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1 Introduction and summary

The dynamics of many different physical systems are captured by conformal field theories
(CFTs). Examples include second order phase transitions of matter, the fixed points of
renormalization group flows of quantum field theories, and theories of quantum gravity.
In many of these applications the CFT is not isolated, but instead naturally occurs in a
family, the conformal manifold, related by tuning coupling constants. As these parameters
vary, the data of the CFT, such as its scaling dimensions and coupling constants change
continuously thus giving a multi-parameter solutions to the crossing equations. In this
paper we explore the local geometry of such families and clarify how the intrinsic data of
the CFT is related to natural geometric quantities on the space of theories such as the
Riemann curvature.

Our main results are expressions for the curvature of various bundles over the conformal
manifold in terms of the inversion formula for CFT 4-point functions [1]. These formulas
are universal: they depend only on correlation functions at separated points. We use these
inversion formulae to obtain convergent sum rules relating the curvature of the conformal
manifold to CFT data. This clarifies and unifies previous work of [2–6], where expressions
for the curvature as integrated four-point correlation functions were also obtained. We also
illustrate our results in several examples in two-dimensions.

1.1 Families of conformal field theories

Let us review the basic features of conformal manifolds [2]. The essential point is that local
data of the conformal manifold is encoded by the CFT operators and their correlation
functions. The family is controlled by exactly marginal operators Oi(x), i = 1, · · ·N .
Deforming the initial CFT by exponentiating the exactly marginal operators yields a new
CFT with different correlation functions. Thus, the correlation functions in the deformed
CFT are formally given by

〈ϕI1(x1) · · ·ϕIn(xn)〉λ = Z−1
λ 〈ϕI1(x1) · · ·ϕIn(xn) exp

(∫
ddx

Sd−1
λiOi(x)

)
〉 , (1.1)

where ϕI are generic operators in the undeformed CFT, Sd−1 is the volume of the (d− 1)-
sphere, λi are couplings, and here and below correlation functions with the λ subscript
omitted refer to those at the reference CFT at vanishing λ. In (1.1) the vacuum correlation
function Zλ is formally defined by

Zλ = 〈exp
(∫

ddx

Sd−1
λiOi(x)

)
〉 . (1.2)

The space of CFTs continuously connected in this way is called the conformal manifold.
The couplings λi give a coordinate chart on the conformal manifold of CFTs, and the
operators Oi(x) can be thought of as tangent vectors in this manifold [2]. Correlation
functions can be computed order by order in λ by expanding the exponential in (1.1) using
conformal perturbation theory. A regularization scheme is necessary due to divergences in
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the integrals when operators collide. This regularization will be discussed in more detail
below.

To preserve conformal invariance at leading order in λ, the operators Oi(x) must have
dimension ∆ equal to the spacetime dimension d, and vanishing spin J . At higher order in
λ, we require that the exactly marginal operators in the deformed theory (1.1) also preserve
conformal invariance, i.e.

∂

∂ ln |x| |x|
2d 〈Oi(x)Oj(0)〉λ = 0 . (1.3)

For instance, at next-to-leading order in λ, (1.3) implies that the three-point function
coefficeint between exactly marginal operators, Cijk, vanishes.

As defined above, the conformal manifold is locally smooth and Riemannian (though
these features can both breakdown at special loci). In particular it is endowed with a
natural Riemannian metric introduced by Zamolodchikov [7]:

gij(λ) ≡ 〈Oi(e)Oj(0)〉λ , (1.4)

where e = (1, 0, · · · , 0). The Zamolodchikov metric gij is positive definite by unitarity,
which we assume henceforth. To compare correlation functions in nearby CFTs using (1.1),
we have to specify a connection on the conformal manifold. In the CFT, this is encoded
in a contact term between the exactly marginal operators [2–4, 8],

Oi(x)Oj(0) ⊃ Γkij(λ)Ok(0)δ(d)(x) , (1.5)

where Γkij(λ) are the Christoffel symbols of the metric (1.4). At leading order in λ, the
contact terms are not specified by the CFT data, which governs correlation functions at
separated points. Instead, they are specified by a choice of counterterms to the action (1.1),
which are needed once we deform the theory.

The choice of counterterms is intimately tied to the choice of local coordinates λi. More
precisely, changing coordinates λi → λ̃i is equivalent to a change in the contact term (1.5),
in such a way that (1.5) changes to the Christofell symbol in the coordinate system λ̃.
In particular, we can always choose to work in local coordinates where the contact terms
vanish locally, Γkij(0) = 0.

While we can choose contact terms to vanish locally, their derivative is not necessarily
zero, and captures the Riemannian curvature of the conformal manifold. In coordinates
where Γkij(0) = 0, this is given by the simple expression:

Rijk` = ∂kΓi`j − ∂`Γikj . (1.6)

One of our main aims below is to derive an expression for this curvature in terms of CFT
correlation functions, and to explain how such expressions relate the curvature to spectrum
of operators and their OPE coefficients.

The ideas above can also be extended to define the geometry of other bundles on the
conformal manifold. Consider the operators ϕI(x), I = 1, · · · , L, of dimension ∆ and spin
J and further assume that as we vary λ these quantum numbers stay constant. (This is a
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natural assumption for instance if the operators are currents or BPS.) Under deformation
by Oi(x), the operators ϕI(x) can mix with each other, i.e. they define sections of vector
bundles over the conformal manifold [5, 9]. The contact terms between ϕI(x) and Oi(x)
give connections for these bundles,

Oi(x)ϕJ(0) ⊃ AiKJ(λ)ϕK(0)δ(d)(x) . (1.7)

These contact terms can also be adjusted by tuning counterterms in the action. While
we can set them to zero at a given point in the conformal manifold, their derivative is in
general non-vanishing. Hence, these bundles also have curvature, which is given by

Fij
K
L ≡ ∂iAjKL − ∂jAiKL . (1.8)

We will see that this curvature also admits an expression in terms of local CFT data.

1.2 Examples of conformal manifolds and motivation

We will now review some general features of conformal manifolds in the literature. All
known examples of CFTs with exactly marginal operators have extra symmetries. These
symmetries ensure the exact marginality of the operators Oi(x) at any point in the con-
formal manifold. Below, we will not make any assumptions about the existence of extra
symmetries, unless explicitly stated.

Free theories in two-dimensions provide the simplest examples of conformal manifolds.
It is known from the Narain construction of these theories that the conformal manifold is a
homogeneous space with constant non-positive Riemann curvature (see [10] and references
therein). There can be orbifold singularities at points with enhanced symmetry, such as
self-dual points, as well as cusp singularities, such as the infinite volume limit. We will
always assume that we are working at a generic point in the conformal manifold where the
local geometry is smooth.

Apart from theories in two-dimensions with extended chiral symmetry, the only other
known examples of conformal manifolds arise in supersymmetric theories. In two-dimen-
sions, this includes (2, 2) SCFTs such as non-linear sigma models on Calabi-Yau manifolds.
Exactly marginal deformations are in 1-to-1 correspondence with the Hodge numbers of
the Calabi-Yau space [11]. Such conformal manifolds can also exhibit other types of sin-
gularities, such as conifold singularities [12, 13]. Near these singularities, the Riemann
curvature becomes positive and diverges [14].

There are also myriad examples of conformal manifolds in supersymmetric theories
in higher dimensions. This includes 4d N = 4 super Yang-Mills, where the complexified
gauge coupling parametrizes the conformal manifold. In this case, the weak coupling limit
τ → i∞ is a cusp-like singularity. A zoo of other examples with 4d N = 2 or N = 1 or 3d
N = 2 supersymmetry are also known (see e.g. [15]). In this context the local structure of
the conformal manifold can be studied using superconformal representation theory [16, 17].
With sufficient supersymmetry, the Zamolodchikov metric can be computed via supersym-
metric localization techniques [18–22]. It is also known that all supersymmetric examples
of conformal manifolds necessarily occur in spacetime dimension d ≤ 4 as supersymmetric
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CFTs with d = 5 and d = 6 do not admit exactly marginal deformations preserving the
supercharges. Similarly theories with d = 3 and N > 2 do not admit supersymmetric
exactly marginal operators [23, 24].

One motivation of this work is to derive properties of CFTs using the curvature of the
conformal manifold as input. In the examples above, the curvature of the conformal mani-
fold is computed from alternative methods that do not rely on the correlation functions of
the CFT. The question we want to ask is the following: given some information about the
geometric properties of a conformal manifold of a CFT, what are the implications for the
CFT data? This setup gives new constraints on the CFT data, which can be used in com-
bination with other techniques such as the conformal bootstrap (see [25, 26] and references
therein) to further constrain these theories. Relatedly, the integrated correlation functions
characterizing the curvature may be utilized in the conformal bootstrap-like analysis as
in [27–31].

There have also been conjectures relating the geometry of conformal manifolds to the
operator spectrum of CFTs in d > 2 dimensions [32, 33]. In particular, it is conjectured
that at infinite distance in the conformal manifold (with respect to the Zamolodchikov
metric (1.4)), a tower of higher spin operators with unbounded spin saturates the unitarity
bound, thus becoming conserved currents. This is indeed observed in all examples of
(super)conformal manifolds. Another motivation of this work is to build general tools in
CFT to potentially address such relationships between conformal manifolds and aspects of
the CFT spectrum.

1.3 The inversion formula and results

Given a four-point function in a CFT, the inversion formula outputs a function I∆,J of
dimension ∆ and spin J [1, 34, 35]. For integer spin J , the function I∆,J has poles in
∆ corresponding to operators in the s-channel OPE expansion. The location of the pole
gives the dimension of the exchanged operator, while the residue encodes the structure
constants.

There are two types of inversion formulae, a Euclidean inversion formula and a
Lorentzian inversion formula. The input of the Lorentzian inversion formula is a double-
discontinuity of the correlation function, and unlike the Euclidean inversion formula, it
outputs a function that is analytic in spin. It has been used to obtain large spin correc-
tions to the anomalous dimensions of operators, with controlled errors [1]. It has also been
used to prove the average null energy condition [35].

The main result of this work is a relation between the curvature of vector bundles over
the conformal manifold (1.8) and the inversion formula I∆,J . In section 3, we derive our
main result1

Fij
K
L = vol(SO(d− 1))

S2
d−1

I∆=1,J=1 , (1.9)

1Note that, since I∆,J = Id−∆,J [34], the curvature is finite if there are no conserved current exchanged
in the s-channel. The presence of such currents would imply that the operators Oi are charged under a
global symmetry which is broken by the deformation. It has been shown that charged marginal operators
are not exactly marginal, see [6] for the discussion in 2d CFTs, and [17] for d > 2 SCFTs.
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where the Euclidean inversion formula appearing in this formula is given by

I∆=1,J=1 = 1
2

∫
d2z

vol(SO(d− 1))

∣∣∣∣z − z̄2i

∣∣∣∣d−2
ln |1− z|2〈ϕK(0)ϕL(z, z̄)Oi(1)Oj(∞)〉c,

(1.10)
and above we assume ϕI to be scalar operators for simplicity. Here, indices are raised
and lowered using the 2-point function of the operators, 〈ϕI(1)ϕJ(0)〉. Furthermore, the
notation 〈· · · 〉c denotes the connected part of the correlation function, i.e. with the vacuum
contribution in the s, t, u-channels stripped off.

The 2d Euclidean inversion formula had been obtained previously in the literature using
the Weyl anomaly [6]. The expression (1.10) generalizes this result to higher dimensions,
and allows us to write the curvature as an integral over a Lorentzian domain by using the
Lorentzian inversion formula.

Using the Lorentzian inversion formula, we can derive a sum rule for the curvature
Fij

K
L. For the curvature of the tangent bundle in 2d, i.e. the Riemann curvature of the

Zamolodchikov metric, this is given by

Rijk` = 1
8π2

∑
A

(
C`i

ACkjA − C`jACkiA
) [

1− cos
(
2πh̄A

)]
(1− hA)2(1− h̄A)2 . (1.11)

The sum is over all operators VA with conformal weights (hA, h̄A), and CijA is the structure
constant

〈
Oi(0)Oj(e)V A(∞)

〉
. In 4d, the sum rule for the Riemannian curvature is given by

Rijk` = 32
π2

∑
A

(CjkACi`A − Cj`ACikA) [1− cos (π(∆A + JA))]

× 7J4
A − 2(44 + 3(∆A − 8)∆A)J2

A − (∆A − 6)2(∆A − 2)2[
(∆A − 2)2 − J2

A

]2 [(∆A − 4)2 − J2
A

]2 [(∆A − 6)2 − J2
A

]2 .

(1.12)

where ∆A and JA are the dimension and spin of the operator VA.2 The sum over operators
VA converges provided that there are no higher spin conserved currents in the s-channel
OPE. There are similar sum rules in other dimensions. The contributions from operators
of high dimensions and fixed spin are suppressed in the sum, suggesting that such formulas
may be useful tools for constraining the properties of light operators.

The inversion formula is invariant under the shadow transformation ∆→ ∆̃ ≡ d−∆,
which maps the quantum numbers ∆ = 1, J = 1 to ∆̃ = d − 1, J = 1. These are the
quantum numbers of a conserved current. Using this together with (1.9), we conclude that
if the curvature FijKL diverges at a certain point in moduli space, it must be that either a
conserved current appears in the s-channel OPE, or the analyticity of the inversion formula
I∆,J breaks down. This can happen if the spectrum of operators in the CFT develops a
continuum. Note that in d = 2 the only way the curvature can diverge is if the CFT
develops a continuum, since a pole at ∆ = 1 is mapped to minus itself under the shadow
transformation.3

2It is possible to rewrite these sums over global conformal primaries only, but the result does not look
simpler.

