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1 Introduction

The infrared structure of on-shell amplitudes in gauge theory has been a topic of continued
interest for several decades, as discussed from different perspectives in several textbooks
and reviews [1–8]. The origin of these singularities has long been understood at the
level of individual Feynman integrals with on-shell external momenta, using the Landau
equations [9–16]. The solutions of these equations identify manifolds in the space of

– 1 –



J
H
E
P
0
7
(
2
0
2
3
)
1
9
7

loop momentum integration where the Feynman integrand diverges, and in addition, the
integration contour is pinched, generating potential singularities for the integral. These
manifolds are called pinch surfaces, and they completely capture the infrared singularity
structure of Feynman integrals.

Insight regarding the infrared singularity structure of Feynman integrals may also be
gained using the method of regions (MoR). This technique provides a systematic way to
compute Feynman integrals involving multiple kinematic scales. The main statement is
that a Feynman integral I can be approximated, and even reproduced, by summing over
integrals that are expanded in certain regions {Ri}, i.e.

I = I(R1) + I(R2) + · · ·+ I(Rn). (1.1)

Pioneered by Smirnov in momentum space, the MoR was first established for the
large mass and momentum expansions in Euclidean space [17, 18]. In particular, Smirnov
showed that each of the regions in this expansion corresponds to a specific assignment
of large loop momenta in a certain subgraph. These subgraphs have been referred to as
asymptotically irreducible subgraphs.1 Prior to Smirnov’s work, it was known since the
80s [20–28] that an asymptotic expansion may be performed by identifying subgraphs whose
loop momenta are of the same order of magnitude as the large masses or external momenta
one expands in. This identification also facilitated uncovering a deep connection with
forest formulas such as Bogoliubov’s R-operation [29–31] and its infrared generalisation in
Euclidean space, the so-called R∗-operation [32, 33]. This connection also opened the way
to proving the convergence of the large-momentum and large-mass expansions [17], putting
these expansions on a more rigorous footing.

While the expansion-by-subgraph interpretation was limited to Euclidean space, the
MoR is applicable also in Minkowski space. First examples included the threshold limit
q2 → 4m2 for two-loop self-energy and vertex graphs [34], the Sudakov limits for two-loop
vertex graphs [35], etc. The departure from Euclidean space, and, in particular, the presence
of lightlike external momenta, introduces new regions such as soft and collinear regions.
Furthermore, in certain kinematic configurations, additional regions such as potential and
Glauber2 show up [40, 41]. The identification of these regions has been made on a case-
by-case basis, often using heuristic methods based on examples and experience. In recent
years, detailed explanations of how the MoR would work in general has been provided by
Jantzen [42], and the MoR has been implemented in the formalism of loop-tree duality by
Plenter and Rodrigo [43]. Meanwhile, effective field theories, notably Heavy Quark Effective
Theory (HQET) and Soft-Collinear Effective Theory (SCET), have been developed based
on the complete characterisation of the regions appearing in particular kinematic situations.

Another way to understand the regions that appear in kinematic expansions, is to
interpret them as certain scaling vectors in the parameter representation of a given Feynman

1The asymptotically irreducible subgraphs are the same as motic graphs [19], a notion used in more
recent literature. We will revisit this concept in more detail in section 4.

2Experience shows that Glauber modes do not appear in wide-angle scattering. In particular, the infrared
structure of gauge-theory scattering amplitudes is governed solely by soft and collinear modes. This has
been found early on [6, 10–13] and forms the basis for the study of the soft anomalous dimension at the
multi-loop level [36–39] as well as for Soft Collinear Effective Theory, see e.g. [8].
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graph G [44–49]. In particular, for the Lee-Pomeransky representation [50], which will be
central for our analysis, each region is considered as the vector normal to a so-called lower
facet of the Newton polytope,3 which is defined as the convex hull of the exponent vectors of
the sum, P(x; s), of the Symanzik polynomials, P ≡ U + F . This approach can be applied
directly when the monomials of P(x; s) are all of the same sign [45, 49]. Instead, when
the monomials of P(x; s) are of indefinite signs (possibly leading to a potential region or a
Glauber region), a change of integration variables may be required before constructing the
Newton polytope [46–48]. Based on these observations, computer codes such as Asy2 [46] (as
part of the program FIESTA [54–58]), ASPIRE [48] and pySecDec [49] have been developed
to identify the complete set of regions.

A key observation we make here is that the regions of the MoR have a clear physical
interpretation in terms of the infrared structure. Specifically, we expect that each of the
aforementioned lower facets of the Newton polytope realises a particular solution of the
Landau equations, namely a pinch surface.

In order to make a precise connection between the regions of the MoR and the solutions
of the Landau equations, we focus in this paper on the special case of on-shell expansion of
wide-angle scattering. To this end we consider Feynman integrals contributing to off-shell
Green’s functions with massless fields in Minkowski spacetime. Starting with (K + L)
non-exceptional external momenta, pµ1 , . . . , p

µ
K , q

µ
1 , . . . , q

µ
L, we define the on-shell expansion

by considering the limit where all p2
i become small while all other Lorentz invariants remain

large. More precisely, introducing a scaling variable λ� 1 and a hard scale Q2, we have

on-shell: p2
i ∼ λQ2 (i = 1, . . . ,K),

off-shell: q2
j ∼ Q2 (j = 1, . . . , L),

wide-angle: pk · pl ∼ Q2 (k 6= l).
(1.2)

As we shall see, in this case, the MoR expresses any Feynman integral as a sum of a single
hard region and a set of infrared regions. Each of the regions gives rise to an infinite series
in powers of p2

i /Q
2 ∼ λ. The infrared regions all correspond to nontrivial solutions of the

Landau equations, which are characterised by infrared subgraphs, having propagators that
become collinear with the external pi, as well as ones that become soft when λ→ 0. Any
such infrared region can be described by figure 1.

Having interpreted the individual regions in the MoR in terms of the infrared subgraphs,
we thus generalise the notion of asymptotically irreducible graphs introduced in Euclidean
space by Smirnov, to Minkowski space.

This paper is organised as follows. In section 2 we introduce the parameter representa-
tion approach to the method of regions, and relate the solutions of the Landau equations
to the region vectors. Section 3 then identifies necessary and sufficient conditions for a
solution of the Landau equations to be a region of the on-shell expansion. We then turn to
discuss two applications of these results. In section 4 we derive a graph-theoretic algorithm

3Besides the MoR, approaches based on the geometry of parametric representations of Feynman integrals,
e.g. the Newton polytopes corresponding to the U and F polynomials or their Minkowski sum, have also
been applied in the context of sector decomposition, tropical geometry, UV/IR divergences, maximal cut of
Feynman graphs, etc. [51–53].
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Figure 1. The partitioning of a generic wide-angle scattering graph into infrared subgraphs
corresponding to a particular pinch surface appearing in the on-shell expansion, eq. (1.2). The
doubled lines connecting different blobs represent any number of propagators.

to construct generic regions. In section 5 we investigate the analytic structure of certain
on-shell expansions, and derive conditions for the cases where multiple expansions commute.
Finally, section 6 summarises the results and discusses potential future research.

Some detailed analyses are presented in the appendices. Explicitly, in appendix A
we study a nonplanar double-box graph, and show that although there are positive and
negative kinematic invariants in the F polynomial for this specific example, there are no
regions due to cancellation between terms. In appendix B we review the relation between
the Schwinger and Lee-Pomeransky representations and demonstrate that the same scaling
law for the respective parameters corresponding to hard, jet and soft propagators applies
for the integrand in these two representations in any infrared region. In appendix C we
present the detailed proof of the main statement of section 3.3, regarding the requirements
of the subgraphs H, J and S.

2 The on-shell expansion in the parameter representation

While initially formulated in momentum space, the MoR has been further developed
in parameter space, where it reached rather general algorithmic formulations [44–49].
Specifically, this paper will be primarily based on the formulation in ref. [49] using the
Lee-Pomeransky representation, where regions can be identified geometrically as specific
facets of the corresponding Newton polytope.

In section 2.1 we present the general setup for the MoR in parameter representation,
where we define the expansion operator and introduce notations we shall use in this paper.
Then, in section 2.2 we determine the regions geometrically by identifying them with certain
facets of the Newton polytope, following the method of ref. [49]. Finally, we relate the
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regions of the on-shell expansion to the particular solutions of the Landau equations in
section 2.3, and propose that they stand in one-to-one correspondence.

2.1 General setup

In this section we explain how the MoR is viewed in the Lee-Pomeransky representation. We
first introduce our notation and define expansion operators associated to a given kinematic
limit. We then demonstrate this general notation using the one-loop Sudakov form factor
as an example.

Throughout this paper, we will use G to denote a wide-angle scattering graph, and
N , L and V to denote respectively the numbers of propagators, loops and vertices of G.
Similarly, for any subgraph γ ⊆ G, the numbers of propagators, loops and vertices are
separately N(γ), L(γ) and V (γ).

We further denote the dimensionally-regularised Feynman integral in D = 4 − 2ε
spacetime dimensions corresponding to a graph G as I(G). In the Lee-Pomeransky repre-
sentation,4

I(G) =
∫

[dx] I(x; s) ≡ Γ(D/2)
Γ((L+ 1)D/2− ν)∏e∈G Γ(νe)

∫ ∞
0

(∏
e∈G

dxe
xe

)
I(x; s) , (2.1)

where νe is the exponent of the denominator associated to the propagator e, and ν ≡∑e∈G νe.
The integration measure [dx] is defined through the equation above, where the product goes
over all the edges e ∈ G with xe being the Lee-Pomeransky parameters. We denote the set
(or vector) of N Lee-Pomeransky parameters by x. We also denote the set (or vector) of
Lorentz invariants (Mandelstam variables) by s, which consists of scalar products formed
amongst the momenta pµ1 , . . . , p

µ
K , q

µ
1 , . . . , q

µ
L. Since the integral I(G) is a function of s, we

will occasionally use the notation I(s). The corresponding integrand I(x; s) reads

I(x; s) =
(∏
e∈G

xνee

)
·
(
P(x; s)

)−D/2
, P(x; s) ≡ U(x) + F(x; s), (2.2)

where P(x; s) is the Lee-Pomeransky polynomial, and U(x) and F(x; s) are the first and
second Symanzik polynomials, given by:

U(x) =
∑
T 1

∏
e/∈T 1

xe, F(x; s) = −
∑
T 2

sT 2

∏
e/∈T 2

xe + U(x)
∑
e

m2
exe . (2.3)

The notations T 1 and T 2 respectively denote a spanning tree and a spanning 2-tree of
the graph G. The symbol sT 2 is the square of the momentum flowing into each of the
components of the spanning 2-tree T 2. In this paper we consider only massless propagators,
and hence we set all the internal masses to zero, so eq. (2.3) can be simplified to

U(x) =
∑
T 1

∏
e/∈T 1

xe, F(x; s) = −
∑
T 2

sT 2

∏
e/∈T 2

xe. (2.4)

4In our paper we only discuss scalar integrals, for example, in eqs. (2.1) and (2.7). This can be extended
to more generic Feynman integrals with nontrivial numerators, because any Feynman integral can be reduced
to a sum over scalar integrals [59], each of which has the same Lee-Pomeransky polynomial P(x; s).
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Later we will also use the Feynman parameterised integral in momentum space, which
may be written as

I(s) = Γ(ν)∏
e∈G Γ(νe)

∫ ∞
0

( ∏
e∈G

dαeα
νe−1
e

)
δ

(∑
e∈G

αe − 1
)∫

[dk] 1
[D(k, p, q;α)]ν , (2.5)

where we introduced k = {ka}, p = {pi}, q = {qj} and α = {αe}. Here the integration
measure [dk] ≡ ∏L

a=1 d
Dka/(2π)D, and the function in the denominator reads

D(k, p, q;α) =
∑
e∈G

αe
(
−l2e(k, p, q) +m2

e − iε
)
, (2.6)

where αe is the Feynman parameter associated to propagator e and the corresponding
momentum lµe is a linear combination of the internal loop momenta kµa and the external
momenta pµi and qµj . After integrating over the loop momenta, one obtains the Feynman
parameter representation of I(s):

I(s) = Γ(ν − LD/2)∏
e∈G Γ(νe)

∫ ∞
0

(∏
e∈G

dαeα
νe−1
e

)
δ

(∑
e∈G

αe − 1
)

[U(α)]ν−(L+1)D/2

[F(α; s)]ν−LD/2 . (2.7)

Note that the Feynman and Lee-Pomeransky representations can be obtained from each
other via the following change of variables

αe = xe
x1 + x2 + · · ·+ xN

. (2.8)

Starting from eq. (2.1), one can first insert 1 =
∫∞
−∞ δ(

∑
e∈G xe −X)dX, and then change

the variables xe = Xαe according to (2.8). At this point we use the homogeneity properties
of the Symanzik polynomials in (2.3), noting that the U polynomial scales as XL while the
F polynomial scales as XL+1, allowing us to integrate over X and obtain a ratio of gamma
functions. The result is exactly (2.7).

We now consider the expansion of eq. (2.1) around the kinematic limit where the
Mandelstam variables t ⊂ s become small. To this end it is convenient to introduce a
scaling vector wt in the space of Mandelstam variables s:

wt = (w1, w2, w3, . . . ). (2.9)

For each i, wi = 1 if si ∈ t and wi = 0 otherwise. In the on-shell limit shown in eq. (1.2), we
have s→ λwts, or equivalently, si → λwisi for every i. Here, we have introduced notation
for the raising of a scalar to the power of a vector and for the (Hadamard/component-
wise) product of two vectors. Given a scalar λ and two vectors a = (a1, a2, a3, . . . ) and
b = (b1, b2, b3, . . . ) we define

λba ≡ (λb1a1, λ
b2a2, λ

b3a3, . . . ). (2.10)

We will also use the following definition for the raising of a vector to the power of a vector

ab ≡ (ab1
1 , a

b2
2 , a

b3
3 . . .). (2.11)

– 6 –
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The MoR states that in order to obtain the correct asymptotic expansion, one needs to
sum over a finite set of regions, which we denote by R(I(s), t). In each region R ∈ R(I(s), t),
the relevant contribution arises from the scaling of the Lee-Pomeransky parameters xi →
λuixi together with the external kinematic variables si → λwisi. The Lee-Pomeransky
integrand in eq. (2.2) is then expanded in powers of λ, and the integral in eq. (2.1) is
performed term by term. Note that λ serves as a bookkeeping parameter and is finally
set to 1.

We can express the Feynman integral I(s) as a sum over contributions from each region:

I(s) ' TtI(s) ≡
∑

R∈R(I(s),t)
I(R), I(R) = T (R)

t I(s), (2.12)

where the operator T (R)
t produces a Taylor expansion in λ by acting on the integrand:

T (R)
t I(s) ≡

∫
[dx] Tλ

(
λ−pR(ε)I(λuRx;λws)

)∣∣∣∣
λ=1

. (2.13)

The symbol ' in eq. (2.12) is used to indicate that TtI(s) is an approximation to I(s)
when the Taylor expansion is truncated, while it becomes an equality when the expansion
is summed up to all orders. In eq. (2.13) we have rescaled the kinematic variables as well
as the Feynman parameters according to

s→ λws and x→ λuRx, (2.14)

where w is defined in (2.9) and uR is called the region vector (we will see one method for
determining region vectors in section 2.2). We have also assumed in eq. (2.13) that the
asymptotic behaviour of the integrand in the region R is

I(λuRx;λws)→ λpR(ε)I
(R)
0 (x; s), (2.15)

as λ→ 0, where the exponent pR(ε) is a linear function of the dimensional regularisation
parameter ε, and I0 represents the leading-order (in λ) approximation of the integrand in
the region R. Then, by multiplying the rescaled integrand I(λuRx;λws) by λ−pR(ε), we can
take in eq. (2.13) a regular Taylor expansion:

Tλ ≡
∞∑
n=0

λnTλ,n, Tλ,n(· · · ) = 1
n!

dn

dλn
(· · · )

∣∣∣∣
λ=0

. (2.16)

It is convenient to define the Lee-Pomeransky polynomial corresponding to the leading
behaviour of eq. (2.15) in region R as P(R)

0 (x; s). In each region, this polynomial contains
only a subset of the monomials of the original Lee-Pomeransky polynomial P(x; s).

We stress the following key aspects [41, 42, 47] concerning eqs. (2.12) and (2.13). First,
the regions in the set R(I(s), t) should be defined such that each point in the space of
integration belongs to exactly one of them. Second, despite the fact that the expansion of the
integrand in eq. (2.13) is a valid approximation only within the region R, the integral I(R)

in eq. (2.12) is taken over the entire space. This relies on using dimensional regularisation,
where any scaleless integral is set to zero, namely,∫

[dx]I(R)
0 (x; s) = 0 if I

(R)
0 (cux; s) = cqI

(R)
0 (x; s), (2.17)

for some c, q ∈ R (c 6= 1) and u ∈ RN .
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To summarise, the MoR in eqs. (2.12) and (2.13) states that

I(s) ' TtI(s) =
∑

R∈R(I(G),t)

∫
[dx] Tλ

(
λ−pR(ε)I(λuRx;λws)

)∣∣∣
λ=1

. (2.18)

At a given order n in the expansion we have

Tt,n ≡
∑

R∈R(I,t)
T (R)
t,n , T (R)

t,n I(s) =
∫

[dx] Tλ,n
(
λ−pR(ε)I(λuRx;λws)

)∣∣∣
λ=1

. (2.19)

Let us demonstrate the above definitions using a simple example relevant to the one-loop
Sudakov form factor. Consider the triangle graph,

G3 ≡

p1 p2

q1

, (2.20)

whose external momenta pµ1 , p
µ
2 and qµ1 = −pµ1 − p

µ
2 satisfy |p2

1| ∼ |p2
2| � |q2

1|. We consider
the expansion where the external momenta pµ1 and pµ2 become on-shell, so the relevant sets
of small and large Mandelstam invariants are

t = (p2
1, p

2
2) ⊂ s = (p2

1, p
2
2, q

2
1) , (2.21)

the scaling vector of eq. (2.9) is w = (1, 1, 0), so λws = (λ1p2
1, λ

1p2
2, λ

0q2
1), and the Symanzik

polynomials of eq. (2.4) are

U = x1 + x2 + x3, F = (−p2
1)x1x3 + (−p2

2)x2x3 + (−q2
1)x1x2. (2.22)

Consider the specific case where ν1 = ν2 = ν3 = 1, and then the Lee-Pomeransky integrand,
according to eq. (2.2), is

I(x; s) = x1x2x3(x1 + x2 + x3 − p2
1x1x3 − p2

2x2x3 − q2
1x1x2)−D/2. (2.23)

As we will see in section 2.2, there are four associated regions, which are defined by the
following N -dimensional scaling vectors, uR,

Hard (H) : uH = (0, 0, 0),
Collinear 1 (C1) : uC1 = (−1, 0,−1),
Collinear 2 (C2) : uC2 = (0,−1,−1),
Soft (S) : uS = (−1,−1,−2).

(2.24)

The MoR then claims that, for this example,

I(s) = T (H)
t I(s) + T (C1)

t I(s) + T (C2)
t I(s) + T (S)

t I(s). (2.25)

– 8 –
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To determine the leading contribution from each of the four regions in eq. (2.24), consider
rescaling the integration parameters in eq. (2.1) according to s→ λws and x→ λuRx. Since
the integration measure in eq. (2.1) is rescaling invariant, only the integrand of eq. (2.23)
changes under the rescaling. Consider for instance the case R = S, where uS = (−1,−1,−2).
The rescaled integrand for D = 4− 2ε reads

I(λuSx;λws) = I(λ−1x1, λ
−1x2, λ

−2x3;λ1p2
1, λ

1p2
2, q

2
1)

= λ−4x1x2x3
(
λ−1(x1 + x2) + λ−2(x3 − p2

1x1x3 − p2
2x2x3 − q2

1x1x2)
)ε−2

= λ−2εx1x2x3(P(S)
0 (x; s))ε−2 + · · · , (2.26)

where in the last expression we neglected terms that are suppressed by powers of λ, and
identified the Lee-Pomeransky polynomial in the soft region, R = S, as

P(S)
0 (x; s) = x3 + (−p2

1)x1x3 + (−p2
2)x2x3 + (−q2

1)x1x2. (2.27)

It follows from eq. (2.26) that pS(ε) = −2ε. Hence, according to eqs. (2.13) and (2.19), the
soft expansion operator acts on the integral I as follows:

T (S)
t I(s) =

∫
[dx] Tλ

(
λ2εI(λuSx;λws)

)∣∣∣
λ=1

=
∞∑
n=0

(ε− 2)n
n!

∫
[dx]x1x2x3 (x1 + x2)n

(
x3 − p2

1x1x3 − p2
2x2x3 − q2

1x1x2
)ε−2−n

,

(2.28)

where we have inserted the rescaled integrand of eq. (2.26) and expanded in λ to all orders.
Here ()n denotes the falling factorial, i.e. (a)n ≡ a(a− 1) · · · (a− n+ 1). The right-hand
side of the second equality of eq. (2.28) represents a sum over the terms T (S)

t,n I(s). The
same procedure can be carried out analogously for the other three regions H, C1 and C2.
In particular we obtain

pH(ε) = 0, pC1(ε) = −ε, pC2(ε) = −ε, pS(ε) = −2ε, (2.29)

reflecting a different analytic behaviour characteristic to each of the regions for small p2
i .

