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1 Introduction

In [1, 2] it was shown that in a suitable limit, the Argyres-Douglas (AD) limit, the moduli
space of a massive N = 2 supersymmetric gauge theory of the Yang-Mills type leads to
isolated superconformal field theories (SCFT). A first attempt to classify such theories
appeared in [3, 4] while more recent results were obtained in [5–14]. In this paper we
will be concerned with the rank-one version of the AD SCFT’s as well as of those of the
Minahan-Nemeschansky (MN) type [15]. Being such SCFT’s isolated and strongly coupled,
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their analytic treatment is troublesome given that a Lagrangian description is not available.
To circumvent these difficulties, at least five different strategies have appeared in the
literature: the conformal bootstrap, the AGT duality, the matrix-model methodology, the
large-charge expansion, and the geometric approach based on the Ω-background technology.
The numerical conformal bootstrap is a method that exploits the constraints coming from
the symmetries of the theory to give numerical estimates of the parameters of interest [16–
20]. The AGT duality, in its original formulation, relates the partition function of a
four-dimensional SQCD with four massive flavors with a four-point correlator of a two-
dimensional conformal field theory [21, 22]. Making some (or all) of these points collide leads
to rank-one SCFT’s [23–28]. Similar ideas have also been used to provide matrix-model
representations for the partition function in a class of AD theories [29–36]. Both the
AGT and the matrix-model technology have been useful to study AD theories with large
deformation parameters (see also [37]). Another original perspective has been explored
in the context of the large-charge expansion [38–46], where it was suggested that one can
have an approximate description of such strongly coupled SCFT’s in terms of an universal
effective field theory. Finally, using the genus expansion of the Ω background, as well
as ideas coming from localization [47–61], it has been possible to study chiral/anti-chiral
correlators of non-Lagrangian theories [45, 62]. Such analytic results, even if based on
the first two leading terms in the expansion of the prepotential for small curvatures, show
surprisingly good agreement with the numerical bootstrap method [18] as well as with the
large-charge expansion [43, 44]. To improve the analytic estimate of [45, 62] and get an
exact result, one should incorporate higher curvature terms in the prepotential. This is the
main motivation of this paper.

To accomplish this task we use the recursion equations following from the refined
holomorphic anomaly. The latter was originally investigated in topological field theories [63],
and then revisited in [64–75] after the introduction of the Ω background [47–52]. We
want to emphasize that, when approaching the AD point, it is essential to employ the
holomorphic anomaly equation. Indeed this technique, while providing expressions which
are perturbative in the Ω-background parameters, is exact in all the other parameters of
the theory. This is an important difference with respect to localization techniques à la
Nekrasov, which instead cannot be used in the context of strongly coupled field theories.

All rank-one SCFT’s of the AD and MN type are characterized by the dimension of their
Coulomb-branch parameter and they can be treated in a uniform way. First, we specialize
the holomorphic anomaly equation to a specific one-parameter family of deformations
of these SCFTs. This allows us to compute the free energy exactly in the deformation
parameters and order by order in the Ω background parameters ϵ1,2. When we turn off
the deformation and go to the conformal point, we discover significant simplifications.
More precisely, we find that their partition function can be expressed as an infinite sum of
confluent U-hypergeometric functions

Z(a,ϵ1, ϵ2) = e
F0(a)
ϵ1ϵ2 E

γ/2
2

∞∑
n=0

(
E2δ

Eδ
2

)n

cn U
(
−γ

2 +nδ,
1
2 ,− 6a2

E2ϵ1ϵ2

)
ϵ1ϵ2 ̸= 0 , (1.1)

where a is the local coordinate on the Coulomb branch, δ = 2 , 3 depending on the SCFT,
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EI are the Eisenstein functions evaluated at the fixed value of the modular parameter
τ∗ = i , e

πi
3 , and γ a constant determined by the conformal dimension of the Coulomb-branch

operator (see section 3.1 for more details). Finally, the coefficients cn are pure rational
numbers depending only on the phase of the Ω background. They are determined by the
gap conditions [66, 73], that ensure consistency of the expansion near singular monopole
points. In order to compute them, deforming away from the conformal point is essential.
Nevertheless, we check that their value is independent of the particular deformation we
choose. We will also show that in the so-called Nekrasov-Shatashvili limit (NS) [76],
i.e. ϵ1 → 0, the summation in (1.1) undergoes a non-trivial re-organization in terms of
a different set of functions. This limit is relevant for the study of quantum-mechanical
anharmonic oscillators.