3The divergence of the curvature we are considering here does not include orbifold singularities in the
conformal manifold, which are delta-function localized.
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We will further derive an inversion formula for the second derivative of the Zamolod-
chikov metric, gij,k`. Since this quantity does not transform as a tensor under a coordinate
change, it is only meaningful once we specify our choice of counterterms to the action (1.1).
We will show that in the minimal subtraction scheme, where we set the finite part of these
counterterms to zero, we are working in Riemann normal coordinates, and gij,k` is related
to the inversion formula I∆=0,J=0.

Using this result, we derive new sum rules for the Riemannian curvature of the con-
formal manifold. In this case, convergence of the sum rules requires the absence of more
operators in the OPE of exactly marginal operators, not just higher spin conserved cur-
rents. Assuming these operators to be absent in the OPE, we derive some simple bounds
in the sectional curvature of the conformal manifold. For example, if all the operators ex-
changed by exactly marginal operators in 4d have dimension and spin in the range (D.2),
then the sectional curvature of the conformal manifold satisfies

Rijij ≥ 0 . (1.13)

Note that if there are operators outside the range (D.2) that are present in the OPE of
exactly marginal operators, their contribution can be explicitly included in the sum rules.
This will in general modify the r.h.s. of (1.13). Conversely, in many examples, such as
in neighborhoods of weakly-coupled gauge theories characterized by cusps, the sectional
curvature is known to be negative and hence we can conclude that operators outside the
range (D.2) necessarily exist.

Finally, in section 4, we exhibit the master formulae (1.9), (1.10) in a number of
examples in two-dimensions where the four-point function of exactly marginal operators
is known explicitly. First we will consider free theories, where we will recover the metric
on a homogeneous space of negative constant curvature. Then we will consider 2d (2, 2)
SCFTs, where we will use our methods to show that the curvature of the vector bundles of
chiral primary operators over the conformal manifold agrees with that obtained from the
tt∗ equations [36, 37]. In particular, we find that the scalar curvature of 2d (2,2) SCFTs
satisfies the lower bound

R ≥ −n(n+ 1)
4 , (1.14)

where n is the (complex) dimension of the conformal manifold. When c/3 is an integer,
this bound is saturated by the CFT of c/3 complex bosons+fermions.

2 Conformal manifolds in perturbation theory

In this section, we review properties of conformal manifolds in more detail. We discuss
how correlation functions change as we deform the CFT, organizing the discussion order
by order in the conformal perturbation theory expansion of (1.1).

2.1 Conformal perturbation theory at leading order

Let’s begin by reviewing the result that the three-point function of exactly marginal oper-
ators vanishes, discussed below (1.3). Along the way, we will also define the regularization
procedure we use to define (1.1).
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Under the deformation (1.1), the two-point function of exactly marginal operators is
corrected at leading order in λ by

∂k 〈Oi(x1)Oj(x2)〉λ |λ=0 =
∫
ddx3
Sd−1

〈Oi(x1)Oj(x2)Ok(x3)〉 = Cijk

(x2
12)

d
2

∫
ddx3
Sd−1

1
(x2

13)
d
2 (x2

23)
d
2
,

(2.1)
where ∂k ≡ ∂/∂λk, Cijk ≡ 〈Oi(∞)Oj(1)Ok(0)〉, and we are dropping terms of order O(λ)
on the r.h.s. . The integral on the r.h.s. of (2.1) is divergent at coincident points where
x2

13 = 0, x2
23 = 0. This is a recurring theme in conformal perturbation theory. The definition

of the deformed theory via (1.1) is formally infinite, and needs to be regularized due to
divergences in the integrals when operators collide.

There are two common regularization schemes. One is hard-sphere regularization, in
which spherical neighbourhoods of radius ε around the singular points x2

13 = 0, x2
23 = 0

are cut out. The integrals are performed with this UV cutoff, and in the end we adjust
counterterms to cancel the divergences in ε.

Another convenient choice of regularization scheme, which is the one we will use,
is analytic regularization, utilized in a similar context in [6]. In this case, instead of the
correlation function of operators 〈ϕI1(x1) · · ·ϕIn(xn)〉, we consider the regulated correlation
function:

Gs(x1, · · · , xn) ≡ µns
∏
α<β

(x2
αβ)

s
n−1

 〈ϕI1(x1) · · ·ϕIn(xn)〉 , (2.2)

where µ is a mass-scale, and for simplicity we dropped the indices on the l.h.s. . Integrals
are performed for sufficiently large s, and then analytically continued to s = 0. Any
poles in s are cancelled by properly adjusting the counterterms. Note that, logarithmic
contributions in µ appear if the integral gives a pole in s. These logarithmic contributions
are due to the anomalous dimension of the operators.

Using analytic regularization in (2.1), we find

∂k 〈Oi(x1)Oj(x2)〉λ |λ=0 = µ3s Cijk

(x2
12)

d−s
2

∫
ddx3
Sd−1

1
(x2

13)
d−s

2 (x2
23)

d−s
2

. (2.3)

The logarithmic dependence on the scale µ comes from a pole in s in the integral, which
can come from the region x3 close to x1 or x2. Performing the integral in these regions, we
find

∂k 〈Oi(x1)Oj(x2)〉λ |λ=0 = 6 Cijk
(x2

12)d
ln (µ|x12|) + (analytic in µ as s→ 0) . (2.4)

Thus, up to terms analytic in µ, we find that the two-point function of exactly marginal
operators in the deformed theory is given by

〈Oi(x1)Oj(x2)〉λ = gij(0)
(x2

12)d
+ 6λk Cijk

(x2
12)d

ln (µ|x12|) +O(λ2) . (2.5)

Comparing this result to a two-point function of a generic operator of dimension ∆, we see
that the dimension of Oi is modified at leading order to

∆ = d− 3λk Cijk
gij(0) +O(λ2) . (2.6)

Hence, we find the well known result, that exact marginality implies Cijk = 0.
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After regularization, we also have to specify counterterms to the deformed CFT action.
A convenient way of encoding this information is as follows. We promote the couplings λi

to background fields λi(x). These fields source the exactly marginal operators Oi, so we
can define insertions of Oi via functional differentiation with respect to λi(x), i.e.

〈Oi(x) · · · 〉λ →
δ

δλi(x)〈· · · 〉λ , (2.7)

where · · · denote operators in the reference CFT at separated positions and away from x =
0. After evaluating the functional derivatives, we set the background fields λi to constants.
After promoting the couplings λi to background fields λi(x), the allowed counterterms are
given by contributions to the action that are local in λi(x).

Let us show for example that counterterms do not affect the anomalous dimension
in (2.6). This is because the dependence on the scale µ in (2.4) is non-analytic, and cannot
be cancelled by local counterterms. At the order of λ that we are interested in, we consider
the counterterms ∫

ddx

Sd−1

1
2B

k
ijλ

i(x)λj(x)Ok(x) . (2.8)

In other words, we now compute correlation functions of Oi, at leading order in λ, in the
theory defined by

〈Oi1(x1) · · ·Oin(xn)〉λ

=Z−1
λ (Sd−1)n δ

δλi1(x1) · · ·
δ

δλin(xn)〈exp
(∫

ddx

Sd−1

(
λi(x)Oi(x)+ 1

2B
k
ijλ

i(x)λj(x)Ok(x)
))
〉,

(2.9)

with the regularization described above, and setting λi to a constant after taking the
functional derivatives. The choice of constants Bk

ij specifies the counterterms, which are
also included in Zλ.

With these counterterms, the r.h.s. of (2.5) gets a contribution equal to

〈Oi(x1)Oj(x2)〉λ ⊃ λ
k 1

(x2
12)d

(
B`
ikg`j(0) +B`

jkg`i(0)
)
. (2.10)

This contribution cannot cancel the non-analytic contribution on the r.h.s. of (2.5), but it
can cancel any term with analytic dependence on the scale µ (including the s-pole in the
integral in (2.3)). Thus, we find that Cijk = 0 for exact marginality of the operators Oi(x),
as discussed above.

The counterterms give a finite contribution (2.10) to the deformed 2-point function of
exactly marginal operators. This seems to contradict the fact that observables in the the-
ory are unaffected by our choice of counterterms. However, looking more closely at (2.10),
we see that it also suffers from another ambiguity, namely an ambiguity in the choice of
couplings λi. Indeed, at leading order in conformal perturbation theory, the field redefini-
tion:

λi(x)→ λ̃i(x) = λi(x)−Bi
jkλ

j(x)λk(x) , (2.11)

– 8 –
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absorbs the counterterm in (2.9). Thus, the λi(x) coordinates with the counterterms (2.8) is
equivalent to the choice of coordinates λ̃i(x), and counterterms set to zero. In other words,
the parameters λi are coordinates on the conformal manifold, and adjusting counterterms
correspond to changing these coordinates.

This discussion has a natural interpretation in terms of the connection of the Zamolod-
chikov metric (1.4) of the conformal manifold. Consider the derivative of the Zamolodchikov
metric with respect to the coordinate λk, which is given by

gij,k(0) ≡ ∂k 〈Oi(x1)Oj(x2)〉λ
∣∣
λi=0 = B`

ikg`j(0) +B`
jkg`i(0) , (2.12)

where in the last line we used (2.10). Suppose now we change our choice of counterterms,
Bi
jk → Bi

jk+δBi
jk. We can compare the variation of (2.12) to that expected for the variation

of a Riemannian metric under the coordinate change (2.11). The latter is given by

∂

∂λ̃k

(
∂λp

∂λ̃i
∂λq

∂λ̃j
gpq

)
(0) = gij,k(0) + ∂2λp

∂λ̃i∂λ̃k
∂λq

∂λ̃j
gpq(0) + ∂λp

∂λ̃i
∂2λq

∂λ̃j∂λ̃k
gpq(0)

= gij,k(0) +
(
δB`

ikg`j(0) + δB`
jkg`i(0)

)
,

(2.13)

This transformation is exactly as expected from the conformal perturbation theory analysis
in (2.12).

For a Riemannian metric, we have

gij,k(0) = Γ`ikg`j(0) + Γ`jkg`i(0) . (2.14)

Comparing (2.12) and (2.14), we see that Γijk = Bi
jk. Thus, the counterterms are naturally

interpreted as connections on the conformal manifold. This also explains why they modify
correlation functions: a change of counterterms is equivalent to a different choice of coor-
dinate chart in the conformal manifold, and therefore we compute correlation functions at
different points in the conformal manifold.

It is also useful to think of the counterterms as determining the contact terms. If we
consider the 3-point function of exactly marginal operators at points 0, e ≡ (1, 0, · · · , 0), x,
we find from (2.9)

〈Oi(e)Oj(0)Ok(x)〉

= (Sd−1)3 δ

δλi(e)
δ

δλj(0)
δ

δλk(x)〈exp
(∫

ddx

Sd−1

(
λi(x)Oi(x) +Bk

ijλ
i(x)λj(x)Ok(x)

))
〉

= Sd−1Γ`ikg`j(0)δ(d)(x− e) + Sd−1Γ`jkg`i(0)δ(d)(x) .
(2.15)

Integrating this result over x, we recover (2.12).

2.2 Second order perturbations and the Riemannian curvature

We now consider conformal perturbation theory at second order in the λi expansion. We
expect to obtain quantities related to the second derivative of the Zamolodchikov metric,
out of which we can construct the Riemannian curvature of the manifold.
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To begin we examine the conditions for exact marginality at this order. Requiring that
the 3-point function of exactly marginal operators vanishes in the deformed theory, we find∫

ddx

Sd−1
〈Oi(∞)Oj(e)Ok(0)O`(x)〉 = 0 . (2.16)

Here we have used the conformal group to place the 3 unintegrated vertex operators at
separated points at 0, e ≡ (1, 0, · · · , 0),∞, and furthermore we take the counterterms
Bk
ij in (2.9) to vanish. As discussed above, this corresponds geometrically to a choice of

coordinates for the conformal manifold, in which gij,k = 0. To regularize the integral, we
replace the 4-point function of exactly marginal operators by the regulated 4-point function
in (2.2).

We now turn to the deformed 3-point function, not necessarily at separated points.
Setting the counterterms (2.8) to zero and ignoring further counterterms for now, we have∫

ddx2
Sd−1

〈Oi(e)Oj(0)Ok(x1)O`(x2)〉

= Sd−1∂`
(
Γmjkgmi(0)

)
δ(d)(x1) + Sd−1∂` (Γmikgmj(0)) δ(d)(x1 − e) .