We shall return to analyse this in section 5.

2.2 Region vectors from the Newton polytope

In this section, we briefly summarise the geometric formulation of the MoR in parameter
space, following ref. [49]. We review how the region vectors, vR, which are used to rescale
the Lee-Pomeransky parameters x, in each region R, can be obtained by considering certain
facets of a Newton polytope associated to the integral. We then revisit our previous example,
the one-loop Sudakov form factor, to demonstrate how the regions are obtained directly
from a geometric point of view.

In order to define the Newton polytope of the integral I(G) given by eqs. (2.1) and (2.2),
we first consider the polynomial P(x, λws) obtained from P(x, s) by rescaling all of the
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Mandelstam variables by s → λws. In general, the polynomials we will consider are of
the form:

P(x;λws) =
m∑
i=1

ci(s)x
ri,1
1 . . . x

ri,N
N λri,N+1 =

m∑
i=1

ci(s)xr̂i λri,N+1 , (2.30)

where ri,j ∈ {0, 1} for any i = 1, . . . ,m with m being the number of terms (monomials) in
the Lee-Pomeransky polynomial, and j = 1, . . . , N + 1. (In the case of massive propagators,
ri,j ∈ {0, 1, 2}.) We define the (N + 1)-dimensional exponent vectors as ri ≡ (r̂i; ri,N+1) ≡
(ri,1, . . . , ri,N ; ri,N+1) and for the work presented here, we assume ri,N+1 = 0 or 1. For the
description of the geometric method below, we also demand ci > 0 ∀ i, which forbids sets
of monomials from cancelling each other at any point in the integration domain xi > 0 ∀ i.
The method can be applied with some ci < 0, provided the cancellation of monomials does
not lead to new regions. Generally speaking, the geometric method will identify only the
regions that are present when all ci > 0. These regions correspond to endpoint singularities
in parameter space.

The Newton polytope can now be defined as the convex hull of the vertices (dimension-0
faces) given by the polynomial exponent vectors

∆(N+1)[P] = convHull(r1, . . . , rm) =
{

m∑
i

αiri | αi > 0 ∧
m∑
i

αi = 1
}
, (2.31)

or, alternatively, as an intersection of half-spaces,

∆(N+1)[P] =
⋂
f∈F

{
ρ ∈ RN+1 | ρ · vf + af > 0

}
, af ∈ Z ∀ f, (2.32)

where F is the set of facets (codimension 1 faces) of the polytope and each vf is an
inward-pointing vector normal to facet f . The vectors vf take the form of eq. (2.34). Let
facets with an inward-pointing normal vector with a positive component in the λ direction
(i.e. with component vf,N+1 > 0) be called lower facets, and let us denote the set of all such
facets F+. The region vectors of the contributing regions are given by these lower facets, i.e.
{vR} = {vf , ∀ f ∈ F+}. Several computer packages exist for computing Newton polytopes
(or convex hulls) and their representation in terms of facets, see for example refs. [60, 61].

According to eq. (2.31), the Newton polytope ∆(N+1)[P ] is thus an (N + 1)-dimensional
polytope enclosing all points defined by the exponent vectors ri. The first N dimensions
correspond to the Lee-Pomeransky parameters x1, . . . , xN , which are integrated over, while
the (N + 1)-th dimension corresponds to the exponent of the expansion parameter, λ, which
emerges from rescaling the external invariants s→ λws. Starting from eq. (2.30), in each
region, we will consider a polynomial of the form

P(λuRx;λws) =
m∑
i=1

ci(s)λuR·r̂ xr̂ λri,N+1 =
m∑
i=1

ci(s)λvR·r xr̂

= λ−aR
m∑
i=1

ci(s)λvR·r+aR xr̂ , (2.33)
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where
vR ≡ (uR; vR,N+1) = (uR; 1) . (2.34)

Here have made identification of the first N components of vR as uR of eq. (2.13), while
the last component, is set to one: vR,N+1 = 1, representing the fact that R corresponds to
a lower facet.

The leading monomials in P(λuRx, λws), i.e. the ones having the smallest power of λ,
are those that minimise vR · r. Since each region vector is normal to a particular facet f ,
of the Newton polytope, by comparing eqs. (2.32) and (2.33) we see that the leading
monomials, i.e. those satisfying vR · r + aR = 0, lie on and span the facet f , while all
other points have vR · r + aR > 0. Crucially, after expanding in λ, we will obtain exactly
the monomials which lie on the facet f . By definition, facets have codimension 1, and so
polynomials obtained from each region vector will thus live on an N -dimensional subspace
of the Newton polytope.

We emphasise that in general, not all regions of the MoR are associated with facets [45].
It is generally accepted that the following holds. The regions contributing to the MoR fall
into two categories, ones that are due to cancellations between terms of the Lee-Pomeransky
polynomial P, and ones that can be associated with facets of the corresponding Newton
polytope ∆(N+1)[P ]. The latter are identified with scaling vectors vR, the normal vectors of
the lower facets, and in present paper, focusing on wide-angle scattering, we will assume
that these are the only regions that are present. We briefly comment on the former at the
end of this subsection.

In principle, as well as the facets of the Newton polytope, we could also consider lower
dimensional faces (i.e. faces of codimension > 1), such faces correspond to intersections of
the higher dimensional faces. The normal vectors corresponding to faces of codimension
> 1 select leading monomials in P(x; s), which span a face of dimension less than N .
From eq. (2.17) it follows that if the dimension of a lower face is less than N , then the
corresponding dimensionally-regularised Feynman integral is scaleless, and therefore vanishes.
Thus only facets contribute to the MoR.

Let us note that the lower facets of the Newton polytope obtained from the Lee-
Pomeransky polynomial P(x; s) = U(x) + F(x; s) are in one-to-one correspondence with
the lower facets of the Newton polytope obtained using the product U(x)F(x; s). This
implies that the region vectors obtained in the Feynman and Lee-Pomeransky representations
are equivalent [47], differing only by constant shifts of the form (n1, 0) with n ∈ R. The
Symanzik polynomials U(x) and F(x; s) are homogeneous functions of x with degree L
and L + 1, respectively. This means that in the x coordinates their Newton polytopes
lie on separated parallel hyperplanes. In this case, it follows from a geometric theorem
known as the Cayley trick, that the Newton polytope defined by the intersection of a
hyperplane parallel to the U(x) and F(x; s) hyperplanes with the Newton polytope of the
sum U(x) + F(x; s) has the same convex hull, up to a rescaling, as the Newton polytope
of the product U(x)F(x; s). We demonstrate the use of the Cayley trick in the example
below, see, in particular, figure 2b.

As an example of the geometric procedure for determining regions, let us apply it to
the one-loop triangle integral in the limit p2

1 ∼ p2
2 � q2

1 defined in eq. (2.22). Note that
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in this case the monomials in P = U + F are all of the same sign provided we choose all
kinematic invariants to be spacelike. In such Euclidean kinematics we can clearly exclude
cancellations between terms in P and focus exclusively on the facets of the Newton polytope.
The Newton polytope is 4-dimensional and depends on (ri,1, ri,2, ri,3; ri,4), which are the
exponents of the variables (x1, x2, x3;λ). It is given by

∆(N+1) [U(G) + F(G)] = convHull(U1, U2, U3, F1, F2, F3), (2.35)

where the vertices U1 = (1, 0, 0, 0), U2 = (0, 1, 0, 0), U3 = (0, 0, 1, 0) correspond to monomials
in U(G) and the vertices F1 = (1, 0, 1, 1), F2 = (0, 1, 1, 1), F3 = (1, 1, 0, 0) correspond to
monomials in F(G). Calculating the normal vector of each facet of the 4-dimensional
Newton polytope and selecting those with a positive λ component (i.e. the lower facets)
immediately yields the region vectors,

vH = (0, 0, 0; 1), vS = (−1,−1,−2; 1), (2.36)
vC1 = (−1, 0,−1; 1), vC2 = (0,−1,−1; 1), (2.37)

which match those stated in eq. (2.24) with the additional component vR,N+1 = 1, according
to eq. (2.34).

In order to visualise these regions, in figure 2a we display a 3-dimensional projection
of the Newton polytope, neglecting the λ direction. The colour of the vertices indicates
whether they have a zero λ exponent (black) or a nonzero λ exponent (red). The blue face
corresponds to the U(G) polynomial and the green face corresponds to the F(G) polynomial.
The vertices of the Newton polytope obtained from the product of the Symanzik polynomials,
∆(N+1)[U(G)F(G)], lie, up to a rescaling, on the edges connecting the vertices of the U(G)
and F(G) faces, as depicted by the grey hexagon in figure 2b. We use the notation UiFj
to denote the vertex obtained by taking the product of the ith term in U(G) with the jth
term in F(G).

In figure 2c we define a new x′1x
′
2 coordinate system on the U(G)F(G) hyper-surface.

Note that because the U(G)F(G) polynomial is homogeneous in the variables {x1, x2, x3}
its corresponding hyper-surface is 3-dimensional (rather than 4-dimensional). In figure 2d
we display the U(G)F(G) polytope in the new coordinates and also show the λ direction.
Here the lower facets of the Newton polytope, which correspond to the different regions, are
displayed in colour. As we will demonstrate in the following sections, the upward-pointing
light blue facet corresponds to the hard region (H), the red facet corresponds to the soft
region (S) and the two green and yellow facets correspond to the collinear (jet) regions (C1)
and (C2), respectively.

Before concluding, let us emphasise once more that the geometric approach we just
described is not guaranteed in general to identify all regions. The regions it identifies are
only those corresponding to facets, i.e. those associated with a scaling vector, x→ λuRx,
such that for λ → 0 the singularity occur at the boundary of the domain of integration.
These singularities are therefore all of the endpoint type. Other potential singularities,
associated with cancellation between terms in P, are non-endpoint, and would not be
identified as potential regions in this approach.
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x1

x3

x2

U1

U2

U3

F1

F2

F3

(a) U + F Newton polytope.

x1

x3

x2
U2F2

U2F3

U1F3

U1F1

U3F1

U3F2

U3F3

(b) U , F and UF faces.

x1

x3

x2

U2F2

U2F3

U1F3

U1F1

U3F1

U3F2

U3F3
x′2

x′1

(c) UF face.

x′1

x′2

λ

U2F2

U3F2 U3F1

U1F1

U1F3U2F3

U3F3
U2F

′
2

U3F
′
2

U3F
′
1

U1F
′
1vH

vC1 vC2

vS

(d) Facets of UF Newton polytope.

Figure 2. The geometry of the one-loop triangle graph G3. The black (red) dots indicate that the
vertices correspond to a term with an overall factor of λ0 (λ1). In figures 2a and 2b, the blue face is
defined by the exponents of the U polynomial and the green face is defined by the exponents of the
F polynomial. Figures 2b and 2c show how the Cayley trick can be used to obtain the UF polytope
by slicing the U + F polytope. In figure 2d we display the facets of the UF polytope corresponding
to the different regions, as we will argue later, the blue facet corresponds to a hard region H, the
red facet corresponds to a soft region S, and the green and yellow facets correspond to collinear
regions C1 and C2, respectively.

We stress that there is a wide class of region expansions for which scaling vectors are
sufficient to classify all the required regions. First of all, this class encompasses all the
kinematic limits that can be approached in Euclidean kinematics. In such cases, all the
coefficients in the Lee-Pomeransky polynomial are positive definite, so the only way for
an overall scaling with λ to appear is by having homogeneous scaling of every leading
monomial in the sum. When an expansion cannot be associated with Euclidean kinematics,
the coefficients in the Lee-Pomeransky polynomial may have different signs. In this case,
a region could be associated with cancellations between different terms, e.g. the Glauber
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regions in the Regge limit [46–48]. However, there are also expansions for which all the
regions are given by facets even though the coefficients cannot always be chosen to have equal
signs. Based on experience it is generally believed that the on-shell expansion for wide-angle
scattering, on which we focus here, belongs to this category. For instance, in appendix A we
examine the nonplanar double-box graph, where the coefficients are necessarily of different
signs in the on-shell limit. We show that regions due to cancellations do not emerge in this
case. In an upcoming publication [62], we will provide ample evidence that such regions do
not occur in wide angle 2→ 2 scattering based on a Landau singularity analysis.

2.3 Region vectors from the Landau equations

The Newton polytope approach provides us with a systematic way to determine the regions
for a given Feynman graph G. In this section, focusing on wide-angle scattering, we endow
the regions that appear in the expansion to any order in λ with a physical interpretation
and relate them to the solutions of the Landau equations. The proposition is that for the
on-shell expansion in wide-angle scattering, the general form for the region vectors vR is

vR = (uR,1, uR,2, . . . , uR,N ; 1), uR,e ∈ {0,−1,−2},

uR,e = 0 ⇔ e ∈ H
uR,e = −1 ⇔ e ∈ J ≡ ∪Ki=1Ji

uR,e = −2 ⇔ e ∈ S

(2.38)

meaning that each edge e falls into one of three possible categories, hard, jet and soft, and
moreover, the region vectors must conform with the separation of the graph to subgraphs
as in figure 1, which manifests particular partitions of the set of propagators into H (hard),
J1, . . . , JK (jets), and S (soft). We will refer to all the Lee-Pomeransky parameters xe
where e ∈ H as x[H]. Similarly, we use x[J ] and x[S] to denote, respectively, parameters
with e ∈ J and e ∈ S. Thus for λ → 0, eq. (2.38) implies the following scaling of the
Lee-Pomeransky parameters:

x[H] ∼ λ0, x[J ] ∼ λ−1, x[S] ∼ λ−2. (2.39)

We note that the number of propagators of each type are denoted as N(H), N(J) and N(S),
with N(H) +N(J) +N(S) = N .

Let us now recall the formulation of the Landau equations [9]. Considering the Feynman
parameterised integral (2.5) with all the internal propagators massless, the combined
denominator function D reads

D(k, p, q;α) =
∑
e∈G

αe
(
−l2e(k, p, q)− iε

)
. (2.40)

The Landau equations are then:

αel
2
e(k, p, q) = 0 ∀e ∈ G (2.41a)

∂

∂ka
D (k, p, q;α) = 0 ∀a ∈ {1, . . . , L} . (2.41b)
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Here the first Landau equation, (2.41a), states that each propagator of G is either on-shell,
or associated with a vanishing Feynman parameter. This implies in particular that D = 0
and the integrand diverges. The second Landau condition, eq. (2.41b), requires in addition
that the integration contour would be pinched, that is, it is trapped between singularities.
Each solution of this set of equations identifies a specific pinch surface σ of the Feynman
integral I in eq. (2.5), where infrared singularities may arise. Below we explain the grounds
for the proposition in eq. (2.38) (or eq. (2.39)).

The hard region, where all line momenta are off-shell, is defined by accounting for the
scaling of the external Mandelstam invariants with respect to the expansion parameter λ
in the integrand, without modifying the Feynman parameters, i.e. α[H] ∼ λ0. The region
vector in eq. (2.38) is then:

vH = (0, 0, . . . , 0︸ ︷︷ ︸
N

; 1). (2.42)

This region does not correspond to a solution of the Landau equations. Interpreting this
region according to figure 1 amounts to N(J) = N(S) = 0.

Let us now discuss the region vectors of the form (2.38) for which N(J) +N(S) > 1.
We will refer to them as infrared region vectors, and show below that the corresponding
regions of I in eq. (2.5) can be viewed as describing the specific scaling of the Feynman
parameters α in the vicinity of a solution of the Landau equations.

In detail, we take the momenta pµi slightly off-shell, i.e. p2
i ∼ λQ2 as in eq. (1.2), and

consider the neighbourhood of the pinch surface σ. The three relevant scalings of loop
momenta in this neighbourhood are known to be [10, 11, 16, 63, 64]

Hard: kµH = (ktH , kxH , k
y
H , k

z
H) ∼ Q(1, 1, 1, 1), (2.43a)

Jet: kµJi =
(
kJi · βi, kJi · βi, kJi · βi⊥

)
∼ Q

(
1, λ, λ1/2

)
, (2.43b)

Soft: kµS = (ktS , kxS , k
y
S , k

z
S) ∼ Q(λ, λ, λ, λ). (2.43c)

In the scaling of the jet loop momenta, we have used light-cone coordinates, where βµi is
a null vector in the direction of the jet pµi , defined as βµi = 1√

2(1, v̂i) where v̂i is the unit
three-velocity of the jet. For each βµi , we also define βµi ≡ 1√

2(1,−v̂i), so that βi · βi = 1.5
For a given graph G and a region R, the scaling of the loop momenta according to eq. (2.43)
translates uniquely into the scaling of each of the line momenta of G, that is, each edge lµe
is either soft, jet-like or hard, as in eq. (2.43). The precise relation has been illustrated in
section 3 of ref. [63].

From eq. (2.43) we can therefore find the scaling of the virtuality of each propagator:

(l[H]
e )2 ∼ λ0; (l[J ]

e )2 ∼ λ1; (l[S]
e )2 ∼ λ2 . (2.44)

From the Schwinger representation of the propagator

1
(l2e(k, p, q))

νe =
∫ ∞

0

dx̃e
x̃e

x̃νee
Γ(νe)

e−x̃el
2
e(k,p,q), (2.45)

5For example, suppose the i-th jet is in the direction of the z-axis, then βµi = (βti , βxi , βyi , β
z
i ) =

(1, 0, 0, 1)/
√

2 and βµi = (1, 0, 0,−1)/
√

2. For any vector kµ, k ·βi = (kt + kz)/
√

2 and k ·βi = (kt− kz)/
√

2.
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one sees that the scaling limit of the Schwinger parameter x̃e is related to the scaling of the
corresponding propagator virtuality as (see ref. [65] for example):

xe ∼ x̃e ∼
1

l2e(k, p, q)
∼ λuR,e . (2.46)

Here we have further stated that the very same scaling applies also to the Lee-Pomeransky
parameter xe. This is shown in appendix B, where we relate the Schwinger and Lee-
Pomeransky representations and demonstrate that the region vectors uR in the two are
the same. From eqs. (2.44) and (2.46) we can immediately read off the scaling of the
Lee-Pomeransky parameters for hard (H), jet (J) and soft (S) propagators as summarised
by eq. (2.39). With this we have established the scaling rule of eq. (2.39) based on the
scaling of the momentum modes (2.43).

Using the relation in eq. (2.8) we can also deduce the scaling of the Feynman parame-
ter αe. To this end we must distinguish between two cases: infrared regions which feature
soft propagators (N(S) > 1) versus those that have only jet and hard ones (N(S) = 0).
Using eqs. (2.39) and (2.8) we find

N(J) > 1, N(S) = 0 : α[H]
e ∼ λ1, α[J ]

e ∼ λ0; (2.47a)
N(J), N(S) > 1 : α[H]

e ∼ λ2, α[J ]
e ∼ λ1, α[S]

e ∼ λ0. (2.47b)

Note that in either of these cases the propagators with the smallest virtuality (cf. eq. (2.44))
are of order O(λ0), which is necessary for the condition ∑e∈G αe = 1 to be satisfied.

In the remainder of this subsection we investigate the relation between pinch surfaces
and infrared regions of the MoR. We begin in section 2.3.1 by introducing the concept of a
neighbourhood of the pinch surface associated with the on-shell expansion. This allows us
to study what constraints are imposed on the structure of infrared regions, making use of
the Coleman-Norton analysis. Then in section 2.3.2 we formulate our general proposition
for the structure of the region vectors and discuss its applicability.

2.3.1 The neighbourhood of pinch surfaces and infrared regions

The scaling of the momenta and the Feynman parameters discussed above naturally leads
us to a definition of a neighbourhood of a pinch surface associated with the expansion in λ
by the following modified Landau equations:

αel
2
e(k, p, q) ∼ λp ∀e ∈ G (2.48a)

∂

∂ka
D (k, p, q;α) . λ1/2 ∀a ∈ {1, . . . , L} , (2.48b)

where p in eq. (2.48a) is fixed according to the scaling of the line momentum with the
smallest virtuality l2e′ ∼ λp: according to eq. (2.44), for infrared regions R which feature soft
propagators, we have p = 2, while for regions that feature only jet and hard propagators,
p = 1. In eq. (2.48b) the notation . λ1/2 should be interpreted as allowing for scaling
∼ λq with q > 1/2. This is the weakest condition to be placed on the derivative, so as to
reproduce eq. (2.41b) in the limit λ→ 0.
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While the Landau equations (2.41) describe the pinch surfaces themselves, i.e. the
manifolds where the integral is singular, the modified ones in eq. (2.48) aim to capture the
vicinity of pinch surfaces, describing the scaling of momenta and Feynman parameters when
approaching the singularity as λ tends to zero. The precise modification of the first Landau
equation (2.48a) immediately follows from the discussion above (eqs. (2.44) and (2.47)).

Let us now discuss the interpretation of eq. (2.48). A first, key observation is that for a
given pinch surface that corresponds to an infrared region of I(G), all the terms αel2e in
the combined denominator function D of eq. (2.40) are characterised by a uniform scaling.
From the geometric formulation of the MoR, excluding the possibility that some αe′ is
strictly zero,6 amounts to excluding lower-dimensional faces of the Newton polytope of G,
which lead to vanishing scaleless integrals.

