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1 Introduction

In this paper we take the first steps to develop the formalism of localization in supergravity
on asymptotic AdS3 × S2. Our main physical motivation is to study an exact sector
of AdS3/CFT2 holography. By exact, we mean the inclusion of all quantum effects in
supergravity or, equivalently, all finite-charge corrections to the results derived in the limit
of infinite central charge of CFT2. Our eventual goal is to calculate observables protected
by supersymmetry in the bulk gravitational theory using localization applied to functional
integrals in supergravity. The same approach has yielded rich results in theories on AdS2
(times S2 or S3) culminating in the calculation of the exact quantum entropy of black holes
in four dimensions [1–4] and five-dimensions [5]. The idea is to extend such calculations to
higher dimensional AdS spaces.
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In this paper we focus on the AdS3/CFT2 context and consider the bulk AdS3 cal-
culation of the elliptic genus of the dual SCFT2. Many of the intermediate calculations
are motivated by the embedding of this problem in string theory, wherein two-dimensional
SCFTs are realized as the low-energy theory on the world-volume of effective strings. Some
canonical examples are the D1/D5 system in IIB string theory wrapped on T 4/K3 [6, 7],
M5-brane bound states in M-theory/CY3 [8], and D3 branes wrapping curves on the base
of elliptically fibered CY3 in F-theory [9]. All these SCFTs have at least (0, 4) supersym-
metry in two dimensions with a corresponding SU(2) R-symmetry. Focussing on the MSW
theory [8], the gravitational dual in the generic theory has the form AdS3 × S2 × CY3.1,2

The low energy theory is summarized by five-dimensional supergravity with asymp-
totic AdS3×S2 boundary conditions, which is the theory that we study in this paper in the
off-shell conformal formalism. The classical Lorentzian AdS3× S2 theory in this formalism
has been studied in a series of nice papers [11–13]. Our eventual goal is to calculate func-
tional integrals for quantum observables using localization in the corresponding Euclidean
supergravity theory defined on global AdS3×S2 with a periodic Euclidean time coordinate,
i.e., the manifold H3/Z× S2. The three-dimensional part of the manifold has the topology
of a solid torus, and we often refer to it as such.

The localization problem in supergravity is substantially more difficult compared to its
counterpart in quantum field theories. To begin with, one defines a rigid supercharge in the
gravitational theory, using the background field method in theories with soft gauge algebras
as applied to supergravity [14, 15]. At a practical level the problem reduces to finding all
bosonic gravitational configurations that admit a Killing spinor whose asymptotic limit is
one of the supercharges of AdS3×S2. Secondly, one finds all matter configurations invariant
under this supercharge. Thirdly, one evaluates the supergravity action at a generic point in
this manifold. Finally one calculates the one-loop determinant of the non-BPS fluctuations
around the localization manifold.

In this paper we address the first two questions whose solutions comprise the so-called
localization locus. We work in the context of 5d off-shell N = 1 supergravity coupled to an
arbitrary number of vector multiplets. Our idea is to use the 4d/5d lift [16], which relates
solutions of off-shell 4d supergravity to those of off-shell 5d supergravity compactified on a
circle.3 The localization manifold in 4d N = 2 supergravity on asymptotically AdS2× S2

has been completely determined, and we can lift those solutions to AdS3×S2. Although this
is not guaranteed to produce all supersymmetric solutions, it should give all solutions that
are independent of the circle of compactification. Similar ideas have been used successfully
to make progress in localization on AdS2× S3 theories in [5, 18, 19].

As it turns out, implementing this idea is not quite straightforward. Firstly, the 4d/5d
map in [16] is given for Lorentzian backgrounds while we need it for Euclidean backgrounds.

1One has AdS3 × S3 × T 4/K3 in the D1/D5 system and AdS3 × S3 ×CY3 in the F-theory case [10]. In
either of these cases, we consider the SU(2)× S̃U(2) action on S3, and we think of the S2 with S̃U(2) action
as being embedded in the S3.

2One could also consider black strings in AdS5 which needs a different treatment using gauged super-
gravity which we will not consider here.

3This is different from the 4d/5d lift of [17] which involves a lift on a Taub-NUT space.
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To this end, we first work out a consistent set of supersymmetry transformations in the
five-dimensional Euclidean supergravity theory. In four dimensions we use the Euclidean
supergravity discussed in [15, 20–23]. We then map off-shell BPS solutions of the 4d theory
to off-shell BPS solutions of the 5d theory. Here there is an additional problem, namely
that the 4d Euclidean theory carries a redundancy of allowed reality conditions which has
no counterpart in the 5d Euclidean theory. We show that this redundancy can be absorbed
in a parameter whose role is to implement the symmetry breaking SO(1, 1)R → I.4 The
second problem has to do with the global identifications of the background that we are
interested in, i.e. H3/Z× S2, which is not a Kaluza-Klein lift of Euclidean AdS2× S2. The
Kaluza-Klein condition was used in [16] for the off-shell 4d/5d lift and, indeed, general
off-shell configurations do not consistently lift from Euclidean AdS2× S2 to H3/Z × S2.
Nevertheless, the class of off-shell solutions relevant for the 4d black hole problem can be
lifted to the supersymmetric H3/Z, due to their enhanced rotational symmetry.

In this manner we obtain an adaptation of the 4d/5d lift relevant for the Euclidean
AdS3/CFT2 problem, whose details we work out in section 4. The final part of the paper,
in section 5, is an application of this lift to find a class of off-shell solutions in the AdS3
theory which contribute to the elliptic genus problem in the boundary SCFT2. In a sequel
to this paper we study the subsequent steps in the localization problem, in particular the
5d supergravity action and its associated boundary terms.

There is another subtlety that appears in the Euclidean functional integral realization
of the supersymmetric observables in the AdS3/CFT2 context even before beginning the
4d/5d lift. Consider a 2d (0, 4) superconformal field theory SCFT2 on the boundary torus
with complex structure τ . The elliptic genus can be defined as a trace over the Hilbert
space on S1 in the Ramond sector with an insertion of (−1)F , which can be calculated
by reducing to the free theory or by using index theorems [24–26]. In the functional inte-
gral formalism, one correspondingly chooses periodic boundary conditions for the fermions
around both cycles of the torus. This leads to a constant Killing spinor on the torus,
which is used to localize the SCFT2 functional integral [27]. Now consider the calculation
of the same functional integral in the bulk theory. The bosonic vacuum configuration is
that of thermal AdS3. One of the circles (the space circle in the thermal AdS3) is con-
tractible and therefore the fermions should have half-integer momentum around that circle
at infinity. Demanding that a spinor obeys the Killing spinor equation forces its momenta
around the two cycles to be equal, so that it has fixed non-zero momentum also along the
non-contractible (time) direction. On the other hand, the non-contractible direction has
periodicity Im(τ) which is arbitrary, and therefore the above spinor with non-zero momen-
tum is not well-defined on the torus. This problem can be resolved by turning on a twist
of the S2 around the non-contractible circle in AdS3, which allows for spinors which are
constant in time and therefore well-defined. As we discuss in section 3, this allows us to
set up a supersymmetric background of the form H3/Z× S2.5 The bulk calculation is the
NS-sector calculation of the elliptic genus, which is equivalent to the boundary Ramond

4This parameter is the Euclidean analog of the parameter that enforces SO(2)R → I in [16].
5A related supersymmetric set-up has been discussed in the literature in the context of supersymmetric

black holes in AdS space [28] and, in particular, for BTZ black holes in [29].
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sector trace by a spectral flow in the (0, 4) algebra. We show how the twist reduces the final
asymptotic algebra to be a sub-algebra of the Brown-Henneaux-Coussaert [30, 31] (0, 4)
algebra on AdS3.

We note that our study of localization of supergravity on AdS3×S2 has similarities with
localization of 3d supersymmetric gauge theories on AdS3, which has been studied in [32].
Indeed the analysis of asymptotic boundary conditions on the gauge fields is very similar in
both cases. The main difference and new challenge (apart from the two extra dimensions) is
that the metric also fluctuates in our analysis, as can be seen in our localization solutions.
We also note that the idea of exact holography has also been explored in the literature
in contexts different to the one that we study here. This includes Koszul duality [33],
topological string theory [34], and classical (large-N) gravitational theories [35]. It would
be interesting to explore possible connections with these approaches.

The plan of this paper is as follows. In section 2 we discuss five-dimensional super-
gravity coupled to matter multiplets. We then describe the classical AdS3 × S2 solution in
Lorentzian signature, and the Killing spinors and superalgebra on this background. In sec-
tion 3 we present the Euclidean H3/Z×S2 solution, the Killing spinors and superalgebra on
this background, and the relation of the path integral to the trace definition of the elliptic
genus. In section 4 we present the off-shell 4d/5d map modified to the Euclidean signature
and present the lift of AdS2 × S2 to H3/Z × S2. In section 5 we apply our formalism to
lift localization solutions from AdS2 × S2 localization solutions on H3/Z × S2. In various
appendices, we present the spinor and Clifford algebra conventions, the Killing spinors,
Killing vectors, and Lie brackets of global AdS3 × S2, and the four- and five-dimensional
Euclidean supersymmetry transformations in the respective conformal supergravities.

2 Background and set-up of the problem

In this section we discuss five-dimensional supergravity coupled to matter multiplets. We
show that the Euclidean theory is obtained by redefinitions of fields of the Lorentzian theory
that follow simply from the Wick rotation. We review the elements of the supergravity
theory including the supermultiplets and the supersymmetry transformations. We then
describe the classical AdS3 × S2 solution in Lorentzian signature, and present the Killing
spinors on this background and the consequent superalgebra.

2.1 Off-shell 5d supergravity

Off-shell supergravity in the superconformal formalism in Lorentzian signature in various
dimensions has been known for many decades (see the book [36]). Euclidean supergravity,
on the other hand, is a less-studied subject and few references exist (e.g. [20–23]). In these
references the method of time-like reduction from a higher-dimensional Lorentzian theory is
used to systematically construct the Euclidean-signature theory. In this section we discuss
the formalism of 5d conformal supergravity with N = 1 (minimal) supersymmetry, i.e.,
8 supercharges. The Lorentzian theory was constructed in [37–39], and in [40–42], and it is
reviewed in the more recent [16, 43] whose conventions we follow. One potential systematic
approach to construct the Euclidean theory would be to perform a timelike reduction on
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a 6d theory. However, we use a less formal approach here: we start from a Wick rotation
and make an appropriate set of transformations on all the fields of the Lorentzian theory
so that we obtain a consistent 5d Euclidean theory.6

The starting point is the usual Wick rotation t = −itE relating the Lorentzian and
Euclidean time coordinates. This is followed by the appropriate transformations of all
tensors for this coordinate change. Accordingly, the time directional gamma matrices are
related by γt = iγtE . Changing the signature of spacetime by this Wick rotation, in general,
demands changing the nature of irreducible spinors. For instance, in four dimensions, while
the Majorana representation of irreducible spinors is allowed in the Lorentzian theory, it is
not the case in the Euclidean theory. Therefore, we need an appropriate field redefinition
of spinors. This can be achieved in a simple manner by going to the symplectic-Majorana
basis which exists in both the Lorentzian and Euclidean theory. In this basis, the charge
conjugation matrix is the same in both the theories. Therefore the Euclidean action follows
from the Lorentzian action in this basis by simply implementing the Wick rotation (See
appendix B.4 of [15] for details of this map in four dimensions). Under the Wick rotation,
the Lagrangian density is unchanged, i.e., LLor. = LEucl., and so the action of the Lorentizan
theory and Euclidean theory are related by iSLor. = SEucl.. Our conventions are such that
the Euclidean action is to be negative definite when we impose well defined path integral.

The reality property of the fermionic fields in the Lorentzian and Euclidean theories
are different. In the Lorentzian theory, an SU(2)R spinor doublet ψi with i = 1, 2 follows
a symplectic-Majorana condition, as reviewed in (A.5),

(ψi)†γt̂ = εij(ψj)TC , (2.1)

where C is the unique choice of the charge conjugation matrix in five dimensions (this is
more generally true in odd dimensions). Compatibility with supersymmetry leads to the
standard reality property on fluctuating bosons, in which the gauge fields and the metric
are real. In the Euclidean theory the allowed reality condition for the spinors

(ψi)† = εij(ψj)TC (2.2)

is not compatible with supersymmetry if we impose the usual reality conditions for fluctu-
ating bosons. Therefore, we treat ψ1 and ψ2 as two independent Dirac spinors, formally
doubling the fermionic degrees of freedom and then choosing a middle-dimensional contour
in the functional integral, following the standard treatment of fermions in the Euclidean
theory. This allows us to impose the standard reality conditions on bosonic fluctuations,
so that the Euclidean action is negative-definite and the functional integral is well-defined
at the perturbative level.7

6Indeed, such an approach also works successfully in four dimensions and the result agrees with the
timelike reduction [15].

7Note that we still allow reality conditions on the background values of the bosonic fields which are
different from the usual Lorentzian ones: these can be imposed on on-shell fields (e.g. A0 or g0i are typically
imaginary as dictated by the Wick rotation), or on off-shell BPS fluctuations (e.g. the localization manifold
on AdS2 involves scalar fields with X̄ 6= X∗ [1, 44, 45]).
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Weyl EM
A,Ψi

M , bM , VM,i
j , TMN , D, χ

i

Vector σI ,W I
M ,ΩIi, Y I

ij

Hyper Ai
α, ζα

SUSY parameters εi, ηi

Table 1. Independent fields of the supersymmetric multiplets and Q, S-supersymmetry parameters
in five-dimensional N = 1 conformal supergravity.

Supermultiplets: for the N = 1 5d conformal supergravity theory, we follow the con-
ventions of [43]. We consider the Weyl multiplet, which couples to Nv number of vector
multiplets as well as a single hyper multiplet. Independent fields in each multiplet is
summarized in table 1.