(2.17)

Here, the r.h.s. is fixed by comparing against (2.15), and noting that (2.17) is the lead-
ing correction to it under the deformation. Note that the l.h.s. is defined using analytic
regularization (2.2). Let us compare (2.17) to the second derivative of the metric given by:

gij,k`(0) = ∂k∂` 〈Oi(e)Oj(0)〉λ |λ=0 =
∫
ddx1
Sd−1

∫
ddx2
Sd−1

〈Oi(e)Oj(0)Ok(x1)O`(x2)〉c . (2.18)

In the final equality, we have kept only the connected part of the correlation function
(see below (1.10)). The identity in the s-channel is subtracted because of the vacuum
contribution coming from Zλ in (1.1). The vacuum contribution in the t, u-channels can
be dropped because it vanishes using analytic regularization, as discussed in section 3.1.1.
Integrating (2.17) over x1, we find

gij,k`(0) = ∂` (Γmikgmj(0)) + ∂`
(
Γmjkgmi(0)

)
, (2.19)

which is indeed correct for a Riemannian metric with locally vanishing first derivative.
We now turn to the Riemannian curvature of the Zamolodchikov metric. Assuming

locally vanishing first derivatives as above, this is given by

Rijk` = 1
2 (gi`,jk + gjk,i` − gik,j` − gj`,ik) . (2.20)

Using (2.18), we see that Rijk` is constructed from the integrated 4-point function of
exactly marginal operators, and hence depends on the operators appearing in the OPE of
the exactly marginal Oi’s. Below we will make this observation sharper.

The Riemann curvature transforms as a tensor under a change of coordinates. As
explained in the previous subsection, the change of coordinates

λi(x)→ λ̃i(x) = λi(x)−Bi
jkλ

j(x)λk(x)− Cijk`λj(x)λk(x)λ`(x) , (2.21)

– 10 –



J
H
E
P
0
7
(
2
0
2
3
)
2
0
5

is equivalent to computing the 4-point function in the theory deformed by

exp
(∫

ddx

Sd−1

(
λi(x)Oi(x) + 1

2Γkijλi(x)λj(x)Ok(x) + 1
3!C

`
ijkλ

i(x)λj(x)λk(x)O`(x)
))

.

(2.22)
Using this action, one finds that the O(λ3) counterterms contribute a constant proportional
to C`ijk to gij,k` in (2.18), but this contribution vanishes when taking the symmetrized
expression (2.20). Meanwhile, the contribution of the O(λ2) counterterm in (2.22) gives
a contribution ∼ Γ2 to (2.18), and in the Riemannian curvature (2.20) it reproduces the
expected dependence on the Christofell symbols.

2.3 Higher orders and other operators

The geometry of the conformal manifold can be explored at higher orders in conformal per-
turbation theory. From the n-point function of exactly marginal operators, we can extract
the (n − 2)-th metric derivative. Derivatives of the metric do not transform covariantly
under change of coordinates, and hence they are affected by the choice of counterterms.
However, we can combine these expressions to obtain geometric properties of the conformal
manifold, such as covariant derivatives of the Riemann curvature.

So far, we have focused on correlation functions of exactly marginal operators. Corre-
lation functions of other operators in the reference CFT are also modified as the CFT is
deformed along the conformal manifold. This is also captured by conformal perturbation
theory. It is convenient to introduce sources for every operator in the CFT, and define
operator insertions as derivatives with respect to the sources. Then, there are new coun-
terterms that are allowed, which are given by terms in the action that are local in all
sources.

As an example, consider an operator ϕI(x) with dimension and spin (∆, J). Introduce
the source aI(x), so that

〈ϕI(x) · · · 〉λ,a → Sd−1
δ

δaI(x)〈· · · 〉λ,a , (2.23)

where we take λi(x) and aI(x) to a constant and to zero after taking the functional deriva-
tive, respectively. Note that ϕI(x) is not marginal, and therefore aI(x) has dimension
d−∆. Let’s consider the correction to the two-point function of scalar operators ϕI , ϕJ of
the same dimension ∆. Under the deformation (1.1), the same steps leading to (2.5) give

〈ϕI(x1)ϕJ(x2)〉λ = hIJ(0)
(x2

12)∆ + 6λk CIJk
(x2

12)∆ ln (µ|x12|) +O(λ2) , (2.24)

where hIJ(0) ≡ 〈ϕI(e)ϕJ(0)〉 , CIJk(0) ≡ 〈ϕI(∞)ϕJ(e)Ok(0)〉, and for now we have dropped
terms analytic in µ.

Assume now that a collection of operators ϕI(x), I = 1, · · · , L have constant dimension
∆ on the conformal manifold. As λ varies, these operators mix with one another. Provided
we stay away from points where other operators acquire the same dimension ∆, these
operators form a L-dimensional vector bundle over the conformal manifold. This bundle
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also has a natural connection and corresponding curvature. To see this, consider the
counterterm ∫

ddx

Sd−1
Ai

K
Lλ

i(x)aL(x)ϕK(x) , (2.25)

which contributes to (2.24). This counterterm can be interpreted as the contact term

〈ϕI(e)ϕJ(0)Oi(x)〉 = δ(d)(x)Sd−1Ai
K
JhIK + δ(d)(x− e)Sd−1Ai

K
IhJK . (2.26)

Note that there is no contribution from separated points since (2.24) implies that CIJk
vanishes for operators with constant scaling dimension.

The contact term (2.26) gives a connection for the vector bundle of operators ϕI(x).
We are free to choose counterterms so that this connection vanishes in the undeformed
CFT. However, as in the case of exactly marginal operators (2.17), upon deforming the
theory this contact term will in general be produced. More precisely, we have∫

ddx2
Sd−1

〈ϕI(e)ϕJ(0)Ok(x1)O`(x2)〉

= Sd−1∂`
(
Ak

K
JhKI(0)

)
δ(d)(x1) + Sd−1∂`

(
Ak

K
IhKJ(0)

)
δ(d)(x1 − e) .

(2.27)

The l.h.s. is defined using analytic regularization. The curvature of this vector bundle over
the conformal manifold can be obtained from the r.h.s. of (2.27), and is given by (1.8).

3 CFT curvature as an inversion formula

In the previous section, we have shown how the curvature of vector bundles on the conformal
manifold, in particular the Riemann curvature of the tangent bundle, are computed from
CFT 4-point functions. These expressions obscure the relation between the curvature and
the CFT data, as they involves a double-integral of the regularized 4-point function.

In this section, we will relate these geometric properties of the conformal manifold
to the inversion formula of CFT 4-point functions. This allows us to write the curvature
of vector bundles as a particular value of a meromorphic function in dimension and spin,
which has a clear meaning in terms of the spectrum of operators appearing in the OPE of
the exactly marginal deformations Oi. We further discuss the implication of the inversion
formulas for points in the conformal manifold where curvatures diverge, and derive sum
rules relating curvatures to the basic CFT data of scaling dimensions and OPE coefficients.

Finally, we also discuss an inversion formula for the second derivative of the Zamolod-
chikov metric, and also derive associated sum rules.

3.1 Euclidean inversion formula for the curvature

The curvature of the vector bundle of scalar operators ϕI over the conformal manifold can
be obtained from the expression

Fij
K
L(0) =

∫
ddx1
Sd−1

∫
ddx2
Sd−1

(x12 · e) 〈ϕK(e)ϕL(0)Oi(x1)Oj(x2)〉c , (3.1)
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To see this, we use (2.27) to perform either the x1 or x2 integral first. After performing the
second integral, the result is equal to (1.8) in a scheme where hIJ,i = 0. The disconnected
part of the correlation function does not enter in this expression, as discussed below (2.18).

It is convenient to assume that only irrelevant operators appear in the OPE of the op-
erators in (3.1), in which case this equation does not need to be regularized. Contributions
of relevant operators will be discussed in section 3.1.1. With this assumption, (3.1) equals:

Fij
K
L(0) = vol(SO(d− 1))

(Sd−1)2 I∆=1,J=1 , (3.2)

where I∆,J is given by

I∆,J =
∫

ddx1d
dx2

vol(SO(d− 1)) |x12|∆ĈJ
(
x12 · e
|x12|

)
〈ϕK(e)ϕL(0)Oi(x1)Oj(x2)〉c , (3.3)

and ĈJ(x) is the Gegenbauer polynomial,

ĈJ(x) =
Γ(J + 1)Γ

(
d−2

2

)
2JΓ

(
J + d−2

2

) C
d
2−1
J (x) ,

C
d
2−1
J (x) = Γ(J + d− 2)

Γ(J + 1)Γ(d− 2)2F1

(
−J, J + d− 2, d− 1

2 ,
1− x

2

)
.

(3.4)

The expression (3.3) is the Euclidean inversion formula for the (connected) 4-point function
〈ϕK(e)ϕL(0)Oi(x1)Oj(x2)〉c [1, 34]. It is valid for integer spin J .

In general, a CFT four-point function can be expanded as [1, 34]

〈ϕI1(x1) · · ·ϕI4(x4)〉 =
∫ +∞

−∞

d∆
2πi

I∆,J
n∆,J

K∆̃,JG
∆Ii
∆,J(xi) + (non-norm) , (3.5)

where n∆,J is a normalization factor that will not be important for us, and G∆I
∆,J(xi) is the

d-dimensional conformal block, see [34] for conventions. The function K∆̃,J is given by

K∆̃,J =
(
−1

2

)J
π
d
2

Γ
(
∆̃− d

2

)
Γ
(
∆̃− 1

) Γ
(
∆̃ + J − 1

)
Γ
(
d− ∆̃ + J

) Γ
(
d−∆̃+J

2

)2

Γ
(

∆̃+J
2

)2 , (3.6)

and I∆,J is the coefficient function that encodes the CFT data in its analytic structure.
More explicitly, the function I∆,J has simple-poles at the dimensions of primary operators
exchanged in the s-channel OPE, with the residues related to structure constants. In this
sense, it inverts the 4-point function. The non-normalizable contributions to (3.5) can come
from the s, t, u-channels, and are related to relevant operators in these channels, which we
will discuss below.

The Euclidean inversion formula can be written as a single integral over the cross-ratio
z, z̄,

zz̄ = x2
12x

2
34

x2
13x

2
24
, (1− z)(1− z̄) = x2

14x
2
23

x2
13x

2
24
. (3.7)
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We have [1, 34]:

I∆,J =
∫

d2z

2vol(SO(d− 2)) |z|
−2d+2∆ϕ

∣∣∣∣z − z̄2i

∣∣∣∣d−2
〈ϕK(0)ϕL(z, z̄)Oi(1)Oj(∞)〉c

×
[
K∆,JG∆̃,J(z, z̄) +K∆̃,JG∆,J(z, z̄)

]
,

(3.8)

where ∆ϕ is the dimension of ϕI , ∆̃ ≡ d − ∆, and the function G∆,J(z, z̄) are the d-
dimensional conformal block, normalized as

G∆,J(z, z̄) ∼ (zz̄)
∆
2

(
z

z̄

)−J2
, z � z̄ � 1 . (3.9)

In 2d, the conformal blocks G∆,J(z, z̄) are given by

G∆,J(z, z̄) = 1
1 + δJ,0

(k∆+J(z)k∆−J(z̄) + k∆+J(z̄)k∆−J(z)) , (3.10)

where k2h(z) is the holomorphic 2d global conformal block,

k2h(z) = zh2F1(h, h, 2h, z) . (3.11)

Evaluating (3.2) for d = 2,∆ = J = 1, we find

Fij
K
L(0) = 1

4π

∫
d2z ln |1− z|2|z|−4+2∆ϕ〈ϕK(0)ϕL(z, z̄)Oi(1)Oj(∞)〉c . (3.12)

The subscript 〈(· · · )〉c denotes the connected part of the correlation function, i.e. after
subtracting the identity contribution in the s, t, u channels. We will show this and also
discuss the regularization of (3.12) below, when we consider the contribution of relevant
operators to (3.12).

In the case of the curvature of the tangent bundle (i.e. the curvature of the Zamolod-
chikov metric), the expression (3.12) was derived in [6] by starting from an expression
similar to (3.1), which was obtained from the Weyl anomaly [38, 39]. Here we have seen
that it follows directly from the Euclidean inversion formula for the 4-point function of
exactly marginal operators.

In 4d, we have

G∆,J(z, z̄) = zz̄

z̄ − z
(k∆−J−2(z)k∆+J(z̄)− k∆+J(z)k∆−J−2(z̄)) . (3.13)

Evaluating (3.2) at d = 4,∆ = J = 1, we obtain

Fij
K
L(0) = 1

2π

∫
d2z|z|−8+2∆ϕ

∣∣∣∣z − z̄2i

∣∣∣∣2 ln |1− z|2〈ϕK(0)ϕL(z, z̄)Oi(1)Oj(∞)〉c . (3.14)

In appendix A, we show that

K∆=1,J=1G∆̃=d−1,J=1(z, z̄) +K∆̃=d−1,J=1G∆=1,J=1(z, z̄) = 1
2Sd−1 ln |1− z|2 , (3.15)
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for any dimension d. Using this in (3.2) and (3.8), we find an Euclidean inversion formula
for the curvature FijKL in any dimension d,

Fij
K
L(0) = A(d)

∫
d2z|z|−2d+2∆ϕ

∣∣∣∣z − z̄2i

∣∣∣∣d−2
ln |1− z|2〈ϕK(0)ϕL(z, z̄)Oi(1)Oj(∞)〉c ,

(3.16)
where A(d) = Sd−2

4Sd−1
.

In appendix B we check that the Bianchi identity for the Riemann curvature (3.16) is
satisfied.