Eq. (2.48b) requires that the derivatives vanish as λ1/2 (or faster) as λ→ 0, and places
constraints on what configuration of hard, jet and soft momenta may constitute a region.
As we shall see below, these constraints relate to the Coleman-Norton interpretation of
pinch surfaces [66].

Consider first the case N(J) > 1, N(S) = 0, where the denominator function of eq. (2.6)
can be rewritten as:

D = −
∑
e∈H

α[H]
e

(
l[H]
e

)2 −∑
e∈J

α[J ]
e

(
l[J ]
e

)2 − iε. (2.49)

Given a jet Ji with the external momentum pµi ∼ Qβ
µ
i , where the null vector βµi is defined

below eq. (2.43), then for any jet loop momentum kaµ admitting (2.43b), the second Landau
equation (2.48b), ∂D/∂kaµ . λ1/2, implies∑

e∈H
2ηaeα[H]

e l[H]µ
e +

∑
e∈Ji

2ηaeα[Ji]
e l[Ji]µe . λ1/2 ⇒

∑
e∈Ji

2ηaeα[Ji]
e l[Ji]µe . λ1/2. (2.50)

The coefficients ηae are either 0 or ±1, depending on how the loop momentum ka enters
the line momenta l[H]

e or l[Ji]e . In deriving the second inequality, we have used the fact that
α[H] ∼ λ. We stress that the condition in eq. (2.50) must be satisfied for any component µ,
and below we analyze each component separately.

For the small lightcone component of any jet line momentum, l[Ji]e · βi (∼ λ), and the
transverse one l[Ji]e · βi⊥ (∼ λ1/2), eq. (2.50) is automatically satisfied due to the scaling of the
momentum components in eq. (2.43b). For the large lightcone component, l[Ji]e · βi (∼ λ0),
eq. (2.50) provides a genuine constraint, as it requires cancellations between different
terms in the sum, up to terms of O(λ1/2). As we have pointed out above, this constraint
corresponds to the Coleman-Norton analysis: each jet vertex a can be associated to a
“position vector” xµa , where any jet line e in eq. (2.50) can be seen to represent a massless
particle propagating freely between the vertices a and b, such that xµb −xµa = αel

µ
e +O(λ1/2).

This sets a definite order of the jet vertices along the jet momentum flow in Ji, from the
hard vertices to the final on-shell parton i. This allows us to view the propagation of jets
as a classical process, constraining the configurations infrared regions may have.

6We note that αe′ = 0 may correspond to a region of a simpler graph where the propagator e′ has
been contracted.
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Gq1 q2
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(a)
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q1 q2
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p1

(i)

H1

J2

H2
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q1 q2

p2

p1
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Figure 3. The restriction of the regions from the Coleman-Norton interpretation. For a wide-angle
scattering process q1 → p1, p2, q2 on the left-hand side, where pµ1 and pµ2 are on-shell, and qµ1 and
qµ2 are off-shell, both the configurations in (i) and (ii) on the right-hand side satisfy eqs. (2.43)
and (2.48a), but (ii) is ruled out because it does not satisfy (2.48b).

One consequence of the Coleman-Norton analysis is that, after two jets depart from a
hard subgraph, at vertices xµa and xµb respectively, xµb − xµa ∼ λ0, cannot be connected by
propagators e such that αelµe � λ0. Thus, a hard propagator connecting them is excluded.
For example, in the 1→ 3 decay process with external momenta qµ1 , q

µ
2 , p

µ
1 and pµ2 , both

the configurations in figures 3(i) and 3(ii) are allowed by eq. (2.47a). However, figure 3(ii)
is forbidden by the Coleman-Norton analysis, which implies that after the two jets J1
and J2 depart from the hard subgraph H1, they should propagate in different directions
and should not interact at any other hard vertices again. Disconnected hard subgraphs are
thus excluded.

Another consequence of the Coleman-Norton analysis concerns the internal structure of
any jet. Examples are provided in figure 4 where (a) is consistent with the Coleman-Norton
analysis, while (b) and (c) are inconsistent, and therefore cannot appear as part of an
infrared region. Specifically, suppose two jet momenta lµe (e = 1, 2) both connect two of
the jet vertices a and b, as is shown in figure 4(b). Then upon considering the edge e = 1,
according to the Coleman-Norton analysis, one can associate xµa to a and xµb to b such that
eq. (2.50) becomes xµb − xµa = α1l

µ
1 +O(λ1/2). For the large lightcone component (suppose

it is the + direction), one then obtains x+
b > x+

a . However, the same reasoning works for
the edge e = 2, which yields x+

a > x+
b . This contradiction forbids the configuration of

figure 4(b). A similar analysis can be carried out for figure 4(c), where the soft lines do not
change the argument, since the soft momenta are negligible compared to the large lightcone
component of the jet.

Consider now the case N(J), N(S) > 1 where the denominator function of eq. (2.6)
can be rewritten as:

D = −
∑
e∈H

α[H]
e

(
l[H]
e

)2 −∑
e∈J

α[J ]
e

(
l[J ]
e

)2 −∑
e∈S

α[S]
e

(
l[S]
e

)2 − iε. (2.51)

In this case, the second Landau equation (2.48b) automatically holds, because it is of the
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pi

Ji

H

S

(a)

H

Ji
S

a
b

l1

l2

(b)

pi

Ji

H

a

b

l1
l2 S

(c)

Figure 4. Some configurations of the jet Ji that are allowed or forbidden by eq. (2.48b), according to
the Coleman-Norton analysis (the conclusion is not affected by the presence of the soft lines). (a) an
allowed jet configuration. (b) a configuration of Ji that is forbidden, because a connected component
of Ji is attached to the hard process only. (c) another configuration of Ji that is forbidden, because
the jet contains a “tadpole” component upon removing the soft lines.

following possible forms:

∂D

∂k
[H]
aµ

. λ1/2 ⇔
∑
e∈H

2ηaeα[H]
e l[H]µ

e . λ1/2; (2.52a)

∂D

∂k
[J ]
aµ

. λ1/2 ⇔
∑
e∈H

2ηaeα[H]
e l[H]µ

e +
n∑
i=1

∑
e∈Ji

2ηaeα[Ji]
e l[Ji]µe . λ1/2; (2.52b)

∂D

∂k
[S]
aµ

. λ1/2 ⇔
∑
e∈H

2ηaeα[H]
e l[H]µ

e +
n∑
i=1

∑
e∈Ji

2ηaeα[Ji]
e l[Ji]µe +

∑
e∈S

2ηaeα[S]
e l[S]µ

e . λ1/2.

(2.52c)

In each of the relations above, the coefficients ηae are either 0 or ±1, depending on how the
loop momentum ka enters the line momenta l[H]

e , l[Ji]e or l[S]
e . The three relations in eq. (2.52)

can be justified immediately based on the momentum scaling of eq. (2.47b). Nevertheless,
we can always restrict the Landau equation analysis to the subset of propagators containing
the hard and the jet momenta only. (This can be demonstrated by starting with a Feynman
parameterisation of these propagators, and leaving out all the soft ones.) The outcome of
this analysis would lead to the same constraints we have seen in eq. (2.50) in the case of
N(J) > 0, N(S) = 0. This is equivalent to the argument used in the discussion of figure 4,
where soft lines can be removed when obtaining the constraints on the configuration of an
infrared region from the second Landau condition.

2.3.2 The region vectors in the on-shell expansion

Summarising the analysis above, we propose that the solutions of the Landau equations
for massless wide-angle scattering are all endpoint singularities which stand in one-to-one
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correspondence with the regions in the on-shell expansion associated with the facets of the
Newton polytope ∆(N+1)[P]. This leads to the following proposition, which we present
without a formal proof.

Proposition 1. In the on-shell expansion for any wide-angle scattering graph, all regions
are given by region vectors which take the form of eq. (2.38), where the entries 0, −1 and −2
correspond to the propagators in the hard (H), jet (J1, . . . , JK) and soft (S) subgraphs
separately. Moreover, these subgraphs meet the following basic requirements.

1. H, to which all the off-shell external momenta qµj are attached, is a connected subgraph.

2. For each i = 1, . . . ,K, Ji is a connected subgraph attached to H, and its only external
momentum is the pµi line.

3. S is a subgraph without external momenta, and each connected component of S is
attached to H ∪ J , where J ≡ ∪Ki=1Ji.

While the basic requirements set out above are necessary for any infrared region, it
is clear at the outset that additional requirements on the configurations of jets arise from
the Coleman-Norton analysis, as shown in figure 4. This amounts to excluding certain
candidates for regions, which yield scaleless integrals. We will return to study this aspect in
section 3.3, where we formulate the precise requirements for the momentum configuration
in any infrared regions.

It is natural to ask what the precise conditions are for the applicability of this proposition,
as the momentum scalings of eq. (2.43) may be relevant beyond the scope of the on-shell
expansion in wide-angle scattering, for which it has been formulated. The reality is, that
depending on the kinematic setup and on the expansion considered, different regions
may arise, going far beyond this simple picture. We will give below three examples to
illustrate this.

Consider first the mass expansion described in figure 5 where we assume the hierarchy
p2 = m2 �M2 = Q2

1 ∼ Q2
2. Here the following two region vectors (amongst others) can

be found:

R1: vR1 = (0,−1,−1,−1,−1,−2,−1,−2,−3, 1);

R2: vR2 = (0,−1,−1,−1,−1,−1,−1,−2,−2, 1).

In momentum space, the loop momenta in the regions R1 and R2 are respectively:

R1: kµ1 = (k+
1 , k

−
1 , k1⊥) ∼ (1, λ, λ1/2), kµ2 ∼ λ, k

µ
3 = (k+

1 , k
−
1 , k1⊥) ∼ λ(1, λ, λ1/2);

R2: kµ1 = (k+
1 , k

−
1 , k1⊥) ∼ (1, λ, λ1/2), kµ2 ∼ λ, k

µ
3 ∼ λ.

There is an essential difference between the scaling of the two regions R1 and R2. While
the latter is fully consistent with eq. (2.43), the former departs from it in that kµ3 does
not correspond to any of the expected scalings we have discussed. This illustrates the
fact that the scaling vectors of eq. (2.38) may not suffice to describe all the regions in a
generic expansion.
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Figure 5. The mass expansion example.

A second example illustrates the fact that some solutions of the Landau equations may
not correspond to facets of the Newton polytope, but to lower dimensional faces, in which
case they would not appear as regions. As a consequence, only a subset of the pinch surfaces
would be represented as regions. This occurs for example in the threshold expansion for
Drell-Yan or Higgs production. Specifically, refs. [67, 68] computed the mixed real and
virtual corrections at N3LO using the threshold expansion where the emitted partons are
soft. For certain integrals the regions were found (using a somewhat heuristic method)
to correspond to only a subset of the soft and collinear momentum scalings of the form
of eq. (2.38).

Another scenario where more complex regions emerge is upon departing from wide-angle
scattering kinematics. As explained in section 2.2, we expect that all the regions appearing
in the wide-angle scattering are given by the facets of ∆(N+1)[P]. This does not hold,
however, for other processes such as the forward scattering, where Glauber modes exist.
Also in this case, solutions of the Landau equations are expected to be useful in identifying
regions, but some of these may arise from cancellation between terms in P rather then from
scaling vectors associated with the facets of ∆(N+1)[P].

To summarise, we determined the general form of region vectors that arise in the on-shell
expansion in wide-angle scattering. In the following sections we will show that vectors of
the form of eq. (2.38) correspond to regions, if and only if certain extra requirements on
H, J and S are satisfied. These requirements will be spelt out and proven in section 3.3.
Based on these, we formulate in section 4 a graph-finding algorithm. Furthermore, using
this algorithm we verify proposition 1 up to five loops, showing that it produces precisely
the regions found via the geometric approach of section 2.2.

3 Regions in the on-shell expansion

In this section we explore the properties of the region vectors in the on-shell expansion of
wide-angle scattering, which take the form of eq. (2.38) as proposed above. Our motivation
is to formulate and prove the precise conditions under which such a vector corresponds
to a region of a given Feynman integral, namely, a lower facet of the associated Newton
polytope ∆(N+1)[P].
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This section is organised as follows. We begin in section 3.1 by deriving the conditions
for the existence of the hard region of the integral I(s) corresponding to a graph G. To
this end we introduce a vector space that is spanned by ri − rj , the difference between the
exponents of any two different monomials in the U polynomial, each of which is associated
with a specific spanning tree of the graph. If this space is N -dimensional, then there is a
hard region. In section 3.2 we investigate the generic form of monomials that may appear
in the leading Lee-Pomeransky polynomial P(R)

0 (x; s), in a generic infrared region R. Based
on these results, we prove in section 3.3 that any vector of the form of eq. (2.38) defines a
region vector of the Newton polytope ∆(N+1)[P(G)], if and only if some extra requirements
on the subgraphs of G are satisfied, eliminating any potential scaleless integrals.

A few notations are introduced here for convenience. Recall that we use T 1 and T 2 to
denote, respectively, a spanning tree and a spanning 2-tree of G. Similarly, for any subgraph
γ ⊆ G, T 1(γ) and T 2(γ) are used to denote, respectively, a spanning tree and a spanning
2-tree of γ. We further denote the monomials in F carrying a kinematic factor p2

i ∼ λ as
F (p2

i ) terms, and those carrying a kinematic factor q2
j or pk · pl (k 6= l), which scale as λ0,

as F (q2) terms. In a region R, the U , F (p2
i ) and F (q2) terms that appear in the leading

Lee-Pomeransky polynomial P(R)
0 (x; s) (defined below eq. (2.16)) are denoted respectively

as U (R), F (p2
i ,R) and F (q2,R) terms.

3.1 Spanning trees

For any connected graph γ, we denote the parameter subspace that is spanned by the
points corresponding to T 1(γ) as Wγ . By definition, Wγ is generated by vectors of the form
∆rij ≡ ri − rj , where ri and rj are any two points corresponding to two spanning trees
T 1
i (γ) and T 1

j (γ). Here we aim to derive the dimension, dim(Wγ), by obtaining a set of
basis vectors of Wγ .

We recall that a graph is one-vertex irreducible (1VI) if it remains connected after any
one of its vertices is removed. (In graph theory, a 1VI graph is also called a biconnected
graph.) Let us consider the case where γ is 1VI, and derive the following theorem.

Theorem 1. For any 1VI graph γ, the parameter subspace Wγ, which contains all the
points corresponding to the spanning trees of γ, satisfies

dim(Wγ) = N(γ)− 1, (3.1)

where N(γ) is the number of propagators of γ. Furthermore, the (N(γ)− 1) independent
basis vectors of Wγ can be expressed as:(

1,−1, 0, . . . , 0︸ ︷︷ ︸
N(γ)

; 0
)
,
(
1, 0,−1, 0, . . . , 0︸ ︷︷ ︸

N(γ)

; 0
)
, . . . ,

(
1, 0, . . . , 0,−1︸ ︷︷ ︸

N(γ)

; 0
)
. (3.2)

Proof. First recall that vectors defining the monomials in U(x) take the form of ri ≡
(ri,1, . . . , ri,N ; 0), where ri,e = 1 for each edge e that has been removed in forming the
corresponding spanning tree, while the other entries are 0.
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ej
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(a) γ.

(i) Lij .

e′1

(ii) γ1.

e′2

(iii) γ2.

e′3

(iv) γ3.

e′4

(v) γ′ = γ4.

Figure 6. The procedure in the proof of theorem 1.

It immediately follows from the definition above that dim(Wγ) 6 N(γ). Assume
now that γ contains L(γ) loops. In order to form a spanning tree of γ, we must remove
exactly one propagator per loop from γ, hence every point in Wγ satisfies the constraint∑
e∈γ ri,e = L(γ). Thus, we can tighten the upper bound on the dimension:

dim(Wγ) 6 N(γ)− 1. (3.3)

Below we aim to prove dim(Wγ) > N(γ)− 1, by finding the basis vectors shown in eq. (3.2).
Since γ is 1VI, a result in graph theory is that for any two propagators of γ there is

a loop containing them both [69]. So for any i, j ∈ {1, . . . , N(γ)}, we consider a loop Lij
that simultaneously contains ei and ej . We now aim to obtain a subgraph γ′ ⊆ γ, which
includes all the vertices of γ and contains exactly one loop, Lij .

The subgraph γ′ can be obtained through the following operations. Define V0 as the set
of vertices of Lij and V ′0 as the set of vertices of γ \ Lij . Since γ is connected, there must
be an edge e′1 in γ that connects a vertex v0 ∈ V0 and v′0 ∈ V ′0. The graph γ1 ≡ Lij ∪ e′1 is
then also a connected subgraph of γ, which still contains exactly one loop Lij . We then
define V1 to be the set of vertices of γ1, and V ′1 as the set of vertices of γ \ γ1. Now there
must be another edge e′2 joining a vertex v1 ∈ V1 and v′1 ∈ V ′1. The graph γ2 ≡ Lij ∪ e′1 ∪ e′2,
is again a connected subgraph of γ that contains exactly one loop Lij . This procedure can
be carried out recursively as above, terminating with the final graph γ′ ≡ Lij ∪ e′1 ∪ · · · ∪ e′n,
with n = V (γ)− V (Lij). An example illustrating this procedure is shown in figure 6.

From the construction above, we can obtain a spanning tree of γ by removing any edge
of Lij from γ′. We consider the spanning trees T 1

i ≡ γ′ \ ei and T 1
j ≡ γ′ \ ej . These two

spanning trees correspond respectively to two points ri and rj in the parameter space, and
∆rij ≡ ri − rj is

∆rij =
(
0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0︸ ︷︷ ︸

N(γ)

; 0
)
. (3.4)

We can parameterise the graph γ in specific ways such that i = 1 and j = 2, . . . , N(γ).
Then all the vectors in eq. (3.2) are obtained, and there are N(γ) − 1 of them. Thus
dim(Wγ) > N(γ) − 1. Combining this with eq. (3.3) above, we have determined the
dimension of Wγ , which is (3.1).

– 23 –



J
H
E
P
0
7
(
2
0
2
3
)
1
9
7

Note that every connected graph can be seen as the union of several 1VI graphs. Then
theorem 1 could be directly generalised to any connected graph γ, i.e.

Corollary 1.1. Suppose a graph γ has n 1VI components, γ1, γ2, . . . , γn, then we have

Wγ =
n⊕
i=1

Wγn , (3.5)

dim(Wγ) =
n∑
i=1

(N(γi)− 1). (3.6)

Proof. First, it is a result of graph theory that each spanning tree of γ is the union of
the spanning trees of the γi (i = 1, . . . , n), and vice versa. Then since Wγ is the space
that contains all the points corresponding to the spanning trees of γ, we immediately have
eq. (3.5). Eq. (3.6) then follows directly from eq. (3.1).

Note that for any 1VI component γi with a single propagator, then N(γi)− 1 = 0, and
γi does not contribute to dim(Wγ). We can define the nontrivial 1VI components as those
containing at least one loop, so that the word “1VI components” could get replaced by
“nontrivial 1VI components” in corollary 1.1.

From this observation, we construct a simpler form of every graph G and call it
the reduced form of G. It is obtained from G by contracting each of its nontrivial 1VI
components into a vertex. If two nontrivial 1VI components γ1 and γ2 share a vertex, we
add an auxiliary propagator connecting γ1 and γ2 before contracting them. The reduced
form of G is denoted by Gred, which is always a tree graph.

Some examples of the reduced form of G are given in figure 7. Here we note a relation
between the edges of G and Gred:

N(G) = N̂(Gred) +
n∑
i=1

N(γi), (3.7)

where n is the number of nontrivial 1VI components of G, and N̂(Gred) is the number of
edges that are in both Gred and G (i.e. the non-auxiliary edges of Gred).

The concept of the reduced form enables us to obtain a necessary and sufficient condition
that G has a hard region, which can be seen as another corollary of theorem 1.

Corollary 1.2. The hard vector vH is normal to a lower facet of ∆(N+1)[P(G)], if and
only if all the internal propagators of Gred are off-shell.

Proof. First we show that if all the propagators of Gred are off-shell, then vH is normal to a
lower facet. Suppose there are n nontrivial 1VI components of G. We can parameterise the
propagators of G such that the first ∑n

i=1N(γi) parameters correspond to the propagators
of the n nontrivial 1VI components, and the next (and the last) N̂(Gred) parameters
correspond to the propagators that are in both Gred and G. According to corollary 1.1, we
can find the following ∑n

i=1(N(γi)− 1) linearly independent vectors of the form:(
0, . . . , 0︸ ︷︷ ︸

N(γ1)+···+N(γi−1)

, 1, 0, . . . , 0,−1, 0, . . . , 0︸ ︷︷ ︸
N(γi)

, 0, . . . , 0︸ ︷︷ ︸
N(γi+1)+···+N(γn)

, 0, . . . , 0︸ ︷︷ ︸
N̂(Gred)

; 0
)
, (3.8)
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Figure 7. Some examples of the reduced forms of certain 2→ 2 scattering graphs. Top: the original
Feynman graphs. Bottom: the corresponding reduced forms.

and the dimension of the space spanned by the vectors above is ∑n
i=1N(γi)− n. According

to eq. (3.7), we still need to find another n+ N̂(Gred) vectors that are linearly independent
of them, in order to show that the lower face normal to vH is N -dimensional, hence a
lower facet.