This paper is organized as follows. In section 2 we review the holomorphic anomaly
equation and explain how to solve it recursively. In section 3 we specialize this algorithm
to the isolated rank-one conformal field theories and show that important simplifications
occur leading to (1.1). In section 4 we focus on the example of the sphere (ϵ1 = ϵ2) which
is relevant for the computation of the extremal correlators of these SCFTs. In section 5 we
discuss the NS limit. We conclude in section 6 with a few hints for further investigations.
Several technical details as well as conventions are relegated to five appendices.

2 The Ω-background prepotential

2.1 Holomorphic anomaly equation

We consider rank-one N = 2 supersymmetric (in general non-Lagrangian) theories living on
an Ω-background specified by the parameters ϵ1, ϵ2 and by a Seiberg-Witten (SW) geometry.
We denote by (a, aD) the SW periods, by u the Coulomb-branch parameter and omit the
dependence on all remaining parameters: couplings and masses. The partition function on
the Ω-background can be written as

Z(a, ϵ1, ϵ2) = e
F(a,ϵ1,ϵ2)

ϵ1ϵ2 (2.1)

with F the prepotential. The theory prepotential is regular in the limit ϵ1, ϵ2 → 0 so it can
be expanded as

F(a, ϵ1, ϵ2) =
∑
g=0

(ϵ1ϵ2)gFg(a, β) =
∑

h,s≥0
(ϵ1 + ϵ2)2h(ϵ1ϵ2)sFs,h(a) (2.2)

with

Fg(a, β) =
g∑

h=0
(β + β−1)2hFg−h,h(a) , β =

√
ϵ1
ϵ2

. (2.3)

The F0(a) term represents the theory prepotential in flat space which can be determined out
of the SW geometry. Higher derivative terms are given by the reduced partition function

Ẑ(a, ϵ1, ϵ2) = e
−F0(a)

ϵ1ϵ2 Z(a, ϵ1, ϵ2) (2.4)
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that unlike Z has a regular limit when the Ω-background is turned off. This function will
be the main object of our study. We introduce the IR coupling

q(a) = eπiτ(a) = eπi ∂aD
∂a = e−

∂2F0(a)
2∂a2 . (2.5)

The partition function Ẑ can be alternatively viewed as a function of q or as a function of
a. In particular, one can express Ẑ(q) in terms of the Eisenstein’s series E2(q), E4(q), E6(q)
that form a basis of quasi-modular functions, see appendix B for all the relevant definitions.1

All Fg(q)’s have weight zero and a(q) has weight one. S-duality covariance constrains the
dependence of the partition function on E2. Indeed the full dependence on this form is
determined by the anomaly equation [66, 69, 73, 77]2

∂E2Ẑ(q) = ϵ1ϵ2
24 ∂2

aẐ(q) . (2.6)

In (2.6) the derivatives on the l.h.s. is carried out keeping E4, E6 constant. In the r.h.s.
of (2.6) the partition functions is meant as a function of q and a. Writing

Ẑ(q, ϵ1, ϵ2) =
∞∑

g=0
(ϵ1ϵ2)gẐg(q, β) (2.7)

one finds the recursive equation

∂E2Ẑg = 1
24 ∂2

aẐg−1 . (2.8)

For the “reduced” prepotential F̂(q, β) = F(q, β) −F0(q) one finds

∂E2F̂ = 1
24

[
ϵ1ϵ2∂2

aF̂ +
(
∂aF̂

)2
]

, (2.9)

or equivalently, using (2.2),

∂E2Fg = 1
24

∂2
aFg−1 +

g−1∑
g′=1

∂aFg′∂aFg−g′

 . (2.10)

Equations (2.10) allows to compute Fg recursively starting from F1(q, β) up to E2-
independent terms. On the other hand F1(q, β) is determined in terms of ∂a

∂u(q) and
the discriminant ∆(q) characterising the dynamics in flat space via the formula

F1(q, β) = −1
2 log ∂a

∂u
(q) + β2 + β−2

24 log ∆(q) . (2.11)

1As we will see later, in specific cases it is convenient to replace E4(q), E6(q) with different modular
functions.