3.1.1 Relevant operators

Let us now comment on the contribution of relevant scalar operators to the OPE between
the operators ϕI ,Oi. Their contribution to the Euclidean inversion formula is discussed
in [34] for example (see also [1]). These operators spoil the normalizability of the 4-point
function, and for the Euclidean inversion formula to be applicable, the contribution from
relevant scalars needs to be subtracted from the 4-point function. In practice, what this
means is that we introduce a hard-sphere cutoff ε in the integral near z = 0, 1,∞, perform
the integral for small, fixed ε > 0, and then drop divergent terms in ε.

We will now show that the hard-sphere and analytic regularizations give the same an-
swer for the finite part of the correlation function. In the presence of relevant operators, the
correlation function in (3.1) should be replaced by the regulated correlation function (2.2).
For a 4-point function, we have to replace

〈ϕK(e)ϕL(0)Oi(x1)Oj(x2)〉→µ4s
(
x2

1x
2
2(1−x1)2(1−x2)2x2

12

) s
3 〈ϕK(e)ϕL(0)Oi(x1)Oj(x2)〉.

(3.17)
The xi-dependent prefactor in (3.17) can be written as

x2
1x

2
2(e− x1)2(e− x2)2x2

12 = (x2
12)3 (1− z)(1− z̄)

(zz̄)2 , (3.18)

where z, z̄ are the cross-ratio given by (3.7). Thus, the regularized expression for Rijk` is

F
(s)
ij

K
L(0) =

∫
ddx1
Sd−1

∫
ddx2
Sd−1

(x12 · e) (x2
12)sHs(z, z̄) , (3.19)

where

Hs(z, z̄) ≡ µ4s
((1− z)(1− z̄)

(zz̄)2

) s
3
〈ϕK(e)ϕL(0)Oi(x1)Oj(x2)〉c . (3.20)

Thus, (3.19) can be written in terms of (3.3) as

F
(s)
ij

K
L(0) = vol(SO(d− 1))

(Sd−1)2 I
(s)
∆=1+2s,J=1 , (3.21)

where the superscript on I(s)
∆,J denotes that the inversion formula is applied on the regulated

correlation function Hs(z, z̄) given by (3.20), i.e.

I
(s)
∆,J =

∫
d2z

2vol(SO(d−2)) |z|
−2d+2∆ϕ

∣∣∣∣z−z̄2i

∣∣∣∣d−2
Hs(z, z̄)

[
K∆,JG∆̃,J(z, z̄)+K∆̃,JG∆,J(z, z̄)

]
.

(3.22)
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The integrand in (3.22) is finite at s = 0 away from the singularities at z = 0, 1,∞. Thus,
poles in s can only come from the integral near these points.

Consider now the contribution of a relevant scalar operator of dimension ∆ in the
t-channel. We only need to keep the s dependence that will regulate the singularity near
z = 0, 1,∞. Then we see that the singularity near z = 1 is regulated by the s-dependent
prefactor in (3.20), i.e. the contribution of the relevant operator to (3.22) is given by

F
(s)
ij

K
L(0) ⊃ A(d)µ4s

∫
|1−z|<ε2

d2z|z|−2d+2∆ϕ

∣∣∣∣z − z̄2i

∣∣∣∣d−2
|1− z|

2s
3

CLi
ACKjA

1
|1− z|d+∆ϕ−∆ ln |1− z|2 ,

→ CLi
ACKjAε

∆−∆ϕ

2
−1 + (∆−∆ϕ) ln ε2

(∆−∆ϕ)2 ,

(3.23)

where in the second line we took the limit s → 0 after performing the integral. From
below (2.26), CLiA = CKjA = 0 if ∆ = ∆ϕ, so there is no divergence at this value of ∆.
The same contribution in the hard-sphere regularization is

A(d)
∫
ε1<|1−z|<ε2

d2z

∣∣∣∣z − z̄2i

∣∣∣∣d−2
CLi

ACKjA
1

|1− z|d+∆ϕ−∆ ln |1− z|2

→ CLi
ACKjAε

∆−∆ϕ

2
−1 + (∆−∆ϕ) ln ε2

(∆−∆ϕ)2 ,

(3.24)

where in the second line we dropped terms that diverge with ε1. Thus, we see that analytic
regularization gives the same answer as hard-sphere regularization of (3.8).

In the Euclidean inversion formula, the hard-sphere cutoff is used to regularize the
contribution from relevant scalars [1, 34]. The argument above shows that this agrees with
analytic regularization, and hence we have established the result (3.2) also in the presence
of relevant operators, where (3.8) is to be regularized with the hard-sphere cutoff, or using
analytic regularization as in (3.22).

Starting from (3.22) and (3.20), we can now consider the vacuum contribution in the
t, u channels. In the analytic regularization scheme, this evaluates to zero. This explains
why we have dropped these contributions in the correlation functions (2.18) and (3.1).
In the case of exactly marginal deformations, the vanishing of these contributions is also
expected from the Weyl anomaly [6, 22].

3.2 Conformal manifolds with infinite curvature

It is interesting to explore what (3.2) implies for conformal manifolds where the curvature
diverges. Since the kernel in (3.8) is invariant under ∆↔ d−∆, it follows that the function
I∆,J also respects this symmetry [1, 34]. Thus, (3.3) gives a relation between the curvature
Fij

K
L and the coefficient function I∆=d−1,J=1. We note in particular that these are the

quantum numbers of a conserved current operator.
The analytic structure of the function I∆,J implies that, for integer J ≥ 0 and ∆ ≥ d/2,

it diverges only at the location of physical operators in the s-channel OPE. Thus, if the
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curvature FijKL diverges and the analytic structure of I∆,J is preserved, it follows that
there is an operator of dimension ∆ = d− 1 and J = 1 in the s-channel OPE.

It is possible that the analytic structure of I∆,J is modified as the theory is deformed
to the point where the curvature diverges. For example, the spectrum of the CFT can
become continuous in this limit. This happens for example in the conifold singularity of
(2, 2) SCFTs on Calabi-Yau manifolds in 2d [14], where the Riemann curvature diverges as
the target space of the theory becomes non-compact.

In summary, we find that the curvature of a vector bundle over the conformal manifold
can diverge only if the theory develops a continuum, or if a conserved current appears in
the OPE of exactly marginal operators Oi and operator ϕI . For two-dimensional CFTs, a
pole at ∆ = 1 is not invariant under the shadow transformation ∆ → 2 − ∆, and hence
the only way the curvature can diverge is if the theory develops a continuum.

Note that we are assuming the divergence in the curvature is not delta-function local-
ized on the conformal manifold, as in the case of orbifold singularities (for example points
of enhanced symmetry on Narain moduli spaces).

3.3 Lorentzian inversion formula for the curvature

The coefficient function I∆,J also admits an expression as a double commutator of a 4-point
function integrated over a Lorentzian regime [1, 34]. This expression satisfies several nice
properties. It is analytic in both dimension ∆ and spin J , and satisfies positivity properties.
The latter is due to the fact that the double-discontinuity entering in the integral of I∆,J is
a positive-definite function when the first two and last two operators are pairwise identical.

The Lorentzian inversion formula is given by [1, 34]

I∆,J =α∆,J

[ ∫ 1

0
dz

∫ 1

0
dz̄|z|−2d+2∆ϕ |z − z̄|d−2GJ+d−1,∆−d+1(z, z̄)

×
(
(−1)J

〈
[Oi, ϕL][ϕK ,Oj ]

〉
c

+
〈

[Oj , ϕL][ϕK ,Oi]
〉
c

)]
,

(3.25)

where z, z̄ are independent real variables. The function α∆,J is defined as

α∆,J = −
a∆,J
2d

ĈJ(1)
volSO(d− 1) ,

a∆,J = 1
2(2π)d−2 Γ(J + 1)

Γ
(
J + d

2

) Γ
(
∆− d

2

)
Γ (∆− 1)

Γ
(
J+∆

2

)2
Γ
(
J+d−∆

2

)2

Γ(J + ∆)Γ(J + d−∆) ,
(3.26)

and the double-discontinuity
〈

[Oi, ϕL][ϕK ,Oj ]
〉
c
in (3.25) is defined as follows. Start from

the 4-point function 〈
ϕK(0)ϕL(z, z̄)Oi(1)Oj(∞)

〉
= 1
|z|2∆ϕ

g(z, z̄) . (3.27)

Then 〈
[Oi, ϕL][ϕK ,Oj ]

〉
= − 2
|z|2∆ϕ

dDisc [g(z, z̄)] , (3.28)
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where
dDisc [g(z, z̄)] = g(z, z̄)− 1

2g
	(z, z̄)− 1

2g
�(z, z̄) , (3.29)

where g	(z, z̄) denotes starting from the g(z, z̄) with 0 < z̄, z < 1, going around z̄ = 1
counterclockwise, and returning to the original value of z̄. g�(z, z̄) is analagous, but we
move z̄ around z̄ = 1 in a clockwise direction. The double-discontinuity

〈
[Oi, ϕL][ϕK ,Oj ]

〉
c

is defined from (3.28) by subtracting the t, u-channel contributions from the vacuum (the
s-channel contribution from the vacuum vanishes).

When the operators are pairwise equal, i.e. ϕK = ϕL and Oi = Oj , then dDisc [g(z, z̄)]
≥ 0. Note that while this is true of dDisc [g(z, z̄)] ≥ 0, it is not necessarily true that
dDisc [gc(z, z̄)] ≥ 0, since the vacuum exchange in t, u channels contribute to dDisc [g(z, z̄)].

Once subtlety in obtaining the Lorentzian inversion formula (3.25) is that, for general
operators, it is equal to the Euclidean inversion formula only for J > 1. In appendix C,
we point out that for the 4-point function

〈
ϕK(0)ϕL(z, z̄)Oi(1)Oj(∞)

〉
, we can still use

the Lorentzian inversion formula to calculate FijKL. We also discuss there how to include
relevant operators in the OPE of the operators ϕI ,Oi.

3.4 Sum rules for the curvature

The Lorentzian inversion formula (3.25) allows us to write an expression for the curvature
of the conformal manifold in terms of CFT data. In this section, we do this explicitly in
2d and 4d, where the conformal blocks are known explicitly, see (3.10), (3.13).

3.4.1 2d

Expanding
〈
ϕK(0)ϕL(z, z̄)Oi(1)Oj(∞)

〉
in the t-channel gives

〈
ϕK(0)ϕL(z, z̄)Oi(1)Oj(∞)

〉
=
∑
A

CLi
ACKjA(1− z)−1−∆ϕ

2 +hA(1− z̄)−1−∆ϕ
2 +h̄A , (3.30)

where the index A runs over all operators ϕA in the OPE of the operators ϕL,Oi, with
conformal weights (hA, h̄A). We take the conformal weights of the scalar operators ϕI to
be (hI , h̄I) =

(
∆ϕ

2 ,
∆ϕ

2

)
. From this we find

〈
[Oi, ϕL][ϕK ,Oj ]

〉
= −2

∑
A

CLi
ACKjA(1− z)−1−∆ϕ

2 +hA(1− z̄)−1−∆ϕ
2 +h̄A

[
1− cos

(
2π
(
h̄A −

∆ϕ

2

))]
.

(3.31)

Similarly,〈
[Oj , ϕL][ϕK ,Oi]

〉
= −2

∑
A

CLj
ACKiA(1− z)−1−∆ϕ

2 +hA(1− z̄)−1−∆ϕ
2 +h̄A

[
1− cos

(
2π
(
h̄A −

∆ϕ

2

))]
.

(3.32)
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Using this in (3.25), we find4

Fij
K
L = 1

8π2

∑
A

(
CLi

ACKjA − CLjACKiA
) [

1− cos
(

2π
(
h̄A −

∆ϕ

2

))]
r∆φ

(hA, h̄A) ,

(3.33)
where

r∆ϕ(h, h̄) ≡
Γ(∆ϕ − 1)Γ

(
h− ∆ϕ

2

)
Γ
(
h+ ∆ϕ

2 − 1
) (

ψ(0)
(
−∆ϕ

2 + h

)
− ψ(0)

(
−1 + ∆ϕ

2 + h

))

×
Γ(∆ϕ − 1)Γ

(
h̄− ∆ϕ

2

)
Γ
(
h̄+ ∆ϕ

2 − 1
) (

ψ(0)
(
−∆ϕ

2 + h̄

)
− ψ(0)

(
−1 + ∆ϕ

2 + h̄

))
,

(3.34)

where ψ(m)(z) is the polygamma function of order m. The sum is over all operators in the
OPE, both primaries and descendants, except for the identity contribution in the t-channel
and u-channel. The s-channel contribution vanishes upon taking the double-discontinuity,
so it need not be subtracted off.

Note that for hA <
∆ϕ

2 or h̄A <
∆ϕ

2 , the integral over z, z̄ in (3.25) is divergent. We
regulate this by cutting a small region of size ε near z, z̄ = 1, and dropping divergences
in ε. Equivalently, we can perform the integrals assuming hA >

∆ϕ

2 , h̄A >
∆ϕ

2 , and then
analytically continue the result to the region hA < ∆ϕ

2 , h̄A <
∆ϕ

2 .
To arrive at (3.33), we swapped the OPE sum and integration over z, z̄. Let’s discuss

when this is allowed, focusing on the t-channel expansion in (3.31). Exchanging the two
limits is allowed provided that there are no singularities coming from the small z, z̄ integral
in (3.25). For d = 2, the integrand of (3.25) behaves as

|z|−4+2∆ϕG2,0(z, z̄) 〈[Ok,Oj ][Oi,O`]〉 ∼ ln(1− z) ln(1− z̄)z−2+hs z̄−2+h̄s , (3.35)

where hs, h̄s are the conformal weights of an operator in the s-channel OPE between the
operators Oi and Oj . The contribution from the small z, z̄ region to the integral in (3.25)
is finite provided that hs > 0 and h̄s > 0.