For the spanning tree T 1 corresponding to a given term in U(x), the associated point
in the parameter space is of the following form:

r1 =
(
a

(1)
1 , . . . , a

(1)
N(γ1)︸ ︷︷ ︸

N(γ1)

, . . . , a
(n)
1 , . . . , a

(n)
N(γn)︸ ︷︷ ︸

N(γn)

, 0, . . . , 0︸ ︷︷ ︸
N̂(Gred)

; 0
)
, (3.9)

where for each i = 1, . . . , n, there are L(γi) entries with value 1 and N(γi)− L(γi) entries
with value 0 in {a(i)

1 , . . . , a
(i)
N(γi)}. We now consider the spanning 2-tree corresponding to

an F (q2) term by removing one propagator from T 1. Since every line momentum of Gred
is off-shell, this propagator can either be in Gred, or in the n nontrivial 1VI components.
The point r2 that is associated to this spanning 2-tree, is identical to r1 except for one
entry, which is 0 in r1 and 1 in r2. As a result, the vector r2 − r1 may take one of the two
following forms:(

0, . . . , 0︸ ︷︷ ︸
N(γ1)+···+N(γi−1)

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
N(γi)

, 0, . . . , 0︸ ︷︷ ︸
N(γi+1)+···+N(γn)

, 0, . . . , 0︸ ︷︷ ︸
N̂(Gred)

, ; 0
)
, (3.10a)

(
0, . . . , 0︸ ︷︷ ︸

N(γ1)+···+N(γn)

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
N̂(Gred)

; 0
)
. (3.10b)

In each of the vectors above, there is exactly one entry with value 1, while all the others are 0.
Note that in (3.10a), we may choose the entry 1 at n distinct positions, each corresponding
to removing some off-shell propagator in a different nontrivial 1VI component γi with
1 6 i 6 n; these are bound to be independent. In (3.10b), we may choose the entry 1 at any
of the last N̂(Gred) entries, each corresponding to removing a different internal propagator
in Gred. It is straightforward to check that the vectors in eqs. (3.8) and (3.10) are linearly
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independent, and their total number is N(G), hence they constitute a set of basis vectors
of the hard facet.

Let us now consider the case where there is a propagator e′ ∈ Gred that carries an
on-shell momentum (either lightlike or vanishing). In this case, such a basis cannot be
constructed. For example, if one propagator of Gred carries a momentum pµ1 , then removing
it from a spanning tree, yields a F (p2

1) term, rather than a F (q2) term, which is not in the
hard facet.

As an example, all the propagators in the reduced form of figures 7a and 7d carry
off-shell momenta, so the hard region is present in those graphs; meanwhile the reduced
form in figures 7b and 7c contains propagators that carry vanishing or lightlike momenta,
respectively, so there are no hard regions for these graphs.

With theorem 1 and its corollaries, we can proceed with the study of the space generated
by the polynomial P(R)

0 (x; s) for a given infrared region R. This will be our objective in
the rest of this section.

3.2 Leading terms in the infrared regions

We now focus on the infrared regions by investigating the generic properties of the terms
of P(R)

0 (x; s), where R is a given infrared region characterised by the region vector vR.
By definition, these terms correspond to the points r of the Newton polytope with the
minimum of r · vR. Below we will see that these terms can be classified into four types
having distinct features.

We start with two examples of infrared regions from figure 8, which describes a hard
process with one off-shell external momentum Qµ and three nearly on-shell external momenta
pµi for i = 1, 2, 3. In the on-shell expansion, we assume that p2

i ∼ λQ2 with λ� 1, while the
hard scales skl ≡ (pk + pl)2 and Q2 are all of the same order of magnitude. By definition,
the Lee-Pomeransky polynomial P(x; s) is

P(x; s) = x1x2 + x1x3 + x1x5 + x1x6 + x2x3 + x2x4

+ x2x6 + x3x4 + x3x5 + x4x5 + x4x6 + x5x6 + (−Q2)x1x2x3

+ (−p2
1)
(
x1x2x4 + x1x3x4 + x1x4x5 + x1x4x6 + x1x5x6

)
+ (−p2

2)
(
x1x2x5 + x2x3x5 + x2x4x5 + x2x4x6 + x2x5x6

)
+ (−p2

3)
(
x1x3x6 + x2x3x6 + x3x4x6 + x3x5x6 + x3x4x5

)
+ (−s12)x1x2x6 + (−s23)x2x3x4 + (−s13)x1x3x5. (3.11)

The two regions we focus on are denoted by SS and C1S. In the SS-region, the two loop
momenta are soft; in the C1S-region, the loop momentum running through the propagators
4, 5, 2 and 1 is collinear to pµ1 , while the other loop momentum is soft. Using eq. (2.39), the
Lee-Pomeransky parameters in these regions scale as follows:

SS: x1, x2, x3 ∼ λ−1, x4, x5, x6 ∼ λ−2; (3.12a)
C1S: x2 ∼ λ0, x1, x3, x4, x5 ∼ λ−1, x6 ∼ λ−2. (3.12b)
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Figure 8. A two-loop four-point wide-angle scattering example with three nearly on-shell external
momenta pµi (i = 1, 2, 3) and one off-shell external momentum Qµ.

The leading Lee-Pomeransky polynomial P(R)
0 (x; s), with R = SS reads:

P(SS)
0 (x; s) = x4x5 + x4x6 + x5x6 + (−p2

1)(x1x4x5 + x1x4x6 + x1x5x6) (3.13)
+ (−p2

2)(x2x4x5 + x2x4x6 + x2x5x6) + (−p2
3)(x3x4x5 + x3x4x6 + x3x5x6)

+ (−s12)x1x2x6 + (−s23)x2x3x4 + (−s13)x1x3x5,

while the leading polynomial P(R)
0 (x; s) with R = C1S is:

P(C1S)
0 (x; s) = x1x6 + x4x6 + x5x6 + (−p2

1)(x1x4x6 + x1x5x6) (3.14)
+ (−p2

3)(x1x3x6 + x3x4x6 + x3x5x6) + (−s12)x1x2x6 + (−s13)x1x3x5.

Note that in the polynomials (3.13) and (3.14) we used colour coding to identify the
parameters associated with hard (blue), jet (green) and soft (red), respectively. In each
of these polynomials, the first three terms are the U (R) terms, the terms carrying (−p2

i )
dependence are the F (p2

i ,R) terms, e.g. F (p2
i ,C1S) = (−p2

1)(x1x4x6 + x1x5x6), and those
carrying skl dependence are F (q2,R) terms, e.g. F (q2,C1S) = (−s12)x1x2x6 + (−s13)x1x3x5.
Using eq. (3.12), one can verify that all the terms in (3.13) scale as λ−4 while all the terms
in (3.14) scale as λ−3. Note that the remaining terms in (3.11), which have been dropped
in P(SS)

0 and P(C1S)
0 , would be sub-leading in λ.

In the two polynomials above, one observes that only certain combinations of hard,
jet and soft parameters can be consistent with aforementioned λ scaling. Specifically, for
R = SS in (3.13), every term in U (R) has two soft parameters, every term in F (p2,R) has two
soft and one jet parameters, and every term in F (q2,R) has one soft and two jet parameters.
For R = C1S in (3.14), every term in U (R) has one soft and one jet parameters, every term
in F (p2,R) has one soft and two jet parameters. In this case we note that there are two types
of terms in F (q2,R): one of them (s12x1x2x6) has one soft, one jet and one hard parameters,
while the other (s13x1x3x5) has three jet parameters.

Motivated by these observations, we consider a generic region with hard, jet and soft
propagators. In order to study the terms of U (R) and F (R) and classify them into different
types, we define the subgraphs H, Ji (i = 1, . . . ,K) and S, as a partition of G, such that
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H

q1 qL

(a) A hard subgraph H.

Ji

pi

(b) A contracted jet graph J̃i.

S

(c) A contracted soft graph S̃.

Figure 9. The H, J̃i and S̃ graphs. The pink vertex in the J̃i (or S̃) graph is a newly introduced
vertex, which identifies all the vertices of H (or H ∪ J) that Ji (or S) is attached to. Note that what
is contracted is the rest of the graph, not the J or S themselves.

every edge and vertex in G can be uniquely associated to exactly one of them. Furthermore,
we associate edges and vertices to these subgraphs such that:

• An edge is contained in H, Ji (i = 1, . . . ,K) and S respectively if and only if its
momentum is hard, collinear to pi, or soft.

• A vertex is in S if and only if it connects to soft edges only. A vertex is in Ji if and
only if it connects to at least one edge in Ji and possibly edges in S but no edges
from H nor Jj with j 6= i. All the other vertices are in H.

Note that from the definitions above, the subgraph containing the endpoint of an edge may
be different to the subgraph containing the edge itself. For example, the endpoints of a
soft propagator can be jet vertices, and one endpoint of a jet propagator can be a hard
vertex. Thus, what we are calling a subgraph in this section is subtly different from the
strict notion of a subgraph in graph theory.

Next, let us define the contracted graphs J̃i and S̃ that are constructed from the
subgraphs Ji and S. The contracted soft subgraph S̃ is obtained from S by contracting to
a point all the vertices of H and J into which soft momenta flow, and replacing them by a
new soft vertex, which we will refer to as the auxiliary soft vertex. Similarly, J̃i is obtained
from Ji by contracting to a point all the vertices of H into which the Ji momenta flow,
and replacing them by a new vertex of Ji (the auxiliary Ji vertex). In figure 9 we show an
illustration of the hard subgraphs H and the contracted subgraphs J̃i and S̃ that would be
obtained from the generic scattering graph shown in figure 1. By definition, for each of the
contracted graphs S̃ and J̃i (i = 1, . . . ,K), there is one more vertex than the corresponding
subgraph S and Ji. The contracted graphs can also be viewed as follows: S̃ = G/(H ∪ J)
and J̃i = (G \ S)/(H ⋃

k 6=i Jk).
The introduction of the contracted graphs is convenient for the following reason. We

observe that the total7 number of the independent hard, jet and soft loop momenta in I(G)
7Note that the number of loops in each of the graphs separately is not the same between the original and

the contracted graphs. For example, S̃ has more loops than S.
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is equal to the number of loops in H, J̃ and S̃, respectively. It then follows that

L(G) = L(G \ S) + L(S̃)

= L(H) +
K∑
i=1

L(J̃i) + L(S̃). (3.15)

Another benefit of defining the contracted subgraphs is that we can use this concept to
describe the leading polynomials. As we will see below, the polynomials U (R) and F (R) can
be classified into certain types, according to the structures of H, J̃ and S̃.

Any term of P(R)
0 is obtained either from a spanning tree or a spanning 2-tree of G,

which we denote as T . Further, let there be nH (nJ , nS) hard (jet, soft) propagators in the
complement of T . The following fundamental constraints on the values of nH and nS can
be observed:

nH > L(H), nS 6 L(S̃). (3.16)

The first inequality nH > L(H) must hold, because we need to remove at least L(H)
propagators in the hard subgraph to turn G into a spanning tree. To arrive at nS 6 L(S̃)
let us construct a proof by contradiction. To this end we assume that nS > L(S̃) and show
that it is inconsistent. First of all, nS > L(S̃) implies that the graph γ

S̃
≡ S̃ ∩ T would

be disconnected.8 One of its components consists exclusively of soft edges which do not
attach to H or J in G. Since by definition (see point 3 of proposition 1), the soft subgraph
S does not attach to any external momenta, momentum conservation of this disconnected
component implies that the total momentum flowing into it vanish, and hence it would not
contribute to the Symanzik polynomials. We have thus established eq. (3.16).

With the observations above, one can derive the generic form of the terms in P(R)

by considering all the possible cases. We first focus on any term of U (R), denoting the
corresponding spanning tree T 1. The U (R) polynomial is a homogeneous, degree L(G)
polynomial, which implies that nH + nJ + nS = L(H) +∑K

i=1 L(J̃i) + L(S̃). Recall that a
facet contains the points that minimise r · vR, as follows from eq. (2.33). Because for the U
terms r · vR = r̂ · uR (i.e. ri,N+1 = 0), r · vR corresponds to summing the subset of entries
of vR associated with edges e, for which re = 1 (see eq. (2.30)). Since the hard, jet and soft
propagators have a corresponding 0, −1, or −2 entry in vR respectively, in order to achieve
the minimum of r · vR, the value of nH must be minimised while the value of nS must be
maximised. With this in mind, eq. (3.16) implies:

nH = L(H), nJ = L(J̃), nS = L(S̃). (3.17)

This implies that each of the subgraphs, H ∩T 1, J̃i∩T 1 for each i ∈ {1, . . . ,K}, and S̃ ∩T 1

are spanning trees of H , J̃i and S̃, respectively. This configuration is depicted in figure 10(a).
Here the notation ST stands for a spanning tree. Note that it is the contracted graphs that
should be considered, namely, γ ∩ T 1 is a spanning tree of γ, for γ = H, J̃1, . . . , J̃K , S̃.

8This can be understood from Euler’s theorem. For S̃ we have V (S̃)−N(S̃) +L(S̃) = 1. After removing
L(S̃) +x edges from S̃ we obtain γ

S̃
for which Euler’s theorem yields V (S̃)− (N(S̃)−L(S̃)−x) +L(γ

S̃
) = k

and k denotes the number of disjoint connected components of γ
S̃
. Combining these equations one obtains

k = L(γ
S̃

) + x+ 1 > 1 as long as x > 0 proving that γ
S̃
is disconnected.
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ST
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q1 qL

p1

pi

pK

(a)

ST

ST

ST

S2T

ST

q1 qL

p1

pi

pK

(b)

S2T

ST

ST

ST

ST

q1 qL

p1

pi

pK

(c)

ST

1-loop

S2T

ST

S2T

q1 qL

p1

pi

pK

(d)

Figure 10. The graphic descriptions of the terms of U (R)(x) and F (R)(x; s) with R being an
infrared region. The lines connecting different blobs represent any number of propagators, and the
notation ST (S2T) stands for spanning trees (spanning 2-trees). The labels (ST, S2T, one-loop) imply
that the contracted graphs H, J̃ and S̃ is respectively a (spanning tree, spanning 2-tree, one-loop
graph) in the corresponding terms. Any of the terms in P(R)

0 is of one of the following four types:
(a) the terms of U (R)(x); (b) the terms of F (p2

i ,R)(x; s), note that the spanning 2-tree structure can
be within any one of the jet subgraphs; (c) one possibility for the terms of F (q2,R)(x; s), denoted as
the F (q2,R)

I terms, where H ∩ T is a spanning 2-tree of H, identifying an off-shell momentum qµ

flowing between its components; (d) another possibility for the terms of F (q2,R)(x; s), denoted as
the F (q2,R)

II terms, where for two of the jet graphs J̃i and J̃j (i = 1 and j = K in the figure), J̃i ∩ T
and J̃j ∩ T are spanning 2-trees of J̃i and J̃j respectively. While in (a), (b) and (c) the graph S̃ ∩ T
is a spanning tree of S̃, in (d) this graph has (exactly) one loop.
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For the analysis that follows, it is useful to examine the structure of the soft subgraph
in more detail. Suppose there are n connected components of S, denoted by S1, . . . , Sn,
corresponding to the n 1VI components of S̃, i.e. S̃1, · · · , S̃n, which all share the auxiliary
soft vertex. As illustrated above, S̃ ∩ T 1 is a spanning tree of S̃. Then recall corollary 1.1,
S̃i ∩ T 1 is a spanning tree of S̃i for i = 1, . . . , n. Eq. (3.17) can hence be rewritten in a
more precise way as

U (R)(x) : nH = L(H),
nJi = L(J̃i) (i = 1, . . . ,K),
nSk = L(S̃k) (k = 1, . . . , n). (3.18)

Using the graph-theoretical knowledge that the combination of any chosen spanning
tree of H, J̃i and S̃ is also a spanning tree of G, along with eq. (3.18), we can deduce
a useful property: upon denoting the parameters x that are associated with edges in H,
Ji, and S = ∪nk=1Sk by x[H], x[Ji] and x[S] respectively, the polynomial U (R)(x) can be
factorised as follows

U (R)(x) = UH(x[H]) ·
( K∏
i=1
UJi(x[Ji])

)
· US(x[S]), (3.19)

where UH(x[H]), UJi(x[Ji]) and US(x[S]) = ∏n
k=1 USk(x[Sk]) are the polynomials that contain

only the parameters x[H], x[Ji] and x[S], and correspond to the spanning trees of the graphs
H, J̃i and S̃ respectively. For example, in eq. (3.13) we have UH(x[H]) = UJi(x[Ji]) = 1,
and US(x[S]) = x4x5 + x4x6 + x5x6. Meanwhile in eq. (3.14) we can see that UH(x[H]) = 1,
UJ1(x[J1]) = x1 + x4 + x5, UJi(x[Ji]) = 1 (i 6= 1), and US(x[S]) = x6.

Note that eq. (3.17) can also be viewed as a result of the uniqueness of minimum
spanning trees in graph theory, i.e. by associating a weight to each edge of a given graph,
the set of weights in a minimum spanning tree of this graph is uniquely determined. In
the case under consideration, these weights are 0, −1 and −2 for hard, jet and soft edges,
respectively. The minimum of r · vR, where r corresponds to any term in P(R)

0 (x; s), can
then be directly read from (3.17):

min (r · vR) = −2L(S̃)− L(J̃). (3.20)

Now we study the terms in F (R)(x; s). We denote their corresponding spanning 2-trees
as T 2. Here we have nH + nJ + nS = L(H) + L(J̃) + L(S̃) + 1. Using the fundamental
constraint, eq. (3.16), all the possible values of nH , nJ and nS can be summarised as follows:

nH = L(H) + k1, nJ = L(J̃) + k2 + 1− k1, nS = L(S̃)− k2, (3.21)

where k1 and k2 are non-negative integers (k1, k2 ∈ N0). Below we discuss three cases of
k1 and k2, and show that they enumerate all possible F (R) terms, which correspond to,
respectively, figures 10b, 10c and 10d.

I. k1 = k2 = 0 (figure 10b). In this case, we have

nH = L(H), nJ = L(J̃) + 1, nS = L(S̃). (3.22)
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This relation implies that H∩T 2 and S̃∩T 2 are spanning trees of H and S̃ respectively.
The subgraph J̃ ∩ T 2, on the other hand, is a spanning 2-tree of J̃ . More precisely,
for a specific jet i ∈ {1, . . . ,K}, J̃i ∩ T 2 is a spanning 2-tree of J̃i, while all the
subgraphs J̃j ∩ T 2 with j 6= i are spanning trees of J̃j . This configuration is then
depicted in figure 10b, where the notation S2T is the abbreviation of spanning 2-
trees. In this configuration, one component of T 2 only has a single nearly on-shell
external momentum pµi , hence it corresponds to F (p2

i )(x; s). Similar to the analysis
above (3.18), S̃k ∩ T 1 is a spanning tree of S̃k for k = 1, . . . , n. Therefore, eq. (3.22)
can be written as:

F (p2
i ,R)(x; s) : nH = L(H),

nJi = L(J̃i) + 1, nJj = L(J̃j) (j 6= i, j = 1, . . . ,K),

nSk = L(S̃k) (k = 1, . . . , n). (3.23)

It remains to be shown that these terms are associated with the same minimum of r ·vR
as in eq. (3.20). In comparison with the terms of U (R)(x), which are characterised
by (3.18), there is an extra −1 from the jet parameter contribution to r · vR, and an
extra +1 from the kinematic contribution, which is the (N + 1)-th entry of r (see
eq. (2.33)). The terms of F (p2

i ,R)(x; s) are thus described by figure 10b.
We note that a factorisation formula, similar to eq. (3.19), also applies to the F (p2

i ,R)

terms, namely,

F (p2
i ,R)(x; s) = UH(x[H]) · F (p2

i )
Ji

(x[Ji]) ·
( K∏
j 6=i
UJj (x[Jj ])

)
· US(x[S]). (3.24)

The polynomials UH(x[H]), UJj (x[Jj ]) and US(x[S]) correspond to the spanning trees
of H, J̃i and S̃, respectively. The polynomial F (p2

i )(x[Ji]) depends on the parameters
x[Ji] only, and corresponds to the spanning 2-trees of J̃i. Moreover, the momentum
flowing between the two connected components is exactly pµi . As in the case of
eq. (3.19), this factorisation reflects a graph-theoretical property: by combining any
set of spanning trees of H, J̃j (j 6= i) and S̃, together with a pi spanning 2-tree of J̃i,
one obtains a pi spanning 2-tree of G.