2Throughout this paper we consider the holomorphic version of the anomaly equation, obtained by
replacing Ê2(τ, τ) = E2(τ) − 3

πIm(τ) → E2(τ).

– 4 –



J
H
E
P
0
7
(
2
0
2
3
)
1
9
5

2.2 Seiberg-Witten elliptic curve

The functions ∂a
∂u(q) and ∆(q) entering F1 are described by the SW elliptic geometry. For a

recent discussion see also [78]. We write the Seiberg-Witten curve in the Weierstrass form3

y2 = 4z3 − g2(u)z − g3(u) , (2.12)

with discriminant
∆(u) = 16[g3

2(u) − 27g2
3(u)] . (2.13)

The SW periods are given by

ω1 = ∂a

∂u
= 1

π

∮
α

dz

y(z) , w2 = ∂aD

∂u
= 1

π

∮
β

dz

y(z) (2.14)

and the complex coupling parameter q introduced in (2.5) can also be given in terms of

q = eπiw2/ω1 . (2.15)

The functional dependence u(q) and ω1(q) is determined by solving the elliptic geometry
formulae

g2(u) = 4E4(q)
3ω1(q)4 , g3(u) = 8E6(q)

27ω1(q)6 (2.16)

for u(q) and ω1(q) in terms of E4(q) and E6(q). Once this is done, all functions of u can be
viewed as functions of q. For example, the discriminant is given by

∆(q) = 16(g3
2 − 27g2

3) = 1024(E4(q)3 − E6(q)2)
27ω1(q)12 (2.17)

and the first gravitational correction becomes

F1(q) = −1
2 log ω1(q) + β2 + β−2

24 log ∆(q) . (2.18)

To compute higher derivative terms, we need derivatives with respect to a, that can be
translated into derivatives with respect to q using the chain rule

∂aFg(q, β) = ξDτFg(q, β) (2.19)

with
Dτ = ∂τ

πi = q∂q (2.20)

and
ξ = q−1 dq

da
= 1

ω1Dτ u
= ν ′(u) E4 E6

2ω1(E2
6 − E3

4)
(2.21)

where ξ is a modular form of weight −3 and

ν(u) = log 27g3(u)2

g2(u)3 = log E6(q)2

E4(q)3 . (2.22)

3In appendix A, we collect some results which are useful to bring to this standard Weierstrass form the
different expressions used in the literature for the elliptic geometry of rank-one theories.
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Here we have used (2.16) and computed the derivatives with respect to τ using

Dτ E2 = 1
6(E2

2 − E4) , Dτ E4 = 2
3(E2 E4 − E6) , Dτ E6 = E2 E6 − E2

4 . (2.23)

Plugging (2.19) into (2.10) one can compute Fg order by order in g up to E2 invariant
terms. The general form of Fg is

Fg(q, β) = ξ2g−2

3g−3∑
ℓ=1

cg,ℓ(β, E4, E6) Eℓ
2 + hg(β, E4, E6)

 , g ≥ 2 , (2.24)

where cg,ℓ(β, E4, E6) is a modular form of weight 6g − 6− 2ℓ and hg(β, E4, E6) is a modular
function of weight 6g − 6, known as holomorphic ambiguity, which cannot be determined
using (2.10).

The holomorphic ambiguities are fixed by imposing the so-called “gap conditions” [65,
66, 73, 79], that determine the behavior of the prepotential near the points where the elliptic
curve degenerates. Rank-one SCFT’s can be deformed in such a way that the discriminant
of their SW curve takes the particularly simple form

∆(u) ∼
n∏

i=1
(u − u0e

2πi
n ) = un − un

0 (2.25)

leading to n equivalent singularities in the u-plane.
According to (2.17), the zeroes of the discriminant u ∼ u0 correspond to the point

where q = 0. This limit can be studied, expanding

a(q) =
∫ q dq′

q′ξ(q′) (2.26)

for small q, and inverting the series to get q(a) for small a. Plugging this into the Fg, the
holomorphic ambiguities hg are determined by requiring the gap conditions [73, 75]

Fg(a) ≈
q→0

(2g − 3)!
g∑

k=0
B̂2kB̂2g−2k

β2g−2k

a2g−2 + O(a0) (2.27)

where

B̂m =

(
1

2m−1 − 1
)