The Weyl multiplet consists of the gauge fields corresponding to all the symmetry
generators of N = 1 superconformal algebra {PA,MAB, D,KA, Qi, Si, Vj

i}. Among all
the gauge fields, the gauge fields associated with {MAB,KA, Si} are composite, i.e. they
are expressed in terms of other gauge fields. The independent gauge fields in Weyl multiplet
are the vielbein EMA, dilatation gauge field bM , gaugino ψiM , and the SU(2)R gauge field
VMj

i. For the Weyl multiplet to be off-shell supermultiplet, it includes auxiliary two-form
tensor TAB, auxiliary fermion χi, and auxiliary scalar D. Hence the independent fields of
the Weyl multiplet are summarized as

Weyl: {EMA , Ψi
M , bM , VM, i

j ; TMN , χ
i , D} . (2.3)

Here, the indices {A,B, · · · }, {M,N, · · · }, {i, j, · · · } are five-dimensional flat tangent space,
curved spacetime, and SU(2) fundamental indices, respectively, which are summarized in
appendix A. In the Weyl multiplet fields, we use the special conformal symmetry (that
acts only on bM ) to gauge-fix bM = 0, so that from here on this field will not appear. We
consider Nv vector multiplets labeled by I, each of which consists of

Vector: {σI , W I
M , ΩI i , Y I

ij} , I = 1 , 2 , · · · , Nv . (2.4)

They corresponds to a scalar, a U(1) gauge field, gaugini, and an auxiliary symmetric SU(2)
triplet. The i, j indices are raised and lowered using the SU(2) symplectic metric ε, where,
explicitely, ε12 = ε12 = 1. In particular, we have Yij = εik εj` Y

k`. We finally consider a
single hypermultiplet, which consists of

Hyper: {Aiα , ζα}, (2.5)

corresponding to the hyper scalar, and the hyper fermion, where α = 1, 2. There is no
known off-shell Lorentz-covariant hypermultiplet with finite number of fields. In the back-
grounds that we consider below, the hypermultiplet turns out to take its on-shell value,
and we can therefore integrate it out at the semi-classical level. For the full localization
calculation, one could construct an off-shell hypermultiplet for one complex supercharge
(see e.g. [46, 47]). One of the Nv vector multiplets and the single hypermultiplet act as

– 6 –
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the two compensators to be added to the Weyl multiplet to form a 5d N = 1 Poincaré
supergravity multiplet.

Supersymmetry algebra: the supersymmetry transformations of the various spinor
fields under the Q and S supersymmetry transformations are given in (B.1). Two Q-
supersymmetry transformations, parametrized by spinors ε1 and ε2 respectively, close onto
the bosonic symmetries of the theory as

[δQ(ε1) , δQ(ε2)] = δgct(ξµ) + δM (λ) + δS(η) + δK(ΛK) (2.6)

where δgct are the general coordinate transformations, δM is a local Lorentz transformation,
δS is a conformal supersymmetry transformation, and δK is special conformal transforma-
tion. The relevant parameters to this paper are

ξµ = 2ε̄2iγµεi1 ,

λAB = −ξµω AB
µ + i

2T
CD ε̄2i(6γ[AγCDγ

B] − γABγCD − γCDγAB)εi1 .
(2.7)

Action: the bosonic Lagrangian at two-derivative level is

Lbulk = E (LV + LVW + LH + LHW + LCS) , (2.8)

where E ≡ det(EMA), LV contains purely vector multiplet terms, LVW contains mixing
between vector and Weyl, LH is the kinetic hyper scalar piece, LHW contains coupling of
hyper to Weyl, and LCS is the five-dimensional Chern-Simons action:

LV = 1
2 cIJK σ

I
(1

2 D
M σJ DM σK + 1

4 F
J
MN F

MN K − 3σJ FKMN T
MN − Y J

ij Y
K ij

)
,

LVW = −C(σ)
(1

8 R− 4D − 39
2 T 2

)
,

LH = −1
2Ωαβε

ijDM Ai
αDM Aj

β ,

LHW = χ

( 3
16 R+ 2D + 3

4 T
2
)
,

LCS = − i

48Eε
MNOPQcIJKW

I
MF

J
NOF

K
PQ .

(2.9)

In the Chern-Simons Lagrangian LCS, the object εMNOPQ is a fully antisymmetric tensor
density taking values in {−1, 0, 1}. The scalar norms appearing in LVW and LHW are:

C(σ) := 1
6 cIJK σ

IσJσK , (2.10)

χ := 1
2 Ωαβ ε

ijAi
αAj

β . (2.11)

The action of the theory is
Sbulk = 1

8π2

∫
M
d5xLbulk , (2.12)

for an appropriate coordinate chart on the 5d manifoldM.
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2.2 Global Lorentzian AdS3××× S2

We consider the fully supersymmetric AdS3 × S2 solution of the Lorentzian supergravity
described above, corresponding to the near-horizon geometry of the half-BPS magnetic
black string [48]. The metric in Lorentzian signature is

ds2 = 4`2 (− cosh2 ρ dt2 + dρ2 + sinh2 ρ dψ2) + `2 (dθ2 + sin2 θdφ2) , (2.13)

where the coordinates of the AdS3 have the ranges ρ ∈ [0, ∞), ψ ∈ [0, 2π], t ∈ (−∞, ∞)
and the angles on the S2 have ranges θ ∈ [0, π], φ ∈ [0, 2π]. The radii of the AdS3 and the S2

are (2`) and ` respectively, where this relative factor of 2 is determined by supersymmetry.
Note that in the off-shell theory, ` is free and parametrizes the dilatations of the theory,
while in the on-shell theory (where dilatations are broken) it is determined by the magnetic
charges of the solution via the D-gauge condition. These magnetic charges pI enter the
solution through the vector multiplet. The non-trivial fields of the vector multiplet are:

σI = −p
I

`
, F Iθφ = pI sin θ . (2.14)

Note that the solution does not have electric flux, which allows us to turn on flat gauge
connections on the AdS3. This aspect will become relevant in the following. The five-
dimensional Newton’s constant is G5 = 6π`3/p3 and the three-dimensional Newton’s con-
stant is obtained by setting G5 = AreaS2 ×G3 = 4π`2G3.

In the off-shell formalism of section 2.1, one requires additional auxiliary fields. In the
Weyl multiplet, the non-trivial fields are:

Tθφ = − `4 sin θ . (2.15)

In the compensating hypermultiplet, the BPS equation is solved by

Ai
α = ci

α , (2.16)

where the constants ciα are determined in terms of the charge pI by the field equation for
the auxiliary field D to be

Ωαβ ε
ijci

αcj
β = 2

3`3 cIJK p
IpJpK . (2.17)

In this paper, we fix an explicit choice for the ciα as

c1
2 = c2

1 = 0 , c1
1 = c2

2 =

√
p3

3`3 . (2.18)

2.3 Supersymmetry algebra in Lorentzian AdS3××× S2

Killing spinors. The Q- and S- supersymmetry parameters, εi and ηi respectively, that
are preserved by the bosonic fields of the global AdS3 × S2 background are determined by

– 8 –
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setting the variation of gravitino and the variation the auxiliary fermion in (B.1) to zero.
These two equations are, respectively,

0 = 2DM εi + i
2TAB(3γABγM − γMγAB)εi − iγMηi , (2.19)

0 = 1
2ε

iD + 1
64RMNj

i(V )γMN εj + 3
64i(3γAB /D + /DγAB)TABεi (2.20)

− 3
16TABTCDγ

ABCDεi + 3
16TABγ

ABηi .

On our bosonic background, the second equation (2.20) immediately determines the S-
supersymmetry spinor as ηi = 0. The first equation is referred to as the Killing spinor
equation. We analyze its solutions in appendix C and summarize the results below.

The complex basis of the Killing spinor on AdS3 × S2 is given by the following four
Killing spinors,

ε +
+ =

√
`

2 ε
+
AdS3

⊗ ε+S2 , ε −+ =

√
`

2 ε
+
AdS3

⊗ ε−S2 ,

ε +
− =

√
`

2 ε
−
AdS3

⊗ ε+S2 , ε −− =

√
`

2 ε
−
AdS3

⊗ ε−S2 ,

(2.21)

with

ε+AdS3
= e

i
2 (t+ψ)

 cosh ρ
2

− sinh ρ
2

 , ε−AdS3
= e−

i
2 (t+ψ)

− sinh ρ
2

cosh ρ
2

 ,

ε+S2 = e
i
2φ

 cos θ2
sin θ

2

 , ε−S2 = e−
i
2φ

− sin θ
2

cos θ2

 .

(2.22)

These 4 Killing spinors organize themselves into the 8 pairs of symplectic Majorana spinors
ε i(1) = (−iε +

+ , ε −− ) , ε i(2) = (ε +
+ ,−iε −− ) , ε i(3) = −(ε −− , iε +

+ ) , ε i(4) = −(iε −− , ε +
+ ) ,

ε̃ i(1) = (ε −+ , iε +
− ) , ε̃ i(2) = (iε −+ , ε +

− ) , ε̃ i(3) = (−iε +
− , ε −+ ) , ε̃ i(4) = (ε +

− ,−iε −+ ) ,
(2.23)

to form the 8 real basis of the Killing spinor on AdS3×S2. Each pair satisfies the following
symplectic Majorana condition (A.5) appropriate to the 5d Lorentzian theory, i.e. (εi)†γt̂ =
εij(εj)TC in the conventions of appendix C.

Superconformal algebra: let us denote

Qa = δ(εi(a)) , Q̃a = δ(ε̃i(a)) , a = 1 , 2 , 3 , 4 , (2.24)

with the Grassmann even Killing spinors εi. Then,{
Qa ,Qb

}
= −2iδab(L0 − J3) ,

{
Q̃a , Q̃b

}
= −2iδab(L0 + J3) , (2.25)

{
Qa , Q̃b

}
=



−2iJ2 2iJ1 −(L+ − L−) i(L+ + L−)

−2iJ1 −2iJ2 −i(L+ + L−) −(L+ − L−)

L+ − L− i(L+ + L−) −2iJ2 −2iJ1

−i(L+ + L−) L+ − L− 2iJ1 −2iJ2


, (2.26)
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where SL(2, R) generators L0, L± and SO(3) generators Ja satisfy

[L+, L−] = −2L0 , [L0 , L±] = ±L± , [Ja , Jb] = iεabcJc . (2.27)

Their explicit representation on the AdS3 × S2 is given in appendix D.
Let us define the supercharges Giαγ

G++
+ ≡ iQ1 +Q2

2 , G+−
− ≡ −Q3 + iQ4

2 , G+−
+ ≡ Q̃1 − iQ̃2

2 , G++
− ≡ iQ̃3 + Q̃4

2 ,

G−−− ≡ Q1 + iQ2
2 , G−+

+ ≡ iQ3 −Q4
2 , G−+

− ≡ −iQ̃1 + Q̃2
2 , G−−+ ≡ Q̃3 + iQ̃4

2 ,

(2.28)
where γ is the sign of the L0 eigenvalue, i is the outer automorphism from the SU(2)
R-symmetry of the supergravity, and α is the SU(2) R-symmetry index corresponding to
isometries of the S2. Then, we obtain the non-trivial commutation relations:{

G+α
± , G−β∓

}
= εαβL0 ± (ετa)βαJa ,

{
G+α
± , G−β±

}
= ∓iεαβL± , (2.29)

and [
L0 , G

iα
±

]
= ±1

2 G
iα
± ,

[
L± , G

iα
∓

]
= −iGiα± ,[

J3 , Gi±γ

]
= ±1

2 G
i±
γ ,

[
J± , Gi∓γ

]
= Gi±γ ,

(2.30)

where J± ≡ J1 ± iJ2. The algebra (2.27), (2.29), (2.30) is the global part su(1, 1|2) of the
NS-sector chiralN = 4 superconformal algebra. Denoting the super Virasoro charges as Ln,
n ∈ Z and Gα

Ȧ,r
, r ∈ Z + 1

2 , Ȧ = (+,−), the embedding into the N = 4 superconformal
algebra as presented e.g. in [49] is given by L± = ∓iL∓1, L0 = L0, G±α± = ±Gα∓,∓1/2,
G∓α± = ±Gα±,∓1/2, and the su(2) zero-modes are unchanged.

3 Supersymmetric HHH3/ZZZ××× S2 and twisting

In this section we move from the Lorentzian AdS3 × S2 configuration to the Euclidean
H3/Z × S2 geometry. We begin, in the first subsection, by reviewing the thermal AdS3
(=H3/Z) geometry and some aspects of the AdS/CFT correspondence in this set up. In
the second subsection we move to the supersymmetric version of the thermal geometry
which requires a non-trivial twist. In the third subsection we discuss the Hamiltonian
trace interpretation of the functional integral on this twisted configuration, and discuss
how this is related to the elliptic genus in the semi-classical limit.

3.1 Thermal compactification of AdS3

In this subsection we review the general set-up of the AdS3/CFT2 dictionary in the context
of our problem, following the treatment of [50]. We begin with the three-dimensional pure
Einstein-Hilbert action with a cosmological constant:

Sgrav = 1
16πG3

∫
d3x
√
g

(
R− 1

2`2
)
. (3.1)
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AdS3 is a solution of the equations of motion of this theory with constant negative curva-
ture. The Wick rotation t = −itE leads to the Euclidean (H3) metric

ds2 = 4`2
(
cosh2 ρ dtE

2 + dρ2 + sinh2 ρ dψ2
)
. (3.2)

When the range of tE is (−∞,∞) we obtain the cylinder geometry corresponding to the
global solution. Thermal AdS3 corresponds to the quotient H3/Z, obtained by imposing
the periodicities (

tE , ψ
)
∼
(
tE + 2πτ2 , ψ + 2πτ1

)
∼
(
tE , ψ + 2π

)
, (3.3)

so that the geometry is that of a solid torus. Physically, this corresponds to setting the
chemical potential conjugate to angular momentum (i.e. the angular velocity) to 2πτ1 and
the chemical potential conjugate to energy (i.e. the inverse temperature) to 2πτ2.

