basis in
which the dimer has definite total spin (as defined in the dimer-axis frame). This total-spin
basis is already discussed in the context of the two-particle K-matrix, K2, in section 3.2.4,
in particular in eq. (3.41). Extending the notation introduced there, we write∣∣∣k, `,m, s∗, µ∗s,ms(k)

〉
=

∑
m′s(a∗),m′s(b∗)

∣∣∣k, `,m,m′s(a∗),m′s(b∗),ms(k)
〉〈

1/2 m′s(a∗), 1/2 m′s(b∗)
∣∣∣s∗, µ∗s〉 , (4.13)

where s∗ ∈ {0, 1} is the total dimer spin and µ∗s is the corresponding azimuthal component.
Note that we do not assign any momentum label to these spin indices as the ∗ is sufficient
to denote the dimer-axis frame. The last factor in eq. (4.13) is a standard SU(2) Clebsch-
Gordon coefficient for the reduction 1/2⊗ 1/2 = 0⊕ 1.

This change of basis block diagonalizes K2 to a spin-zero and spin-one block and leaves
F proportional to the identity matrix in spin-space, with index structure δs′∗,s∗ δµ′∗s ,µ∗s . By
contrast, G and Kdf,3 are not expected to have any simplifications from the rotation to
this basis.

Similarly, it is possible to perform a change of basis to combine s∗ and ` into a total
two-particle angular momentum j. To do this in practice one needs to fix a particular value
of `max, leading to a finite set of ` values that can be combined with each s∗ to reach a
finite set of states labelled by k, j, µj , `, s∗,ms(k). For the case of `max = 0, for example,
one has only the channel {j, `, s∗} = {0, 0, 0}, since s∗ = 1 requires odd values of `. For
`max = 1, we add an s∗ = 1 component, so that there are now several channels

{j, `, s∗} ∈
{
{0, 0, 0}, {0, 1, 1}, {1, 1, 1}, {2, 1, 1}

}
. (4.14)

In this case no mixing occurs in K2 (since the two j = 0 cases have opposite parities), but
Kdf,3 and G will mix the channels, since j is not a good quantum number of the three-
particle state. Mixing in the two-particle K-matrix first arises for `max = 3, as discussed in
section 3.2.4.

5 Parametrization of Kdf ,3

Implementing the quantization condition for three identical fermions requires a para-
metrization of Kdf,3. Since Kdf,3 is, by construction, smooth aside from three-particle
resonances or bound states, we present its parametrization in an expansion about threshold.
For this expansion, we work with the quantity Klab

df,3 of eq. (3.18), in which spin components
are defined with respect to the lab-frame axis. When using Kdf,3 in, e.g., the evaluation of
the quantization condition, it will be necessary to rotate the spin indices to the dimer-frame
axis using eq. (3.22). The key constraint is that Klab

df,3 must have the same symmetry
properties as the scattering amplitude,M3. It must transform covariantly under Lorentz
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transformations and parity, and be fully antisymmetric with respect to the simultaneous
exchange of the spin and momentum labels for any pair of incoming or outgoing particles.

To construct the threshold expansion, we proceed by writing down Lorentz- and
parity-invariant local operators composed of three-neutron fields and three conjugate
fields and their derivatives. These have the schematic form N 3N 3 (with derivatives and
Dirac indices implicit). By using quantum fields N and N , we automatically enforce the
required antisymmetry property, and by using local operators we ensure that the momentum
dependence is smooth. If we enumerate all possible independent operators with up to a
certain number of derivatives, each multiplied by an independent coefficient, then, by the
standard assumption of effective field theories (EFTs), the corresponding matrix elements
will yield the most general amplitudes consistent with the symmetries.