Thus, we find that the sum rule (3.33) converges provided that there are no holomorphic
conserved currents in the s-channel OPE. Note that the vacuum block does not appear
in the s-channel OPE when i 6= j, and when i = j it cancels between the t, u-channel
contributions in (3.25).

In case there are holomorphic conserved currents present (as will be the case for free
theories, for example), a simple solution is to subtract their contribution explicitly, and
apply the sum rule above to the remaining operators. We will do an explicit example of
this in section 4.

4A sum rule for the curvature in terms of CFT data has been previously obtained in [4]. The sum
rule written there is different from our final result (3.33). We expect the result in [4] to follow from the
Euclidean inversion formula for the curvature, (3.16), using a similar analysis to that leading to (3.33), but
we have not checked this explicitly.
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From (3.33) we find the curvature of the tangent bundle, i.e. the Riemannian curvature
of the Zamolodchikov metric, which is given by

Rijk` = 1
8π2

∑
A

(
C`i

ACkjA − C`jACkiA
) [

1− cos
(
2πh̄A

)]
(1− hA)2(1− h̄A)2 . (3.36)

We can also write a sum rule for global conformal primaries. For simplicity we will
write it only for the curvature of the tangent bundle. Expanding (3.30) in terms of global
primaries, we find

〈[Ok,Oj ] [Oi,O`]〉

= −2
∑
B

Cjk
BCi`B(1− z)−2+hB (1− z̄)−2+h̄B

(
1− cos(2πh̄B)

)
k2hB (z)k̃2h̄B (z̄), (3.37)

where the sum over B runs over primaries with respect to the global conformal group, and
kβ(z) is the global conformal block (3.11). Using this in (3.25), we find

Rijk` = 1
8π2

∑
B

(
Cj`

BCikB − CjkBCi`B
) Γ(2hB)

Γ(hB)2
Γ(2h̄B)
Γ(h̄B)2

(
1− cos(2πh̄B)

)
(hB − 1)2(h̄B − 1)2 . (3.38)

Like (3.33), this sum rule converges as long as there are no higher spin conserved currents
in the s-channel OPE.

3.4.2 4d

We can also obtain a sum rule for the curvature of 4d CFTs. For simplicity, we will focus
on the curvature of the tangent bundle. The OPE expansion in the t-channel is

〈Oi(0)Oj(z, z̄)Ok(1)O`(∞)〉c =
∑
A

Cjk
ACi`A(1− z)−4+ ∆A−JA

2 (1− z̄)−4+ ∆A+JA
2 , (3.39)

where the sum over the index A is over all operators VA in the t-channel OPE, not neces-
sarily global primaries. The double-discontinuity is given by

〈[Ok,Oj ] [Oi,O`]〉c = − 2
∑
A

Cjk
ACi`A(1− z)−4+ ∆A−JA

2 (1− z̄)−4+ ∆A+JA
2

× [1− cos (π (∆A + JA))] .
(3.40)

There is a similar expression for the u-channel double-discontinuity. Using this in (3.2),
(3.25), we find

Rijk` = 32
π2

∑
A

(CjkACi`A − Cj`ACikA) [1− cos (π(∆A + JA))]

× 7J4
A − 2(44 + 3(∆A − 8)∆A)J2

A − (∆A − 6)2(∆A − 2)2[
(∆A − 2)2 − J2

A

]2 [(∆A − 4)2 − J2
A

]2 [(∆A − 6)2 − J2
A

]2 .

(3.41)

It is also possible to obtain a sum rule over conformal primaries only, though for simplicity
we omit the explicit expression.
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Convergence of the sum (3.41) requires that all operators in the s-channel OPE have di-
mensions ∆s > 2+Js (the sum rules for the curvature of other vector bundles also converge
if this condition is satisfied). Operators that saturate this bound are conserved currents,
and they lead to a divegence in the small z, z̄ region of the z, z̄ integral in (3.25). Note that
the contribution of finitely many such operators vanishes since the double-discontinuity
of each vanishes individually. So the sum rule converges provided there are not infinitely
many higher spin conserved currents in the s-channel OPE. It is known that the presence
of these higher spin conserved current implies that the theory is free [40–42].

3.5 Inversion Formula for gij,k`

So far, we discussed how to compute the curvature of vector bundles over the conformal
manifold using CFT data. In this subsection, we will discuss an inversion formula for the
second derivative of the metric, gij,k`.

Unlike the Riemann curvature at the reference CFT, gij,k` is sensitive to the choice
of local coordinates, i.e. to the choice of counterterms. We assume we are working in
the minimal subtraction scheme where the counterterms cancel all 1/s poles in analytic
regularization, and have no finite part. Equations (2.18) and (3.3) suggest that gij,k` is
related to I∆=0,J=0, in local coordinates where gij,k = 0. The goal of this section is to make
this correspondence more precise. As we will see, the relation between gij,k` and I∆=0,J=0
is slightly more subtle than that between Rijk` and I∆=1,J=1.

For simplicity, let’s assume there are no relevant operators in the OPE between exactly
marginal operators. Then (2.18) and (3.3) suggest that

gij,k`
?= vol(SO(d− 1))

(Sd−1)2 I∆=0,J=0 . (3.42)

As we will see shortly, this is not quite correct as written. In particular, in appendix A we
show that in any dimension d, we have

K∆,JG∆̃,J(z, z̄) +K∆̃,JG∆,J(z, z̄) = 2Sd−1

(
1
∆ + 1

4 ln
(
|z|4

|1− z|2

))
+O(∆) . (3.43)

The leading contribution has a pole as ∆→ 0. The coefficient of this pole is proportional
to (2.16), so it gives a 0×∞ ambiguity to gij,k`.

To properly deal with this ambiguity, we must work with the regularized expression
for gij,k`. Following the same steps that led to (3.21), we find that

g
(s)
ij,k` = vol(SO(d− 1))

(Sd−1)2 I
(s)
∆=2s,J=0 , (3.44)

where I(s)
∆,J=0 is given by (3.22). As s→ 0, we find

Hs(z, z̄)
[
K∆=2s,J=0G∆̃=d−2s,J=0(z, z̄) +K∆̃=d−2s,J=0G∆=2s,J=0(z, z̄)

]
= Sd−1

(
1
s

+ 4 lnµ+ 1
6 ln

(
z2z̄2

(1− z)(1− z̄)

))
〈Oi(1)Oj(0)Ok(x1)O`(x2)〉+O(s) .

(3.45)
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The coefficient of the pole in s and the lnµ term are the same, and is given by (2.16).
This coefficient has to vanish since it contributes to the beta-function of the three-point
function of exactly marginal operators. The remaining piece is finite in s. Comparing the
finite piece in (3.45) to (B.1) and (B.2), we find

gij,k` = −1
3 (Rikj` +Ri`jk) . (3.46)

The final result (3.46) is the expression for the second-derivative of the metric in Riemann
normal coordinates. Thus, the subtraction scheme we have been using so far where all
counterterms are set to zero is equivalent to working in Riemann normal coordinates.

To obtain the result (3.46), it was important to keep track of the regulator, due to the
0×∞ ambiguity in the “naive” inversion formula (3.42). Had we used (3.42) directly, we
would have found the incorrect result

gij,k`
?= − (Rikj` +Ri`jk) , (3.47)

where we kept only the finite piece in (3.43) and dropped the pole in ∆. Comparing
against (3.46), we see that they differ only in the overall numerical factor. Hence, when
discussing the inversion formula for gij,k`, it is easier to work with the “naive” inversion
formula (3.42), drop the pole 1

∆ that arises before performing the integral, perform the
integral, and then divide the result by 3. As we have shown, this is equal to the regularized
expression, and allows us to work with the analytically continued inversion formula I∆,J .
In other words, we have

gij,k` = 1
3
vol(SO(d− 1))

(Sd−1)2 lim
∆→0

I∆,J=0

∣∣∣∣
finite

, (3.48)

where we only keep the finite piece of I∆,J=0 in the limit ∆→ 0. In this way, we see that
the function I∆,J has the property that both I∆=0,J=0 and I∆=1,J=1 are related to the
Riemann curvature of the conformal manifold.

3.6 Sum rules for the second derivative of the metric

The inversion formula (3.48) gives a sum rule for gij,k`. Since we are working in Riemann
normal coordinates, this can in turn be related to a sum rule for the Riemann curvature
in these coordinates, which we now discuss in 2 and 4 dimensions.

3.6.1 2d

Using (3.25), we find

gij,k` = − lim
δ→0

1
24π2δ

∫ 1

0
dzdz̄G∆=1,J=δ−1(z, z̄) (〈[Ok,Oj ][Oi,O`]〉+ (k ↔ `)) . (3.49)

Using (3.10), we find that the block entering in the kernel of (3.49) admits the small δ
expansion:

G∆=1,J=δ−1(z, z̄) = − ln |1− z|2 − δ

2 [ln z ln(1− z̄) + ln z̄ ln(1− z)− ln(1− z) ln(1− z̄)]

+ δ

2
[
ln z ln(1− z) + ln z̄ ln(1− z̄) + 2 ln |1− z|2 + 2Li2(z) + 2Li2(z̄)

]
,

(3.50)
where we included terms up to order O(δ).
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The double-commutators entering in the inversion formula are given by (3.31)
and (3.32). The leading term in (3.50) contributes to a pole 1/δ on the r.h.s. of (3.49). As
discussed below (3.45), this pole has to vanish by exact marginality. Hence, assuming that
we can commute the sum over operators with the integrals over z, z̄ (we will soon see that
this is not quite right), we find the sum rule

1
12π2

∑
A

(CjkACi`A + Cj`ACikA)
(
1− cos(2πh̄A)

) hA + h̄A − 2
(hA − 1)2(h̄A − 1)2 = 0 , (3.51)

where the sum is over all operators in the theory (primaries and descendants). Similar sum
rules, derived from the Euclidean inversion formula (2.16), were explored in [43].

As in the previous sum rule (3.33), we have to worry about convergence of the z, z̄
integral in (3.49) near z = 0 or z̄ = 0, where the t-channel expansion does not converge.
From the kernel (3.50), we see that the integral over z has a divergence near z = 0 if the
double-discontinuity behaves as z−2+hs near z = 0, for any5 0 ≤ hs < 1. Thus, a sufficient
condition for convergence of the integral is that there are no operators with weights (hs, h̄s)
satisfying 0 ≤ hs < 1 or 0 ≤ h̄s < 1 in the s-channel OPE.

From now on we assume this condition to be true, the only exception being the vacuum
block when the operators are identical. The sum rule (3.51) is then modified to

1
12π2

∑
A

(CjkACi`A + Cj`ACikA)
(
1− cos(2πh̄A)

) hA + h̄A − 2
(hA − 1)2(h̄A − 1)2 + V0δijδk` = 0 ,

(3.52)
where V0 is the contribution from the double-discontinuity of the vacuum Virasoro block,
and on the l.h.s. we must subtract this contribution from the t-channel sum. Of course,
since the vacuum Virasoro block is not known in closed form, we do not know what V0 is,
but in any case it should be a constant (depending only on the central charge c). At large
c, the Virasoro block is equal to the global block, and therefore V0 → 0 as c→∞. We do
not know of an expression for V0 at finite c.

Let’s consider the case i = j 6= k = `, so that (3.51) simplifies to

1
6π2

∑
A

C2
ikA

(
1− cos(2πh̄A)

) hA + h̄A − 2
(hA − 1)2(h̄A − 1)2 + V0 = 0 , (3.53)

Since C2
ikA

(
1− cos(2πh̄A)

)
≥ 0, this sum rule implies that irrelevant operators in the OPE

of the exactly marginal operators Oi and Ok contribute with a plus sign to the sum on the
l.h.s. , and relevant operators contribute with a negative sign to the sum on the l.h.s. . Note
that there can still be relevant operators in the OPE of these exactly marginal operators,
so long as they do not appear in the s-channel OPE we are considering.

5Operators with weights (1, n) or (n, 1), n ≥ 1, do not appear in the OPE of exactly marginal operators.
The argument for this is a simple generalization of that leading to (2.6), allowing for operators with non-zero
spin. See [2] for more details.
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At next order in δ in the expansion (3.50), we find the sum rule for gij,k`,

gij,k` = 1
24π2

∑
A

(CjkACi`A + Cj`ACikA)

(
1− cos(2πh̄A)

)
(hA − 1)2(h̄A − 1)2 (1 + f(hA, h̄A)) +W0δijδk` ,

(3.54)
where

f(h, h̄) = 2(2− h− h̄) + (h− h̄)
(
ψ(0)(h̄)− ψ(0)(h)

)
+ (1− h)(1− h̄)

(
ψ(1)(h) + ψ(1)(h̄)

)
,

(3.55)
where ψ(m)(z) is the polygamma function of order m. Again, for convergence of the z, z̄
integrals near the origin, we are assuming no operators with 0 ≤ hs < 1 or 0 ≤ h̄s < 1
appear in the s-channel OPE. The constant W0 gives the contribution from the vacuum
Virasoro block when i = j, k = `. It vanishes at large c since the double-discontinuity of
the Virasoro vacuum block vanishes in this limit. Note that in this case, we must also
subtract the contribution from the vacuum block from the sum, by expanding it in the
t-channel OPE channel.