II. k1 = 1, k2 = 0 (figure 10c). In this case, we have

nH = L(H) + 1, nJ = L(J̃), nS = L(S̃). (3.25)

In the example of eq. (3.14) as we showed above, the term s12x1x2x6 is of this type.
More generically, for a given r corresponding to a term of this form, we first examine
the value of r · vR, using eq. (2.33), obtaining

r · vR = −2L(S̃)− L(J̃) + rN+1, (3.26)

where rN+1 = 0 or 1 is the contribution from the kinematic prefactor of the term (i.e.
a factor of λ0 or λ1 generated by the rescaling of the kinematic invariants s→ λws).
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In order that a term satisfying (3.25) is in F (R)(x; s), we must have rN+1 = 0, which
means that T 2 corresponds to a term of F (q2,R)(x; s) in this case. We denote these
terms as F (q2,R)

I (x; s). In each T 2 that corresponds to a term in F (q2,R)
I (x; s), the

graph H ∩ T 2 is a spanning 2-tree of H , such that the momentum flowing between its
components of T 2 is qµ, which is off shell. In contrast, the remaining subgraphs in T 2

are spanning trees. In particular, J̃i ∩ T 2 is a spanning tree of J̃i for any i = 1, . . . ,K,
and S̃k ∩ T 2 is a spanning tree of S̃k for any k = 1, . . . , n. With this analysis, we may
rewrite (3.25) as

F (q2,R)
I (x; s) : nH = L(H) + 1,

nJi = L(J̃i) (i = 1, . . . ,K),
nSk = L(S̃k) (k = 1, . . . , n). (3.27)

The configuration of T 2 in this case is depicted in figure 10c. The polynomial of F (q2)
I

can be factorised as follows

F (q2)
I (x; s) = F (q2)

H∪J(x[H],x[J ]) · US(x[S]), (3.28)

where the polynomial F (q2)
H∪J(x[H],x[J ]) consists of all the spanning 2-trees of H ∪ J

such that the momentum flowing between its components is qµ. In comparison with
the previous factorisation formulas, eqs. (3.19) and (3.24), we note that F (q2)

H∪J cannot
be factorised any further.

III. k1 = 0, k2 = 1 (figure 10d). In this case, we have

nH = L(H), nJ = L(J̃) + 2, nS = L(S̃)− 1. (3.29)

In the example of eq. (3.14) as we showed above, the term s13x1x3x5 is of this type.
In generic cases, we first examine the value of r · vR as above, which is

r · vR = −2
(
L(S̃)− 1

)
−
(
L(J̃) + 2

)
+ rN+1 = −2L(S̃)− L(J̃) + rN+1, (3.30)

where rN+1 = 0 or 1 is the kinematic contribution. In order for a term satisfying
eq. (3.29) to appear in F (R)(x; s), we must have rN+1 = 0, which means that this
case corresponds to another contribution to F (q2,R)(x; s), distinct from case II above.
We denote the polynomial consisting of these terms as F (R)

II (x; s).
To understand the configuration of T 2 in this case, we first notice that eq. (3.29)
implies that H ∩ T 2 is a spanning tree of H, and S̃ ∩ T 2 contains one loop. If the
auxiliary soft vertex were not part of this loop, then T 2 would have contained this
loop as well, which contradicts T 2 being a spanning 2-tree. Therefore, the loop of
S̃ ∩ T 2 must correspond to a path P that consists of soft propagators, joining two
distinct vertices A and B in H ∪ J . From the definition of S̃, this path becomes a
loop of S̃ upon contracting H ∪ J and introducing the auxiliary soft vertex.
Now we argue that A and B must be in two different jets Ji and Jj . Notice that
nJ = L(J̃) + 2 implies that J̃ ∩ T 2 has three connected components, two of which
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have nearly on-shell external momenta pi and pj , respectively. If the path P were
not connecting them, then at least one would have been a component of T 2, thus an
F (p2

i ,R) term, in conflict with the conclusion above.

Therefore, in the configuration of T 2 there is a path of soft propagators that joins
two of the nearly on-shell external momenta, say pi and pj . We denote the connected
component of S that contains this path as Sk[i,j], and qij ≡ pi + pj . The graph
S̃k[i,j] ∩ T 2 then contains exactly one loop, and the graphs J̃i ∩ T 2 and J̃j ∩ T 2 are
spanning 2-trees of J̃i and J̃j . That is,

F (q2,R)
II (x; s) : nH = L(H),

nJi = L(J̃i) + 1, nJj = L(J̃j) + 1, nJl = L(J̃l) (∀l 6= i, j),

nSk[i,j]
= L(S̃k[i,j])− 1, nSk = L(S̃k) (∀k 6= k[i, j]). (3.31)

The configuration of T 2 in this case is depicted in figure 10(d). Similar to the previous
three cases, the F (q2,R)

II polynomial can be factorised as follows

F
(q2
ij ,R)

II (x;s) =UH(x[H])·
∑
i,j

(
F
q2
ij

Ji∪Jj∪S(x[Ji],x[Jj ],x[S])·
∏
k 6=i,j
UJk(x[Jk])

)
. (3.32)

Here the polynomial F (q2
ij)

Ji∪Jj∪S consists of the spanning 2-trees of the graph Ji ∪Jj ∪S,
such that the momentum flowing between the components is exactly qij ≡ pi + pj .

We note that the three cases above have covered all the possibilities of the terms of
F (R)(x; s), because for any other values of k1 and k2 in (3.21), we have k1 + k2 > 2, and
the corresponding value of r · vR is

r · vR = −2(L(S̃)− k2)− (L(J̃) + k2 + 1− k1) + rN+1

= −2L(S̃)− L(J̃) + k2 + k1 − 1 + rN+1

> −2L(S̃)− L(J̃), (3.33)

where rN+1 is the kinematic contribution of the point r, satisfying rN+1 = 0 or 1. We
emphasise that (3.33) is a strict inequality. The right-hand side is min(r · vR), which is
attained for all of the four cases above. It follows that cases with k1 + k2 > 2 do not
correspond to any potential terms of P(R)

0 (x; s).
We conclude that the following theorem must hold.

Theorem 2. For any region R in the on-shell expansion of a wide-angle scattering graph
G, the leading Lee-Pomeransky polynomial takes the form

P(R)
0 (x; s) = U (R)(x) + F (R)(x; s) (3.34)

F (R)(x; s) =
K∑
i=1
F (p2

i ,R)(x; s) + F (q2,R)
I (x; s) +

K∑
i>j=1

F
(q2
ij ,R)

II (x; s) (3.35)
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nH nJ1 , . . . , nJK nS1 , . . . , nSn

U (R) L(H) L(J̃1), . . . , L(J̃K) L(S̃1), . . . , L(S̃n)

F (p2
i ,R) L(H) L(J̃1), . . . , L(J̃i) + 1, . . . , L(J̃K) L(S̃1), . . . , L(S̃n)

F (q2,R)
I L(H) + 1 L(J̃1), . . . , L(J̃K) L(S̃1), . . . , L(S̃n)

F
(q2
ij ,R)

II L(H) L(H),L(J̃1),...,L(J̃i)+1,...,L(J̃j)+1,...,L(J̃K) L(S̃1), ..., L(S̃k[i,j])−1, ..., L(S̃n)

Table 1. The number of parameters associated with each subgraph H, Ji, Sk in each of the U (R),
F (p2

i ,R), F (q2,R)
I and F (q2,R)

II terms in eq. (3.36).

These polynomials factorise as follows

U (R)(x) = UH(x[H]) ·
( K∏
i=1
UJi(x[Ji])

)
· US(x[S]) ,

F (p2
i ,R)(x; s) = UH(x[H]) · F (p2

i )
Ji

(x[Ji]; s) ·
( K∏
j 6=i
UJj (x[Jj ])

)
· US(x[S]) ,

F (q2,R)
I (x; s) = F (q2)

H∪J(x[H],x[J ]) · US(x[S]) ,

F
(q2
ij ,R)

II (x; s) = UH(x[H]) · F (q2
ij)

Ji∪Jj∪S(x[Ji],x[Jj ],x[S]) ·
∏
k 6=i,j

UJk(x[Jk]) .

(3.36)

Corollary 2.1. Let us denote the number of parameters which each monomial contains in
H, Ji and Sk as nH , nJi and nSk , respectively. These numbers are summarised in table 1:

3.3 The infrared regions in wide-angle scattering

As is discussed above, any infrared region R contributing to the MoR in the on-shell
expansion of a wide-angle graph G, may be described by figure 1 with the subgraphs
H,J1, . . . , JK , S satisfying the set of basic requirements stated in proposition 1. Our goal is
to fully characterise the possible structure of these subgraphs. To this end, we must exclude
any configuration that passes these basic requirements and yet produces a scaleless integral,
which therefore does not contribute to the MoR. In order to avoid these pathological
configurations, some extra requirements on H, J and S would be needed. We will show
that the following three requirements provide a necessary and sufficient condition for any
configuration satisfying proposition 1 to be an infrared region.

• Requirement of H: all the internal propagators of Hred, which is the reduced form
of H, are off-shell.

• Requirement of J : all the internal propagators of J̃i,red, which is the reduced form of
the contracted graph J̃i, carry exactly the momentum pµi .

• Requirement of S: every connected component of S must connect at least two different
jet subgraphs Ji and Jj.
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To understand these requirements, we recall the concept of the reduced form of a graph,
which is introduced in section 3.1. The reduced form of H is obtained by contracting each
of the nontrivial 1VI components of H to a vertex, and if two nontrivial 1VI components
γ1 and γ2 share a vertex, we add an auxiliary propagator connecting γ1 and γ2 before
contracting them. The same construction applies to any of the contracted jet graphs J̃i.
Similar to eq. (3.7), we can further derive the following relations:

N(H) = N̂(Hred) +
n∑
j=1

N(γHj ), N(J̃i) = N̂(J̃i,red) +
ni∑
j=1

N(γJ̃ij ), (3.37)

where γHj denotes the 1VI components of H and N̂(Hred) the number of edges that are in
both Hred and H (i.e. N̂(Hred) excludes the auxiliary edges that have been introduced upon
separating nontrivial 1VI components when constructing Hred). Similarly, γJ̃ij represents
the nontrivial 1VI components of J̃i, where N̂(J̃i,red) is the number of edges that are in
both J̃i,red and J̃i.

The requirement of H can be seen as a generalisation of corollary 1.2. The requirement
of J follows directly from the second Landau condition, eq. (2.48b). Namely, for example,
the jet configurations in figure 4(a) are allowed, while those in figure 4(b) and (c) instead
lead to scaleless integrals over some jet loop momenta, and are hence forbidden in any
infrared region. Finally, the requirement of S rules out the configurations where a connected
component of S is only attached to the hard subgraph and/or one of the jets. In other
words, allowed soft subgraphs must connect at least two jets. As we show in appendix C,
for any configuration satisfying proposition 1, the requirements of H,J and S above provide
a necessary and sufficient condition for the existence of a corresponding region R, such that
vR is normal to a lower facet of the Newton polytope ∆(N+1)[P(G)]. Should any of the
requirements be violated, such a configuration may correspond to a face with dimension
less than N , rather than a facet.

4 A graph-finding algorithm for regions

In the last section we classified the configurations of the hard and infrared regions, where
the latter emerge as specific solutions of the Landau equations. The subgraphs H , J and S
introduced in proposition 1, supplemented with the extra requirements in section 3.3, allow
us to identify precisely the infrared regions of the Feynman integral I(G). The purpose
of this section is to construct an algorithm which would identify all the infrared regions
of a graph G directly, without referring to the geometric MoR polytope construction. To
this end, we will translate the properties of H, J and S into a strict graph-theoretical
description of the infrared regions.

In section 4.1 we propose a set of graph-theoretical conditions for the subgraphs of G
and show that these conditions are equivalent to the extra requirements in section 3.3. In
section 4.2 we then construct a general algorithm for the regions, which ensures that the
properties in proposition 1 as well as the requirements in section 3.3 are satisfied. Finally
in section 4.3, we apply this algorithm to a variety of wide-angle massless scattering graph
examples including all graphs having up to 5 loops and 3 external legs, and verify that it
agrees with the geometric algorithm of ref. [49].
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(a) Both motic and mojetic. (b) Both motic and mojetic.

(c) Motic but not mojetic. (d) Neither motic nor mojetic.

Figure 11. Examples of motic and mojetic graphs. The pink vertex is introduced to connect all
external lines to a single point.

4.1 Graph-theoretical conditions of infrared subgraphs

A useful concept in the classification of Euclidean infrared subgraphs, due to Brown [19],
is that of a motic subgraph (or asymptotically irreducible graph by Smirnov [41]) which
can be used to define the infrared-cograph, or hard subgraph. A motic subgraph may be
defined as a subgraph whose connected components each become 1PI after connecting all the
external lines to an auxiliary vertex. In the original work by Brown [19] subgraphs only
inherit external momenta if all external momenta of the parent graph are incident on the
subgraph. Here we allow a subgraph to inherit any of the external momenta which enter
any of its vertices.

The concept of motic subgraphs is useful in at least two ways. The first is that it
facilitates the construction of a simple algorithm for finding infrared subgraphs [70]. The
second is that motic subgraphs are associated with a Hopf algebra structure [71], which
has been important in placing the R∗-operation [72], an operation which subtracts both
infrared and ultraviolet divergences from any Euclidean Feynman integral, onto a firmer
mathematical ground.

We find that a small but essential modification of the notion of motic graphs is useful
in the classification of Minkowskian infrared subgraphs, and specifically, those appearing in
the on-shell expansion. In particular, we define a graph to be mojetic if it becomes 1VI after
connecting all of its external edges to an auxiliary vertex (a mojetic graph is necessarily
motic). It turns out that mojetic is equivalent to connected, motic and scaleful (i.e. free of
scaleless subgraphs) for the case under consideration. As we will see below, the notion of
mojetic graphs is useful for the construction of a Minkowskian infrared-subgraph finder. In
figure 11 we show a few examples to illustrate the concepts of motic and mojetic graphs.

With the help of these concepts, we claim that the requirements regarding H and
J in section 3.3, are equivalent to the requirement that all the K subgraphs H ∪ J \ Ji
(i = 1, . . . ,K) are mojetic. Therefore, the following theorem characterising the infrared
regions of G may be formulated.
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Theorem 3. Any configuration of subgraphs in G compatible with proposition 1 is an
infrared region of G, if and only if the following graph-theoretical conditions for H, J and
S are satisfied:

1. For any i = 1, . . . ,K, the subgraph H ∪ J \ Ji is mojetic.

2. Every connected component of S must connect at least two jet subgraphs Ji and Jj
for some i 6= j.

Note that the second condition in the theorem above is identical to the requirement of
S stated in section 3.3. Below we will prove that the first condition is equivalent to the
requirements regarding H and J in section 3.3.

Proof. First, we show that as long as the requirements of H and J of section 3.3 are satisfied,
each of the subgraphs H ∪ J \ Ji (i = 1, . . . ,K) is mojetic. Equivalently, we show that for
any vertex v ∈ H ∪ J \ Ji, the graph (H ∪ J \ Ji) \ v is connected after we connect all its
external momenta to an auxiliary vertex.

In order to show this, we first define a certain type of vertex of the hard subgraph H:
a hard-hard vertex is a vertex that is shared by two 1VI components of H, or attached to
an external off-shell momentum qj .

From the requirement of H in section 3.3, i.e. the internal propagators of Hred are
off-shell, it follows that each 1VI component in H is one of the following types (see
figure 12b):

(1) it has two or more hard-hard vertices (and any number of jet edges attached);

(2) it has one hard-hard vertex, and it attaches to jet edges of at least two different jets;

(3) it has no hard-hard vertices, and it attaches to jet edges of at least four different jets.

This is because Hred is a tree graph, and every 1VI component of H is either an edge or a
vertex of Hred, hence for the propagators of Hred to be off-shell, momentum conservation
requires one of the configurations listed above. For example, in figure 12b γ2 and γ3 have at
least two hard-hard vertices (marked black), and γ1 and γ4 each have one hard-hard vertex,
and are attached to jet edges of two different jets (through the yellow vertices).

It then follows that upon removing all the edges from a specific jet Ji, every 1VI
component of H is one of the following types (see figure 12c):

(1) it has two or more hard-hard vertices (and any number of jet edges attached);

(2) it has one hard-hard vertex, and it attaches to at least one jet;

(3) it has no hard-hard vertices, and it attaches to jet edges of at least three different jets.

This observation implies that each 1VI component of H can be connected to two external
momenta of H ∪ J \ Ji, through some distinct paths P1 and P2, respectively, where P1 and
P2 do not share any vertices. For example, in figure 12c which depicts H ∪ J \ J1, the 1VI
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q1

l
[J1]
1 l

[J2]
3 l

[J1]
2 l

[J3]
4

(a) An example of Hred, and the
jet and external momenta at-
tached to it.

γ3

γ1

γ4

q1

l
[J1]
1 l

[J2]
3

l
[J1]
2 l

[J3]
4

γ2

(b) A possible H corresponding
to Hred and its attached jet and
external momenta.

γ4

q1

l
[J2]
3

l
[J3]
4

P1

P2

γ2

γ3

γ1

γ4

(c) H and its attached jet and
external momenta, where J1 is
removed from G.

Figure 12. An example illustrating the structure of the hard subgraph and the momenta attached
to it (discarding soft momenta), where q1 is the off-shell external momentum of G, while l[J1]

1 and l[J1]
2

are momenta of propagators belonging to the jet J1, l[J2]
3 is the momentum of a propagator of J2,

and l[J3]
4 of J3. The subgraphs γi (i=1,. . . ,4) are the 1VI components of H.

pi

Figure 13. The reduced form of any contracted jet subgraphs that satisfy the requirement on J .

component γ1 can be connected to the external momentum p2 (the external momentum of
jet J2) via P1 (the magenta path), and to q1 via P2 (the orange path), where P1 and P2 do
not share any vertices. Similar conclusions hold for other 1VI components γ2, γ3 and γ4 for
some external momenta in each case.

Moreover, from the requirement of J in section 3.3, i.e. that every internal propagator
of J̃j,red carries exactly the momentum pj , we deduce that the configuration of J̃j,red must
be described by figure 13. Since every jet attaches to H , we know that each 1VI component
of Jj can also be connected to two external momenta in H ∪ J \ Ji (with i 6= j), one of
which is pj while the other connects via a path going through the hard subgraph H . These
two paths do not share any vertex.

As a result, by removing any vertex v ∈ H ∪ J \ Ji, one may break the path P1 or
the path P2, but never both. Thus, there exists no v ∈ G, such that (H ∪ J \ Ji) \ v is
disconnected after we connect all the external momenta to an auxiliary vertex. Thus, by
definition, H ∪ J \ Ji is mojetic for any i.

Finally, we show that H ∪ J \ Ji being mojetic for any i = 1, . . . ,K implies the
requirements of H and J in section 3.3. Let us demonstrate this by contradiction, i.e.
assume that there is an edge e ∈ Hred that carries an on-shell momentum pi, and then
show that the graph H ∪ J \ Ji is not mojetic. In the case that e ∈ H, i.e. e is not an
auxiliary propagator of Hred, then e itself is a (trivial) 1VI component of H ∪ J \ Ji. After
we connect all the external momenta of H ∪ J \ Ji to an auxiliary vertex, e remains a 1VI
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component: since the momentum it carries is pi, and pi is not an external momentum of
H ∪ J \ Ji, the branch of Hred to which e belongs does not get connected to the auxiliary
vertex. It then follows that H ∪ J \ Ji is not mojetic. In the case that e /∈ H, i.e. e is
an auxiliary propagator, then there must be a nontrivial 1VI component γH ⊂ H that is
connected to e, and the total momentum flowing into (and out of) γH is exactly pi (by
the contradiction assumption). Using the same reasoning as above, one can claim that γH
remains a 1VI component of H ∪ J \ Ji, even after all the external momenta are connected
to an auxiliary vertex. Hence H ∪ J \ Ji is not mojetic. We conclude that all the edges
of Hred must carry off-shell momenta. The same reasoning allows one to prove that J̃i,red
must carry exactly the momentum pi. (The only other possibility for edges in J̃i,red would
be that they carry zero momentum, as in a dead-end structure, which is incompatible with
H ∪ J \ Ji being mojetic.)

4.2 An algorithm for regions

In this section we develop an algorithmic way to construct all the infrared regions for the
on-shell expansion of a generic wide-angle scattering graph G. Throughout the construction
and with the help of theorem 3 above, we will see that the Landau equation as well as the
three requirements in section 3.3 are all satisfied automatically.

Before doing so, we introduce the following concept that is helpful in the construction
of the jet subgraphs. Consider drawing a cut through a set of edges {ec} which disconnects
a graph G into two connected subgraphs, one of which, denoted by γ̂i, contains only a single
external momentum pi, compatible with a unitarity cut on the pi channel (see for example
refs. [73–75]). Furthermore, γ̂i must include any vertex whose removal disconnects pµi . We
define the one-external subgraph in the pi channel γi ≡ γ̂i ∪ {ec}. From this construction, it
follows that a one-external subgraph in the pi channel, γi, satisfies

(1) γi is connected;

(2) every edge of γi satisfies either

(i) both endpoints are in γi;
(ii) one endpoint is in γi while the other is in G \ γi.

Our algorithm for constructing the regions can then be described by the following steps.

• Step 1 : for each nearly on-shell external momentum pi (i = 1, . . . ,K), construct the
one-external subgraph γi in the pi channel, such that the subgraph Hi ≡ G \ γi is
mojetic.

• Step 2 : consider all possible sets {γ1, . . . , γK}. For each such set focus on each edge
e ∈ G. If e has been assigned to two or more γi, it belongs to the soft subgraph S;
if e has been assigned to exactly one γi, it belongs to the jet subgraph Ji; if e has not
been assigned to any γi, it belongs to H. We also denote J ≡ ∪Ki=1Ji.

• Step 3 : we now require that the result obtained in Step 2 satisfies the following three
further constraints: (i) each jet subgraph Ji is connected; (ii) each hard subgraph H
is connected; (iii) each of the K subgraphs H ∪ J \ Ji (i = 1, . . . ,K) is mojetic. The
region would be ruled out if any of these conditions are not satisfied.
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In the steps above, we have associated every edge e ∈ G to a specific subgraph. Let us
recall the association of vertices, v ∈ G, to these subgraphs. According to the definitions
in section 3.2, any vertex v ∈ S if and only if it connects to soft edges only; v ∈ Ji if
and only if it connects to at least one edge in Ji but no edges from H nor Jj with j 6= i;
otherwise v ∈ H. A special case of v ∈ H occurs when v is met by two different jets Ji
and Jj simultaneously.