It is convenient to introduce the coordinates z ≡ ψ + i tE, z̄ ≡ ψ − i tE. Upon taking
the large-ρ expansion of the transverse metric tensor gαβ , where xα = (z, z̄), one obtains
the Fefferman-Graham form

gαβ = e2ρg
(0)
αβ + g

(2)
αβ + · · · . (3.4)

The conformal boundary metric g(0)
αβ is

g
(0)
αβ = `2 dz dz̄ , (3.5)

with the identifications

(z, z̄) ∼ (z + 2π, z̄ + 2π) ∼ (z + 2πτ, z̄ + 2πτ̄) , (3.6)

consistent with the interpretation that the boundary CFT lives on the flat torus with
modular parameter τ .

Boundary conditions on the gauge fields. More generally, we include constant chem-
ical potentials µI for a number of conserved U(1) charges qI =

∫
JI where JI are the

corresponding conserved currents in the boundary CFT. The partition function of such a
CFT is

TrHCFT e−βH+µIqI . (3.7)

The dual gravitational theory (3.1) includes the same number of U(1) gauge fields8 W I .
The most relevant term governing their dynamics at low energies is given by the Chern-
Simons action

− i
8πkIJ

∫
W I ∧ dW J = − i

8πkIJ
∫
d3x εµνλW I

µ ∂νW
J
λ . (3.8)

(Here, unlike in the rest of the paper, we employ the indices µ, ν · · · to denote the 3d
coordinates xµ = (ρ, xα).) In the gaugeW I

ρ = 0, the gauge fields admit a large-ρ expansion
analogous to (3.4) as:

W I
α = W I (0)

α + e−2ρW I (2)
α + · · · . (3.9)

The asymptotic equations of motion imply that W I (0)
α is flat.

8In this subsection, W I and all other fields are three-dimensional.
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As is well-known, the fact that the CS term has a first order kinetic term so that the
two legs W I

z, z̄ form canonical pairs in the Hamiltonian theory [51]. One should therefore
impose Dirichlet boundary conditions on only one of the legs:

δW I (0)
z = 0 , W

I (0)
z̄ not fixed. (3.10)

Now, in accord with the bulk/boundary correspondence, the boundary source µI must
be identified with the asymptotic value of the gauge field W

I (0)
z . Since the ψ-cycle is

contractible, any smooth configuration must have W I
ψ = 0 at the origin. The saddle-point

configurations have flat gauge fields due to the equations of motion, and therefore obey

W I
z = −W I

z = −iµI . (3.11)

The AdS/CFT correspondence states that the trace (3.7) equals the following bulk
functional integral, up to a Casimir-energy-like term,

ZAdS(τ, µ) =
∫
Dφgrav e−Sren(τ, µ) , (3.12)

where φgrav denotes the gravitational fields of the theory, and

Sren ≡ Sbulk + Sbdry (3.13)

is the renormalized action of the gravitational theory. Here, Sbulk is the bulk Euclidean
action of the Einstein-Hilbert-matter theory and Sbdry is the boundary action required to
make the total action finite and well-defined under our choice of boundary conditions. In
particular, it includes the Gibbons-Hawking boundary term, and a Chern-Simons boundary
term given by

− i
8π kIJ

∫
dz dz̄

[
W I
z W

J
z̄

]
bdry

. (3.14)

This last term is required to ensure the consistency of the variational principle of the gauge
fields with the boundary conditions (3.10).

The semi-classical contribution: at leading order, the partition function (3.12) is
given by the value of Sren on the thermal AdS3 configuration described above. The value
of this action is [50]

Sren(τ, µ) = −πτ2k − πτ2 kIJ µ
IµJ , (3.15)

where 6k = 3(2`)
2G3

is the Brown-Henneaux central charge of the gravitational theory for the
AdS3 space (3.2), and kIJ is the level of the Chern-Simons term (3.8). Here, note that the
boundary U(1) current obtained from (3.8), (3.14) is right-moving. The choice of opposite
relative sign between (3.8) and (3.14) leads to the opposite chirality.

In the context of the five-dimensional theory of the previous section, recall from the
discussion around (2.14) that G5 = 6π`3/p3, so that

6k = 3(2`)
2G3

= 12π`3

G5
= 2p3 . (3.16)
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To identify kIJ , we reduce the five-dimensional Chern-Simons boundary term in (3.42)
onto the S2, and compare the resulting action with the three-dimensional Chern-Simons
boundary term (3.14) on thermal AdS3. This leads to:

kIJ = 2
3cIJK p

K . (3.17)

3.2 Twisted background and superalgebra

Now we consider the supersymmetric theory on the 5d geometry Under the Wick rota-
tion t = −itE, the Lorentzian metric (2.13) rotates to that of Euclidean H3 × S2. The
non-trivial fields in the Weyl multiplet are:

ds2 = 4`2 (cosh2 ρ dt2E + dρ2 + sinh2 ρ dψ2) + `2 (dθ2 + sin2 θ dφ2) , (3.18)

Tθφ = − `4 sin θ . (3.19)

If the Euclidean time coordinate tE runs from (−∞, ∞), the topology is that of a solid
cylinder times a sphere, which we call the Euclidean cylinder frame. Although the Killing
spinor equations (2.19) and (2.20) are formally solved by the same set of eight spinors (2.23)
in this background, these spinors are no longer well-defined because they diverge at the
ends of the Euclidean cylinder. The solution to this problem involves compactifying the
Euclidean time on a circle and simultaneously rotating the S2 as we go around the time
circle. This twisted quotient makes for a well-defined background, as we now describe.

We start from the configuration (3.18) describing an infinite solid cylinder (times a
sphere), and make the following identifications,

(tE , ψ , φ) ∼ (tE , ψ + 2π , φ) ∼ (tE + 2πτ2 , ψ + 2πτ1 , φ+ i2πτ2Ω) . (3.20)

Equivalently, we can define a new set of “twisted” coordinates,

t′E = tE , φ′ ≡ φ− iΩtE , (3.21)

which have the identification

(t′E , ψ , φ′) ∼ (t′E , ψ + 2π , φ′) ∼ (t′E + 2πτ2 , ψ + 2πτ1 , φ
′) . (3.22)

We denote the corresponding complex coordinates as z′ = ψ + it′E, z̄′ = ψ − it′E, identified
as (z′, z̄′) ∼ (z′ + 2πτ, z̄′ + 2πτ̄).

In the twisted frame, the on-shell background configuration is

ds2 = 4`2
(
cosh2 ρ dt′2E + dρ2 + sinh2 ρ dψ2

)
+ `2

(
dθ2 + sin2 θ

(
dφ′ + iΩdt′E

)2)
,

Tθφ′ = − `4 sin θ , Tθt′E = −i `4Ω sin θ ,

σI = −p
I

`
, W I

tE′
= 2µI − iΩ pI cos θ , W I

φ′ = −pI cos θ ,

A1
1= A2

2 =

√
p3

3`3 .

(3.23)
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The S2 in (3.23) is fibered over the time circle of AdS3, and we refer to this configuration
as the twisted torus background. We also note that in the expression for W I

tE′
we have

introduced an arbitrary constant µI which is allowed by the supersymmetry and equations
of motion, which we will interpret as the source of a U(1) current in the boundary CFT.
The BPS equations may also allow W I

ψ to take a constant value, but this constant is forced
to be zero due to the contractibility of the ψ-cycle.

To see that the twisted torus background (3.23) has well-defined supersymmetry, we
solve the Killing spinor equation from the variation of gravitino (B.1), which is rewritten
now as

0 = 2DMεi −
i

4`(3γ θ̂φ̂γM − γMγ θ̂φ̂) εi . (3.24)

Here we use the following gamma matrices in the Euclidean theory, which follow from the
Wick rotation,

γt̂E = σ3 ⊗ τ 3 , γρ̂ = σ1 ⊗ τ 3 , γψ̂ = σ2 ⊗ τ 3 , γθ̂ = I⊗ τ 1 , γφ̂ = I⊗ τ 2 , (3.25)

where we relate the σ3 with the Lorentzian gamma matrix σ0 in (C.4) by σ3 ≡ −iσ0.
We will take the representation (σ3,σ1,σ2) = (−τ 3, τ 1, τ 2) with the Pauli sigma matrix
τ a. Note that unlike the case of global AdS3× S2 in the subsection 2.3, the Killing spinor
equation (3.24) does not split into the equations of AdS3 and S2. This is because we have
the following spin connections

ω12
t′E

= − sinh ρ , ω45
t′E

= iΩ cos θ , ω23
ψ = cosh ρ , ω45

φ′ = cos θ , (3.26)

where there is mixing between AdS3 and S2 directions through the non-zero twisting pa-
rameter Ω.

The solution of Killing spinors can be easily found by following the twisting con-
struction. It is clear that the Euclidean continuation of the set of 8 Lorentzian Killing
spinors (2.21), (2.23), followed by the coordinate transformation (3.21) obeys the new
Killing spinor equation. Upon setting the parameter

Ω = 1 + iτ1
τ2
, (3.27)

the following9 4 of the original 8 Killing spinors

ε i(1) = (−iε +
+ , ε −− ) , ε i(2) = (ε +

+ ,−iε −− ) , ε i(3) = −(ε −− , iε +
+ ) , ε i(4) = −(iε −− , ε +

+ ) ,
(3.28)

where

ε +
+ =

√
`

2 e
1
2 (1−Ω)t′E+ i

2 (ψ+φ′)

 cosh ρ
2

− sinh ρ
2

⊗
 cos θ2

sin θ
2

 ,

ε −− =

√
`

2 e−
1
2 (1−Ω)t′E−

i
2 (ψ+φ′)

− sinh ρ
2

cosh ρ
2

⊗
− sin θ

2

cos θ2

 ,

(3.29)

9The choice Ω = −1− i τ1
τ2

also gives rise to a different 4 set of Killing spinors.
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respect the periodicity (3.22) (they are periodic around the non-conctractible circle and
anti-periodic around the contractible circle).

One could also directly solve the new Killing spinor equations (3.24). The only non-
trivial change compared to the untwisted case is the equation in the t′E direction,

0 =
(
2∂t′E − ω

12
t′E
γ12 − ω34

t′E
γ34
)
ε±
± − i

2`Et
′
E

1γ45γ1 ε±
± − i

`
Et′E

5(γ45γ5) ε±± . (3.30)

Comparing to the equation (3.24) that would be written in untwisted frame, The difference
with the equation in the untwisted frame is that 2∂t′E acting on the Killing spinor (3.29)
gives ±(1−Ω) instead of ±1. Also, the third and the last terms are new. By the projection
property along S2 direction of the Killing spinor (1⊗ e−iτ2θτ3)ε±± = ±ε±±, one can check
that the effect of the third and the last term indeed cancels the contribution of Ω in the
time-derivative acting on the Killing spinor.

Supersymmetry algebra: the supercharges Qa = δ(εi(a)), with the Killing spinors εi(a),
a = 1, 2, 3, 4 defined in (3.28), obey

{Qa ,Qb} = −2iδab(L0 − J3) , [L0 − J3 ,Qa] = 0 . (3.31)

Consider the following four supercharges Giαγ ,

G++
+ ≡ iQ1 +Q2

2 , G−−− ≡ Q1 + iQ2
2 , G+−

− ≡ −Q3 + iQ4
2 , G−+

+ ≡ iQ3 −Q4
2 ,

(3.32)
where γ is the sign of the L0 eigenvalue, i is the doublet index under the outer automorphism
coming from the SU(2) R-symmetry of the supergravity, and α is the doublet index under
the SU(2) R-symmetry arising from the isometry of the S2. They are charged under the
bosonic generators L0 and J3 as

[
L0 , G

i±
±

]
= ±1

2 G
i±
± ,

[
J3 , Gi±±

]
= ±1

2 G
i±
± , (3.33)

so that [
L0 − J3 , Gi±±

]
= 0 , (3.34)

and they obey the anticommutation relations

{
G+±
± , G−∓∓

}
= ±

(
L0 − J3

)
,

{
G+±
± , G−±±

}
= 0 . (3.35)

The above algebra (3.34), (3.35) forms a subalgebra of the global part of N = 4
superconformal algebra in the NS sector given in section 2.3. Note that the subalgebra can
also be thought of as the spectral flow,10 with parameter η = 1/2, to the following Ramond
sector zero-modes as L0 − J3 + c/24 7→ LR0 , G±∓∓ 7→ ∓G∓∓,0, G

±±
± 7→ ±G±∓,0.

10The spectral flow is taken on the charges with algebra in [49] as Ln 7→ Ln + 2ηJ3
n + η2 c

6δn,0,
J3
m 7→ J3

m + η c6δn,0, J
±
m 7→ J±m±2η, G

±
Ȧ,r
7→ G±

Ȧ,r±η.
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3.3 The trace interpretation and the semiclassical limit

We now interpret the functional integral on H3/Z × S2 as a trace on the Hilbert space of
the boundary CFT. First, a small change of conventions in this section: we consider (0, 4)
SCFT2 on the boundary, where supersymmetry algebra acts on the right-moving sector,
whose generators we denote with a bar e.g. L0 and J

3. This means we have to flip the
convention (regarding the bars) of the previous subsection so that we have the following
representation in the twisted coordinates,

L0 = i12(i∂t′E − ∂ψ + Ω ∂φ′) , L0 = i12(i∂t′E + ∂ψ + Ω ∂φ′) , J
3 = i∂φ′ , (3.36)

with Ω = 1 + iτ1/τ2. Now consider the gravitational functional integral Z corresponding
to the partition function on the twisted torus (3.22), (3.23). Bosonic fields are periodic
around both the cycles of the torus, while fermionic fields are periodic around the t′E-
circle (which has periodicity 2πτ2) and are anti-periodic around the contractible ψ circle
(which has periodicity 2π). In addition, we have the chemical potential 2πiτ1 for the
angular momentum ∂ψ around the AdS3, and the chemical potentials µI coupling to U(1)
current(s) qI . By the usual interpretation of the functional integral, we have

eC(τ,µ) Z(τ, µ) = TrNS (−1)F exp
(
2πτ2 ∂t′E + 2πτ1 ∂ψ + µIqI

)
,

= TrNS (−1)F exp
(
−2πτ2 (L0 + L0 − ΩJ 3) + 2πiτ1 (L0 − L0) + µIqI

)
,

= TrNS (−1)F qL0 qL0−J
3

eµIqI , (3.37)

with q = e2πiτ , q = e−2πiτ , and τ = τ1 + iτ2. The Casimir-energy-type term C(τ, µ) arises
while relating the functional integral to the Hamiltonian trace [50].