Bm

m! (2.28)

and Bk are the Bernoulli numbers. We will work out two different choices of Ω background,
i.e. β = 1 and β = 0. In these cases (2.27) becomes:

β = 1 : Fg(a) ≈
q→0

− B2g

2g(2g − 2) a2g−2 + O(a0) , (2.29)

β = 0 : Fg(a) ≈
q→0

−
(
1 − 21−2g

)
(2g − 3)!B2g

(2g)! a2g−2 + O(a0) . (2.30)

It is important to stress that in more complicated setups,4 equations (2.16) or (2.22) are
hard to solve or admit several inequivalent solutions, often related to each other by modular

4For instance where (2.25) does not hold.
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SW H0 H1 H2 E6 E7 E8

N7 2 3 4 8 9 10
d 6

5
4
3

3
2 3 4 6

g2 0 u 0 0 u3 0
g3 u 0 u2 u4 0 u5

τ e
πi
3 i e

πi
3 e

πi
3 i e

πi
3

Table 1. SW data for isolated rank-1 N = 2 SCFTs.

transformations. In such cases (see appendix C for details), the Fg’s transform non-trivially
under modular transformations and a different set of gap conditions on their modular
transformed FD

g is required at qD → 0. The basis of modular functions to use is also
adapted according to such situations.

3 Isolated rank-1 conformal field theories

3.1 The partition function

Rank-one conformal field theories can be realized in F-theory as a single D3-brane, probing
a singularity built out of a certain number N7 of coinciding mutually non-perturbative
7-branes [80]. The low-energy dynamics on the D3-brane is described by a SW elliptic curve
specified by a single Coulomb-branch parameter u, a u-independent modular parameter τ

and a discriminant
∆(u) ∼ g3

2 − 27g2
3 ∼ uN7 . (3.1)

Prototypical examples are the AD theories H0, H1, H2, and the Minahan-Nemeschansky
theories E6, E7, E8. These are all isolated, non-Lagrangian field theories and are the focus
of the present work. They can be split into two classes depending on the value of the
modular parameter

A : τ = e
πi
3 , y2 = 4x3 − ub3 , b3 = 1, 2, 4, 5, H0,H2, E6, E8

B : τ = i, y2 = 4x3 − ub2x, b2 = 1, 3, H1, E7 (3.2)

The conformal dimension d of the Coulomb-branch parameter is given by

d = 12
12 − N7

(3.3)

that follows from the requirement that the SW period ∂a
∂u be of dimension 1−d and therefore

the conformal dimension of the holomorphic differential be [dx/y] = 1 − d. From (3.1)
and (3.3) it follows that N7 is an integer, multiple of 2 or 3, and smaller than 12. In table 1
we collect the SCFT data for all possible choices of N7.5 In the theories of type A the

5The case of N7 = 6 is special because both g2 and g3 are generically non-vanishing, with the ratio g3
2/g2

3

an arbitrary complex number. The associated SCFT is therefore not isolated and it corresponds to the
SU(2) gauge theory with four massless fundamental hypermultiplets.
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modular form E4 vanishes, whereas E2, E6 are constants. Similarly in the theories of type
B the modular form E6 vanishes, whereas E2, E4 are constants. Therefore, in all these
cases, the free energy is a function of β and of the following dimensionless quantities

x = E2ϵ1ϵ2
6a2 κ = E2δ

Eδ
2

, (3.4)

where
δ =

{
3 A
2 B

. (3.5)

For these SCFTs one finds

u ∼ ad , ∆(u) = a12(d−1) , (3.6)

where d is the conformal dimension of the Coulomb-branch operator (see table 1). The first
correction to the SW prepotential takes the general form6

F1(a, β) = γ log
(

a
√

ϵ1ϵ2

)
(3.7)

with
γ = d − 1

2 (1 + β2 + β−2) . (3.8)

By dimensional analysis, the higher corrections take the form

Fg(a, β) = fg(β)
a2g−2 , (3.9)

where fg(β) are numbers. The latter can be computed recursively using the holomorphic
anomaly equation with boundary conditions fixed by an E2-independent function. We can
make the following Ansatz

Ẑ(a, β) = E
γ
2
2

∞∑
n=0

κncnfn(x, β) , (3.10)

where cn are numerical coefficients encoding the holomorphic ambiguities and depend
on the phase of the Ω background. Plugging (3.10) into (2.6) leads to the confluent
hypergeometric equation7