In the following we will consider a few examples to demonstrate the workings of the
algorithm. Let us start with the one-loop triangle example G3 with one off-shell external
momentum q1 and two nearly on-shell external momenta p1 and p2:

G3 =

p1 p2

q1

(4.1)

The algorithm above can generate a single one-external subgraph in the p1 channel, which
we denote by γ1, and another one in the p2 channel denoted by γ2:

γ1 :

p1 p2

q1

γ2 :

p1 p2

q1

(4.2)

Note that γi (i = 1, 2) denotes the green subgraph that is enclosed by the cut (the dotted
curve) that contains pi, including the cut propagators. For each of these one-external
subgraphs we now check whether or not Hi ≡ G3 \ γi is mojetic. Let us explicitly check
this for G3 \ γ1,

G3 \ γ1 =

p2

q1

, [G3 \ γ1]c = . (4.3)

Here, in the second equation, we have added an auxiliary (pink) vertex connecting the edges
carrying the external momenta p1 and q1. This graph, which we denote by [G3 \ γ1]c, is
evidently 1VI, so G3 \ γ1 is mojetic. By symmetry, G3 \ γ2 is also mojetic. This concludes
Step 1 of the algorithm.
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In Step 2 we combine the subgraphs γ1 and γ2, by an overlay operation which we denote
by the symbol t. The resulting graph γ1 t γ2 is

γ1 t γ2 :

p1 p2

q1

(4.4)

The edge connecting p1 and q1 belongs only to γ1, and hence is part of J1. Similarly, the
edge connecting p2 and q1 is part of J2. The edge connecting p1 and p2 belongs to both γ1
and γ2, and hence is part of S. Note that we have used different shades of green to denote
different jets, and a red dashed line to denote the soft edge, while the hard subgraph is
drawn in blue. We will keep using the same colour scheme for all examples.

Step 3 then demands that we check that the resulting graph γ1 t γ2 satisfies three
properties. The first two properties about the connectivity of each Ji and H are clearly
satisfied. The third property requires for all H∪J \Ji to be mojetic, which in this particular
example coincides with the check in eq. (4.3).

We note that the unitarity cuts that construct the one-external subgraphs can be
“crossed”,9 i.e. there can be vertices v ∈ γi ∩ γj for i 6= j. Indeed, such crossed untarity cuts
are necessary to generate soft vertices. A three-loop example is given by:

γ1 :

p1 p2

q1

γ2 :

p1 p2

q1

⇒ γ1 t γ2 :

p1 p2

q1

(4.5)

We now show an example of a candidate region that is incompatible with the mojetic
criterion in Step 1. Consider the following graph with external momenta p1, p2 and q1:

γ2 :

p1 q1

p2

[G \ γ2]c = (4.6)

9It is interesting to note that in the context of computing iterated discontinuities, crossed cuts of this
type are excluded, see ref. [75].
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The subgraph G \ γ2, which is the complement of the jet subgraph γ2 above is not mojetic,
since [G \ γ2]c is not 1VI. (Note that here J1 corresponds to a trivial jet, containing only
the external massless momentum p1.) Therefore this choice of γ2 is ruled out in Step 1.

Above we have introduced an algorithm to construct the regions that appear in the
on-shell expansion of a given wide-angle scattering graph G, and explained it using some
low-order examples. We now show that this algorithm constructs exactly those regions
satisfying the two conditions in theorem 3, i.e. H ∪ J \ Ji is mojetic for every i, and every
connected component of S is attached to at least two different jets.

Let us begin by showing that any given region obtained from the algorithm above
satisfies these two conditions. First, in Step 3 we have discarded all the unqualified regions
that violate the property that H ∪ J \ Ji are mojetic. Second, since all the soft edges are
obtained from the intersection of different jet edges, and each jet is internally connected
(from Step 3), it follows that any connected component of S necessarily connects at least
two different jets. So both conditions in theorem 3 are automatically satisfied.

We now show that any region R satisfying proposition 1 and the conditions of theorem 3
can be obtained from a suitable choice of {γ(R)

i } for i = 1, . . . ,K, each of which is a one-
external subgraph in the pi channel. To construct these γ(R)

i , we first denote by Si the union
of the connected components of the soft subgraph S that are attached to Ji. The vertices
of G are then automatically partitioned into the following two types: those within Ji ∪ Si
and those within G \ (Ji ∪ Si). It follows that Si ∪ Ji has the following properties: (1) any
(internal) edge e in Si ∪ Ji connects to at least one vertex within Ji ∪ Si; (2) it has a single
external momentum pi. These properties imply that Si ∪ Ji is a one-external subgraph in
the pi channel, and we define γ(R)

i ≡ Si ∪ Ji. Since S = ∪iSi and S ∪ J = ∪i(Ji ∪ Si), it
follows that any region R can be obtained from a set of γi. This completes the proof that
the algorithm reproduces all possible regions satisfying the conditions in theorem 3.

4.3 More examples and implementation

As another example, we show below how to find the regions for the following 3 × 2
fishnet graph.

G3×2 =

4

1

3

2

(4.7)

We first consider the condition that the momenta at the diagonal positions 1 and 3
are nearly on-shell (in different directions), and those at 2 and 4 are off-shell, i.e. using the
conventions above, the external momenta of G3×2 are p1, p3, q2 and q4. Using the algorithm
of section 4.2, one possible choice for the one-external subgraphs γ1 and γ3 is highlighted
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with thinner green lines in the following:

γ1 :

q4

p1

p3

q2

, γ3 :

q4

p1

p3

q2

(4.8)

The graphs γ1 and γ3 do not overlap so there are no soft propagators when we combine
(overlay) them:

γ1 t γ3 :

q4

p1

p3

q2

(4.9)

One can readily check that the hard subgraph (thick-blue edges and vertices) fulfills all the
required criteria in Step 3 of the algorithm and thus contributes a valid region.

The following example illustrates an invalid choice of γ3.

γ′3 :

q4

p1

p3

q2

(4.10)

The reason is that γ′3 does not correspond to a one-external subgraph in the p3 channel,
since there is no unitarity cut that would be consistent with γ′3.

Furthermore, any choices with overlapping edges between γ1 and γ3 (γ1∩γ3 6= ∅) cannot
be candidates for regions in this case, because that would imply that the subgraph J ∪ S
separates the two off-shell momenta q2 and q4, creating two disconnected hard components,
which do not qualify as a hard subgraph H.

We then consider another kinematic configuration, where p1 and p2 are nearly on-shell
while q3 and q4 are off-shell. One choice for γ1 and γ2 is:

γ1 :

q4

p1

q3

p2

γ2 :

q4

p1

q3

p2

(4.11)
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In this case we do have a nontrivial overlap between γ1 and γ2, namely, γ1 ∩ γ2 6= ∅. Hence
overlaying the two we obtain the following graph, which also includes soft lines (the red
dashed lines):

γ1 t γ2 :

q4

p1

q3

p2

(4.12)

One may verify H ∪ J1 and H ∪ J2 are both mojetic.
Finally, we consider the kinematic configuration where all the external momenta are

on-shell. In particular let us choose of the following four one-external subgraphs γ1, γ2, γ3
and γ4.

γ1 :

p4

p1

p3

p2

γ2 :

p4

p1

p3

p2

γ3 :

p4

p1

p3

p2

γ4 :

p4

p1

p3

p2
(4.13)

By overlaying all four we obtain

γ1 t γ2 t γ3 t γ4 :

p4

p1

p3

p2

(4.14)

where the soft subgraph consists of four disconnected components. Note that each of the
H ∪ J \ Ji is mojetic.

We have implemented the new graph-finding algorithm of section 4.2 in Maple [76] and
checked that the result of the program agrees with the output of pySecDec [49] in a scalar
theory containing three- and four-point interactions. The library can be obtained from the
public Git repository [77]. It includes a short tutorial explaining how to run the code and
requires Maple 15 or later to run.
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Figure 14. All the regions required for the expansion of this four-point integral around the limit
where the three green external legs become on-shell. As before, blue denotes the hard subgraph,
three shades of green represent the three jets, while red represents the soft subgraph.

In particular, we verified that the two algorithms agree for all possible three-point
graphs up to five loops and four-point graphs up to four loops, where, in both cases, we
expanded around different on-shell limits, including the case of any n − 1 — as well as
all n — external momenta becoming on-shell. For the case of n− 1 external momenta we
also checked all five-point graphs with up to three loops. For a particular three-loop graph
with one off-shell momentum and three on-shell ones we display the complete list of regions
in figure 14, as obtained both with the Maple implementation of our new algorithm and
with pySecDec.

In terms of performance we find that the graph-finding algorithm implemented in
Maple is considerably faster than pySecDec, especially for more complicated problems at
five loops and beyond. This is despite the Maple program not being highly optimised. Of
course, the pySecDec program is far more general in the sense that it can deal with a large
set of region expansions, while the Maple implementation has been developed specifically
for the on-shell expansion in wide-angle scattering. The graph-finding algorithm does not
refer to any particular representation of the integral and can thus be used in momentum
and/or parameter space. Another advantage of having a graph-finding algorithm is that it
can simplify the development of the region expansion for Feynman integrals in a general
quantum field theory, without first reducing them to scalar integrals.

5 Analytic structure and commutativity of multiple on-shell expansions

In this section we discuss the commutativity of multiple on-shell expansions, and its
connection with the analytic properties of wide-angle scattering graphs. This can be viewed
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as another application of the results in section 3. To motivate this analysis we start with
an analytic expression for the three-mass triangle,

G3 =

p1 p2

q1

, (5.1)

which is originally derived in refs. [78, 79]. The explicit expression for the corresponding
integral, whose integrand we defined in eq. (2.23), can be written as:

I(G3) = I(H)(G3) + I(C1)(G3) + I(C2)(G3) + I(S)(G3) (5.2)

with

I(H)(G3) = c3 F4

(
1, 1 + ε, 1 + ε, 1 + ε; p

2
1
q2

1
,
p2

2
q2

1

)
; (5.3a)

I(C1)(G3) = −c3

(
p2

1
q2

1

)−ε
F4

(
1, 1− ε, 1− ε, 1 + ε; p

2
1
q2

1
,
p2

2
q2

1

)
; (5.3b)

I(C2)(G3) = −c3

(
p2

2
q2

1

)−ε
F4

(
1, 1− ε, 1 + ε, 1− ε; p

2
1
q2

1
,
p2

2
q2

1

)
; (5.3c)

I(S)(G3) = c3cs

(
p2

1p
2
2

(q2
1)2

)−ε
F4

(
1− 2ε, 1− ε, 1− ε, 1− ε; p

2
1
q2

1
,
p2

2
q2

1

)
, (5.3d)

where
c3 = −(−q2

1)−1−εΓ2(1− ε)Γ(1 + ε)
ε2Γ(1− 2ε) , cs = Γ(1 + ε)Γ(1− 2ε)

Γ(1− ε) , (5.4)

and F4 is one of Appell’s hypergeometric functions. Its series representation around the
point x = 0 = y, which is valid as long as

√
x+√y 6 1, is given by

F4(α, β, γ, γ′;x, y) =
∞∑

m,n=0

(α)(m+n)(β)(m+n)

(γ)(m)(γ′)(n)
xm

m!
yn

n! , (5.5)

with the rising factorial defined as (z)(n) = Γ(z + n)/Γ(z). For the on-shell expansion

|p2
1/q

2
1| ∼ |p2

2/q
2
1| ∼ λ� 1, (5.6)

eqs. (5.3a)–(5.3d), as suggested by their notations, can be identified with the hard, collinear-
to-p1, collinear-to-p2 and soft regions, respectively.

Eqs. (5.2)–(5.5) make manifest the analytic behaviour associated with the contribution
of each region around the limit p2

i /q
2
1 → 0. Specifically, in each region, the non-analytic

behaviour is associated with a particular power of (p2
i /q

2
1)ε, which multiplies a function

with a regular Taylor expansion in powers of p2
i /q

2
1, having a finite radius of convergence.
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The latter is therefore an analytic function of both p2
1/q

2
1 and p2

2/q
2
1 in the vicinity of the

origin. Note that the characteristic power of the expansion parameter associated with each
region can be seen directly from the scaling of the integrand, as summarised in eq. (2.29).
The scaling with λ is associated to scaling with p2

1/q
2
1, or with p2

2/q
2
1, or with both, in line

with eq. (5.6).
We further observe that the above analytic structure implies that expansions of I(G3)

in p2
1/q

2
1 and p2

2/q
2
1 commute. In fact, we will show that the above properties — that the non-

analytic p2
i -dependence can be factorised in each region, and the remaining function of p2

i has
a regular multivariate Taylor expansion near the origin, leading to a commuting expansion
in different p2

i — hold for the on-shell expansion of a broad range of graphs, including
any Sudakov form factor and any planar graph of wide-angle scattering. Meanwhile,
commutativity may break down for nonplanar graphs having three or more external legs
taken on shell, for regions which contain nontrivial soft subgraphs with at least one soft
vertex. An example is provided by the graph in figure 8 with all three p2

i simultaneously
taken to the on-shell limit. Integrals arising in these soft regions may involve dependence
on composite variables such as10

X({zij}) = 4z12z23z13
(z12 + z23 + z13)3 with zij = 2pi · pj

p2
i p

2
j

. (5.7)

Given the homogeneity of this function, a simultaneous expansion in all three p2
i preserves

it, X({zij}) ∼ λ0, while a further expansion in, say p2
1 ∼ p2

3 (assuming they are both taken
to be smaller than p2

2) would necessarily introduce negative powers of p2
2, and hence does

not commute with the expansion where p2
2 is taken to zero first.

In what follows we will study the analytic structure of a specific kind of region, which
we call jet-pairing soft regions, where every connected component of the soft subgraph only
interacts with two jets. For such regions we can explicitly describe the factorisation of
non-analytic dependence on p2

i , and show that it leaves behind a function with a regular
Taylor expansion. We formulate and prove this result in section 5.1. On this basis we prove
the commutativity of multiple on-shell expansions in certain cases in section 5.2.

5.1 The analytic structure of jet-pairing soft regions

In this section we focus on on-shell expansions in wide-angle scattering for a specific kind
of region, one in which every connected component of the corresponding soft subgraph
connects to exactly two jets. We call them the jet-pairing soft regions. Note that regions
with no soft propagators also belong to this class. The key result of this subsection is
summarised in the following theorem.

Theorem 4. If R is a jet-pairing soft region that appears in the on-shell expansion of a
wide-angle scattering graph G, then the all-order expansion of I(G) in this region can be
written as follows:

T (R)
t I(s) =

( ∏
p2
i∈t

(p2
i )ρR,i(ε)

)
·

∑
k1,...,k|t|>0

( ∏
p2
i∈t

(−p2
i )ki

)
· I(R)
{k} (s \ t) , (5.8)

10In the graph of figure 8 such dependence appears in the SS region of eq. (3.12).
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where ρR,i(ε) is a linear function of ε, ki are non-negative integer powers and I(R)
{k} (s \ t) is

a function of the off-shell kinematics, independent of any p2
i ∈ t.

The essence of this theorem is that the non-analytic dependence on the virtualities p2
i

involves only powers of (−p2
i )ε, and it factorises from the rest of the integral, which admits

a regular multivariate Taylor expansion in p2
i .

Proof of theorem 4. We first focus on the leading contribution of T (R)
t I(G), according to

the definitions in section 2.1. Namely,

T (R)
t,0 I(G) =

∫
[dx]

∏
e∈G

xνee ·
(
P(R)

0 (x; s)
)−D/2

, (5.9)

with

P(R)
0 (x; s) = U (R)(x) +

K∑
i=1
F (p2

i ,R)(x; s) + F (q2,R)
I (x; s) +

K∑
i>j=1

F
(q2
ij ,R)

II (x; s), (5.10)

where the terms on the right-hand side factorise according to eq. (3.36).
In the case that R is a jet-pairing soft region, every connected component of the soft

subgraph S is attached to exactly two jets by definition. In other words, every parameter
corresponding to a soft edge is associated to an (i, j) pair, with i > j = 1, . . . ,K labelling
the jets. We denote these parameters by x[Sij ]. We then rescale the integration variables as
follows:

x′[H]≡x[H], x′[Ji]≡ −p
2
i

−Q2x
[Ji] (i= 1, . . . ,K), x′[Sij ]≡

(−p2
i )(−p2

j )
(−Q2)2 x[Sij ], (5.11)

where |Q2| � |p2
i | can be any large kinematic scale, Q2 ∈ s \ t. One can check that,

according to corollary 2.1, under this specific rescaling, each monomial of P(R)
0 (x; s) has

the same factor of ∏K
i=1(−p2

i /−Q2)−κR,i , where κR,i are non-negative integers. Specifically,

P(R)
0 (x; s) = P(R)

0 (x′; s \ t) ·
K∏
i=1

( −p2
i

−Q2

)−L(J̃i)−
∑

j 6=i L(S̃ij)
, (5.12)

where the polynomial P(R)
0 (x′; s\ t) is defined by factoring out of P(R)

0 (x; s) the dependence
on p2

i after the rescaling, hence obtaining a polynomial that only depends on the kinematic
variables in s\t. Under the same rescaling of the integration variables in eq. (5.9), T (R)

t,0 I(G)
can be rewritten as

T (R)
t,0 I(G) = (−Q2)ρR,0

K∏
i=1

(−p2
i )ρR,i

∫
[dx′]

∏
e∈G

(x′e)νe
(
P(R)

0 (x′; s \ t)
)−D/2

, (5.13)

where

ρR,i ≡
(
L(J̃i) +

∑
j 6=i

L(S̃ij)
)
D/2−

∑
e∈Ji

νe −
∑
j 6=i

∑
e∈Sij

νe , (5.14a)

ρR,0 ≡
∑
e∈J

νe + 2
∑
e∈S

νe . (5.14b)
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Note that the integral of eq. (5.13) does not depend on the kinematic variables in t, which
indicates that we have verified theorem 4 at the leading order. We now include all the other
(higher-order) terms of T (R)

t I, i.e.

T (R)
t I(G) =

∞∑
n=0

∫
[dx]Tλ,n

(
λ−pR(ε)I(λuRx;λws)

)∣∣∣∣
λ=1

(5.15)

=
∞∑
n=0

∫
[dx]

( ∏
e∈G

xνee

)
Tλ,n

[
λ−pR(ε)(P(λuRx;λws)

)−D/2]∣∣∣∣∣
λ=1

Defining
∆P(R)(x; s) ≡ P(x; s)− P(R)

0 (x; s) (5.16)

to capture the non-leading terms of P(x; s) in the region R, we may write (5.15) as follows

T (R)
t I(G) =

∞∑
n=0

∫
[dx]

( ∏
e∈G

xνee

)
Tλ,n

λ−pR(ε)(P(R)
0 (λuRx;λws)

)−D/2

(
1 + ∆P(R)(λvRx;λws)

P(R)
0 (λvRx;λws)

)−D/2
∣∣∣∣∣∣
λ=1

. (5.17)

Eq. (5.17) is equivalent to the Taylor expansion

T (R)
t I(G) =

∞∑
n=0

(−D/2)n
n!

∫
[dx]

( ∏
e∈G

xνee

)(
P(R)

0 (x; s)
)−D/2

(
∆P(R)(x; s)
P(R)

0 (x; s)

)n
, (5.18)

where ()n denotes the falling factorial. For each fixed n, (∆P(R)(x; s))n is a polynomial
of x, so by expanding (∆P(R)(x; s))n, one can view (5.18) as a sum over integrals of the
following form:

T (R)
t I(G) =

∞∑
n=0

∑
l

Cn,l
∫

[dx]
( ∏
e∈G

xνee

)(
P(R)

0 (x; s)
)−D/2 · spn,lxqn,l(

P(R)
0 (x; s)

)n , (5.19)

where l enumerates the different terms, while Cn,l denote multinomial coefficients. spn,lxqn,l
is the product of n monomials from ∆P(R)(x; s) and the powers pn,l and qn,l are vectors of
non-negative integers. From the definition of ∆P(R) it follows that the n-th order term in
eq. (5.19) is suppressed by n powers of the expansion parameter. We note that eq. (5.19) is
completely general, and in particular it is valid for any region.

In the case of jet-pairing soft regions we can use the rescaling of x as in eq. (5.11) to
make this suppression manifest in terms of powers of p2

i /Q
2, namely,

T (R)
t I(G) = (−Q2)ρR,0

K∏
i=1

(−p2
i )ρR,i

∞∑
n=0

∑
l

Cn,l
∫

[dx′]
( ∏
e∈G

x′e
νe
) (
P(R)

0 (x′; s \ t)
)−D/2

· (s \ t)p
′
n,lx′qn,l(

P(R)
0 (x′; s \ t)

)n · K∏
i=1

(
−p2

i

−Q2

)ki(n,l)
. (5.20)
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Aside from the sum over n and l, the first line of eq. (5.20) is identical to eq. (5.13), while
the second line contains subleading powers, which emerge from the last factor in eq. (5.19).
Note that all the powers ki(n, l) are non-negative integers, such that ∑K

i=1 ki(n, l) = n. The
powers p′n,l are vectors of non-negative integers, which characterise the dependence on the
off-shell external kinematic variables s \ t. We note that the non-analytic dependence on p2

i

factors out of the sum over n and l, and the remaining part is a regular Taylor expansion in
all p2

i ∈ t. This is exactly the statement of eq. (5.8). Hence we have proved theorem 4.