We recognize the right-hand side of (3.37) as the elliptic genus. Indeed, from the
anticommutator (3.35) we see that the above trace can be written as

eC(τ,µ) Z(τ, µ) = TrNS (−1)F qL0 qiQ2 eµIqI , (3.38)

where we have chosen one supercharge Q = 1√
2Q1 = 1√

2(G−−− − iG++
+ ) as in (3.31)

and (3.32). The pairing of all non-BPS modes with respect to the supercharge Q enforces
that the elliptic genus is a holomorphic function of τ . Note that there is no regulariza-
tion scheme for the functional integral in which the pre-factor C(τ, µ) respects modular
invariance and holomorphy. In particular, if one chooses the pre-factor C(τ, µ) to respect
modular invariance (and the gauge invariance associated to µ), it suffers from a holomorphic
anomaly and cannot be purely holomorphic in τ [52].

On-shell action. Now that we have set up the twisted torus background, we can evaluate
the functional integral as explained in section 3.1 for the 3d untwisted theory. We have

ZAdS(τ, µ) =
∫
Dφgrav e−Sren(τ, µ) , Sren ≡ Sbulk + Sbdry , (3.39)

as an integral over all field configurations φgrav of the 5d supergravity theory, with the
renormalized action Sren of the gravitational theory.
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The bulk supergravity action (2.12) evaluated on the twisted torus (3.23) is

Sbulk(τ2, p, µ) = 1
8π2

∫ ρ0

0
dρ

∫ 2π

0
dψ

∫ π

0
dθ

∫ 2π

0
dφ′

∫ 2πτ2

0
dt′E Lbulk

= −πτ2
3 p3 + O(e2ρ0) .

(3.40)

The second term on the right-hand side denotes terms in the bulk action that diverge when
the radial cutoff ρ0 →∞, and is absorbed by standard boundary terms.

The boundary terms in the action of the gauge fields behave essentially in the same way
as in the untwisted theory, but with slightly different details. In the cylinder frame (3.18),
the gauge fields Wz,z̄ on the AdS3 factor have the boundary conditions (3.10), while the
components Wθ,φ on the S2 are fixed at the boundary. Twisting these boundary conditions
using (3.21) gives the boundary conditions for the gauge fields on the twisted torus:

δW
I (0)
z′ = 0 , W

I (0)
z̄′ not fixed, δW

I (0)
θ,φ′ = 0 , (3.41)

where the (0) indicates the boundary values in the large-ρ expansion as in (3.9). The
Chern-Simons boundary action consistent with these boundary conditions is:

Sbdry
CS = −cIJK

ipI

48π2

∫
∂M

dz′dz̄′dθdφ′ sin θ
[(
W J
z′ −

1
2ΩW J

φ′

)
WK
z̄′

]
bdry

, (3.42)

which on the twisted torus (3.23) evaluates to11

Sbdry
CS = −2πτ2

3 cIJK µ
IµJpK . (3.43)

The boundary terms in the gravitational sector are more subtle. Recall that in the
standard treatment of AdS3 gravity, see e.g. [50], the variation of the boundary metric is
fixed, but not that of its normal derivative. As is well known, one requires the addition of a
Gibbons-Hawking boundary term, in order for the variational principle to be well-defined.
In addition, one requires additional local counterterms on the boundary to cancel the
divergences arising from the bulk action as in (3.40) as well as from the Gibbons-Hawking
term. These considerations are systematically summarized in the procedure of holographic
renormalization [53]. As it turns out, in the localization of the path integral for the elliptic
genus, we need to impose slightly different boundary conditions on the metric compared to
the standard ones, and correspondingly we have a different structure of boundary terms.
However, these differences are only relevant when the metric goes off-shell, and do not
change the on-shell background that we have discussed so far. We postpone the details
to a follow-up publication. Thus the value of the full renormalized action on the twisted
background (3.23) is

Sren = −πkτ2 − πτ2 kIJ µ
IµJ . (3.44)

Note that the twisting procedure only affects global properties and does not change the
Newton’s constant. Therefore the central charge continues to be c = 6k = 2p3 as in (3.16).

11Evaluating actions of this type is more conviently done by transforming back from the (z′, z̄′) to
the (ψ, t′E) coordinates where the ranges are as in (3.40).
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Similarly, the level kIJ of the boundary current algebra also does not change. To see this,
note that the relation between the twisted and cylinder-frame fields is:

Wz′ = Wz + 1
2ΩW I

φ (θ) , Wz̄′ = Wz̄ −
1
2ΩW I

φ (θ) , Wφ′ = Wφ(θ) , (3.45)

whereWz,z̄ only depends on the AdS3 coordinates (ρ, z, z̄)=(ρ, z′, z̄′) whileW I
φ =−pI cos θ.

Substituting this into (3.42) gives:

Sbdry
CS = −cIJK

ipI

12π

∫
∂M

dz′dz̄′
[
W J
z W

K
z̄

]
bdry

, (3.46)

which is the same as the 3d Chern-Simons boundary term (3.14), since the integration
ranges of (z′, z̄′) are the same as for (z, z̄). This shows that kIJ = 2

3cIJK p
K as in the

untwisted theory (3.17).

4 The Euclidean 4d/5d lift

In this section we present a formalism to obtain off-shell localization solutions in 5d su-
pergravity by lifting the localization manifold around Euclidean AdS2 × S2. In partic-
ular, this allows us to obtain localization solutions around the supersymmetric twisted
torus H3/Z× S2 background presented in (3.23).

We briefly recall the first step of the localization problem that the formalism addresses.
We define the localization supercharge Q = 1√

2Q1 = 1√
2δ(ε

i
(1)) where the Killing spinor εi(1)

is given in (3.28). (Equivalently, Q = 1√
2(G−−− − iG++

+ ) in terms of the super-Virasoro
generators.) It obeys the algebra

Q2 = −i(L0 − J
3) , [L0 − J

3
,Q] = 0 . (4.1)

We would like to study the space of solutions to the BPS equations given by setting the
supersymmetry variations generated by Q of all the fermions (B.1) to zero.

The BPS equations form a system of matrix-valued partial differential equations in
terms of the bosonic fields of the theory. One systematic approach to solve them, assuming
no fermionic backgrounds, begins by forming various Killing spinor bilinears [54, 55]. The
BPS equations may then be expressed as a set of coupled first-order equations for these
tensor fields, which describe the bosonic background of the solution. This approach was
used in [19, 44] to solve the off-shell problem in the AdS2 × S2 (and S3) background. The
general solutions to the resulting equations are, however, typically difficult to obtain, and
we do not solve this problem of general classification in this paper. Instead, we leverage
what is already known about the localization solutions in 4d supergravity around the
Euclidean AdS2 × S2 background [1, 44, 45], by lifting them to five dimensions. This
involves the KK lift of AdS2 × S2 to AdS3 × S2, which we describe in section 4.1. Note,
however, that while the 4d localization manifold has been determined completely, there may
be additional solutions in 5d that do depend on the KK direction, and that will therefore
not emerge from the lift. We postpone the discussion of such solutions to future work.
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To lift the 4d localization solutions, we use the idea of the 4d/5d off-shell connection
of [16]. However, as mentioned in the introduction, implementing this idea is not straight-
forward for the following reasons. Firstly, while the formalism in [16] was developed for
Lorentzian supergravities, our 4d/5d connection needs to be adapted to accommodate the
Euclidean supergravities in both four and five dimensions. A subtlety here, as we will
shortly see, is that the 4d Euclidean theory has a redundancy in the choice of reality con-
ditions and correspondingly a redundancy of AdS2 × S2 backgrounds, which has no coun-
terpart in the 5d theory. Secondly, recall that the 4d/5d lift produces a five-dimensional
background in the Kaluza-Klein anstaz and so, in order to reach the five-dimensional the-
ory on the supersymmetric twisted torus H3/Z × S2 from the four-dimensional theory on
AdS2 × S2, we require a mapping of the twisted torus (3.23) into the Kaluza-Klein frame
of AdS3 × S2. In section 4.1 we present the mapping from the Kaluza-Klein frame to the
cylinder frame. The twisted frame can then easily be mapped to the cylinder frame (3.18)
by the local coordinate transformation (3.21). In section 4.2 we review the 4d Euclidean
supergravity and the AdS2 × S2 background. In section 4.3, we present our construction of
the Euclidean 4d/5d off-shell lift. Further, we show that the redundancy of the 4d theory
mentioned above can be absorbed into the mapping parameter. We conclude the section
by presenting the steps of lifting the 4d off-shell solutions to the 5d twisted torus.

4.1 The Kaluza-Klein coordinate frame

In this subsection we map the cylinder frame to the Kaluza-Klein frame. This mapping re-
quires the local coordinate transformations as well as local Lorentz transformations. After
presenting the general mechanism, we find the specific coordinate and Lorentz transforma-
tions, and the resulting background configuration and supercharges for AdS3× S2 in the
Kaluza-Klein frame.

The general mechanism is as follows. Let {Ṁ, Ṅ , · · · } and {Ȧ, Ḃ, · · · } be the spacetime
and tangent indices, respectively, in this Kaluza-Klein frame. The vielbein in the Euclidean
cylinder frame EMA maps to the vielbein in the KK frame ĖṄ Ȧ under a diffeomorphism
together with some local rotation LAȦ which acts on the frame as [56]

EM
A(x) = ∂ẋṄ

∂xM
ĖṄ

Ȧ(ẋ)L−1
Ȧ
A . (4.2)

Correspondingly, the spin connection transforms as

ωMA
B = ∂ẋṄ

∂xM

(
LA

Ȧω̇ṄȦ
ḂL−1

Ḃ
B + (∂NLAȦ)L−1

Ȧ
B
)
. (4.3)

Likewise, the remaining non-trivial background fields and the Killing spinors are mapped
into the KK frame using the same diffeomorphism and local rotation LA

Ȧ, and a corre-
sponding spinor rotation L, as

TAB = LA
ȦLB

ḂṪȦḂ , FAB = LA
ȦLB

ḂḞȦḂ , εi = L ε̇j , (4.4)

where LAȦ and L are related such that the gamma matrix is preserved:

LA
Ḃ L γḂ L

−1 = γA . (4.5)
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The diffeomorphism and local rotation in (4.2) should be chosen such that the viel-
bein in KK frame ĖṄ Ȧ has the following reduction ansatz. Decomposing the KK frame
coordinate as xṀ = {xµ, x5} and xȦ = {xa, 5}, the reduction ansatz of the vielbein is

ĖṀ
Ȧ =

(
eµ
a Bµφ

−1

0 φ−1

)
, ĖȦ

Ṁ =
(
ea
µ −eaµBµ

0 φ

)
, (4.6)

where all the fields in the KK frame are independent of the compactified x5 coordinate.
Note that the KK ansatz (4.6) breaks the 5d diffeomorphisms to 4d diffeomorphisms and
a U(1)gauge, and breaks the 5d local rotation symmetry O(5) to O(4) × Z2. Using the Z2
we can fix the φ to have a fixed sign, say, positive. The vielbein (4.6) is equivalent to the
following metric in the KK frame (with x5 ∼ x5 + 2π),

ĠṀṄ dx
ṀdxṄ = gµν dx

µdxν + φ−2(dx5 +Bµ dx
µ)2 . (4.7)

We see from the (4.6) and (4.7) that the five-dimensional vielbein ĖṄ Ȧ or metric ĠṀṄ are
related to the four-dimensional veilbein eµa or metric gµν , a gauge field Bµ and a scalar φ.
The reduction ansatz leads to the following reduction of the spin connection as

ω̇Ȧ
bc =

(
ωa

bc

1
2φ
−1F (B)bc

)
, ω̇Ȧ

b5 =
(
−1

2φ
−1F (B)ab

−φ−1Dbφ

)
. (4.8)

Here we see that the gauge field Bµ appears through its field strength F (B)ab in four
dimensions.

Now we find the coordinate transformations and the local rotation in (4.2) that map
the cylinder frame background in (3.18) to fit into the KK frame ansatz (4.6) and (4.7).
The cylinder frame coordinates xM and the KK frame coordinates ẋṀ

xM = (ρ , ψ , θ , φ , tE) , ẋṀ = (η , χ , θ , φ , x5) , (4.9)

are related as

( ρ, ψ, tE) =
(
η

2 , χ+ ix
5

2 ,
x5

2

)
⇔ (η , χ , x5) = (2ρ , ψ − itE , 2tE) , (4.10)

with the coordinates (θ, φ) remaining the same. Note that the global conditions on the
periodicities are not respected by this map (e.g. x5 is compact whereas tE is not). The
corresponding local rotation matrix LAȦ is given as a rotation in the 2–5 plane (along ψ̂
and t̂E direction) with angle ω = −iη/2:

L1
1̇ = L3

3̇ = L4
4̇ = 1 , L2

2̇ = L5
5̇ = cosh η2 , L2

5̇ = −L5
2̇ = i sinh η2 . (4.11)

In the exponential form, we have LAȦ = (eΩ)AȦ, where the 2− 5 component of the matrix
in the exponent is Ω25 = −Ω52 = −ω = iη/2.12 By the relation (4.5), the corresponding

12The rotation with angle ω is exp
(
ω
(

0 −1
1 0

))
=
(

cosω − sinω
sinω cosω

)
. Here, we take ω = −iη/2 for the

rotation in 2–5 plane. Note that the angle is imaginary, because the coordinate x5 is Euclidean time.
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spinor rotation is

L = exp
(1

4ΩABγ
AB
)

= exp
( i

4η γ25

)
=
( cosh η

4 − sinh η
4

− sinh η
4 cosh η

4

)
⊗ I2 . (4.12)

We note that although the spin connection in the cylinder frame has zero component
for ωρ̂ψ̂t̂E , as can be seen in (C.2), the corresponding spin connection of KK frame mapped
by (4.3), ω̇η̂ ψ̂t̂E(= ω̇1̇

2̇5̇), is non-zero due to the contribution of the Lorentz transformation
matrix in the second term of (4.3). According to (4.8), this non-zero component gives the
non-zero value of the electric flux along AdS2. This explains why there is electric flux on
AdS2 even though the AdS3 does not have any electric flux.