To convert the local operators into explicit forms for Klab
df,3, we take matrix elements

of the operators between external states in the lab-frame basis. This leads to expressions
involving the Dirac spinors associated with the initial and final particles, because of the
relations

〈k′,ms(k′)|N (x)|0〉 = ūms(k′)(k
′)eik′·x , 〈0|N (x)|k,ms(k)〉 = ums(k)(k)e−ik·x . (5.1)

In this way an operator such as

OSSS(x) = [N (x)N (x)]3 , (5.2)

leads to an amplitude

〈k′,ms(k′);a′,ms(a′); b′,ms(b′)|OSSS(x)|k,ms(k);a,ms(a); b,ms(b)〉 =
6(ūk′uk)(ūa′ua)(ūb′ub)− 6(ūk′ua)(ūa′uk)(ūb′ub) + . . . . (5.3)

Here we are using the shorthand uk = ums(k)(k), etc., and the ellipsis represents the four
other possible permutations arising from Wick contractions. We are also assuming that the
external states are chosen to satisfy conservation of four-momentum. A key point here is
that Dirac spinors describe spin components in the lab-frame basis. The right-hand side of
eq. (5.3) has the correct symmetry properties to be a contribution to Klab

df,3: it is manifestly
antisymmetric under initial or final particle interchanges, and it inherits the correct Lorentz
and parity transformation properties from those of the free-particle states.

We now consider the complete set of operators without derivatives, that is, with
dimension of [E]9. The available Lorentz- and parity-invariant choices are OSSS and

OSPP = [NN ][Nγ5N ][Nγ5N ] ,
OSVV = [NN ][NγµN ][NγµN ] ,
OSAA = [NN ][Nγµγ5N ][Nγµγ5N ] ,
OSTT = [NN ][NσµνN ][NσµνN ] ,
OPVA = [Nγ5N ][NγµN ][Nγµγ5N ] ,
OPTT′ = [Nγ5N ][NσµνN ][Nσµνγ5N ] ,
OTVV = [NσµνN ][NγµN ][NγνN ] ,
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OTAA = [NσµνN ][Nγµγ5N ][Nγνγ5N ] ,
OT′VA = [Nσµνγ5N ][NγµN ][Nγνγ5N ] ,
OTTT = [NσµνN ][NσνρN ][NσρµN ] ,
OTT′T′ = [NσµνN ][Nσνργ5N ][Nσρµγ5N ] , (5.4)

where we have left the x arguments implicit, and used

σµν = i
2 [γµ, γν ] . (5.5)

This list can be shortened using Fierz identities, but we give a complete enumeration as this
would be relevant if we were to consider nonidentical fermions. We convert these operators
into forms for Klab

df,3 by taking matrix elements as in eq. (5.3). We then explicitly evaluate
the momentum dependence using Mathematica for arbitrary choices of spinor components
(not yet constrained to satisfy the Dirac equation) and find that all 12 operators lead to
forms that are proportional.10 Thus, with zero derivatives, there is a single contribution to
Klab

df,3, given by the right-hand side of eq. (5.3).
We now enforce that the spinors satisfy the Dirac equation by writing

uk =
√

2ωk

(
χk

σ·k
ωk+mχk

)
, (5.6)

where χk is the non-relativistic two-spinor corresponding to the component ms(k), and
ωk =

√
k2 +m2. We insert this into eq. (5.3), and perform a nonrelativistic expansion,

i.e. an expansion in powers of k/m. The leading-order term (with no factors of k) vanishes,
as is expected because one cannot antisymmetrize the spin wavefunction of three identical
spin-1/2 particles. The first nonvanishing term is quadratic in momenta and proportional
to

KA = A
[
(χ†k′ σ · k

′ σ · k χk)(χ†a′χa)(χ
†
b′χb)

]
. (5.7)

Here A indicates antisymmetrization over initial and final particle labels; it differs from the
operation A defined in eq. (B.6), and used in eq. (4.2), by not requiring an initial step of
combining with spherical harmonics. Therefore, the contribution to Kdf,3 is:

m2Klab
df,3 ⊃

c0
m2KA +O

(
k4

m4

)
, (5.8)

where c0 is a dimensionless coefficient whose value is not fixed. Here we assume that the
contribution of the operators in eq. (5.4) appears in the Lagrangian as L ⊃ (g0/m

5)O, where
g0 is dimensionless and proportional to c0 in eq. (5.8). The expansion can be continued to
higher orders in k/m, a point that we return to below.