Let’s consider the case i = j 6= k = ` of (3.54), in which case we have

Rikik = − 1
8π2

∑
A

C2
ikA

(
1− cos(2πh̄A)

)
(hA − 1)2(h̄A − 1)2 (1 + f(hA, h̄A)) +W0 , (3.56)

where we used (3.46). The function f(hA, h̄A) is negative for all operators but relevant
scalar operators. Thus, if there are no relevant scalar operators in the t-channel, we find a
simple bound for the sectional curvature Rikik,

Rikik ≥ −
1

8π2

∑
A

C2
ikA

(
1− cos(2πh̄A)

)
(hA − 1)2(h̄A − 1)2 +W0 . (3.57)

We can do better if we impose stronger constraints on the t-channel OPE. The function
1 + f(hA, hA) is negative for all hA ≥ h∗ ≈ 1.30146. Hence, if all scalar operators in the
t-channel OPE satisfy this, then we have

Rikik ≥W0 , (3.58)

which is a bound depending only on the central charge c. If the sum rules converge but
there are scalar operators with hA ≤ h∗, then we can include the contribution from these
operators explicitly, to find a lower bound to Rikik. Finally, note that we can combine
the sum rules (3.53) and (3.58). To that end, assume that there are no relevant scalar
operators in the t-channel OPE, and let h = 1 + ε be the holomorphic conformal weight of
the lowest operator in the t-channel OPE. Adding µ times (3.53) to (3.56), we have

Rikik = − 1
8π2

∑
A

C2
ikA

(
1− cos(2πh̄A)

)
(hA − 1)2(h̄A − 1)2 (1 + fµ(hA, h̄A)) + (W0 + µV0) , (3.59)

where

fµ(h, h̄) = 2(µ−1)(h+h̄−2)+(h−h̄)
(
ψ(0)(h̄)− ψ(0)(h)

)
+(1−h)(1−h̄)

(
ψ(1)(h) + ψ(1)(h̄)

)
.

(3.60)
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We can choose µ = µ∗(ε) so that 1 + fµ∗(ε)(h, h) ≤ 0 for all h ≥ 1 + ε. Then we find the
bound

Rikik ≥W0 + µ∗(ε)V0 . (3.61)

For example, when 0 < ε� 1, we have µ∗(ε) = − 1
4ε + 1 +O(ε).

3.6.2 4d

In 4d, we find from (3.48) and (3.25) that the second derivative of the metric is given by

gij,k` = lim
δ→0

1
288π2δ

∫ 1

0
dzdz̄|z−z̄|2G∆=3,J=δ−3(z, z̄) (〈[Ok,Oj ][Oi,O`]〉+ (k ↔ `)) . (3.62)

Using (3.13), some algebra gives

G∆=3,J=δ−3(z, z̄) = 3
z − z̄

[z̄(2− z) ln(1− z)− z(2− z̄) ln(1− z̄)]

+ δ

2(z − z̄)
[

ln(1− z)
(
2(−8 + 7z)z̄ + 3(−2 + z)z̄ ln z + 3z ln(1− z̄)

)
+ 6z ln z

(
− 3z̄ + (−2 + z̄) ln(1− z̄)

)
+ 6(−2 + z)z̄Li2(z)− (z ↔ z̄)

]
,

(3.63)

Let’s consider the case i = j 6= k = ` for simplicity. The leading contribution of the
conformal block (3.63) contributes to the 1/δ pole in (3.62), which has to vanish by exact
marginality. Thus, we find the naive sum rule:

− 32
3π2

∑
A

C2
ikA [1− cos (π(∆A + JA))] (∆A − 4)

× 7J4
A − 2(44 + 3(∆A − 8)∆A)J2

A − (∆A − 6)2(∆A − 2)2[
(∆A − 2)2 − J2

A

]2 [(∆A − 4)2 − J2
A

]2 [(∆A − 6)2 − J2
A

]2 = 0 ,
(3.64)

where we used the t-channel OPE (3.40). As in 2d, we have to be careful about the
operators we are summing over. This is because the OPE expansion may not commute
with the z, z̄ integrals in (3.62). The issue has to do with the behaviour of the double-
discontinuity for small z, z̄. At small z, z̄, the kernel in (3.63) goes to zero as z (for fixed
z̄). Finiteness of the integrals at small z is guaranteed provided that the integrals in the
s-channel OPE converge, which requires ∆ > J + 4 for all operators in the s-channel OPE.
Note that this is above the unitarity bound ∆ ≥ J + 2.

Thus, for the sum rule (3.64) to be valid as written, we assume that the s-channel OPE
expansion contains no operators that violate this bound. If such operators are present, we
must include their contribution explicitly to the sum rule (which will give some additional
contribution to (3.63)), and also subtract their contribution to the t-channel sum in (3.63).

Assuming no s-channel operators with dimension ∆ ≤ J + 4, the sum rule (3.64)
imposes constraints in the OPE of exactly marginal operators. Note that we do not have
to include the contribution from the vacuum or stress tensor (global) blocks, because their
double-discontinuity vanishes.
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Let’s now look at the finite piece in the inversion formula for gij,k`, coming from the
subleading term in the conformal block expansion (3.63). Using the relation (3.46), we find

Rikik = − 1
96π2

∑
A

C2
ikA [1− cos (π(∆A + JA))] g(∆A, JA) . (3.65)

The condition for convergence of this sum rule is the same as (3.64), which we assume. Here,
g(∆, J) is the function (D.1). Properties of this function are discussed in appendix D. If no
operators with ∆ < ∆∗(J) appear in the t-channel OPE, where ∆∗(J) are given by (D.2),
then the sectional curvature satisfies

Rikik ≥ 0 . (3.66)

Note that this condition is satisfied if all operators with J = 1 or J ≥ 3 satisfy ∆ ≥
J + 4, and furthermore J = 0 operators satisfy ∆ ≥ ∆∗(J = 0) ≈ 4.43826, and J = 2
operators satisfy ∆ ≥ ∆∗(J = 2) ≈ 6.05949. As in 2d, operators outside this range can
be included and give a negative contribution to the r.h.s. of (3.66), provided the sum rule
still converges. Conversely, in regions of the conformal manifold with negative sectional
curvature, operators with ∆ < ∆∗(J) necessarily appear in the t-channel OPE.

4 Examples in 2d

In this section, we will verify some of the results discussed in section 3 in two examples in
2d: free theories, and (2, 2) SCFTs.

4.1 U(1) currents

Consider a 2d CFT with a holomorphic U(1) current j(z), and N anti-holomorphic U(1)
currents j̃i(z̄), i = 1, . . . , N , with OPE

j(z)j(0) ∼ 1
z2 , j̃i(z̄)j̃j(0) ∼ δij

z̄2 . (4.1)

The exactly marginal operators are Oi(z, z̄) ≡ j(z)j̃i(z̄), i = 1, . . . , N . The Zamolodchikov
metric gij is given by

gij ≡ 〈Oi(e)Oj(0)〉 = δij . (4.2)

An example of such a CFT is N compact free bosons. In this case, the conformal manifold
is N2 dimensional, with N choices for left/right-moving currents separately. The N exactly
marginal operators above define a N -dimensional conformal submanifold.

Let’s calculate the curvature of the tangent bundle. The 4-point function of exactly
marginal operators is given by

〈Oi(0)Oj(z, z̄)Ok(1)O`(∞)〉 =
( 1
z2 + 1

(1− z)2 + 1
)(

δijδk`
z̄2 + δi`δjk

(1− z̄)2 + δikδj`

)
, (4.3)
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and the connected part is

〈Oi(0)Oj(z, z̄)Ok(1)O`(∞)〉c = 1
z2

(
δi`δjk

(1− z̄)2 + δikδj`

)
+ 1

(1− z)2

(
δijδk`
z̄2 + δikδj`

)
+
(
δijδk`
z̄2 + δi`δjk

(1− z̄)2

)
,

(4.4)

Using (4.4) in the Euclidean inversion formula, we find

Rijk` = 1
4 (δi`δjk − δikδj`) = 1

4 (gi`gjk − gikgj`) , (4.5)

as expected for a homogeneous manifold of constant negative curvature. To obtain (4.5),
we used the integrals∫
d2z ln |1− z|2 1

z2 = −π ,
∫
d2z ln |1− z|2 1

z2(1− z̄)2 = π ,

∫
d2z ln |1− z|2 1

(1− z)2 = 0.

(4.6)
Next we turn to the Lorentzian inversion formula. The double-discontinuity of (4.4)

is subtle to compute, because naively it vanishes since the expansion in powers of (1 − z̄)
only has integer powers. However, it turns out that the correct answer is that the double-
discontinuity of (4.4) has delta-function localized contributions [1]. To see this, let’s first
compute the double-discontinuity of z−2(1− z̄)−2, starting from

dDisc
[ 1
z2z̄2

(1− z̄
z̄

)a]
= (1− cos (2πa)) 1

z2z̄2

(1− z̄
z̄

)a
. (4.7)

By taking a→ −2, we get the double discontinuity of z−2(1− z̄)−2.
From (3.25) and (3.10), we are interested in the kernel

GJ+1,∆−1(z, z̄) = k2h(z)k2−2h̄(z̄) + k2−2h̄(z)k2h(z̄) , (4.8)

where h = ∆+J
2 , h̄ = ∆−J

2 . Using the integral representation of 2F1, we can show that [1]∫ 1

0
dz̄ k2−2h̄(z̄)dDisc

[ 1
z̄2

(1−z̄
z̄

)a]
=−π 1−cos(2πa)

sin(π(a+h̄))
Γ(1+a)2Γ(2−2h̄)

Γ(1−h̄)2Γ(2+a−h̄)Γ(1+a+h̄)
.

(4.9)
As advertised, the integral is finite at a→ −2. The z integral gives

∫ 1

0
dz k2h(z) 1

z2 = 2−1+2h

(h− 1)
√
π

Γ
(

1
2 + h

)
Γ (1 + h) . (4.10)

Using these two results, we find∫ 1

0
dz

∫ 1

0
dz̄ k2h(z)k2−2h̄(z̄)dDisc

[
1

z2z̄2

(1− z̄
z̄

)−2
]

= 2π2h̄(h̄− 1)Γ(2− 2h̄)
Γ(1− h̄)2

2−1+2h

(h− 1)
√
π

Γ
(

1
2 + h

)
Γ (1 + h) .

(4.11)
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Finally, we set J = 1 followed by ∆ = 1 to find6∫ 1

0
dz

∫ 1

0
dz̄ k2h(z)k2−2h̄(z̄)dDisc

[
1

z2z̄2

(1− z̄
z̄

)−2
]∣∣∣∣∣
J=1,∆=1

= −2π2 . (4.12)

We can proceed similarly to find the double-discontinuities of the other terms in (4.4).
We find that, at ∆ = 1, J = 1, all these double-discontinuities vanish except for z−2(1−z̄)−2

and z̄−2(1 − z)−2, which give the same contribution. Thus, using these results in (3.25),
we get

Rijk` = − 1
32π2

[
−(8π2) (δi`δjk + δijδk`) + (8π2) (δikδj` + δijδk`)

]
= 1

4 (δi`δjk − δikδj`) ,
(4.13)

where the first minus sign comes from α∆=1,J=1 in (3.25), and the two terms in the square
brackets come from the two contributions in (3.25). There is also an overall factor of (−2)
relative to (4.12) coming from (3.28), and another factor of 2 from the two terms in (4.8).
In the end, we find perfect agreement with (4.5).

Let’s now check the inversion formula for gij,k` (3.48) using the Lorentzian inversion
formula. Doing a similar analysis as the one leading to (4.12), we find∫ 1

0
dz

∫ 1

0
dz̄ GJ+1,∆−1(z, z̄)dDisc

[
1

z2z̄2

(1− z̄
z̄

)−2
]∣∣∣∣∣
J=0

= π2∆ +O(∆2) ,

∫ 1

0
dz

∫ 1

0
dz̄ GJ+1,∆−1(z, z̄)dDisc

[
1

z2z̄2

(1− z
z

)−2
]∣∣∣∣∣
J=0

= π2∆ +O(∆2) ,
∫ 1

0
dz

∫ 1

0
dz̄ GJ+1,∆−1(z, z̄)dDisc

[ 1
(1− z)2

]∣∣∣∣
J=0

= −π2∆ +O(∆2) ,∫ 1

0
dz

∫ 1

0
dz̄ GJ+1,∆−1(z, z̄)dDisc

[ 1
(1− z̄)2

]∣∣∣∣
J=0

= −π2∆ +O(∆2) ,

(4.14)

while the other terms in (4.4) have zero double-discontinuity. The prefactor α∆,J is given by

α∆,J=0 = − 1
2∆

ĈJ(1)
volSO(d− 1) +O(∆0) . (4.15)

Using (4.4), (4.14), and (4.15) in (3.25) and (3.48), we find

gij,k` = lim
∆→0

1
24π2

2
∆π2∆ [(δijδk` − δikδj`) + (δijδk` − δi`δjk)]

= 1
12 (2δijδk` − δi`δjk − δikδj`) .