We now summarize the on-shell supersymmetric field configuration in the KK coordi-
nates. By using the transformations (4.10), (4.11), (4.12) on the background Weyl multiplet
as in (3.18) and matter multiplets as in (2.14), (2.16), we obtain the following configuration:

ds5
2 = `2 (dη2 + sinh2 η dχ2 + dθ2 + sin2 θ dφ2) + `2 (dx5 + i(cosh η − 1) dχ)2 ,

Ṫ34 = − 1
4` , (4.13)

σ̇I = −p
I

`
, Ḟ Iθφ = pI sin θ , Ẇ I

x5 = µI ,

Ȧ1
1 = Ȧ2

2 =

√
p3

3`3 .

We note that the background geometry has an S1 fibration over the four-dimensional base,
which is Euclidean AdS2 × S2. The angular coordinate χ of Euclidean AdS2 has periodic-
ity 2π. By comparing the metric with the KK ansatz (4.7), we identify the following values
for the KK one-form and scalar:

B = i(cosh η − 1) dχ , φ = `−1 . (4.14)

The background configuration given in (4.13) has well-defined supersymmetry. To
see that, we look for the Killing spinors. By the Eulidean continuation of the Lorentzian
Killing spinors (2.23) followed by the coordinate transformation (4.10) and the Lorentz
transformation (4.12) we obtain

ε̇ i(1) = (−iε̇ +
+ , ε̇ −− ) , ε̇ i(2) = (ε̇ +

+ ,−iε̇ −− ) ,

ε̇ i(3) = (−ε̇ −− ,−iε̇ +
+ ) , ε̇ i(4) = (−iε̇ −− ,−ε̇ +

+ ) ,
˙̃ε i(1) = (ε̇ −+ , iε̇ +

− ) , ˙̃ε i(2) = (iε̇ −+ , ε̇ +
− ) ,

˙̃ε i(3) = (−iε̇ +
− , ε̇ −+ ) , ˙̃ε i(4) = (ε̇ +

− ,−iε̇ −+ ) ,

(4.15)

where the spinors ε̇ ±± and ε̇ ∓± are

ε̇ +
+ =

√
`

2 e
i
2 (χ+φ)

 cosh η
2

− sinh η
2

⊗
 cos θ2

sin θ
2

 , ε̇ −+ =

√
`

2 e
i
2 (χ−φ)

 cosh η
2

− sinh η
2

⊗
− sin θ

2

cos θ2

 ,

ε̇ +
− =

√
`

2 e−
i
2 (χ−φ)

− sinh η
2

cosh η
2

⊗
 cos θ2

sin θ
2

 , ε̇ −− =

√
`

2 e−
i
2 (χ+φ)

− sinh η
2

cosh η
2

⊗
− sin θ

2

cos θ2

 .

(4.16)
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Note that they are well-defined with respect to the global structure of the geometry (4.7)
because they do not depend on the x5 direction (the spinors above are in fact precisely
the four-dimensional Killing spinors on AdS2× S2, as we spell out in appendix E). Note
also that, as in the twisted torus frame, we cannot impose any reality conditions on the
Euclidean spinors. This is because although they formally satisfy (εi)†iγ5 = εij(εj)TC,
which is the same symplectic-Majorana condition of the Lorentzian theory (A.5), this
condition is not compatible with the local rotation of the Euclidean theory.

4.2 4d Euclidean supergravity and AdS2××× S2 background

The Kaluza-Klein formalism described in the previous subsection naturally connects the
5d supergravity on the AdS3 × S2 background in KK coordinates given in (4.13) to the 4d
supergravity on an AdS2 × S2 background. In this subsection, we review the 4d Euclidean
conformal supergravity and the AdS2×S2 background in more detail. In the 4d Euclidean
theory, there is a one-parameter redundancy for describing this background that comes
from the possible choice of reality condition for the fermions.

4d N = 2 supergravity: for the 4d N = 2 Euclidean conformal supergravity, we con-
sider the Weyl multiplet, coupled to Nv + 1 vector multiplets and one hypermultiplet. One
of the vector multiplets and the single hypermultiplet act as the compensators to consis-
tently gauge-fix the dilatations of the off-shell theory. The fields of the Weyl multiplet are

{eµa, ψia, ADµ , ARµ , Vµij , T±ab, D, χ
i
4d} , (4.17)

corresponding, respectively, to the vielbein, gravitino, dilatations gauge field, the SO(1, 1)R
and SU(2)R gauge fields,13 auxiliary self-dual/anti-self-dual two-form, auxiliary scalar, and
the auxiliary fermion. As in the five-dimensional case, we fix ADµ = 0 using the K-gauge.
The fields of the Nv + 1 vector multiplets are

{XI , XI , AIµ, λI i, YI ij}, I = 0, · · · , Nv , (4.18)

corresponding to the complex scalar and its conjugate, the U(1) gauge field, the gaugino,
and the auxiliary SU(2) triplet. Finally, the hypermultiplet consists of scalars and fermions,

{Aiα, ζα4d} . (4.19)

The supersymmetry transformations on the spinor fields ψia, λI i, ζα4d are presented in (E.1),
following the conventions of [15].

The 4dN = 2 supergravity is governed by the prepotential F (X) which is homogeneous
of degree 2. Here, we choose the prepotential as [16]

F (X) = − 1
12 cIJK

XIXJXK

X0 , (4.20)

(the sum running over I = 1, . . . Nv), such that the vector multiplet sector of the 4d theory
matches that of the 5d theory described in the section 2.1, according to the 4d/5d map
that we will present shortly in subsection 4.3.

13The R-symmetry group of the Euclidean theory is SU(2) × SO(1, 1) compared to SU(2) × U(1) in the
Lorentzian case.
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Reality conditions: note that in the Euclidean theory the fields XI and X
I — and,

more generally, fields related by complex conjugation in the Lorentzian theory (e.g. T+
ab

and T−ab) — are independent in the Euclidean theory. In order to preserve the number of
degrees of freedom, we should impose reality conditions in the Euclidean theory. This may
be done by imposing an appropriate reality condition on the spinors and using supersym-
metry. The minimal spinors in the N = 2 four-dimensional Euclidean theory can be chosen
to obey the symplectic-Majorana condition. We note that there are actually an infinite
number of such consistent conditions which, for any spinor ψi, are parametrized by a real
number α as

(ψi)†eiαγ5 = εij(ψi)TC , α ∈ R . (4.21)

This infinite choice stems from the fact that the chiral and anti-chiral spinors are indepen-
dent in Euclidean 4d, and the symplectic-Majorana condition for the chiral and anti-chiral
spinors can be imposed with relatively different phases. Two natural examples are:

α = π/2 : (ψi)†iγ5 = εij(ψj)TC , α = 0 : (ψi)† = εij(ψj)TC . (4.22)

A spinor satisfying the general reality condition (4.21) (which we denote by ψi(α)) is related
to spinors satisfying (4.22)

ψi(α) = e
i
2γ5(α−π2 )ψi(π/2) = e

i
2αγ5ψi(0) . (4.23)

Now, if we impose one such condition on all the spinors of the theory (including the
Killing spinors), then the consistency of the supersymmetry transformations under this
condition fixes specific reality conditions on the bosonic fields. For the two examples above
we have, respectively, the following conditions for the relevant bosonic fields:

α = π/2 :
(
T±ab
)∗ = T±ab ,

(
XI
)∗ = XI ,

(
X
I)∗ = X

I
,

α = 0 :
(
T±ab
)∗ = −T±ab ,

(
XI
)∗ = −XI ,

(
X
I)∗ = −XI .

(4.24)

However, note that imposing either reality condition in (4.24) causes the wrong sign for
the kinetic terms of the action, making path integral ill-defined. In fact, this is the case
for all bosonic reality conditions implied from supersymmetry by (4.21). As was discussed
in section 2.1, the resolution is to impose the standard reality condition on the bosonic
fluctuations, e.g. (δXI)∗ = δX

I , so that path integral is well-defined, and to treat the
fermion fluctuations ψ1 and ψ2 as being independent. For the background, however, the
effect of the choice for α still remains: there is a one-parameter family of Killing spinors
that satisfy the reality condition (4.21), and the supersymmetric bosonic background has
a corresponding dependence on the choice of α as we will shortly see below.

4d AdS2 × S2 background: here we present the Euclidean AdS2 × S2 background,
including the complete Weyl multiplet and matter multiplets. This solution can be obtained
by Wick rotation of the Lorentzian AdS2 × S2 solution, which carries both electric and
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magnetic charges
(
qI , p

I
)
. The non-trivial fields are:

ds4
2 = gµν dx

µdxν = `2
(
dη2 + sinh2 η dχ2 + dθ2 + sin2 θdφ2

)
,

T−12 = −iω , T+
12 = −iω , T−34 = iω , T+

34 = −iω ,

AI = −i eI(cosh η − 1) dχ− pI cos θ dφ ,

XI = ω

8 (eI + ipI) , X
I = ω

8 (eI − ipI) ,

Aαi = ai
α = constant .

(4.25)

By the field equation for the auxiliary scalar D, the aiα are constrained to obey:

Ωαβ ε
ijai

αaj
β = −4i(FIX

I − F IXI) . (4.26)

By the attractor equations [57], the electric field eI is related to the electric charge qI as

4i
(
ω−1∂F (X)

∂X
I − ω

−1∂F (X)
∂XI

)
= qI , (4.27)

and the two independent complex parameters ω and ω̄ (unlike in the Lorentzian theory, they
are not complex conjugate to each other) are related to the length scale of the metric ` as

`2 = 16
ωω

, (4.28)

which indeed scales consistently with Weyl weight (−2) and SO(1, 1)R weight 0. Since
the two complex parameters ω and ω̄ carry opposite charges under the SO(1, 1)R gauge
symmetry, we can set their magnitude to be same:

|ω| = |ω| = 4/` . (4.29)

Note that to match our 5d set-up, we uphold the dilatational symmetry, which is manifested
here in the form of an arbitrary value for ` (one may break the symmetry by fixing ` to 1
for instance, as in [1]). The relation (4.28), (4.29) indicates that ω and ω̄ are now formally
conjugate to each other so that we can rewrite them using the following parametrization:

ω(α) = 4
`
eiα , ω(α) = 4

`
e−iα , α ∈ R . (4.30)

Unlike in the 4d Lorentzian theory, where the phase α is fixed by the U(1)R gauge sym-
metry, in the Euclidean theory it remains as a free parameter. It is, in fact, precisely the
parameter that determines the choice of reality condition for the spinors as in (4.21), i.e.
the background described in (4.25) with generic α as in (4.30) preserves the supersym-
metries generated by Killing spinors obeying the reality condition (4.21). For the case of
α = π/2 the 8 pairs of Killing spinors are presented in (E.22) and the Killing spinors for a
generic α can be read off from (4.23). Note that the Killing spinors in (E.22) are exactly
same Killing spinors as those of the 5d KK frame given in (4.15).
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Now, by comparing the 4d background (4.25) to the 5d KK-frame background (4.13),
it is clear that the AdS2× S2 metric in the former is the reduction of the AdS3× S2 metric
in the latter, as mentioned in section 4.1. However, it is not yet clear how the 4d/5d
background values of the other fields are related (beyond just the metric), and how off-
shell fluctuations are connected. In the next subsection, we will elucidate these points by
describing the full off-shell map between the Euclidean 4d and 5d supergravity. Using this
map, we will explicitly present how the 4d/5d backgrounds are mapped.

4.3 The off-shell Euclidean 4d/5d lift

In this subsection, we describe the off-shell connection between the 4d Euclidean and 5d
Euclidean theory. We present how the AdS2×S2 on-shell background in (4.25) maps to the
AdS3 × S2 on-shell background in KK frame (4.13). This involves a choice of the relevant
parameters of the 4d background, specifically (e0, p0) in (4.25), and depending on the choice
of parameter ω and ω̄ (4.25), a proper mapping parameter is determined. We then show
how to reach the 5d twisted torus background. We end the section with the steps to lift
off-shell localization solutions to the 5d twisted torus.

To obtain the Euclidean 4d/5d connection, we use the Lorentzian 4d/5d relations
of [16] and map the two theories to their consistent Euclidean counterparts. Getting the
Euclidean 5d theory by the Wick rotation is straightforward, as explained in section 2.1.
We follow the conventions of the 4d Euclidean theory in [15]. Equivalently, one can start
from the relations between the 5d Lorentzian and 4d Euclidean theories of [23], and Wick
rotate the 5d theory. The map obtained in this approach differs from ours only in the way
that the conventions of the 4d Euclidean theory of [23] differ from those of the 4d Euclidean
theory of [15].14

Under Kaluza-Klein reduction of the 5d conformal supergravity to 4d, the vector multi-
plets I = 1, . . . , Nv reduce to the corresponding 4d matter vector multiplets I = 1, . . . , Nv,
and the Weyl multiplet reduced to the 4d Weyl multiplet and the additional Kaluza-Klein
vector multiplet I = 0.