Theorem 4 can be used to investigate the commutativity of multiple on-shell expansions.
We study this in the next subsection.

5.2 Commutativity of multiple on-shell expansions

Given a graph G, we say that two region expansions, associated to sets of kinematic
invariants t1 and t2 respectively, commute at the n-th order if and only if

Tt1∪t2,nI(G) =
∑

n1+n2=n
Tt1,n1Tt2,n2I(G) =

∑
n1+n2=n

Tt2,n1Tt1,n2I(G) , (5.21)

where the expansion operators T are defined as in section 2.1, where in each case Tt
represents an expansion in the limit in which all elements of t are simultaneously taken
small, of order λ, while all other scales, s \ t, are kept fixed. Eq. (5.21) means that we can
either first expand in t1 and then in t2 or vice versa or just immediately do the expansion
in set t1 ∪ t2; all these three expansions should agree for the n-th order term.

Let us consider the special case where t1 = {p2
1} and t2 = {p2

2}. In this case we can
identify their series expansions in λ with expansions in p2

1 and p2
2, respectively:

Tti,nI =
∑

R∈R(I,ti)
T (R)
ti,n
I for i = 1, 2 . (5.22)

Considering now a general term in the double expansion in p2
1 and p2

2, we thus obtain

Tt1,n1Tt2,n2I =
∑

R2∈R2

∑
R1∈R1(R2)

T (R1)
t1,n1 T

(R2)
t2,n2 I , (5.23)

where R2 = R(I, t2) is the set of regions of I expanding in t2, and R1(R2) = R(T (R2)
t2,n2 I, t1)

is the set of regions of T (R2)
t2,n2 I expanding in t1.

Naturally, we can associate this double sum in p2
1 and p2

2 to the limit |p2
1| � |p2

2| � |Q2|,
since we first expanded in p2

2 assuming |p2
2| � |Q2| (where Q2 is some hard scale) and

then assumed |p2
1| � |p2

2| in the second expansion. In other words, this is the limit where
the double expansion is expected to converge well. Were we to consider the other order,
Tt2,n2Tt1,n1I, we would get a similar double sum in p2

1 and p2
2 that would naively converge

only for |p2
2| � |p2

1| � |Q2|. Only if the two expansions commute would Tt1,n1Tt2,n2I and
Tt2,n2Tt1,n1I be identical for any given n1 and n2. Therefore, eq. (5.21) is a nontrivial identity.

We point out that if all the regions of a graph G are jet-pairing soft, then from theorem 4,
the entire region expansion can be written as

TtI(s) =
∑

R∈R(I,t)

∑
k1,...,k|t|>0

∏
p2
i∈t

(p2
i )ρR,i(ε)+ki · I

(R)
{k} (s \ t) . (5.24)
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H
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J1 J2

p1 p2

q1

(a) Sudakov form factor.

H

S1

S2SK

J1 J2

J3JK

p1 p2

p3pK

q1 . . . qL

(b) planar wide-angle scattering.

Figure 15. Examples of graphs whose regions are all jet-pairing soft: (a) Sudakov form factor, (b)
planar wide-angle scattering. Note that in (b), every soft component connects exactly two jets.

Eq. (5.24) implies that TtI(s) can be written as a sum over terms, where in each of them,
the non-analytic dependence on p2

i → 0, which is characteristic of the region, factors out of
the expansion. Eq. (5.3) provides a simple example of this, which is hence also an example
of the commutativity of expansions (in p2

1 and p2
2). Namely, Tt2,n2Tt1,n1I = Tt1,n1Tt2,n2I

for any given n1 and n2, because the non-analytic behaviour near p2
i → 0 is associated

exclusively with powers of (p2
i /q

2
1)ε in each term of eq. (5.2).

We conclude that, in general, all graphs for which all regions are jet-pairing soft, satisfy
eq. (5.24), and hence the commutativity relation (5.21). A wide range of graphs satisfy
this criterion. For example, since all Sudakov form factor graphs contain at most two jets
(see figure 15a) they are automatically jet-pairing soft. Additionally, any planar wide-angle
scattering graph (figure 15b) is jet-pairing soft since the addition of a soft component that
interacts with three or more jets would make the graph nonplanar. Indeed, in both these
cases, every connected component of the soft subgraph interacts with exactly two jets, hence
all the regions must be jet-pairing soft.

Note that these commutativity relations also provide us with a simple means to check
when eq. (5.24) does not hold. For instance, the nonplanar two-loop graph shown in figure 8
contains a soft region whose connected component connects 3 jets. We will discuss this
example in more details in the following subsection.

5.3 Non-commuting example

As discussed above, multiple on-shell expansions commute for large classes of graphs, hence
non-commuting examples are by nature nontrivial. The first such example appears as a
nonplanar two-loop graph with four external legs in an on-shell expansions of at least three
external legs. We already met such a graph in figure 8 where the regions in the on-shell
expansion in the set t123 = {p2

1, p
2
2, p

2
3} were investigated. Our expectation is that the

expansion in t123 would not lead to a factorising dependence on the p2
i but that there would

remain nontrivial dependence on scaleless ratios of the form p2
i /p

2
j , such that subsequent
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expansions in subsets of t123 would lead to further simpler regions. A special feature of this
particular example is that the leading term in the expansion in t123 is of order λ−1, i.e. it is
super-leading. The region expansion at this order is given by a single (double-soft) region,
whose corresponding region vector is vSS = (−1,−1,−1,−2,−2,−2; 1) with the labeling
corresponding to that in figure 8. The soft subgraph of this double-soft region connects to
all three jets, and SS is therefore not a jet-pairing soft region. Its properties are thus not
dictated by theorem 4.

The leading Lee-Pomeransky polynomial in this region was already provided in eq. (3.13).
We rewrite it here in a slightly more compact form, after simplifying its kinematic dependence
by rescaling xi → xi/(−p2

i ) for i = 1, 2, 3,

P(SS)
0 (x; s) = (x4x5 + x4x6 + x5x6)(1 + x1 + x2 + x3) (5.25)

+ z12x1x2x6 + z23x2x3x4 + z13x1x3x5,

which depends only on the kinematic variables

zij = (−sij)
(−p2

i )(−p2
j )
. (5.26)

The corresponding Feynman integral I(SS)
0 (G4np) can be shown to depend, nontrivially, only

on two ratios of the zij variables as one of them can be scaled out (this can be seen by
dimensional analysis). The integral can thus be expressed in the form

I(SS)
0 (G4np) = z−1+2ε

12
p2

1p
2
2p

2
3
Ī(SS)

0 (t13, t23) , (5.27)

where the dimensionless ratios t13 and t23 are given by

t13 = z13
z12

= (−s13)(−p2
2)

(−s12)(−p2
3) , t23 = z23

z12
= (−s23)(−p2

1)
(−s12)(−p2

3) , (5.28)

and Ī(SS)
0 admits the following integral representation:

Ī(SS)
0 (t13, t23;ε) = Γ(1+2ε)

∫ ∞
0

d4x
(x1+x2+x1x2)−1−2ε(x3+x4+x3x4)−1−ε

1+t13x1x3+t23x2x4
, (5.29)

with d4x ≡ dx1 dx2 dx3 dx4.
Note that the two ratios in eq. (5.28) have no overall scaling in the corresponding region

expansion parameter λ ∼ p2
i . Direct integration in terms of generalised polylogarithms (e.g.

using HyperInt [80]) is obstructed by a square root of a cubic polynomial, which contains
dependence on the variable of eq. (5.7) above, namely,

X = 4t13t23
(1 + t13 + t23)3 . (5.30)

One can thus expect that this integral falls into the class of elliptic multiple polylogarithms,
which has been studied extensively in recent years, see for instance [81–86] and [87] for a
recent review and references therein. Here we shall not pursue such analytic integration,
but rather investigate the region expansion numerically.
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s12 = −7, s13 = −3, Q2 = −1

Figure 16. The solid (black) curve corresponds to the right-hand side of eq. (5.32) while the
dotted (red) curve corresponds to the left-hand side. The dashed (orange) curve includes also the
next-to-leading power (x1) term, which is not considered in eq. (5.32).

To demonstrate that the dependence on tij in Ī(SS)
0 (t13, t23; ε) does indeed feature

non-commuting expansions, we studied the subsequent on-shell expansion in t1 = {p2
1}.

The program pySecDec reveals three further regions:

vH = (0, 0, 0, 0, 0, 0; 1);
vC1 = (−1, 0, 0,−1,−1,−1; 1);

vC1C1 = (−1, 0, 0,−1, 0, 0; 1),
(5.31)

which are all present within the double soft region of t123. Summing up these three regions
we then demonstrate numerically that

Tt1,0Tt123,0 I(G4np) 6= Tt123,0 I(G4np) . (5.32)

This may be contrasted with the properties of multiple expansions for jet-pairing soft
regions, taking the form of eq. (5.20), where a simultaneous on-shell expansion in some
{p2
i } is regular in each of the p2

i , so a further expansion in any of them does not have any
effect whatsoever. This is very different in the case considered here, where a subsequent
expansion in p2

1 yields new regions, eq. (5.31).
The numerical results are plotted in figure 16, which shows that the difference between

the two sides of eq. (5.32) grows with increasing x = p2
1/p

2
2. While the left-hand side of

eq. (5.32) is only expected to provide a good approximation at small x, we observe that the
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difference remains only of the order of a few percent even at x = 1. The figure also shows
that the next-to-leading power term in the x-expansion yields an improved convergence,
giving further evidence that both the numerical integration and convergence of the series
are reliable. We have thus obtained direct evidence that the respective region expansions
do not commute for this integral, according to the definition in eq. (5.21).

We thus see that the simplest example that departs from the conditions of Theorem 4
already displays a non-commutative behaviour, which suggests that the theorem may well
be in its strongest possible form. From an analytic perspective, it is interesting to note that
the simplest non-commuting case already falls into the class of elliptic polylogarithms. It is
intriguing that there seems to be a rapidly converging series approximation for this elliptic
integral whose radius of convergence is surprisingly large. We will leave further exploration
of these questions to future work.

6 Conclusions and outlook

In this paper, we have studied the application of the MoR to the expansion of wide-angle
scattering Feynman integrals about the on-shell limit of any subset of their external momenta.
For these integrals, we provide a complete picture of the regions that arise to any order
in the power expansion, which we have described in both momentum space and in the
Lee-Pomeransky parameter space.

We began our analysis using the geometric approach to the MoR, where each region
contributing to the expansion is identified as a facet of the Newton polytope in the Lee-
Pomeransky parameter space. The regions consist of a hard region, where the on-shell limit
is applied at the integrand level, and infrared regions, which are each characterised by a
particular rescaling of the Lee-Pomeransky parameters. Each rescaling can be associated
with a region vector, which is perpendicular to a given facet of the Newton polytope. The
integrals considered here do not all feature a Euclidean region, and therefore it is not obvious
at the outset that all regions in the MoR are associated with facets. We nevertheless believe
this to be the case for the on-shell expansion of any wide-angle scattering graph.

A key observation is that the aforementioned infrared regions stand in one-to-one
correspondence with particular solutions of the Landau equations, which characterise infrared
singularities of the given integral. We described the neighbourhood of the singularities in
both momentum space and parameter space and formulated this relation in terms of a
suitably-deformed version of the Landau equations. In momentum space, each infrared-
sensitive region is identified by a particular partitioning of the graph into hard, jet, and
soft subgraphs, as shown in figure 1. Thus, in a given region, every propagator in the
graph carries a characteristic momentum scaling (hard, jet, or soft) according to eq. (2.43).
This immediately restricts the form of the region vectors that arise in parameter space.
Specifically, in the Lee-Pomeransky space, entries of the region vectors are 0, −1, and −2
for propagators that are hard, jet-like, or soft, respectively. It is known that the second
Landau equation restricts the form of potential infrared-sensitive momentum configurations,
according to the Coleman-Norton analysis [66]. We investigated how this further constrains
the possible region vectors, by imposing certain restrictions on the hard and jet subgraphs.
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The Landau-equation-based analysis of section 2.3 culminated in proposition 1 which
identifies the infrared regions at the Feynman graph level.

In section 3, we identified the complete set of requirements for a configuration of
momentum scalings (satisfying proposition 1) to correspond to a region, i.e. to be a facet of
the Newton polytope. The key issue is that certain configurations of momentum scalings
end up yielding scaleless integrals, which vanish in dimensional regularisation. From the
geometric MoR perspective such integrals correspond to lower-dimensional faces, rather
than to facets of the Newton polytope, and hence do not contribute. In order to fully
characterise the facets contributing to the MoR in terms of the subgraphs (H , J and S), we
classified in theorem 2 all possible terms which can be part of the leading Lee-Pomeransky
polynomial P(R)

0 (x; s). We showed that these fall into four classes, each admitting particular
factorisation properties given in eq. (3.36). Using this classification, we formulated, in
section 3.3, the precise requirements under which the subgraphs H , J and S of proposition 1
qualify as a region.

In section 4 we translated these requirements into a purely graph-theoretical language,
given in theorem 3. On this basis, we constructed a graph-finding algorithm to obtain all
the regions appearing in the on-shell expansion of generic wide-angle scattering graphs.
This algorithm is entirely graph-theoretical and as such it does not directly involve any
particular representation of the integrand. We verified that this algorithm generates
precisely the set of regions that are expected based on the Newton polytope construction of
ref. [49]. The algorithm has been implemented in Maple and can be obtained from a public
Git repository [77].

Finally, we studied the analytic structure of the on-shell expansions for a specific
class of regions, which we call jet-pairing soft regions. In such regions, any connected
component of the soft subgraph couples to precisely two jets, and thus it follows (theorem 4)
that the non-analytic behaviour in the on-shell limit factors out and involves exclusively
powers of (p2

i )ε, while the remaining expansion is regular in all p2
i . This further implies the

commutativity of multiple on-shell expansions in graphs where all the regions are jet-pairing
soft. Such graphs include any Sudakov form factors and any planar wide-angle scattering
processes. Conversely, the non-commutativity of multiple on-shell expansions requires
nonplanar graphs with at least three external momenta that are taken on-shell, and may
arise only from regions with a nontrivial soft subgraph containing at least one soft vertex.

We emphasise that the geometric MoR is only expected to capture all the regions in cases
where there exists an analytic continuation from a Euclidean domain, where all invariants
have the same sign, and thus infrared singularities due to cancellations between terms in
the Lee-Pomeransky polynomial are immediately excluded. In this case, all singularities
correspond to endpoint singularities in parameter space. While wide-angle scattering
of massless particles, as analysed here, does not always satisfy this strict requirement
(e.g. 2 → 2 massless scattering, where momentum conservation precludes Mandelstam
invariants with equal signs), we nevertheless expect that no new regions appear due to
the aforementioned cancellations, and all the singularities are captured by the facets we
have constructed. We have not provided a proof of this, but we fully expect that all
regions, whether described by facets or not, should be related to some solutions of the
Landau equations.
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Our work may be related to ref. [63], which constructs a forest-based infrared subtraction
method (at the integrand level) for wide-angle scattering amplitudes [88, 89]. In this context,
it is useful to recall that Smirnov [17] has proven that the MoR remainder — the difference
between an original Euclidean Feynman integral and the truncated n-th order MoR expansion
around some small mass (momentum) — can be identified with the ultraviolet- (infrared-
)subtracted result, according to a variant of Zimmermann’s forest formula. If a similar
relation can be constructed between the on-shell expansion studied in this paper and the
infrared forest formula, one may rigorously establish the completeness of the set of regions,
and furthermore, derive a proof of convergence of the MoR expansion.

In this paper we focused exclusively on scalar Feynman integrals in the on-shell
expansion. A natural application of this work is the study of the singularities of Feynman
graphs and complete amplitudes in gauge theory. In particular, considering the leading
power of the on-shell expansion for an ultraviolet-finite wide-angle scattering integral,
we have

I(s) ' I(H)(s \ t) +
∑
R∈IR

I(R)(s) , (6.1)

where the sum in the second term goes over all infrared regions, while the hard region
contribution at leading power, I(H)(s \ t), is the integral with all p2

i ∈ t set strictly on shell.
The latter is of course infrared divergent, and one may wish to explore its singularities,
which appear as poles in the dimensional regularisation parameter ε. Since the off-shell
integral I(s) on left hand side of (6.1) is finite, one finds that the singularities may be
expressed as

I(H)(s \ t) = −
∑
R∈IR

I(R)(s) +O(ε0) , (6.2)

where in each infrared region R, the off-shell parameters p2
i ∈ t act as infrared regulators.

The logarithmic dependence on these parameters cancels between the infrared regions.
These region integrals do of course have ultraviolet divergences in ε (which were not present
in I(s)), making eq. (6.2) consistent up to finite O(ε0) terms. This decomposition of the
integral, along with the detailed characterisation of the regions provided in this paper,
may be useful for a range of applications, including the program of constructing bases
of quasi-finite integrals [90, 91], studying infrared singularities in wide-angle scattering
amplitudes [36–39] and in the context of infrared subtraction in cross sections.

This work may also help with the study of factorisation and its violation, in particular
within Soft-Collinear Effective Theory (SCET) [7, 8, 92–95], for which the MoR is the
foundation. Processes involving QCD jets can usually be described by so-called SCETI [7],
where the fields are of either collinear or ultrasoft. These correspond precisely to the jet
and soft momentum scalings of eq. (2.43) above. Our findings regarding the requirements
the subgraphs H, Ji and S must admit are valid to all orders in the power expansion, and
can therefore feed directly into the analysis of wide-angle scattering using SCET.

The extension of this work beyond the on-shell expansion and beyond the context of
wide-angle scattering would be very interesting. Different kinematics, involving propagator
masses, or forward limits, as well as different expansions, such as threshold or mass
expansions, may give rise to different requirements on what constitutes a facet, as well as
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new types of regions, such as e.g. potential and Glauber regions. Such regions may still be
captured using the Newton polytope approach [46–48], provided all potential cancellations
are identified. The analysis of the Landau equations could play a key in systematising this.
Further developing purely graph-theoretical rules characterising the regions beyond the
realm of the on-shell expansion in wide-angle scattering, would also be highly desirable.
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A The possible regions in the nonplanar double-box graph

In this appendix we focus on the nonplanar double-box graph shown in figure 17. We
will show that although there are positive and negative kinematic invariants in the F
polynomial, there are no regions due to cancellation between terms. In other words, all the
regions appearing in this specific graph in the on-shell expansion are of the endpoint type,
which is in accordance with our more general statement regarding wide-angle scattering
in section 2.2.

From the Feynman parameterisation shown in figure 17, the F polynomial is

F(α; s) = (−p2
1) [α1α2(α4 + α5 + α6 + α7) + α2α4α7]

+ (−p2
2) [α2α3(α4 + α5 + α6 + α7) + α2α5α6]

+ (−p2
3) [α4α5(α1 + α2 + α3 + α6 + α7) + α1α5α7 + α3α4α6]

+ (−p2
4) [α6α7(α1 + α2 + α3 + α4 + α5) + α1α4α6 + α3α5α7]

+ (−q2
12) [α1α3(α4 + α5 + α6 + α7) + α3α4α7 + α1α5α6]

+ (−q2
13)α2α5α7 + (−q2

14)α2α4α6. (A.1)

We choose a special frame of reference such that

(−p2
1), (−p2

2), (−p2
3), (−p2

4), (−q2
12), (−q2

13) > 0, (−q2
14) < 0. (A.2)

Moreover, the on-shell limit indicates |p2
i | � |q2

jk| for any pi and qjk above.
We further assume that all the regions (except the hard region) should be characterised

by the Landau equations, which are

F(α; s) = 0, (A.3a)
∀i, αi = 0 or ∂F/∂αi = 0. (A.3b)

Note that this is the “third representation” of the Landau equations according to ref. [1].
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7

p3 p4

Figure 17. The nonplanar double-box graph, where all the four momenta are nearly on-shell,
denoted by pi (i = 1, 2, 3, 4). The red numbers label the Feynman parameters.