(4.16)

This is the expression for the second derivative of the metric in Riemann normal coordi-
nates, as can be seen from (3.46) and (4.13). Note also that the double-discontinuities (4.14)
vanish as ∆→ 0, as required for exactly marginal operators, see (3.45).

6From (4.11), we see that for fixed J close to 1, there is a pole in ∆ at 2− J , with residue proportional
to J − 1. If we take ∆→ 1 before J → 1, the pole and finite part mix and give the wrong answer.
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Finally, let’s consider the sum rule (3.36). Since this sum rule does not converge if there
are holomorphic conserved currents in the s-channel, we have to subtract their contribution
from the correlation function (4.4). The remaining contribution to the 4-point function has
vanishing double-discontinuity. Meanwhile, the contribution of the s-channel holomorphic
currents has to be included explicitly, in the same way as the analysis leading up to (4.13).
Thus, in the end, we obtain again the result (4.13).

A similar analysis holds for the sum rule for gij,k`.

4.2 2d (2, 2) SCFTs

Now we will compute the curvature of various vector bundles over the conformal manifold
of 2d (2, 2) SCFTs. We will summarize the basic facts that we need about such SCFTs
here, for a more extended discussion see e.g. [44]. The symmetry algebra of such a CFT
is enhanced to N = 2 super-Virasoro algebra, with left-moving supercurrents G±(z) and
left-moving R-current J(z), as well as right-moving analogues.

The (super-)primaries with respect to the super-Virasoro algebra are annihilated by
all lowering operators. Furthermore, multiplets can be long or short. In short multiplets,
primaries are further annihilated by either G+

−1/2 (chiral) or G−−1/2 (anti-chiral) in the
left-moving part, and similarly in the right-moving part. This gives four rings of chiral
primaries: (c, c), (a, c), (c, a), and (a, a), where the notation means chiral/anti-chiral in the
left- or right-moving part. Operators in the (c, c) chiral ring satisfy J0 = 2L0, J̄0 = 2L̄0,
in the (a, c) ring they satisfy J0 = −2L0, J̄0 = 2L̄0, etc. The (c, c) operators together with
their complex conjugate form the chiral ring, while the (a, c) + (c, a) operators comprise
the twisted chiral ring.

The chiral operators with J0 = ±1 and J̄0 = ±1 are especially important for us.
Acting with G−− 1

2
Ḡ−− 1

2
on the (c, c) chiral primary with J0 = J̄0 = 1 gives an exactly

marginal operator with R-charges J0 = J̄0 = 0. Similarly, there are exactly marginal
operators obtained by acting with G+

− 1
2
Ḡ+
− 1

2
on (a, a) chiral operators. Altogether, these

form the chiral moduli space. There is also the twisted chiral moduli space, where the
exactly marginal operators are obtained by acting with supercurrents on operators in the
twisted chiral ring.

The moduli space of the SCFT locally factorizes in the chiral moduli space, and the
twisted chiral moduli space. The geometry of the conformal manifold is known to be that
of a complex Kähler manifold. (See e.g. [8, 45])

The dimension of chiral operators is constant over the conformal manifold, and hence
they form a vector bundle. Furthermore, chiral operators can only mix with other chi-
ral operators of the same R-charge. The chiral ring coefficients define a multiplication
between different chiral bundles which corresponds to taking the OPE between the op-
erators. These chiral ring coefficients depend holomorphically on the coordinates on the
conformal manifold.

From now on, we will consider only the chiral moduli space for simplicity, though all
computations have analogues in the twisted moduli space. The two-point function between
a (c, c) chiral primary operator ϕi of R-charge q and a (a, a) chiral primary operator ϕj̄ of
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R-charge −q is given by
h

(q)
ij̄

(0) ≡
〈
ϕi(1)ϕj̄(0)

〉
. (4.17)

We use conventions where unbarred indices denote chiral operators in the (c, c) ring, and
barred coordinates give chiral operators in the (a, a) ring. The two-point function is non-
zero only between (c, c) and (a, a) operators. The OPE between chiral operators ϕi is
given by

ϕi(z)ϕj(0) = Cmij ϕm(0) + (subleading) , (4.18)

and similarly for anti-chiral operators. We will also need the OPE between a (c, c) chiral
operator of R-charge qi, ϕi, and a (a, a) operator of R-charge −qj , ϕj̄ . When qi ≤ qj , the
OPE is given by

ϕi(z)ϕj̄(0) ∼ |z|−2qiCpikh
(qj)
pj̄

h(qk)km̄ϕm̄(0)

+ 3qi
c
h

(qi)
ij̄
δqi,qj

(
z−∆ϕ+1z̄−∆ϕJ(0) + z̄−∆ϕ z̄−∆ϕ+1J̄(0)

)
+ (· · · ) ,

(4.19)

where ϕm̄ is a (a, a) operator of R-charge −(qj − qi). We assume the (c, c), (a, a) operators
have the same left and right R-charges, for simplicity. We included the contributions
from the anti-chiral operators together with the R-currents J(z) and J̄(z̄), which will be
important for us. When qi ≥ qj , this OPE becomes

ϕi(z)ϕj̄(0) ∼ |z|−2qjC p̄
j̄ ¯̀h

(qi)
ip̄ h(q`)mn̄ϕm(0)

+ 3qi
c
h

(qi)
ij̄
δqi,qj

(
z−∆ϕ+1z̄−∆ϕJ(0) + z̄−∆ϕ z̄−∆ϕ+1J̄(0)

)
+ (· · · ) .

(4.20)

For more details, see e.g. [5].
The Zamolodchikov metric is given by

gij̄(0) ≡ 〈
(
G+
− 1

2
Ḡ+
− 1

2
φj̄

)
(1)
(
G−− 1

2
Ḡ−− 1

2
φi

)
(0)〉 = 4h(1)

ij̄
(0) , (4.21)

where φi denote the chiral primaries of R-charge J0 = 1. The i, ī indices give Kähler
coordinates on the conformal manifold.

4.2.1 Curvature of chiral primaries

We first compute the curvature of the chiral vector bundle using the Euclidean inversion
formula. From (3.12), the correlation function of interest is〈

ϕk(0)ϕ¯̀(z, z̄)Oi(1)Oj̄(∞)
〉
. (4.22)

Using superconformal Ward identities, we have〈
ϕk(0)ϕ¯̀(z, z̄)Oi(1)Oj̄(∞)

〉
= |z|−2∆ϕ

〈
Oj̄(0)ϕ¯̀(1/z, 1/z̄)Oi(1)ϕk(∞)

〉
,

= |z|4−2∆ϕ

〈
Oj̄(0)Oi(z, z̄)ϕ¯̀(1)ϕk(∞)

〉
,

= 4|z|4−2∆ϕ

〈
(∂∂̄φj̄)(0)φi(z, z̄)ϕ¯̀(1)ϕk(∞)

〉
,

(4.23)
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where in the last line we wrote Oi = G−−1/2φi as a contour of the supercurrent G−(w)
around w = z, and deformed the contour. Since ϕ¯̀ is anti-chiral, it is annihilated by G−−1/2.
Similarly, G−(w) annihilates ϕk(∞) since the operator is at infinity. The only contribution
comes from G−(w) acting on Oj̄ , which gives G−− 1

2
G+
− 1

2
φj̄ = 2L−1φj̄ . A similar argument

holds for the anti-holomorphic part. Using another conformal transformation, we have〈
(∂∂̄φj̄)(0)φi(z, z̄)ϕ¯̀(1)ϕk(∞)

〉
= ∂∂̄

[
|1− z|2

〈
φj̄(0)φi(z, z̄)ϕ¯̀(1)ϕk(∞)

〉]
. (4.24)

Using this in (3.12), we have

Fij̄
m̄

¯̀(0) = h(qk) m̄k

4π

∫
d2z ln |1− z|2|z|−4+2∆ϕ

〈
ϕk(0)ϕ¯̀(z, z̄)Oi(1)Oj̄(∞)

〉
c
,

= h(qk) m̄k

π

∫
d2z ln |1− z|2∂∂̄

[
|1− z|2

〈
φj̄(0)φi(z, z̄)ϕ¯̀(1)ϕk(∞)

〉]
− Fdisc .

(4.25)

Here, Fdisc stands for the contribution to Fij̄ m̄ ¯̀(0) coming form the s-channel disconnected
contribution to the 4-point function in the first line, namely

Fdisc = h(qk) m̄k

π

∫
d2z ln |1− z|2|z|−4h

(qk)
k ¯̀ h

(1)
ij̄

. (4.26)

The t, u-channel disconnected contributions vanish. Using ∇2 = 4∂∂̄, (4.25) can be writ-
ten as

Fij̄
m̄

¯̀(0) = h(qk) m̄k

4π

∫
d2z∇ ·

(
ln |1− z|2∇

[
|1− z|2

〈
φj̄(0)φi(z, z̄)ϕ¯̀(1)ϕk(∞)

〉])
− h(qk) m̄k

4π

∫
d2z∇ ·

([
∇ ln |1− z|2

]
|1− z|2

〈
φj̄(0)φi(z, z̄)ϕ¯̀(1)ϕk(∞)

〉)
−Fdisc,

(4.27)

where we used the fact that ∂∂̄ ln |1 − z|2 = 0. The non-vanishing part of the first two
terms in (4.27) comes only from the boundary terms at z = 0, 1,∞.

Let’s ignore for now the disconnected contribution in the correlation function in (4.27),
and look at the second term in (4.27). Consider the contribution from the boundary term
|z| = L at infinity. Using conformal transformations, we have

|1− z|2
〈
φj̄(0)φi(z, z̄)ϕ¯̀(1)ϕk(∞)

〉
= |1− z|

2

|z|2
〈
ϕk(0)φi(1/z, 1/z̄)ϕ¯̀(1)φj̄(∞)

〉
= CmikC

n̄
j̄ ¯̀h

(qk+1)
mn̄ + (subleading) ,

(4.28)

up to terms that are subleading at large |z|. Letting z = reiθ, we also have

∇
[
ln |1− z|2

]
= r̂

(2
r

+ subleading
)

+ θ̂ (· · · ) , (4.29)

where we dropped terms subleading at large r and the · · · on the r.h.s. denote terms
that will not be important for us. Stokes’ theorem gives the contribution from the region
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|z| = L� 1 to be

−h
(qk) m̄k

4π

∫ 2π

0
dθ Lr̂ ·

( 2
L
CmikC

n̄
j̄ ¯̀h

(qk+1)
mn̄ r̂ + r̂(subleading) + θ̂(· · · )

)
= −CmikC n̄j̄ ¯̀h

(qk) m̄kh
(qk+1)
mn̄ ,

(4.30)

where in the last line we used the OPE (4.18) and took the limit L→∞.
The contribution from the boundary term near z = 1 to the second term in (4.27) can

be obtained similarly. Letting 1− z = reiθ, Stokes’ theorem gives

−h
(qk) m̄k

4π

∫ 2π

0
dθ ε(−r̂) ·

(2
ε
r̂

) (
|1− z|2

〈
φj̄(0)φi(z, z̄)ϕ¯̀(1)ϕk(∞)

〉)∣∣∣
z=1

= CpinC
m̄
j̄s̄h

(qp)
p¯̀ h(qn)ns̄ ,

(4.31)

where we used the OPE (4.19) to evaluate the correlation function. Note that the contri-
bution from (4.20) vanishes at z = 1.

Finally let’s evaluate the contribution from the boundary term at z = 0. Let z = reiθ,
so that

∇ ln |1− z|2 = r̂ (−2 cos θ − 2r cos(2θ)) + θ̂ (· · · ) + subleading . (4.32)

Using this together with the OPE (4.19), we find the boundary contribution

−h
(qk) m̄k

4π

∫ 2π

0
dθ ε(−r̂)·(−2r̂ cosθ−2r̂εcos(2θ))

(
1+ε2−2εcosθ

)
h

(1)
ij̄
h

(qk)
k ¯̀

( 1
ε2

+ 3qk
c

2cosθ
ε

)
=h

(1)
ij̄
δm̄¯̀

(
1− 3qk

c

)
.

(4.33)

One can check that other contributions to the OPE, no written explicitly in (4.18) and (4.19),
do not contribute to the integral in (4.33).

Now let’s discuss the first term in (4.27), ignoring the disconnected contribution to
the correlation function for a moment. Once again, the integral localizes at z = 0, 1,∞.
However, now we see that the derivative acts on the correlation function. Proceeding as
above, we see that this kills the boundary contributions at z = 1,∞. On the other hand,
the boundary contribution at z = 0 is once again given by (4.33).

Finally, there is the disconnected contribution (4.26). Cutting out the integral near
|z| > ε, the integral can be carried out explicitly to give

Fdisc = h
(1)
ij̄
δm̄¯̀ . (4.34)

Combining this with the boundary contributions at z = 0, 1,∞ to (4.27), we find

Fij̄
m̄

¯̀(0) = −CmikC n̄j̄ ¯̀h
(qk) m̄kh

(qk+1)
mn̄ + CpinC

m̄
j̄s̄h

(qj)
p¯̀ h(qn)ns̄ + h

(1)
ij̄
δm̄¯̀

(
1− 6qk

c

)
. (4.35)
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4.2.2 Curvature of supercurrents

As we deform the CFT along the conformal manifold, the supercurrents G±(z) can pick
up a phase G±(z)eiθ(λ) (and similarly for the right-moving supercurrents). This phase only
acts on the supercurrents, and therefore leaves the N = 2 superconformal algebra invariant.