One can expect that the Kaluza-Klein scalar φ associated with the 5d metric (4.6)
falls into the scalar in the 4d Kaluza-Klein vector multiplet. However, directly performing
this reduction only gives one real scalar degree-of-freedom, while there should be two real
degree-of-freedom for the scalars of the vector multiplet. Additionally, the 4d SO(1, 1)R
symmetry factor is not realized in any of the multiplets. To recover the missing scalar
d.o.f., an additional field ϕ is introduced [16, 23] to define the two 4d scalars in the KK
vector multiplet as

X0 = − i
2e−ϕφ , X

0 = i
2eϕφ . (4.31)

The field ϕ transforms locally under SO(1, 1)R as

ϕ → ϕ+ Λ0 , (4.32)

where Λ0 is real. One can then consistently couple ϕ to the remaining 4d fields, so that
the SO(1, 1)R of the 4d theory is realized.

14The mapping between these conventions is also presented in [15].
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We now present the explicit 4d/5d mappings, up to quadratic order in the fermions,
keeping the general ϕ dependence. The 4d Weyl multiplet is related to the 5d Weyl
multiplet as:

eµ
a = Ėµ

a , (4.33)

ψia = e−
1
2ϕγ5Ψ̇ i

a , (4.34)

ARa = −6iṪa5 + ea
µ∂µϕ (4.35)

V iaj = V̇a j
i , (4.36)

T 4d±
ab = e±ϕ(24 Ṫ 5d

ab + iφ−1εabcdF (B)cd)± , (4.37)

D = 4Ḋ + 1
4φ
−1eaµDµ(eaνDνφ) + 3

32φ
−2F (B)abF (B)ab (4.38)

+3
2 ṪȦḂṪ

ȦḂ + 1
4φ

2V̇x5i
j V̇x5j

i ,

χi4d = 8χ̇i + 1
48γ

abF (B)abΨ̇i
x5 −

3i
4 φṪabγ

5γabΨ̇i
x5 (4.39)

+1
4φ
−1γ5 /D(φ2Ψ̇i

x5)− 1
2φ

2Vx5j
iΨ̇j

x5 −
9
4iφṪa5γ

aΨ̇i
x5 ,

where εabcd is the four-dimensional Levi-Civita symbol, and the 4d conformally invariant
D’Alembertian is eaµDµ(eaνDνφ) = (DaDa + 1

6R)φ, where R is the 4d Ricci scalar and Da
is the 4d Lorentz and R-symmetry covariant derivative. The 4d supersymmetry parameters
are given in terms of the 5d supersymmetry parameters and 5d Weyl multiplet fields as

εi4d = e−
1
2ϕγ5 ε̇i , (4.40)

ηi4d = −iγ5e
1
2ϕγ5

(
η̇i − 2Ṫa5γ

aγ5ε̇i + i
8φ
−1γ5(F (B)ab − 4iφṪabγ5)γabε̇i

)
. (4.41)

Moving on to the vector multiplets, the 4d KK vector multiplet fields in terms of the 5d
Weyl multiplet are:

X0 = − i
2e
−ϕφ , X

0 = i
2e

ϕφ , (4.42)

A0
a = ea

µBµ , (4.43)

λ0 i = e−
1
2ϕγ5Ψ̇ i

5 φ , (4.44)

Y0 i
j = φ V̇5 j

i , (4.45)

and the 4d matter vector multiplet fields in terms of the 5d vector multiplet fields are:

XI = 1
2e
−ϕ(σI + iẆ I

5 ) , X
I = 1

2e
ϕ(σI − iẆ I

5 ) , (4.46)

AIa = Ẇ I
a , (4.47)

λI i = e−
1
2ϕγ5

(
Ω̇I i − Ẇ I

5 Ψ̇ i
5

)
, (4.48)

YI ij = −2
(
Y I i

j + 1
2Ẇ

I
5 V̇5 j

i
)
. (4.49)

– 26 –



J
H
E
P
0
7
(
2
0
2
3
)
2
1
8

Finally, the 4d hypermultiplet in terms of the 5d hypermultiplet is

Aiα = φ−1/2Ȧi
α . (4.50)

Using the above maps, the 4d supersymmetry transformation is obtained from the 5d
supersymmetry transformation together with a 5d local rotation,

δ4d = δ5d + δM (ε) , ε5a = −εa5 = ε̇iγaΨi
5 , (4.51)

where the rotation parameter εAB is chosen to fix the gauge Ėx5a = Ė5
µ = 0. We also

need the supersymmetry transformation rule of ϕ,

δ5dϕ = ε̇iΨ̇i
5 . (4.52)

For the purpose of lifting the 4d configuration to 5d, we use the inverse map, namely
the 5d fields in terms of the 4d fields. The 5d Weyl multiplet fields are given in terms of
the 4d Weyl multiplet and 4d KK multiplet as:

Ėµ
a = eµ

a , Ėµ
5 = φ−1Bµ , Ėx5

5 = φ−1 , (4.53)

Ψ̇i
a = e

1
2ϕγ5ψia , Ψ̇ i

5 = φ−1e
1
2ϕγ5λ0 i , (4.54)

Ṫab = 1
24
(
e−ϕT+

ab + eϕT−ab − iφ−1εabcd F (B)cd
)
, (4.55)

Ṫa5 = i
6
(
ARa − eaµ∂µϕ

)
, (4.56)

V̇a j
i = Vaij , V̇5 j

i = φ−1Y0 i
j , (4.57)

Ḋ = 1
4

(
D − 1

4φ
−1eaµDµ(eaνDνφ)− 3

32φ
−2F (B)abF (B)ab

− 3
2 ṪȦḂṪ

ȦḂ − 1
4φ

2V̇x5i
j V̇x5j

i
)
, (4.58)

where
φ = 2ieϕX0 = −2ie−ϕX0

, Bµ = A0
µ . (4.59)

The 5d supersymmetry parameters are:

ε̇i = e
1
2ϕγ5εi4d , (4.60)

η̇i = γ5

(
ie−

1
2ϕγ5ηi4d + 2Ṫa5γ

aε̇i − i
8φ
−1(F (B)ab − 4iφṪabγ5)γabε̇i

)
. (4.61)

The 5d vector multiplet is given in term of the 4d vector multiplet as:

σ̇I = eϕXI + e−ϕX
I
, (4.62)

Ẇ I
a = AIa , Ẇ I

5 = −i
(
eϕXI − e−ϕXI

)
, (4.63)

Ω̇I i = e
1
2ϕγ5λi I + Ẇ I

5 Ψ̇ i
5 , (4.64)

Ẏ I i
j = −1

2Y
I i
j −

1
2Ẇ

I
5 V̇5 j

i . (4.65)

The 5d hyper scalar given in terms of the 4d hypermultiplet is

Ȧi
α = φ1/2Aiα . (4.66)
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Mapping 4d/5d classical backgrounds: by the above 4d/5d map, the relation be-
tween the 4d AdS2 × S2 backgrounds (4.25) and 5d AdS3 × S2 background in (4.13) in
KK coordinates becomes more manifest. One important subtlety is about the choice of ϕ
in (4.59). In the case of the Lorentzian 4d/5d connection, ϕ is just a U(1)R gauge param-
eter that fixes the gauge-redundant phase of X0 and X0, making the φ automatically real.
However, in the Euclidean case, the 4d theory has an SO(1, 1)R gauge symmetry instead
of U(1)R, whereas the background values for X0 and X

0 have a relative phase coming
from the choice of the parameter ω and ω̄ and value of the charge e0 and p0. Therefore,
unlike in the Lorentzian case, the value of ϕ is not a ‘gauge fixing’ to kill the phase of X0

and X0, but rather a ‘choice’ to cancel the phase of X0 and X0. (By the SO(1, 1)R gauge
redundancy and by the rule (4.32), we shift the ϕ to set the magnitude of X0 and X0 to
be same.)

Recalling the background value of X0 and X0 as given in (4.25), where the ω and ω̄
are parametrized by α as in (4.30), the value of the mapping parameter ϕ is determined
to be

ϕ±(α , e0 , p0) = −iα± iπ2 − i arctan
(
p0

e0

)
, (4.67)

by the condition that φ be real. There remains an ambiguity of ±π/2 that is related to
an overall sign choice for φ. We now consider specific examples for two distinct choices
of (e0, p0), keeping the choice of α to be generic. These are:

(1) (e0, p0) = (e0, 0) , ϕ±1 (α) = −iα± iπ/2 ⇒ φ = ∓e
0

`
,

(2) (e0, p0) = (0, p0) , ϕ±2 (α) = −i(α+ π/2)± iπ/2 ⇒ φ = ∓p
0

`
.

(4.68)

Here we see that, by the mapping parameter ϕ±, the background value of the lifted 5d
field φ is indeed real, but there is dependence on the choice ±. We note that for both cases
in (4.68) and, more generally, with any choice (4.67), all the lifted 5d fields are independent
of the choice of phase ω ≡ exp(iα) in the 4d background (4.25).

The resulting 5d background fields are listed in table 2. The 4d configuration with
(e0, p0, ϕ) = (e0, 0, ϕ±1 ) as in (1) lifts to an AdS3 × S2 background, while the one with
(e0, p0, ϕ) = (0, p0, ϕ±2 ) as in (2) lifts to an AdS2×S3 background. For the latter case, the
localization solutions were studied in [19]. In both cases, the choice of the sign in ϕ± gives
the opposite sign for the background values of φ, ṪȦḂ, σ̇ and hyper norm χ̇. At the level
of the Killing spinor equation (that we review in appendix C), choosing either sign gives a
set of Killing spinors corresponding, respectively, to the right- or left-moving supercharges
in terms of the 2d chiral N = 4 super algebra.

Now, for our problem, the full specification of parameters to lift the Euclidean AdS2×S2

backgrounds (4.25) to the 5d KK frame (4.13) is

(e0, p0, ϕ) = (−1, 0, ϕ+
1 ) , (4.69)

with identification eI = µI and ϕ+
1 given in (4.68). To relate Euclidean AdS2 × S2 to the

twisted torus (3.23), this lift is then followed by the following steps: taking the lifted 5d KK
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ϕ = ϕ±1

(e0, p0) = (e0, 0)

ds2 = AdS3 × S2

Ṫ34 = ∓1/(4`)
σ̇I = ∓pI/`,
Ḟ I34 = pI/`2

Ȧ1,2
1,2 =

√
± p3

3`3

Sbulk = p3

12e0

ϕ = ϕ±2

ds2 = AdS2 × S3

Ṫ12 = ∓i/(4`)
σ̇I = ±eI/`,
Ḟ I12 = −ieI/`2

Ȧ1,2
1,2 =

√
∓ e3

3`3

Sbulk = e3

12p0

(e0, p0) = (0, p0)

Table 2. The non-trivial 5d fields obtained by lifting the 4d backgrounds (4.25) with (ω, ω)
as given in (4.30) and with different choices for (e0, p0) and ϕ. For the choice of (e0, p0) on
the left and right panel, the 4d hyper scalar that is lifted is determined by the D-field equation
constraint (4.26) as a1

1 = a2
2 = 1/`

√
−p3/3e0 and a1

1 = a2
2 = 1/`

√
e3/3p0 respectively. We also

include the value for the finite piece of the bulk action (2.12). The field configurations on the right
entry are solutions corresponding to the near-horizon of the supersymmetric Euclidean 5d black
hole. The field configurations on the left entry are the Euclidean AdS3 × S2 solutions.

frame background (4.13) with Q- Killing spinors (4.15), one applies the local coordinate
transformations (4.10), (3.21), the spinor Lorentz rotation in (4.4) with (4.12), and finally
one imposes the periodicity conditions (3.22) with Ω given in (3.27). In this procedure,
only four of the eight Q- Killing spinors mapped from (4.15) are well-defined on the twisted
torus, as expected.

Mapping 4d localization solution to the 5d twisted torus frame: having identified
the relevant 4d background, together with the correct mapping parameter (4.69) that
relates it to the 5d twisted torus background (3.23), we now want to map the off-shell
localization solution of 4d supergravity on that background to the 5d localization solution
around the twisted torus background. The strategy for this mapping follows the same
steps as the mapping of the backgrounds presented above. Here, we assume that phase
factors in the quantum fluctuation of the scalars X0 and X

0 are appropriately cancelled
by a fluctuating value of ϕ around its value in (4.69), such that it makes the quantum
fluctuation of the 5d field φ real.15 It will turn out that for our off-shell localization
solution, we can use the same value of ϕ as was chosen in (4.69).

Here, we summarize the steps as follows:

1. Start with the 4d localization manifold whose background is the Euclidean AdS2×S2

solution (4.25) with (e0, p0) = (−1, 0). Since the result does not depend on the choice
of α in (4.30), without loss of generality we take α = π/2 for convenience.

2. Apply the 4d/5d lift with the mapping parameter ϕ = ϕ+
1 (π/2) = 0 to obtain 5d

localization solutions in the KK frame (4.13) of Euclidean AdS3 × S2.
15Since we choose the reality condition for the fluctuation of X0 and X0 to be complex conjugate to each

other, as explained after (4.24), and since this condition is the same as the condition in the Lorentzian
theory, it appears there may be some U(1)R gauge symmetry hidden in the fluctuating field, and it may
justify our assumption.
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3. Transform these localization solutions to the twisted torus frame by applying the
local coordinate maps (4.10), (3.21), the spinor Lorentz rotation in (4.4) with (4.12),
and finally imposing the periodicity conditions (3.20) with Ω given in (3.27).

Note that a consistent lift to the twisted torus requires that the lifted solutions respect the
periodicities (3.20). As an example of an inconsistent lift, consider a scalar field fluctuation
on AdS2 × S2 with non-zero momentum on χ, which therefore has 2π-periodicity in χ.
Recalling that χ = ψ − itE, we see that such a mode, lifted to 5d, does not respect the
second periodicity condition in (3.20). As we discuss in the next section, the fields in
the four-dimensional localization manifold depend only the radial coordinate η = 2ρ and
therefore lift consistently to the 5d twisted torus.