10By contrast, there are three “four-fermion” Lorentz- and parity-operators of the form N 2N 2. The
presence of only one “six-fermion” operator is expected at quadratic order in a nonrelativistic expansion,
where it is given by eq. (5.7). What is surprising is that this holds to all orders in this expansion.
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At quadratic order in the nonrelativistic expansion, we must also consider operators
containing two derivatives,11 i.e. of energy dimension [E]11. In appendix C we enumerate
all such operators that are Lorentz- and parity-invariant, that are not related by Fierz
identities, and that cannot be written in terms of operators without derivatives using the
equations of motion. We find 22 such operators. However, if we insert the nonrelativistic
expansion of the spinors into the corresponding contributions to Klab

df,3, we find only two
independent terms at quadratic order,12 which can be chosen to be KA, given above, and

KB = A
[
k′ · k(χ†k′χk)(χ

†
a′χa)(χ

†
b′χb)

]
. (5.9)

Since these operators have a higher energy dimension, the couplings in the Lagrangian of
the EFT will contain two inverse powers of the typical energy scale of the EFT, Λ2

EFT. This
way, the contribution of dimension-11 operators to Kdf,3 at quadratic order in momenta is:

m2Klab
df,3 ⊃

c1
Λ2

EFT
KA + c2

Λ2
EFT
KB +O

(
k4

m2Λ2
EFT

)
. (5.10)

If we consider systems of nucleons at low momentum described by pionless EFT, the energy
scale is the pion mass, ΛEFT ' mπ. This choice implies that (i) the contribution from
eq. (5.8) is subdominant with respect to that of eq. (5.10), and (ii) eq. (5.10) is the most
general form of Kdf,3 through O(k2). We note, however, that the range of convergence
of pionless EFT is limited by the left-hand cut (k2 < m2

π/4), while the relativistic finite-
volume three-neutron formalism is applicable beyond that, i.e. up to the NNNπ threshold
(k2 ∼ mπmN ). We also stress that, at this order in the nonrelativistic expansion, we
would have obtained the same result simply by enforcing rotation and parity invariance
and antisymmetry.

Proceeding to higher order in the nonrelativistic expansion is straightforward in principle.
There are no terms of cubic order, due to the requirement of parity invariance of Kdf,3. This
is because momenta flip sign, while spins remain unchanged. To determine the independent
terms of quartic order would require the enumeration of allowed operators with up to four
derivatives, a straightforward but tedious task that we have not undertaken. We stress that
an approach in which one simply writes down operators consistent with rotation and parity
invariance and antisymmetry, while working at quadratic order, would not, in general, work
at higher orders, because constraints due to the Lorentz covariance would be lost (just as
the relative size of the k2/m2 and k4/m4 terms in the relativistic dispersion relation cannot
be determined without enforcing Lorentz symmetry).

As a final comment, we note that there is a superficial difference between the non-
relativistic expansion that we have used here, and the form of the threshold expansions
for mesonic systems (e.g. three pions in refs. [34, 39]). The latter are written in terms of
Lorentz invariant Mandelstam variables, whereas here we explicitly expand in powers of

11Operators with one derivative can be related to operators without derivatives using the equations of
motion, and thus are not independent.