We can think of the supercurrents as defining a line bundle over the conformal manifold.
The connection on this line-bundle dictates how the operators transform as we move on
the conformal manifold. For the supercurrent, we have

Oi(x)G+(0) ∼ Ai(λ)δ(2)(x)G+(0) , (4.36)

where Ai(λ) is the connection for the supercurrent G+. Since we want to leave the two-point
function

〈G−(1)G+(0)〉λ , (4.37)

unchanged, it follows that

Oi(x)G−(0) ∼ −Ai(λ)δ(2)(x)G−(0) . (4.38)

Using (3.12), the curvature of the supercurrent vector bundle is given by7

FG
k ¯̀ = 1

4π
3
2c

∫
d2z

z3

|z|4
ln |1− z|2〈G−(0)G+(z)Ok(1)O¯̀(∞)〉c , (4.39)

where the factor of 3
2c comes from dividing by the two-point function 〈G−(1)G+(0)〉 = 2c

3 ,
as needed to raise one of the indices, see (3.12).

The 4-point function 〈G−(0)G+(z)Ok(1)O¯̀(∞)〉 can be evaluated using superconfor-
mal Ward identities. The only operators appearing in s-channel OPE are the identity and
the stress-tensor. Thus we have

〈G−(0)G+(z)Ok(1)O¯̀(∞)〉c = −8
z
h

(1)
k ¯̀ . (4.40)

Using this in (4.39), and using the integral (4.6), we find

FG
k ¯̀ =

3h(1)
k ¯̀
c

. (4.41)

4.2.3 Riemann curvature

The exactly marginal operators are top components of the chiral/anti-chiral operators.
To compute the Riemann curvature of the Zamolodchikov metric, we have to combine the
curvature of chiral primaries of R-charge J0 = J̄0 = ±1, given by (4.35), with the curvature
of the supercurrents, (4.41).

If the operators ϕk,ϕ¯̀ have R-charges J0 = J̄0 = ±1, the contribution from the second
term in (4.35) is equal to h(1)

i¯̀ δ
m̄
j̄
. On the other hand, there is a left-moving and a right-

moving copy of the supercurrents, each with a curvature (4.41). There is also a factor
7Since the supercurrents are not scalar operators, the integrand of (3.12) has to be modified slightly,

see [35]. Alternatively, we can compute the curvature of the vector bundle of the scalars operators G±Ḡ±,
which is equal to (4.39) times a factor of 2.
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of 4 relating the two-point function of the chiral primaries and that of exactly marginal
operators, (4.21). In total, we find the Riemann curvature

Rij̄k ¯̀ = −4CmikC n̄j̄ ¯̀h
(2)
mn̄ + 4h(1)

i¯̀ h
(1)
kj̄

+ 4h(1)
ij̄
h

(1)
k ¯̀ .

= −4CmikC n̄j̄ ¯̀h
(2)
mn̄ + 1

4
(
gi¯̀gkj̄ + gij̄gk ¯̀

)
.

(4.42)

Note that the curvature satisfies

Rīikk̄ = −4CmikC n̄īk̄hmn̄ + gik̄gkī + gīigkk̄
4

≤ gik̄gkī + gīigkk̄
4 .

(4.43)

In particular, when the central charge c is an integer multiple of 3, the bound (4.43) is
sharp and saturated by the free theory of c/3 complex bosons+fermions. This may be
deduced from a parallel analysis to that of section 4.1.

More generally, (4.43) is in qualitative agreement with there being a lower bound on
the sectional curvature, as seen in the sum rule (3.58).8 For example, by contracting
indices (4.43) yields a general lower bound on the scalar curvature of the Zamolodchikov
metric

R ≥ −n(n+ 1)
4 , (4.44)

where above, n is the complex dimension of the conformal manifold. By averaging these
inequalities, we can further constrain the topology and geometry of the manifold. For
instance in the special case n = 1, a smooth compact manifold has a genus h computed by
the Gauss-Bonnet theorem:

1
4π

∫ √
gR = 2− 2h . (4.45)

From (4.44) we then find that the volume vol of the conformal manifold satisfies:

vol ≥ 16π(h− 1) . (4.46)

Such volumes of the space of conformal field theories have been previously investigated
in [46]. Analogous results may be proven in the context of 4d N = 2 theories using the
results of [9, 47].
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A Partial wave for the euclidean inversion formula

To obtain the results (3.16) and (3.46), we used properties of the conformal partial wave
for any dimension d, see (3.15) and (3.43). In this appendix, we show how to obtain these
results.

The partial wave Ψ∆,J(z, z̄) is defined by

Ψ∆,J(z, z̄) ≡ K∆,JG∆̃,J(z, z̄) +K∆̃,JG∆,J(z, z̄). (A.1)

It is a solution to the Casimir differential equation with dimension and spin ∆ and J . More
precisely, Ψ(z, z̄) is a solution to the differential equations[

Dz +Dz̄ + (d− 2) zz̄

z − z̄
((1− z)∂z − (1− z̄)∂z̄)

]
Ψ(z, z̄) = c2(∆, J)Ψ(z, z̄),[(

zz̄

z − z̄

)d−2
(Dz −Dz̄)

(
zz̄

z − z̄

)2−d
(Dz −Dz̄)

]
Ψ(z, z̄) = c4(∆, J)Ψ(z, z̄),

(A.2)

The differential operator Dz is given by

Dz = z2∂z(1− z)∂z − (a+ b)z2∂z − abz, (A.3)

where a ≡ 1
2(∆2−∆1), b ≡ 1

2(∆3−∆4), and similarly for Dz̄. The eigenvalues on the r.h.s.
of (A.2) are given by

c2(∆, J) = 1
2 (J(J + d− 2) + ∆(∆− d)) ,

c2(∆, J) = J(J + d− 2)(∆− 1)(∆− d+ 1).
(A.4)

These differential equations admit two linearly independent solutions, the conformal block
G∆,J(z, z̄), and the shadow block Gd−∆,J(z, z̄). The conformal blocks are normalized
as (3.9).

We start with the case ∆ = J = 1. It is straightforward to check that ln |1− z|2 solves
the differential equations (A.2) for ∆ = J = 1. We now just have to argue that this solution
is proportional to Ψ1,1(z, z̄) as in (A.1), as opposed to some other linear combination of
G∆,J(z, z̄) and Gd−∆,J(z, z̄).

For odd dimension d, K∆=1,J=1 = 0 so according to (A.1) Ψ1,1(z, z̄) is proportional
to G∆,J(z, z̄). Since G∆̃,J(z, z̄) has half-integer powers due to (3.9), we conclude that
Ψ1,1(z, z̄) is proportional to ln |1 − z|2 up to some overall factor. Finally, we can fix this
factor by comparing (A.1) to (3.9), to find

Ψ1,1(z, z̄) = 1
2Sd−1 ln |1− z|2 (A.5)

for odd d, where we used (3.6) to evaluate K∆̃=d−1,J=1.
For even d, both G∆,J(z, z̄) and G∆̃,J(z, z̄) have integer powers of z, z̄ so the same

argument does not work. However, there are explicit expressions for the conformal blocks
in this case, which can be written in terms of hypergeometric functions. The d = 2 and
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d = 4 cases were written in (3.10) and (3.13), respectively. In these cases, we also find the
same result as above, and we assume for other even dimensions this still holds.

Now let’s consider the case J = 0 and obtain Ψ∆,J=0(z, z̄) for small ∆. In this case,
we can check that

Ψ∆,J=0(z, z̄) = 2Sd−1

(
1
∆ + 1

4 ln
(
|z|4

|1− z|2

))
(A.6)

solves the differential equations (A.2) including terms of order up to O(∆). We can now
argue as above that for odd and even d this expression is the full partial wave, and not
another linear combination of the global and shadow conformal blocks.

B Bianchi identity

The symmetries of the Riemann tensor follow from (3.16) by using global conformal trans-
formations. In this appendix, we explicitly verify the Bianchi identity, while the other
symmetries of the Riemann tensor are simpler to check. From (3.16), we have

Rik`j = A(d)
∫
d2z ln |1− z|2 〈Oi(0)Ok(z)O`(1)Oj(∞)〉c

= A(d)
∫
d2z′ ln

∣∣∣∣ z′

z′ − 1

∣∣∣∣2 〈Oi(0)Oj(z′)Ok(1)O`(∞)
〉
c ,

(B.1)

where z′ = z−1
z , and to go from the first to the second line we used the conformal trans-

formation w 7→ w
w−1

z−1
z . Similarly,

Ri`jk = A(d)
∫
d2z ln |1− z|2 〈Oi(0)O`(z)Oj(1)Ok(∞)〉c

= A(d)
∫
d2z′ ln

∣∣z′∣∣−2 〈Oi(0)Oj(z′)Ok(1)O`(∞)
〉
c ,

(B.2)

where now z′ = 1
1−z and the conformal transformation to go from the first to second line is

w 7→ w
w−z . Using (3.16), (B.1), (B.2), it follows that Rijk` +Rik`j +Ri`jk = 0 as expected.

C Subtleties — Relevant scalars, arcs at infinity

The contribution from relevant scalars is simpler to take into account in the Lorentzian
inversion formula than in the Euclidean inversion formula. The relevant scalars in the
s-channel do not contribute to the double discontinuity, therefore they don’t need to be
subtracted since their contribution vanishes anyway. In the t, u-channels, the integral can
be defined by analytic continuation in ∆ and/or J from a region where it is well-defined.

Let’s now discuss the contribution from the arcs at infinity to the contour deformation,
which will establish the equivalence between the Lorentzian inversion formula (3.25) and
the Euclidean inversion formula (3.8) for ∆ = J = 1 and for ∆ = J = 0.

For simplicity we will consider the inversion formula for exactly marginal deformations
for simplicity, a similar analysis holds for other operators. The starting point is (3.3). This
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expression can also be written as [34]

I∆,J = −ĈJ(1)
∫

ddx1d
dx2

vol(SO(d− 1))(x2
12)

∆−J
2 uJ12〈Oi(1)Oj(0)Ok(x1)O`(x2)〉, (C.1)

where ui, vi are the coordinates analytically continued to the Lorentzian region, u = x0− t,
v = x0 + t (see [34] for more details on the iε prescription, which will not be important for
us).

We now want to deform the v1, v2 contour to pick up the discontinuities that give the
double-commutator. To do this, we have to deform the v1, v2 contour. For J > 1, it can
be shown that dropping the contour at infinity is OK [1, 34].

Let’s first consider the case ∆ = J = 1. Then we have

I∆=1,J=1 = −ĈJ(1)
∫

ddx1d
dx2

vol(SO(d− 1))(u1 − u2)〈Oi(1)Oj(0)Ok(x1)O`(x2)〉. (C.2)

For the first term on the r.h.s. , we can use (2.17) to perform the u2, v2 integral (there’s a
similar story for the second term by replacing u1, v1 ↔ u2, v2), since the Wick rotation to
coordinates u, v does not change the result of the integral. Since the result is delta-function
localized, we see that we can drop the arc of the remaining v1 integral. Now we only need
to argue that we could have also dropped the arc of the v2 integral. This follows from the
fact that at large distances, the correlation function in the integrand in (C.2) behaves as
u−d2 v−d2 for large u2, v2, and therefore converges for d > 1. Hence we can drop both the
v1, v2 arcs.

This means that we can obtain the result I∆=1,J=1 from analytic continuation from
generic ∆ and J > 1, and the result agrees with the Euclidean inversion formula (3.8)
for integer J . The argument above can be repeated for ∆ = J = 0, and therefore it also
establishes the equivalence between the Euclidean and Lorentzian inversion formulas for
gij,k` (3.48).

D Explicit Expressions for the 4d inversion formula for gij,k`

In this appendix we write some of the explicit results that were omitted in subsection. We
begin with the expression for the function g(∆, J) appearing in (3.65). It is given by

g(∆, J)

=
∫ 1

0
dz

∫ 1

0
dz̄(z − z̄)2 1

2(z − z̄)

[
ln(1− z)

(
2(−8 + 7z)z̄ + 3(−2 + z)z̄ ln z + 3z ln(1− z̄)

)
+ 6z ln z

(
− 3z̄ + (−2 + z̄) ln(1− z̄)

)
+ 6(−2 + z)z̄Li2(z)− (z ↔ z̄)

]
(1− z)−4+ ∆−J

2 (1− z̄)−4+ ∆+J
2 .

(D.1)

The integral can be performed explicitly in Mathematica for ∆ > J+4, and defined outside
this range by analytic continuation in ∆, J . The explicit expression is long so we will not
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write it down here, but discuss some of the properties needed to obtain the results in
section 3.6.2.

For integer J , we define ∆∗(J) as the smallest ∆ such that the function g(∆, J) is
positive for ∆ ≥ ∆∗(J). The value of ∆∗(J) can be obtained numerically. The first few
values are

∆∗(J = 0) ≈ 4.43826,
∆∗(J = 1) = 3,
∆∗(J = 2) ≈ 6.05949
∆∗(J = 3) ≈ 6.95212,
∆∗(J = 4) ≈ 7.90506,
· · ·

(D.2)

For J ≥ 3, ∆∗(J) < J + 4. At large J , we find

∆∗(J) = J + 4− 3
4 ln J +O

(
1/(ln J)2

)
. (D.3)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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