5 The lift of localization solutions on AdS2××× S2 to HHH3/ZZZ××× S2

In this section, we apply the lifting procedure to obtain localization solutions around the
supersymmetric H3/Z × S2 background. We find a set of solutions to the BPS equations
parametrized by Nv+1 real coordinates CI , I = 0, . . . , Nv. These coordinates are inherited
from the 4d localization manifold, where each CI parametrizes the off-shell solution for
the Ith vector multiplet. In the 4d AdS2 × S2 problem, the boundary conditions fix all
the fields to their attractor values at infinity. The localization solution consists of the
scalar fields XI going off-shell in the interior, with a radially-decaying shape that is fixed
by supersymmetry. The parameter CI labels the size of deviation at the origin. In 5d,
the CI , I = 1, · · · , Nv parametrize the size of the off-shell solution in the vector multiplet,
and C0 parametrizes a certain excitation of the Weyl multiplet. Here, we have an AdS3×S2

background, where one leg of the gauge field (Wz′) is fixed at infinity to its on-shell value
while the other (Wz′) is free to fluctuate, as we described in section 3.3. The parameter CI

labels the deviation of both W I
z′ and W I

z′ from their on-shell value at the origin as well
as the boundary fluctuation of W I

z′ . The precise solutions are presented in (5.6)–(5.9) for
the Weyl multiplet, and in (5.13)–(5.16) for the vector multiplets. The hypermultiplet also
fluctuates, and the solution is given in (5.17).

4d localization solutions: the most general solution in 4d around the AdS2× S2 back-
ground is parametrized by one real parameter in each vector multiplet and one real pa-
rameter in the Weyl multiplet, before fixing the gauge for local scale transformations [44].
The gauge can be chosen so that there is no off-shell fluctuations in the Weyl multiplet [1].
The off-shell solution in the vector multiplets takes the following form:

XI = i
2`

(
eI + i pI + CI

cosh η

)
, X

I = − i

2`

(
eI − i pI + CI

cosh η

)
, (5.1)

AI = −i eI(cosh η − 1) dχ− pI cos θ dφ , (5.2)

YI 1
1 = YI12 = −CI

`2 cosh2 η
, (5.3)

where we use (ω(π/2), ω(π/2)) = (4i/`, −4i/`). The CI parametrize the off-shell fluctua-
tions around the background (4.25).
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Lift to the Weyl multiplet: for the lift to the Weyl multiplet, the relevant fields of the
4d localization solution (5.1) are those of the KK vector multiplet I = 0. Using (4.59), we
first obtain the off-shell values for the KK scalar and one-form:

φ = 1
`

(
1− C0

cosh η

)
, Bχ = i(cosh η − 1) . (5.4)

It is useful to define the function

φ(x) := 1− C0

cosh x . (5.5)

Now, using the lifting equations (4.53)–(4.58) with (e0, p0) = (−1, 0) and ϕ = 0, we obtain
the full Weyl multiplet configuration in the KK frame. After applying the coordinate
maps (4.10) and (3.21) to the twisted torus frame, the non-trival fields are:

EM ′
A = `



2 0 0 0 0

0 sinh ρ
(
1 + 1−C0

φ(2ρ)

)
0 0 i cosh ρ

(
1− 1−C0

φ(2ρ)

)
0 0 1 0 0
0 0 0 sin θ 0

0 −i sinh ρ
(
1− 1+C0

φ(2ρ)

)
0 iΩ sin θ cosh ρ

(
1 + 1+C0

φ(2ρ)

)


, (5.6)

Tθφ′ = ` sin θ 1
12

( 1
φ(2ρ) − 4

)
, TθtE′ = i` sin θ Ω

12

( 1
φ(2ρ) − 4

)
, (5.7)

Vψ = i
(

1− 1
cosh 2ρ

)
φ(2ρ)− 1
φ2(2ρ) τ 3 , Vt′E =

(
1 + 1

cosh 2ρ

)
φ(2ρ)− 1
φ2(2ρ) τ 3 , (5.8)

D = 1
8`2φ(2ρ)2

(
(1− φ(2ρ)) sinh2 2ρ

cosh2 2ρ
− 2

3(1− φ(2ρ))2
)
. (5.9)

The line-element corresponding to the vielbein (5.6) is:

ds2 = 4`2dρ2 + 4`2
(

sinh2 ρ− sinh4 ρ

( 1
φ2(2ρ) − 1

))
dψ2

+ `2
(
dθ2 + sin2 θ

(
dφ′ + iΩdt′E

)2)+ 2i`2 sinh2 2ρ
( 1
φ2(2ρ) − 1

)
dψdt′E

+ 4`2
(

cosh2 ρ+ cosh4 ρ

( 1
φ2(2ρ) − 1

))
dt′E

2
.

(5.10)

Here, recall from section 3.2 that Ω = 1 + iτ1/τ2 in the twisted torus frame.
It remains to apply the lift to the Q- and S-Killing spinors. In principle, off-shell

fluctuations in the bosonic fields of the Weyl multiplet may induce off-shell fluctuations in
the 5d Killing spinors such that the BPS equations of the multiplet remain solved. Note
however that the 4d Weyl multiplet in the 4d localization solution does not fluctuate,
and so the 4d Q- and S- Killing spinors that we lift are just those of the 4d background,
namely the eight spinors εi4d(π/2), given explicitly in (E.22), and ηi4d(π/2) = 0 (recall we
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have fixed α = π/2). Further note that the lifting equation (4.60) for the 5d Q- spinors
only involves the 4d Q- spinors (which are on-shell). We conclude that the lift of the Q-
spinors is unchanged from the on-shell case, i.e. we obtain, in the twisted torus frame, the
four well-defined on-shell Q-spinors ε(a), a = 1, 2, 3, 4, as given in (3.28). In contrast, the
lifting equation (4.61) of the S- spinors η4d involves bosonic 5d fields which do fluctuate.
The 5d S- spinors, which are zero on-shell, therefore acquire a non-zero value off-shell. In
the twisted frame, we obtain four well-defined S- spinors η(a), associated with the four Q-
spinors ε(a). The one associated to the localization supercharge ε(1) has value

η1
(1) = −

C0

cosh(2ρ) e
i
2 (ψ+φ′+i(Ω−1)t′E)

3
√

2`φ(2ρ)



cos θ2 cosh ρ
2

−sin θ
2 cosh ρ

2

−cos θ2 sinh ρ
2

sin θ
2 sinh ρ

2


, (5.11)

η2
(1) = −

i C0

cosh(2ρ) e−
i
2 (ψ+φ′+i(Ω−1)t′E)

3
√

2` φ(2ρ)



sin θ
2 sinh ρ

2

cos θ2 sinh ρ
2

−sin θ
2 cosh ρ

2

−cos θ2 cosh ρ
2


. (5.12)

Lift of the vector multiplet: the relevant 4d fields are those of (5.1) with I = I.
Using the lifting equations (4.62)–(4.65) followed by the coordinate transformations (4.10)
and (3.21), we obtain the following non-trivial fields of the vector multiplet configuration
in the twisted torus frame:

σI = −p
I

`
, W I

φ′ = −pI cos θ , (5.13)

W I
ψ =

2i
(
CI/µI + C0

)
sinh2(ρ)
cosh 2ρ

φ(2ρ) µI , (5.14)

W I
t′E

= −ipIΩ cos θ +
CI/µI−C0

cosh 2ρ + CI/µI + C0 + 2
φ(2ρ) µI , (5.15)

Y I
12 = 1

2`2φ(2ρ)
CI/µI + C0

cosh2 2ρ
µI . (5.16)

Lift of the hypermultiplet: finally, the lift for the hypermultiplet (4.66) gives the
following non-trivial components for the off-shell hyper scalar:

A1
1 = A2

2 =
(
φ(2ρ)
`

)1/2
√
p3

3`3 . (5.17)

To summarize, the field configuration of the Weyl multiplet (5.6)–(5.9), the vector mul-
tiplet (5.13)–(5.16), and the hypermultiplet (5.17) are the 5d localization solutions. These
configurations are off-shell fixed-points of the variations generated by the supercharge Q
given in (4.1), around the supersymmetric H3/Z× S2 given in (3.23).
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Index Range Description
M, N, · · · (ρ, ψ, θ, φ, tE) 5d cylinder coordinates

M ′, N ′, · · · (ρ, ψ, θ, φ′, t′E) 5d twisted torus coordinates

A, B, · · · (ρ̂, ψ̂, θ̂, φ̂, t̂E) tangent frame for cylinder and twisted torus coordinates

Ṁ, Ṅ , · · · (η, χ, θ, φ, x5) 5d Kaluza-Klein coordinates

Ȧ, Ḃ, · · · (1, 2, 3, 4, 5) tangent frame for Kaluza-Klein coordinates

µ, ν, · · · (η, χ, θ, φ) Euclidean AdS2 × S2 coordinates

a, b, · · · (1, 2, 3, 4) tangent frame for Euclidean AdS2 × S2 coordinates

α, β, · · · (z, z) thermal AdS3 boundary coordinates

i, j, · · · (1, 2) or (+, −) Fundamental SU(2)

Table 3. Summary of index notation.
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A Notations and conventions

We summarize the various index notations in table 3.

Spinors and gamma matrices: we denote a basis for the d-dimensional Clifford alge-
bra as {

Γ = I, γA1 , γA1A2 , · · · γA1A2···Ad
}
, (A.1)

where:
γA1···Ak = γ[A1 · · · γAk] . (A.2)

In five dimension with Lorentzian signature, a consistent choice of gamma matrix satisfies
the following relations:

γ†A = −AγAA−1 , A = γ0 , A† = A−1 = −γ0 ,

γTA = CγAC−1 , CT = −C , C† = C−1 ,

γ∗A = −BγAB−1 , BT = CA−1 , B† = B−1 , B∗B = −1 .
(A.3)
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This is followed by the property, regarding the charge conjugation matrix C,

(CΓ(r))T = −(−)r(r−1)/2CΓ(r) , (A.4)

where Γ(r) is a matrix of the set (A.1) with rank r. Due to the property of the charge con-
jugation matrix, we can use the spinor representation satisfying the symplectic-Majorana
condition

ψ̄i = (ψi)†γ0 , (A.5)

where i is an SU(2)R index, and where ψ̄i is the symplectic-Majorana conjugate of ψi,
defined as

ψ̄i := εij(ψj)TC , (A.6)

with εij being the SU(2) symplectic metric ε12 = −ε21 = 1.
The five-dimensional Euclidean case is obtained by the Wick rotation of time direc-

tion x0, using the redefinition: x0 = −ix5. This consistently redefines the 0th gamma
matrix as the 5-th directional one as γ0 = iγ5. The relations on the Lorentizan gamma
matrices (A.3) then become, for the Euclidean case:

γ†A = γA

γ∗A = γTA = CγAC−1 , C† = C−1 , CT = −C ⇔ C∗C = −1 ,
(A.7)

with charge-conjugation matrix property:

(CΓ(r))T = −(−)r(r−1)/2CΓ(r) . (A.8)

In the main text, we often consider Lorentz scalars of the type

λ̄i Γ(r)εj . (A.9)

For two Grassman even spinors εi, λj , the property (A.8) leads to the following Majorana-
flip relations:

λ̄i Γ(r)εj = (−)r(r−1)/2
(
δji ε̄k Γ(r)λk − ε̄i Γ(r)λj

)
. (A.10)

Note some useful consequences of (A.10) for λ = ε:

ε̄i ε
j = 1

2
(
ε̄k ε

k
)
δji , (A.11)

ε̄i γ
Aεj = 1

2
(
ε̄k γ

Aεk
)
δji , (A.12)

ε̄k γ
ABεk = 0 , ε̄k γ

ABCεk = 0 , (A.13)

where we used r = 0, 1, 2, 3 respectively. The spinors in the Euclidean theory can also be
chosen to be symplectic-Majorana, but differently from (A.5), satisfying

ψ̄i = (ψi)† , (A.14)

with the same definition of the symmplectic Majorana conjugate ψi as (A.6). However, we
note that, as is commented in the begining of section 2.1, we does not impose (A.14) for
quantum theory.
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B Supersymmetry transformations in Euclidean 5d supergravity

Up to higher order in fermions, the infinitesimal Q- and S-supersymmetry transformations
on the spinor fields of the theory are as follows:

δΨi
M = 2DM εi + i

2TAB(3γABγM − γMγAB)εi − iγMηi ,

δχi = 1
2ε

iD + 1
64RMNj

i(V )γMN εj + 3i
64(3γABγC + γCγAB)εiDCTAB

− 3
16TABTCDγ

ABCDεi + 3
16TABγ

ABηi ,

δΩi = −1
2(FAB − 4σTAB)γABεi − iγAεiDAσ − 2εjkY ijεk + σηi ,

δζα = −iγAεiDAAi
α + 3

2Ai
αηi .

(B.1)

where the curvature RMNi
j(V ) is given by:

RMNi
j(V ) = 2 ∂[MVN ]i

j − 2V[Mi
kVN ]k

j . (B.2)

The relevant supercovariant derivatives acting on each field are covariant with respect
to all bosonic gauge symmetries except conformal boosts:

DM εi =
(
∂M −

1
4 ωM

AB γAB + 1
2bM

)
εi + 1

2VMj
i εj ,

DMTAB = (∂M − bM )TAB − ωMA
CTCB − ωMB

CTAC ,

DM σI = (∂M − bM ) σI ,

DM Ai
α =

(
∂M −

3
2bM

)
Ai

α − 1
2VMi

jAj
α .