12Because the zeroth component of the derivatives yield energies, which do not vanish at threshold, there
could in principle be a zeroth order term, but this vanishes due to the antisymmetry, as discussed above.
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the nucleon’s three-momentum, k. There is, however, no fundamental difference between
the approaches, because the quantities in the mesonic case can be rewritten in terms of a
nonrelativistic expansion. For example, the quantity ∆ = (s− 9m2)/(9m2) used in ref. [34]
as an expansion parameter, is proportional to the sum of k2 for the initial and final particles,
plus higher order terms. It just turns out that, in the absence of the spin degrees of freedom,
one can write the expansion in a manifestly Lorentz-invariant way more easily than in the
present case.

6 Conclusions

This work presents the finite-volume formalism in the RFT approach for three identical
spin-1/2 particles. The most relevant physical system to which it is applicable is three
neutrons (or protons), but also, e.g., three spin-1/2 hyperons. The new features are the
presence of the spin degrees of freedom and the overall antisymmetry of the states. Since
the formalism is relativistic, spin components can mix via boosts, which is indeed the main
technical complication of the derivation. The solution is to include the effect of Wigner
rotations when relating spin degrees of freedom in the lab (finite-volume) frame and the
CMF of pairs — see section 3.1.

Sections 3.2 and 3.3 represent the core of this work. First, the modifications of the
building blocks of the three-particle formalism are discussed in section 3.2. Defining the
spin degrees of freedom of the interacting pair in the dimer frame leads to very simple
generalizations of the blocks F and K2, which are related to sum-minus integral difference
of a two-neutron loop and two-neutron interactions, respectively. By contrast, in the dimer
frame, the fermionic nature of the particles is explicit in G — the builing block related to
one-neutron exchange processes. As such, G contains the aforementioned Wigner rotations
and minus sign from antisymmetry (see eq. (3.30)). In section 3.3, the derivation of the
finite-volume formalism using a diagrammatic expansion of the finite-volume correlator
that utilizes those building blocks is presented. Simple examples of contributions to this
expansion are depicted in figure 1.

The outcomes of section 3 are the finite-volume correlator in eq. (3.78) and the
finite-volume analogous of the (unsymmetrized) scattering amplitude in eq. (3.79). The
quantization condition and the integral equations relating the three-particle K matrix to
the scattering amplitude are easily obtained from these equations. They can be found in
section 4, where we summarize the results of the derivation. As noted, we have focused on
the derivation and form of the resulting quantization in this work, providing only a sketch
of many of the details of the implementation of the formalism. We will discuss these in a
follow-up work.

An important ingredient in the finite-volume formalism is the parametrization of the
three-neutron K matrix, which describes short-range three-neutron interactions. In section 5
we show, working to lowest nontrivial order in a nonrelativistic momentum expansion, that
only two different types of operators contribute — see eq. (5.10). At higher orders, more
independent terms appear, as discussed in appendix C.
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Now that we have determined how to include spin into the RFT approach in the simplest
setting of identical fermions, there are several generalizations that can be considered. These
include three nucleons of arbitrary isospin (in isosymmetric QCD), which should involve
a straightforward combination of the present work with the formalism developed for the
generic three-pion system [39]. Other systems of interest involve two spin-1/2 particles and
a (pseudo-)scalar, or one spin-1/2 particle and two (pseudo-)scalars, for which a combination
of the methods presented here with those for nondegenerate systems [44, 46] will be needed.
A particularly interesting example in QCD is the Nππ system at non-maximal isospin,
which has the additional difficulty of mixing with the Nπ state. In the context of the RFT
approach, this will require as well the use of a generalization of the 2 ↔ 3 formalism of
ref. [27]. Such a generalization is of great interest, as it will allow access to the Roper
resonance, a puzzling baryonic excitation with the same quantum numbers of the nucleon.
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A Further details of the derivation

In this appendix we provide additional details of the derivation sketched in the main text
in section 3.3. In particular, we discuss the changes that must be made compared to the
derivation for identical scalars, given in ref. [25] (referred to as HS throughout this appendix)
due to the antisymmetric nature of the three-neutron state. In this regard, it is important
to keep in mind that the antisymmetry of intermediate states is not fully manifested in the
individual kinematic matrices F and G that appear in the quantization condition. Instead,
these quantities can implement the antisymmetry of the nonspectator pair13 by restrictions
on allowed values of s and `. Full antisymmetry is only recovered when combining F and
G, and for this the overall minus sign in G is essential.