Suppose there is a solution of the Landau equation above, such that there are both
positive and negative terms in F . Since the term (−q2

14)α2α4α6 is the only negative one,
according to eq. (A.3a) we must have

αi 6= 0 for i = 2, 4, 6, (A.4)

and hence from (A.3b),
∂F/∂αi = 0 for i = 2, 4, 6. (A.5)

The equation ∂F/∂α2 = 0 then yields

4∑
i=1

(−p2
i )(· · · )i + (−q2

13)α5α7 + (−q2
14)α4α6 = 0, (A.6)

where (· · · )i denotes a polynomial of the Feynman parameters. In the limit |p2
i |/|q2

jk| → 0,
we further derive from above

α5, α7 6= 0. (A.7)

The same reasoning applies to ∂F/∂α4 = 0 and ∂F/∂α6 = 0, which gives

α1, α3 6= 0. (A.8)

To summarise, for this specific example we have found that if there is a region due to
cancellation between terms in F , we must have αi 6= 0, and hence, ∂F/∂αi = 0 for any i.
Specifically, the equation ∂F/∂α1 = 0 yields

4∑
i=1

(−p2
i )(· · · )i + (−q2

12) [α3(α4 + α5 + α6 + α7) + α5α6] = 0, (A.9)

where the first term vanishes in the on-shell limit, and we observe that the second term is
nonzero, and hence the condition for the Landau singularity, eq. (A.3b), is not satisfied.
This implies that all the regions must be of the endpoint type, and are associated to the
facets of the Newton polytope.
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B Relation between Schwinger and Lee-Pomeransky representation

The Schwinger representation of the integral I(G) is

I(G) =
∫ ∞

0

(∏
e∈G

dx̃e
x̃e

x̃νee
Γ(νe)

)
e−F/U

UD/2 , (B.1)

where we use the standard definition of the Symanzik polynomials from eq. (2.3). Multipli-
cation by

1 =
∫ ∞

0

dỹ

ỹ

ỹ(L+1)D/2−ν

Γ((L+ 1)D/2− ν)e
−ỹ (B.2)

together with a rescaling of the integration variables x̃e in eq. (B.1) according to

x̃e = ỹxe ∀ e ∈ G (B.3)

results in

I(G) =
∫ ∞

0

(∏
e∈G

dxe
xe

xνee
Γ(νe)

)
1
UD/2

∫ ∞
0

dỹ

ỹ

ỹD/2

Γ((L+ 1)D/2− ν)e
−ỹ(1+F/U). (B.4)

Here we used the homogeneity properties

U({x̃e}) = ỹLU({xe}), F({x̃e}; s) = ỹL+1F({xe}; s).

After rescaling the integration variable ỹ as

ỹ = y

1 + F/U , (B.5)

we recognise the integral over y as the integral representation of Γ(D/2), leading to

I(G) = Γ(D/2)
Γ((L+ 1)D/2− ν)

∫ ∞
0

(∏
e∈G

dxe
xe

xνee
Γ(νe)

)
1
UD/2

1
(1 + F/U)D/2 , (B.6)

which is the Lee-Pomeransky representation of I(G) as defined in eqs. (2.1) and (2.2).
Consider now a specific region R. The Schwinger representation of the propagator (2.45),

along with the scaling of the virtualities in eq. (2.44), imply that the Schwinger parameters
scale according to

x̃e ∼
1

l2e(k, p, q)
∼ λũR,e , (B.7)

where ũR is the scaling vector of the Schwinger parameters in region R. Specifically, it
follow that the Schwinger parameters x̃e in the integrand of eq. (B.1) corresponding to hard,
jet and soft edges scale as follows:

x̃[H] ∼ λ0, x̃[J ] ∼ λ−1, x̃[S] ∼ λ−2 . (B.8)

Starting with the Schwinger representation of the rescaled integrand for region R, namely

I(R)(G) =
∫ ∞

0

(∏
e∈G

dx̃e
x̃e

(λũR,ex̃e)νe
Γ(νe)

) exp
[
−F(λũRx̃;λws)/U(λũRx̃)

]
(U(λũRx̃))D/2 , (B.9)
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and repeating the derivation above, we obtain the following Lee-Pomeransky representation
of region R, in terms of the same Symanzik polynomials, now written in terms of the
rescaled Lee-Pomeransky variables xe,

I(R)(G) =
Γ
(
D
2

)
Γ
(
(L+ 1)D2 − ν

) ∫ ∞
0

(∏
e∈G

dxe
xe

(λuR,exe)νe
Γ(νe)

) (
U(λuRx) + F(λuRx;λws)

)−D2
,

(B.10)
where in the final step we made the identification of the region vectors: ũR = uR . The
conclusion is thus, that the region vectors uR of the Lee-Pomeransky representation are
the same as in the Schwinger representation, as summarised by eq. (2.46). In particular,
given hard, jet and soft momentum modes (2.43), we have established the scaling rule of
the Lee-Pomeransky parameters in eq. (2.39).

C A proof of the requirements for an infrared region

In this appendix we prove that for any configuration satisfying proposition 1, the require-
ments of H,J and S formulated in section 3.3 provide a necessary and sufficient condition
for the existence of a corresponding region R, such that vR is normal to a lower facet of
the Newton polytope ∆(N+1)[P(G)].

We first show that these requirements are sufficient, i.e. dim(fR) = N if the requirements
ofH,J and S are satisfied, where fR is the lower face that contains the points r corresponding
to the minimum of r · vR. We aim to find the following vectors in fR:

∆r[H] ≡ (0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
N(H)

, 0, . . . , 0︸ ︷︷ ︸
N(J)+N(S)

; 0); (C.1a)

∆r[J ] ≡ (0, . . . , 0︸ ︷︷ ︸
N(H)

, 0 . . . , 0, 1, 0, . . . 0︸ ︷︷ ︸
N(J)

, 0, . . . , 0︸ ︷︷ ︸
N(S)

;−1); (C.1b)

∆r[S] ≡ ( 0, . . . , 0︸ ︷︷ ︸
N(H)+N(J)

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
N(S)

;−2), (C.1c)

where we have parameterised the propagators of G such that the first N(H) parameters
correspond to hard edges, the next N(J) correspond to jet edges, and the final N(S)
correspond to soft edges. One can check that the vectors in eq. (C.1) are linearly independent
of each other, and all are perpendicular to vR. Therefore, it suffices to find all the vectors
above in order to justify that fR is a facet.

The existence of N(H) vectors ∆r[H]. Here we show that if all the propagators of
Hred are off-shell, then the vectors ∆r[H] are in fR. As introduced above, we have supposed
that there are n nontrivial 1VI components of H, denoted as γH1 , . . . , γHn .

From the factorisation property of U (R)(x), eq. (3.19), any U (R) term can be obtained
by combining any chosen spanning trees of H, J̃1, . . . , J̃K and S̃, so we can consider a
specific set of U (R) terms having a common set of spanning trees of J̃1, . . . , J̃K and S̃, but
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each having a distinct spanning tree of H, denoted as T 1(H). As in eq. (3.8), it follows
that the differences of these U (R) terms take the form:(

0, . . . , 0︸ ︷︷ ︸
N(γH1 )+···+N(γHj−1)

, 1, 0, . . . , 0,−1, 0, . . . , 0︸ ︷︷ ︸
N(γHj )

, 0, . . . , 0︸ ︷︷ ︸
N(γHj+1)+···+N(γHn )

, 0, . . . , 0︸ ︷︷ ︸
N̂(Hred)

, 0, . . . , 0︸ ︷︷ ︸
N(J)+N(S)

; 0
)
. (C.2)

For the first N(H) entries of the vector above, we have chosen a specific parameterisation:
the first N(γH1 ) entries correspond to the edges of γH1 , the next N(γH2 ) entries correspond
to the edges of γH2 , etc.; the last N̂(Hred) entries are the edges of the graph Hred that are
also in H . There are two nonzero entries in eq. (C.2): 1 appears in the first entry associated
to the edges of γHj , while −1 may appear in any of the other entries. It follows that there
are ∑n

j=1(N(γHj )− 1) = ∑n
j=1N(γHj )− n vectors in total in eq. (C.2).

In line with eq. (3.37), we still need to find another n+ N̂(Hred) vectors that are linear
combinations of ∆r[H] and independent of eq. (C.2). For any of the U (R) terms mentioned
above, we denote the corresponding spanning tree by T 1. We now consider the spanning
2-tree T 2 obtained from T 1 by removing one off-shell edge e ∈ T 1(H) from it. According to
table 1, we know that these spanning 2-trees correspond to the F (q2,R)

I terms. Following
the same argument in section 3.1, we can show that the vector r2− r1, where r1 and r2 are
the points associated to T 1 and T 2 respectively, may take one of the following two forms:(

0, . . . , 0︸ ︷︷ ︸
N(γH1 )+···+N(γHj−1)

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
N(γHj )

, 0, . . . , 0︸ ︷︷ ︸
N(γHj+1)+···+N(γHn )+N̂(Hred)

, 0, . . . , 0︸ ︷︷ ︸
N(J)+N(S)

; 0
)
, (C.3a)

(
0, . . . , 0︸ ︷︷ ︸

N(γH1 )+···+N(γHn )

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
N̂(Hred)

, 0, . . . , 0︸ ︷︷ ︸
N(J)+N(S)

; 0
)
. (C.3b)

In each of the vectors above, there is exactly one entry with value 1, while all the others
are 0. Note that in eq. (C.3a), we may choose the entry 1 at n distinct positions, each
corresponding to removing some off-shell propagator in a different nontrivial 1VI component
γHj with i = 1, . . . , n; these are bound to be independent. In eq. (C.3b), we may choose the
entry 1 at any of the N̂(Hred) entries, each corresponding to removing a different internal
propagator in Hred ∩H. Therefore, we have found another n+ N̂(Hred) vectors that are
independent of those in (C.2), and proven that all the vectors ∆r[H] shown in (C.1a) exist.

The existence ofN(J) vectors ∆r[J]. We now show that if all the internal propagators
of J̃i,red carry exactly the momentum pµi , then the vectors taking the form of ∆r[J ] in
eq. (C.1b) exist in fR. The requirement that all internal propagators carry exactly the
jet momentum is equivalent to excluding jet subgraphs that include dead-end structures.
Note that such may appear in J̃i,red due to auxiliary propagators that are introduced upon
separating nontrivial 1VI components.

Without loss of generality, we take i = 1 and study the jet subgraph J1 below. As
above, we have assumed that γJ̃1

1 , . . . , γJ̃1
n1 are the n1 nontrivial 1VI components of J̃1.

Now consider a set of U (R) terms sharing common spanning trees of H, J̃2, . . . , J̃K
and S̃, but each having a distinct spanning tree of J̃1. Theorem 1 then indicates that the
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following vectors can be found in fR, which are the differences of these U (R) terms:(
0, . . . , 0︸ ︷︷ ︸
N(H)

, 0, . . . , 0︸ ︷︷ ︸
N(γJ̃1

1 )+···+N(γJ̃1
j−1)

, 1, 0, . . . , 0,−1, 0, . . . , 0︸ ︷︷ ︸
N(γJ̃1

j )

,

0, . . . , 0︸ ︷︷ ︸
N(γJ̃1

j+1)+···+N(γJ̃1
n1 )

, 0, . . . , 0︸ ︷︷ ︸
N̂(J̃1,red)

, 0, . . . , 0︸ ︷︷ ︸
N(J2)+···+N(JK)+N(S)

; 0
)
, (C.4)

where j = 1, . . . , n1. One may verify that these vectors are linearly independent, and the
total number of them is ∑n1

j=1

(
N(γJ̃1

j )− 1
)

= ∑n1
j=1N(γJ̃1

j )− n1. From eq. (3.37), we still
need to identify n1 + N̂(J̃1,red) additional independent vectors in fR. These take one of the
following two forms:(

0, . . . , 0︸ ︷︷ ︸
N(H)

, 0, . . . , 0︸ ︷︷ ︸
N(γ1)+···+N(γj−1)

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸,
N(γj)

0, . . . , 0︸ ︷︷ ︸
N(γj+1)+···+N(γn1 )

, 0, . . . , 0︸ ︷︷ ︸
N̂(J̃1,red)

, 0, . . . , 0︸ ︷︷ ︸
N(J2)+···+N(JK)+N(S)

;−1
)
, (C.5a)

(
0, . . . , 0︸ ︷︷ ︸
N(H)

, 0, . . . , 0︸ ︷︷ ︸
N(γ1)+···+N(γn1 )

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
N̂(J̃1,red)

, 0, . . . , 0︸ ︷︷ ︸
N(J2)+···+N(JK)+N(S)

;−1
)
. (C.5b)

In each of the vectors above, there is exactly one entry with value 1, while all the others
associated to the Lee-Pomeransky parameters are 0. The last entry is −1. Note that
in eq. (C.3a), we may choose the entry 1 at n distinct positions, each corresponding to
removing some jet edge in a different nontrivial 1VI component γJ̃1

j with j = 1, . . . , n1;
these are bound to be independent. In (C.3b), we may choose the entry 1 at any of the
N̂(J̃1,red) entries, each corresponding to removing a different edge in J̃1,red.

We now explain how these vectors can be obtained under the condition that all the
internal propagators of J̃1,red carry the same momentum p1. In this case, the configuration
of J̃1,red must be as shown in figure 13. Recall that the contracted graph J̃1 contains a single
auxiliary vertex. In any given spanning tree of J̃1 denoted by T 1(J̃1), there is a unique path
connecting this auxiliary vertex with the external momentum p1. In line with figure 13,
this path must contain at least one edge from each nontrivial 1VI component of J̃1, and all
the edges of J̃1,red. By removing any edge from this path, one obtains a spanning 2-tree of
J̃1 denoted by T 2(J̃1).

We now take any spanning trees of the graphs H, J̃2, . . . , J̃K and S̃, and consider
the union of these spanning trees with T 1(J̃1) and T 2(J̃1) respectively. The results are a
spanning tree T 1 and a spanning 2-tree T 2 of G, which correspond to the points r1 and r2
of the following form:

r1 =
(
. . .︸︷︷︸
N(H)

,a
(1)
1 , . . . ,a

(1)
N1︸ ︷︷ ︸

N1

, . . . ,a
(n1)
1 , . . . ,a

(n1)
Nn1︸ ︷︷ ︸

Nn1

,0, . . . ,0︸ ︷︷ ︸
N ′

, . . .︸ ︷︷ ︸
N(J2)+···+N(JK)+N(S)

;0
)
, (C.6a)

r2 =
(
. . .︸︷︷︸
N(H)

, b
(1)
1 , . . . , b

(1)
N1︸ ︷︷ ︸

N1

, . . . , b
(n1)
1 , . . . , b

(n1)
Nn1︸ ︷︷ ︸

Nn1

, b′1, . . . , b
′
N ′︸ ︷︷ ︸

N ′

, . . .︸ ︷︷ ︸
N(J2)+···+N(JK)+N(S)

;1
)
. (C.6b)
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Note that r1 corresponds to a U (R) term, while r2 corresponds to a F (p2
1,R) term. In the

equations above, we have used Nj (j = 1, . . . , n1) as the abbreviations for N(γJ̃1
j ), and N ′

as the abbreviation for N̂(J̃1,red). Each of the parameter entries is either 0 or 1. From
the analysis of the previous paragraph, the vectors r1 and r2 are identical except for two
entries: one of the first N entries is 0 in r1 and 1 in r2, and the last entry is 0 in r1 and 1
in r2. Clearly r2 − r1 exhausts all the vectors in eq. (C.5), thus we have obtained another
n1 + N̂(J̃1,red) vectors that are independent of those in (C.2).

In summary, we proved that the requirement on J is sufficient for the existence of N(J)
vectors ∆r[J ].

The existence of N(S) vectors ∆r[S]. Finally, we show that if every connected
component of S connects at least two jet subgraphs Ji and Jj , then the all the vectors
∆r[S] in eq. (C.1c) exist in fR. Without loss of generality, we consider the graph S1, which
can be any connected component of S. By definition, its corresponding contracted graph
S̃1 is a nontrivial 1VI graph.

We then consider the set of U (R) terms sharing common spanning trees of H , J̃1, . . . , J̃K
and S̃2, . . . , S̃n, but each having a distinct spanning tree of S̃1. Again, from corollary 1.1,
the following vectors below can be found in fR:(

0, . . . , 0︸ ︷︷ ︸
N(H)+N(J)

, 1, 0, . . . , 0,−1, 0, . . . , 0︸ ︷︷ ︸
N(S1)

, 0, . . . , 0︸ ︷︷ ︸
N(S2)+···+N(Sn)

; 0
)
. (C.7)

These vectors are obtained as differences between U (R) terms, where we have parameterised
the soft propagators in a way that the first N(S1) entries of them are associated to the
edges of S1, the next N(S2) entries are associated to the edges of S2, etc. For any given
U (R) term, we denote the corresponding spanning tree by T 1. Having assumed that S1
connects at least two jet subgraphs Ji and Jj , there is an edge e0 ∈ S1 \T 1, such that in the
unique loop of the graph T 1 ∪ e0, there are edges from S1, Ji and Jj . We then remove an
edge ei ∈ Ji and ej ∈ Jj from it, and the result T 2 ≡ T 1 ∪ e0 \ (ei ∪ ej) is a spanning 2-tree.
From corollary 2.1, T 2 corresponds to an F (q2,R)

II term. The vector ∆r′ ≡ r1 − r2, where
r1 and r2 are the points corresponding to T 1 and T 2 respectively, takes the following form

∆r′ =
(
0, . . . , 0︸ ︷︷ ︸
N(H)

, 0, . . . , 0,−1, 0, . . . , 0,−1, 0, . . . , 0︸ ︷︷ ︸
N(J)

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
N(S)

; 0
)
, (C.8)

where the −1 values are associated to the jet propagators ei and ej respectively, and 1 is
associated to the soft propagator e0, as we have explained above. First of all, the vector ∆r′
is in fR because both r1 and r2 correspond to P(R)

0 terms. Meanwhile, since we have already
proved that all the vectors ∆r[J ] in eq. (C.1b) exist in fR, we can pick two other vectors in
fR, ∆ri and ∆rj , such that the respective entries ei and ej are those that evaluate to 1.
The vector ∆r ≡ ∆r′ + ∆ri + ∆rj , then takes the following form

∆r =
(

0, . . . , 0︸ ︷︷ ︸
N(H)+N(J)

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
N(S1)

, 0, . . . , 0︸ ︷︷ ︸
N(S2)+···+N(Sn)

;−2
)
, (C.9)
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where the only entry with the value 1 is associated to e0. Since S1 can be any connected
component of S, we can obtain further n − 1 vectors in fR that are similar to eq. (C.9),
where the value 1 is associated to a specific propagator of Sk (k = 2, . . . , n). Therefore, we
have shown that all the vectors ∆r[S] in (C.1c) exist in fR.

In conclusion, we have shown that the requirements of H, J and S introduced in
section 3.3, are sufficient for fR to be N -dimensional, hence a facet. We still need to show
that these requirements are necessary, which we will prove by contradiction below.

First, we suppose that the requirement of H is not satisfied. In other words, there is
an edge e ∈ Hred whose momentum is pi or 0. We further suppose that e ∈ G, i.e. e is
not an auxiliary propagator of Hred. Then we will show that in every term of P(R)

0 , the
corresponding spanning (2-)tree contains e. To see this, recall from theorem 2 that, for a
spanning (2-)tree T corresponding to any U (R), F (p2

i ,R) or F (q2
ij ,R)

II term, H ∩T is a spanning
tree of H. (This follows from the factorisation property in eq. (3.36).) This indicates that
e ∈ H ∩ T in these terms. In the case that T corresponds to an F (q2,R)

I term, H ∩ T is a
spanning 2-tree, and the momentum flowing between its components must be off-shell. If
e /∈ H ∩ T , then since e ∈ Hred, which has a tree structure, the momentum flowing between
the components of T must be the same momentum carried by e itself, which is pi or 0 based
on our contradiction assumption. As a result, e ∈ H ∩ T for any T that corresponds to a
term of P(R)

0 (x; s). In other words, the parameter xe is absent in all the terms of P(R)
0 (x; s).

This implies that all the points r ∈ fR, in addition to admitting the defining constraint
that r · vR is fixed at some (minimum) value, admit an extra constraint that the entry of
the vector r that corresponds to xe is always 0. This extra constraint makes the dimension
of fR less than N , thus fR cannot be a lower facet.

An argument can be made also if e is an auxiliary propagator of Hred, carrying
momentum pi or 0. In this case, this propagator connects to a subgraph consisting of at
least one loop, which is scaleless in the limit p2

i → 0, and thus cannot be part of P(R)
0 (x; s).

Second, suppose that the requirement of J is not satisfied, i.e. there is an edge e ∈ J̃i,red
with zero momentum, then we can use the analysis above to show that dim(fR) < N , which
implies that fR is not a lower facet.

Third, suppose that the requirement of S is not satisfied, i.e. one connected component
S1 is attached to only the jet J1 and/or H. We will show below that for every spanning
(2-)tree T that corresponds to a P(R)

0 term, S1 ∩ T is a spanning tree of S1. This follows
directly from theorem 2 if T corresponds to a U (R), F (p2

i ,R) or F (q2,R)
I term. For T (= T 2)

that corresponds to an F (q2
ij ,R)

II term, we recall the discussion in section 3.2, that T 2 can
be obtained from a U (R) term T 1 by the following operations. We first add a soft edge to
T 1, and then in the loop formed we remove two edges from different jets. However, this
procedure cannot be realised if the soft edge is from S1, since S1 is not attached to two
different jets. As a result, in any F (q2

ij ,R)
II term, the aforementioned soft edge must be part

of S \ S1, and then this operation does not affect S1 ∩ T , which must remain as a spanning
tree of S1 as in the original U (R) term. This implies an extra constraint on the points
r ∈ fR: the sum over all the entries of r, which correspond to the edges of S1, is fixed as
L(S̃1), as seen in corollary 2.1. As above, this extra constraint makes the dimension of fR
less than N .

– 65 –



J
H
E
P
0
7
(
2
0
2
3
)
1
9
7

In summary, we have proved that the requirements proposed in section 3.3 regarding
the subgraphs H,J and S provide a necessary and sufficient condition that vR is normal to
a lower facet of the Newton polytope ∆(N+1)[P(G)].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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