(B.3)

C Killing spinors on AdS3 and S2

In this appendix, we present solution of the Killing spinor equation (2.19) on the AdS3×S2

background given in (2.13) and (2.15). Here, let us decompose the spacetime and local
indices into those for 3 + 2 dimensions as M = {µ,m} and A = {a, a}. Then the Killing
spinor equation (2.19) splits as

Dµεi = s
i

4`γ
θ̂φ̂γµε

i , Dmε
i = s

i
2`γ

θ̂φ̂γmε
i , (C.1)

where we inserted the sign factor s = ±1 to keep track of the choice of the background
value of TMN ; s = +1 is for our background value of TMN in (2.15), and s = −1 is for
another background value by changing TMN → −TMN from the (2.15) (which involves
changing σ → −σ from (2.14) by the BPS equation of vector multiplet). Note that, since
the background metric (2.13) is direct product of 3 and 2 dimensions, the spin connection
is also well separated as −1

4ω
AB
µ γAB = −1

4ω
ab
µ γab and −1

4ω
AB
m γAB = −1

4ω
ab
m γab. This can

be seen explicitly by noting that the non-zero spin connection components are

ωt̂ρ̂t = − sinh ρ , ωρ̂ψ̂ψ = cosh ρ , ωθ̂φ̂φ = cos θ . (C.2)
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We now decompose the spinor as

εi = εiAdS3 ⊗ ε
i
S2 , (C.3)

and take the following decomposition for the gamma matrices

γt̂ = σ0 ⊗ τ 3 , γρ̂ = σ1 ⊗ τ 3 , γψ̂ = σ2 ⊗ τ 3 , γθ̂ = I⊗ τ 1 , γφ̂ = I⊗ τ 2 , (C.4)

where τ a, a = 1, 2, 3, denotes the Pauli sigma matrix and σa with a = 0, 1, 2 denotes the 3
dimensional gamma matrix. Here we choose σ0 = −σ1σ2 such that γt̂ρ̂ψ̂θ̂φ̂ = i for our
convention. The charge conjugation matrix can also be set to

C = −iσ2 ⊗ τ 1 , (C.5)

such that the gamma matrix relation (A.3) is satisfied. With this splitting of spinors and
gamma matrices, we arrive at the Killing spinor equations for AdS3 and S2 with radii 2`
and ` respectively:

0 =
(
DµεiAdS3 + s

1
4`σµε

i
AdS3

)
⊗ εiS2 , 0 = εiAdS3 ⊗

(
Dmε

i
S2 + s

1
2`τ 3τmε

i
S2

)
. (C.6)

The general solutions of these equations are well known [58], and the solutions are given by

εAdS3 = e−s
1
2σ1ρe−s

1
2σ0te

1
2σ12ψA , (C.7)

εS2 = e−si
1
2τ2θei 1

2τ3φB , (C.8)

where A and B are constant two-component complex spinors.
Let us write down the Killing spinor explicitly. We set the sign factor s = 1, denote

the chiral and anti-chiral component of the constant spinors as A± and B±, and choose
the 3 dimensional gamma matrix representation as

σa = (−i τ 3 , τ 1 , τ 2) . (C.9)

Then we can rewrite the solutions as

εAdS3 = A+ε
+
AdS +A−ε

−
AdS , εS2 = B+ε

+
S2 +B−ε

−
S2 , (C.10)

where

ε+AdS3
= e

i
2 (t+ψ)

 cosh ρ
2

− sinh ρ
2

 , ε−AdS3
= e−

i
2 (t+ψ)

− sinh ρ
2

cosh ρ
2

 , (C.11)

ε+S2 = e
i
2φ

 cos θ2
sin θ

2

 , ε−S2 = e−
i
2φ

− sin θ
2

cos θ2

 . (C.12)

By direct product of the Killing spinors (C.11) and those of (C.12), we obtain four complex
basis of Killing spinors as (2.21), or 8 pairs of symplectic Majorana spinors as in (2.23).

Note that the effect of the different sign s is to flip the sign of both ρ and t in the Killing
spinors. We also note that in odd dimensions there are two inequivalent representations
of gamma matrix. For instance, we can also choose σa = (+iτ 3, τ 1, τ 2) instead of (C.9).
Then this is equivalent to the changing the sign of t in the Killing spinors.
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D Global symmetry generators of AdS3 and S2

The global AdS3 geometry, in coordinates given in (2.13), has isometries generated by the
following Killing vectors,

¯̀− = 1
2
[
tanh ρ e−i(t−ψ)∂t − coth ρ e−i(t−ψ)∂ψ + ie−i(t−ψ)∂ρ

]
,

¯̀0 = − i
2(∂t − ∂ψ) ,

¯̀+ = −1
2
[
tanh ρ ei(t−ψ)∂t − coth ρ ei(t−ψ)∂ψ − iei(t−ψ)∂ρ

]
,

`− = 1
2
[
tanh ρ e−i(t+ψ)∂t + coth ρ e−i(t+ψ)∂ψ + ie−i(t+ψ)∂ρ

]
,

`0 = − i
2(∂t + ∂ψ) ,

`+ = −1
2
[
tanh ρ ei(t+ψ)∂t + coth ρ ei(t+ψ)∂ψ − iei(t+ψ)∂ρ

]
.

(D.1)

They form the SL(2,R)L × SL(2,R)R algebra through the Lie bracket:[
¯̀0 , ¯̀±

]
Lie

= ±¯̀± ,
[
¯̀+ , ¯̀−

]
Lie

= −2¯̀0 ,

[`0 , `±]Lie = ±`± , [`+ , `−]Lie = −2`0 .
(D.2)

The S2 geometry, in coordinates given in (2.13), has the isometries generated by the fol-
lowing Killing vectors,

j1 = i(sinφ∂θ + cosφ cot θ∂φ) ,
j2 = −i(cosφ∂θ − sinφ cot θ∂φ) ,
j3 = −i∂φ ,

(D.3)

which satisfy the SO(3) algebra

[ji , jj ]Lie = iεijkjk . (D.4)

The bosonic sector of the supersymmetry algebra of AdS3×S2 presented in section 2.3,
contains SL(2,R)R and the SO(3) symmetry generators, acting on all the fields of 5d
supergravity. Their representations as variations on fields are given by the combination of
the differential operators presented in (D.1), (D.3) with the corresponding local Lorentz
transformation given as follows:16

J1 = −j1 + i
2δM (λ21̃) , J2 = −j2 + i

2δM (λ11̃) , J3 = −j3 ,

L+ = −`+ + 1
2δM (iλ41̃ + λ31̃) , L− = −`− + 1

2δM (iλ41̃ − λ31̃) , L0 = −`0 .
(D.5)

16The negative sign in front of ja, `±,0 appears from the change in representation as differential operators
on functions to variational action on fields [36].
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4d Weyl eµ
a, ψia, A

D
µ , A

R
µ ,Vµij , T±ab, D, χi4d

4d Vector XI , X
I
, AIµ,YIij , λI i

4d Hyper Aiα, ζα4d
4d SUSY parameters εi4d, η

i
4d

Table 4. Independent fields of the supersymmetric multiplets and Q, S-supersymmetry parameters
in four-dimensional N = 2 conformal supergravity.

Here, δM (λ̂ab̃) is the local Lorentz transformation in the {Qa, Q̃b} algebra, as it appears
in (2.6), with field dependent parameters (λab̃)AB.17 On the background (2.13)–(2.16),
their values are

(λ11̃)θ̂φ̂ = 2sinφ
sin θ , (λ21̃)θ̂φ̂ = 2cosφ

sin θ ,

(λ31̃)t̂ρ̂ = cos(t+ ψ)
cosh ρ , (λ31̃)t̂ψ̂ = − sin(t+ ψ) , (λ31̃)ρ̂ψ̂ = −cos(t+ ψ)

sinh ρ

(λ41̃)t̂ρ̂ = sin(t+ ψ)
cosh ρ , (λ41̃)t̂ψ̂ = cos(t+ ψ) , (λ41̃)ρ̂ψ̂ = −sin(t+ ψ)

sinh ρ .

(D.6)

E Euclidean 4d supersymmetry and AdS2 ××××××××× S2

In this appendix, we present the supersymmetry transformation of the fermions in Eu-
clidean 4d conformal supergravity, following the convention of [15], and setting all fermions
to zero. The field content in Euclidean 4d superconformal gravity is given in table 4. We
also present the Euclidean AdS2×S2 background and its Killing spinors. All fields appear-
ing in this section refer to four-dimensional ones, so we omit the 4d subscripts.

Euclidean 4d supersymmetry transformations: the Q and S-supersymmetry trans-
formations of the fermionic fields are

δψiµ = 2Dµε
i + i 1

16γab(T
ab+ + T ab−)γµεi + γµγ5η

i ,

δχi = i
24γab

/D(T ab+ + T ab−)εi + 1
6R̂(V)ijµνγµνεj −

1
3R̂(AR)µνγµνγ5ε

i

+D εi + i 1
24(T+

ab + T−ab)γ
abγ5η

i ,

δλi+ = −2iγaDaXε
i
− −

1
2Fabγ

abεi+ + Y ijεjkεk+ + 2iXηi+ ,

δλi− = −2iγaDaXε
i
+ −

1
2Fabγ

abεi− + Y ijεjkεk− − 2iXηi− ,

δζα = /DAiαεi −Aiαγ5η
i ,

(E.1)

17The δM ((λab̃)AB) acts on a spinor ψ as 1
4 (λab̃)ABγABψ, and on a vector V A as (λab̃)ABV B .
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where:
Fµν = Fµν −

(1
4X T−µν + 1

4X T+
µν

)
. (E.2)

The covariant derivatives are:

Dµε
i =

(
∂µ −

1
4ωµabγ

ab + 1
2A

D
µ + 1

2A
R
µ γ5

)
εi + 1

2Vµ
i
jε
j , (E.3)

DµX = (∂µ −ADµ +ARµ )X , (E.4)

DµX = (∂µ −ADµ −ARµ )X , (E.5)

DµAiα = (∂µAiα − bµ)Aiα + 1
2Vµ

j
iAj

α , (E.6)

and the curvatures are:

R̂µν(AR) = 2∂[µA
R
ν] ,

R̂µν(V)ij = 2∂[µVν]
i
j + V[µ

i
kVν]

k
j . (E.7)

Supersymmetric AdS2 × S2 background and Killing spinors: Recall the fully
supersymmetric, Euclidean AdS2 × S2 solution of the 4d theory considered in (4.25):

ds2 = `2
[
dη2 + sinh2 η dχ2 + dθ2 + sin2 θ dφ2

]
, (E.8)

F I12 = −ie
I

`2
, F I34 = pI

`2
, ↔ AI = −ieI(cosh η − 1)dχ− pI cos θdφ

(E.9)

XI = ω

8 (eI + ipI) , X̄I = ω̄

8 (eI − ipI) , I = 0, 1, · · · , Nv (E.10)

T−12 = −iω , T−34 = iω , T+
12 = −iω̄ , T+

34 = −iω̄ . (E.11)

Here, ` is the radius of AdS2 and S2, and ω, ω are two independent complex constants
satisfying

`2 = 16
ω̄ω

. (E.12)

As discussed in section 4.2, we may pick the SO(1, 1)R gauge (4.29) such that (E.12) implies
the following parametrization:

ω(α) = 4
`
eiα , ω(α) = 4

`
e−iα , α ∈ R . (E.13)

Here, we choose α = π/2 and derive the corresponding Killing spinors.
We express the AdS2 × S2 metric above in vielbein form:

e1 = ` dη , e2 = ` sinh η dχ , e3 = `dθ , e4 = ` sin θdφ . (E.14)

We also choose the following gamma matrix representation, where τ a and σa, a = 1, 2, 3
are the Pauli matrices

γ1 = τ 1 ⊗ σ3 , γ2 = τ 2 ⊗ σ3 , γ3 = I2 ⊗ σ1 , γ4 = I2 ⊗ σ2 , γ5 = γ1234 = −τ 3 ⊗ σ3 .

(E.15)
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With this representation, the four-dimensional Killing spinor equation, given in (E.1) as

Dµε = − i
32(T+

ab + T−ab)γabγµε = − 1
2`(I2 × σ3)γµε , (E.16)

splits into the Killing spinor equations of AdS2 and S2. Indeed, decomposing the spinor
ε = εAdS2 ⊗ εS2 , one obtains the AdS2 part as

(∂µ + ωµ)εAdS2 = −1
2τµ εAdS2 , ωχ = − i

2 cosh η τ 3 , (E.17)

and the S2 as
(∂µ + ωµ)εS2 = −1

2σ3σµεS2 , ωφ = − i
2 cos θ σ3 (E.18)

The Killing spinors for AdS2 and S2 are given by

ε+
AdS2

= e
i
2χ

− cosh η
2

sinh η
2

 , ε−AdS2
= e−

i
2χ

 sinh η
2

− cosh η
2

 , (E.19)

and

ε+
S2 = e

i
2φ

 cos θ2
sin θ

2

 , ε−S2 = e−
i
2φ

 sin θ
2

− cos θ2

 . (E.20)

Taking the direct product of the spinors (E.17) on AdS2 with the spinors (E.18) on S2, we
obtain the following complex basis of Killing spinors on AdS2 × S2:

ε̇ +
+ =

√
`

2 ε
+
AdS2

⊗ ε+
S2 , ε̇ −+ =

√
`

2 ε
+
AdS2

⊗ ε−S2 ,

ε̇ +
− =

√
`

2 ε
−
AdS2

⊗ ε+
S2 , ε̇ −− =

√
`

2 ε
−
AdS2

⊗ ε−S2 .

(E.21)

Note that, these spinors are identical to the Killing spinors on the Kaluza-Klein frame
of AdS3×S2, given in (4.16). The spinors (E.21) organize themselves to form the following 8
real set of basis for Killing spinors on AdS2 × S2,

ε̇ i(1) = (−iε̇ +
+ , ε̇ −− ) , ε̇ i(2) = (ε̇ +

+ ,−iε̇ −− ) ,

ε̇ i(3) = (−ε̇ −− ,−iε̇ +
+ ) , ε̇ i(4) = (−iε̇ −− ,−ε̇ +

+ ) ,
˙̃ε i(1) = (ε̇ −+ , iε̇ +

− ) , ˙̃ε i(2) = (iε̇ −+ , ε̇ +
− ) ,

˙̃ε i(3) = (−iε̇ +
− , ε̇ −+ ) , ˙̃ε i(4) = (ε̇ +

− ,−iε̇ −+ ) ,

(E.22)

which is the same basis as for the 5d KK-frame (4.15). The spinors in (E.22) satisfy

(εi)†iγ5 = εij(εj)TC . (E.23)

which is indeed the reality condition, given in (4.22), for α = π/2.
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