A closely related observation is that the antisymmetry is explicitly broken by the
variables we choose, since we single out one of the particles to be the spectator. This

13Strictly speaking it is a choice whether to implement the antisymmetry in F and G, as these are
kinematic quantities that could be defined independently of the symmetry of the particles involved. The
antisymmetry then arises because F and G appear next to amplitudes, such as K2 and Kdf,3, that do have
the requisite (anti)symmetry, and thus project out the parts of F and G with the corresponding symmetry.
We choose to build this projection into F and G from the start.
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leads to the presence, at intermediate stages of the derivation, of on-shell three-particle
amplitudes that are not fully antisymmetric under particle interchange. The archetypical
such quantity in HS is K(u,u)

df,3 , the unsymmetrized form of Kdf,3. Its lack of symmetry
is analogous to that for the quantity M(u,u)

3,L [see eq. (3.79)]. In HS, these quantities are
denoted by superscripts (u), (s) and (s̃), and we follow the same notation here. These labels
describe the attachment of the spectator momentum to the diagrams under consideration.
We denote the spectator momentum by k, and the pair momenta by p and b. If the final
interaction before the external momenta involves two particles, then the (u), (s) and (s̃)
quantities, respectively, are those in which the spectator particle has momentum k, p and b.
(See figure 13(b) of HS — “u” stands for unscattered and “s” for scattered.) If the final
interaction involves all three particles, then the contribution is divided equally into the
three types of quantities.

The previous description works for identical bosons, but does not provide a complete
prescription for fermions, due to the antisymmetry of the nonspectator pair. In particular,
one must choose one of the pair to be “privileged”, in the sense that, in some convention,
it is the particle with respect to which the antisymmetry is defined. Our choice for the
privileged particles are that they have momenta p, b and k, respectively, for the (u), (s),
and (s̃) amplitudes. Another way of describing this is to list the momenta such that the
first is that of the spectator, the second that of the privileged member of the pair, and
third that of the other member of the pair. Then the ordering is {k, p, b} for (u), {p, b, k}
for (s), and {b, k, p} for (s̃), (i.e. the cyclic permutations of the (u) ordering). With this
choice, a fully antisymmetric amplitude is given by adding the three terms

A = A(u) +A(s) +A(s̃) , (A.1)

a result that, perhaps counterintuitively, takes the same form as that for identical bosons.
This is shown explicitly in the example described in appendix B. With this choice, we can
carry over most of the equations from the derivation in HS with minimal changes.

In the following, we assume that the reader has a copy of HS in front of them, and refer
to equations in that work as (HS1), (HS2), etc. We do not repeat these equations here.

Among the most challenging parts of the derivation in HS is showing how asymmetric
quantities such as A(u) end being symmetrized in the final result. Here the same issue arises,
but involves antisymmetrization. (Note that for amplitudes with initial and final momenta,
like Kdf,3, one must antisymmetrize separately the initial and final momenta.) Various
identities are needed for this to work, and these must be generalized here from the versions
applicable to identical bosons given in HS. The first example of such generalizations is in
the definitions of (u), (s) and (s̃) already described above, i.e. with the choice of a privileged
momentum. The next example concerns the discussion between (HS140) and (HS146),
which notes that the combination A(u) + 2A(s) appears frequently in the derivation, rather
than the desired combination of eq. (A.1). It is then explained that these two quantities
are, in fact, equal, given the projection onto even angular momenta that occurs for identical
bosons. The same conclusion holds here, although the argumentation is slightly changed,
as we now describe.
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In particular, a key result is that (s) amplitudes always arise in the derivation connected
to (u) amplitudes by an F matrix, an example being A′(s)3 FA(u)

3 . Now, (u) amplitudes are
antisymmetric under the interchange of the particles in the pair, leading to the constraints
on ` and s described in the main text. This antisymmetry is preserved by F, because it
commutes with (−1)` (up to exponentially-suppressed corrections, a result derived in HS
appendix A), and also commutes with projectors onto definite pair spin (given the trivial
nature of the spin index structure of F). Thus, the only parts of the (s) amplitudes that
contribute are those that are antisymmetric under pair exchange. These parts are, however,
identical to the corresponding parts of the (s̃) amplitudes. This is because to go from the
{pkb} ordering for (s) to the {bpk} ordering for (s̃), one must both interchange b and p, which
leads to a minus sign due to the above-described antisymmetric projection, and interchange
p and k, which leads to a second minus sign as these are now the momenta associated with
the interacting pair, and the amplitude is antisymmetric under their exchange. Because of
this identity, we can freely exchange all appearances of 2A(s)

3 (for example) with A(s)
3 + A(s̃)

3 .
A second place where the argumentation of HS needs to be changed concerns the results

in (HS196)-(HS198), which show that combinations like A′3F(A(u)
3 −A(s)

3 ), which appears
to be a finite-volume term, is, in fact, an infinite-volume quantity. This result is used
repeatedly in HS in the steps that lead to the recasting of the quantization condition in
terms of quantities symmetric under particle exchange. Here it turns out that conclusion of
(HS196)-(HS198) remains valid, but this now follows because A′3 is antisymmetric under
the exchange of the two on-shell momentum labels (which would be k and p in the notation
above), while (A(u)

3 −A(s)
3 ) is symmetric [because the k ↔ p interchange sends the {k, p, b}

ordering for (u) into {p, k, b}, which leads to A(u)
3 → −A(s)

3 , since the latter is defined with
the ordering {p, b, k}]. These symmetry properties are opposite to those in HS, but all
that matters for the argument in HS to go through is that the symmetry properties of the
quantities on the left and right of F are opposite, and this still holds.

With these observations, all the steps in the derivation of HS go through unchanged,
except for the inclusion of spin-related factors as described in the main text. Thus, the
form of the resulting quantization condition is unchanged (modulo the absorption of various
factors into boldfaced quantities).

B Antisymmetrizing the scattering amplitude

In this appendix we explain in detail the symmetrization and antisymmetrization procedures
referred to in the main text — see, in particular, sections 2 and 4.2 and appendix A.

We first recall how symmetrization works in the case of identical scalars [25, 26]. This
operation has been used in eq. (2.14). It acts on an unsymmetrized finite-volume quantity
defined using our standard matrix indices, generically called X(u,u)

k′`′m′,k`m (with the subscript
L dropped for brevity), and is defined by

X
(
k′,a′, b′|k,a, b

)
≡ S

[
X

(u,u)
k′`′m′,k`m

]
(B.1)

≡
∑

{p′3,p
′
1}∈P

′
3

∑
{p3,p1}∈P3

X(u,u) (p′3,p′1|p3,p1
)
, (B.2)
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where we combine the matrix amplitude with spherical harmonics to obtain the full
momentum dependence,

X(u,u) (k′,a′|k,a) ≡ 4πY ∗`′m′(â′∗2,k′)X
(u,u)
k′`′m′,k`mY`m(â∗2,k) , (B.3)

and the sets of permuted momenta are

P3 = {{k,a}, {a, b}, {b,k}} and P ′3 =
{{
k′,a′

}
,
{
a′, b′

}
,
{
b′,k′

}}
. (B.4)

Although we can take k′ and k to lie in the finite-volume set, the constraint of having three
on-shell particles will not, in general, allow the other external momenta (a′, . . . ) to lie in
this set. Thus, to apply this definition, we must use the freedom to extend the definitions
of finite-volume quantities to momenta lying outside the finite-volume set, which has been
discussed in ref. [26]. This issue becomes irrelevant in the L→∞ limit, which is what we
ultimately take in most applications of (anti-)symmetrization.

Turning now to identical fermions, a generic asymmetric finite-volume quantity has a
similar form except for the additional spin labels,

X(u,u)
k′`′m′m′∗s ;k`mm∗s , (B.5)

where we recall that the spin indices are defined using the dimer-axis convention, see
eq. (3.21). We now introduce the antisymmetrizing operation

X
(
k′,ms(k′);a′,ms(a′); b′,ms(b′)|k,ms(k);a,ms(a); b,ms(b)

)
≡

A
[
X(u,u)
k′`′m′m′∗s ;k`mm∗s

]
, (B.6)

which is defined by first combining with spherical harmonics and converting spin indices to
the lab-axis frame [see eq. (3.19)],

X(u,u) (k′,ms(k′);a′,ms(a′); b′,ms(b′)|k,ms(k);a,ms(a); b,ms(b)
)
≡

4πY ∗`′m′(â′∗2,k′)D
(k′,a′)
m′sm

′∗
s

X(u,u)
k′`′m′m′∗s ;k`mm∗sD

(k,a)†
m∗sms

Y`m(â∗2,k) , (B.7)

and then antisymmetrizing by using the following sum,

X
(
k′,ms(k′);a′,ms(a′); b′,ms(b′)|k,ms(k);a,ms(a); b,ms(b)

)
=∑

{p′i,m′si}∈P ′3

∑
{pi,msi}∈P3

X(u,u) (p′1,m′s1;p′2,m′s2;p′2,m′s3|p1,ms1;p2,ms2;p3,ms3
)
. (B.8)

The permutations involve changing both momenta and the corresponding spin components,

P3 = {{k,ms1,a,ms2, b,ms3}, {a,ms2, b,ms3,k,ms1}, {b,ms3,k,ms1,a,ms2}} , (B.9)

and similarly for P ′3. Here we are using the shorthand

ms1 = m(k) , ms2 = m(a) , ms3 = m(b) , (B.10)

and similarly for the primed spin indices.
Note that antisymmetrization only requires adding terms with a positive sign, since we

are using cyclic permutations. Antisymmetry under single permutations is built in to the
matrix version of X(u,u).
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C Operators with two derivatives

In this appendix we determine all the Lorentz- and parity-invariant operators of the form

“∂2”(NΓ1N )(NΓ2N )(NΓ3N ) . (C.1)

Here Γi are Dirac matrices, and the derivatives can act on any of the fields. We allow the use
of the noninteracting equations of motion to reduce the set of operators, which is equivalent
to considering on-shell matrix elements. We also assume that the total momentum inserted
by the operator vanishes, so that we can freely integrate by parts.

We now argue that the general operator in eq. (C.1) can be brought into a canonical form

([∂N ]Γ1[∂N ])(NΓ2N )(NΓ3N ) , (C.2)

in which both derivatives act within the same bilinear, one on N and the other on N . The
two derivatives in the general operators can act in three ways: (i) both on factors of N ,
(ii) both on factors of N , or (iii) one on each. In cases (i) and (ii), if both act on the same
field, we can use the equations of motion to remove the derivatives: ∂2 → −m2. In case
(i) if both act on different factors of N , we can integrate by parts and move one of the
derivatives onto the other fields, yielding one term that involves a ∂2, another that has
two derivatives on different N fields, and three terms with one derivative each on a N and
a N . The term with derivatives on two different N fields can be moved to the left-hand
side of the (now matrix) equation, while, using Fierz identities, we can bring terms with
derivatives on N and N fields in different bilinears to a form in which both the derivatives
act within the same bilinear. Assuming that we can invert this matrix equation, each term
with derivatives on different factors of N can be rewritten in our canonical form together
with a nonderivative term. An essentially identical argument holds for case (ii), with the
roles of N and N interchanged. For case (iii), if needed we can use Fierz identities to reach
the canonical form.

We find 30 operators of the canoncial form to be independent, 8 of which can be
dropped using the equations of motion. For convenience, we divide these into those in which
the Lorentz indices on the derivatives are contracted together (ten in all)14

SSS = (∂µN∂µN )(NN )(NN ) , (C.3)
SPP = (∂µN∂µN )(Nγ5N )(Nγ5N ) , (C.4)
PSP = (∂µNγ5∂µN )(NN )(Nγ5N ) , (C.5)
SV V = (∂µN∂µN )(NγνN )(NγνN ) , (C.6)
V SV = (∂µNγν∂µN )(NN )(NγνN ) , (C.7)
ASA = (∂µNγνγ5∂µN )(NN )(Nγνγ5N ) , (C.8)
TST = (∂µNσνρ∂µN )(NN )(NσνρN ) , (C.9)
PV A = (∂µNγ5∂µN )(NγνN )(Nγνγ5N ) , (C.10)
V AP = (∂µNγν∂µN )(Nγνγ5N )(Nγ5N ) , (C.11)
APV = (∂µNγνγ5∂µN )(Nγ5N )(NγνN ) , (C.12)

14In all operators, derivatives act only on the object immediately to their right.
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those in which the derivatives are contracted with a Dirac matrix (12 in all),

SV V ′ = (∂µN∂νN )(NγµN )(NγνN ) , (C.13)
TST ′ = (∂νNσµρ∂µN )(NN )(NσνρN ) , (C.14)
PV A′ = (∂µNγ5∂νN )(NγµN )(Nγνγ5N ) , (C.15)
V TV ′ = (∂µNγρ∂νN )(NσνρN )(NγµN ) , (C.16)
ATA′ = (∂µNγργ5∂νN )(NσνρN )(Nγµγ5N ) , (C.17)
TTT ′ = (∂µNσµη∂ηN )(NσνρN )(NσνρN ) , (C.18)
TTT ′′ = (∂µNσµν∂ηN )(NσηρN )(NσρνN ) , (C.19)
TTT ′′ = (∂ηNσµν∂µN )(NσηρN )(NσρνN ) , (C.20)
TT5P

′ = (∂µNσµρ∂νN )(Nσνργ5N )(Nγ5N ) , (C.21)
T5V A

′ = (∂µNσµνγ5∂
νN )(NγρN )(Nγργ5N ) , (C.22)

T5V A
′′ = (∂µNσρνγ5∂

νN )(NγµN )(Nγργ5N ) , (C.23)
T5TT

′
5 = (∂µNσµνγ5∂

νN )(NσηρN )(Nσηργ5N ) (C.24)

and those that can be dropped using the equations of motion (8 in all)

V SV ′ = (∂µNγµ∂νN )(NN )(NγνN ) , (C.25)
V SV ′′ = (∂νNγµ∂µN )(NN )(NγνN ) , (C.26)
ASA′ = (∂µNγµγ5∂

νN )(NN )(Nγνγ5N ) , (C.27)
ASA′′ = (∂νNγµγ5∂

µN )(NN )(Nγνγ5N ) , (C.28)
V AP ′ = (∂µNγµ∂νN )(Nγνγ5N )(Nγ5N ) , (C.29)
V AP ′′ = (∂νNγµ∂µN )(Nγνγ5N )(Nγ5N ) , (C.30)
APV ′ = (∂µNγµγ5∂

νN )(Nγ5N )(NγνN ) , (C.31)
APV ′′ = (∂νNγµγ5∂

µN )(Nγ5N )(NγνN ) . (C.32)

We have checked this result using an alternative method in which we explicitly include
every possible position of the action of the two derivatives, and all possible contractions
with Dirac matrices, without using the analytic simplifications of this appendix. We again
find that only two operators appear at quadratic order.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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