2x3f ′′
n(x) + x (3x − 2) f ′

n(x) + (2nδ − γ) fn(x) = 0 , (3.11)

where the boundary conditions are chosen such that (3.10) has a power-like behavior for
x → 0. The final solution is

Ẑ(a, β) = E
γ/2
2

∞∑
n=0

κncn U
(
−γ

2 + nδ,
1
2 ,−1

x

)
, (3.12)

with U(a, b, z) the confluent U hypergeometric function8 and c0 is an overall normalization
which can be set to c0 = 1 without loss of generality. The coefficients {cn}n≥1 are β-
dependent coefficients encoded in the E2-independent part of Ẑ. In the next section we will

6Throughout the paper we will omit any additive constant to F1.
7We remark that in a SCFT τ is independent of a, and thus E2 and a are independent variables.
8Our conventions are the same as in Mathemetica.
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derive the first few coefficients cn for the theories in table 1, and show that they are rational
numbers. The strategy will be to first turn on suitable mass or coupling deformations for
such theories, in order to isolate a monopole point where the gap condition can be imposed.
The coefficients cn will then be derived by turning off the deformation.9 We check explicitly
that the final result is independent of the deformation. We also note that (3.12) as it is
written holds for ϵi ̸= 0, i.e. all phases of the Ω background except the NS phase. Indeed if
we consider the NS limit there is a non-trivial re-organization of (3.12) which we discuss
in section 5.

3.2 Deformations

Conformal invariance can be broken by turning on masses or couplings. Here we consider
the simplest deformation splitting democratically the discriminant into its N7 roots

∆(u) ∼ uN7 − mdN7 (3.13)

We will refer to m generically as a mass deformation, although for the case of H0, where
masses are not available, the dimension-one parameter m is related to the IR-relevant
coupling c via m = c

5
4 . The deformed SW curves look like

A : y2 = 4x3 − m
4b3

6−b3 x − ub3 , b3 = 1, 2, 4, 5

B : y2 = 4x3 − ub2x − m
6b2

4−b2 , b2 = 1, 3 (3.14)

In all these examples, we will derive q-exact formulae for the first few Fg’s. An important
ingredient in our procedure will be to parametrize the holomorphic ambiguities for A and
B theories respectively in the following form (g ≥ 2)

hA
g (β, q) = E3g−3

4
Eg−1

6

[ 5g−5
3 ]∑

i=0

(
E2

6
E3

4

)i

hg,i(β) ,

hB
g (β, q) = Eg−1

6

[ 3g−3
2 ]∑

i=0

(
E3

4
E2

6

)i

hg,i(β) , (3.15)

where hg,i(β) are q-independent coefficients to be determined. The above expressions are
dictated by the requirement that hg has modular weight 6g−6, allowing only integer powers
of E4 and E6, such that hg does not grow faster than its corresponding non-ambiguous part
when E4 → 0 and E6 → 0.

In appendix C, we will consider an alternative deformation of the AD theory H1
described by the SW curve

y2 = 4x3 − ux − cu + 4c3 (3.16)

where c is the IR-relevant coupling. In particular we will show that the results for the Fg’s
in the conformal limit are the same, independently of the deformation used to compute
them. An analogous match for the theory H2 is obtained in appendix D, where we consider
the Nf = 3-SQCD description of this AD theory.

9In [81] it was also observed that, to determine the partition function of topologically twisted H0, one
has to first perturb the theory away from the conformal point.
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4 Examples: β = 1

In this section, we consider the Ω background given by ϵ1 = ϵ2 = ϵ, i.e. β = 1. This choice
enters for example the computation of the round-sphere partition function [54, 82] and
of extremal correlators [45, 46, 57–60, 62]. Despite such a large interest, the holomorphic
anomaly techniques have not been explored so far for this particular phase of the Ω
background.10 In the following we will compute (2.24) stopping at the first order in g in
which the holomorphic ambiguity contributes in the conformal limit. This is dictated by a
reason of simplicity given that the formulae become very large. In appendix E we will give
results up to g = 18, 7, 15 for H0,H1,H2 respectively.

4.1 H0 theory

The SW curve for the deformed H0 theory is

y2 = 4x3 − cx − u . (4.1)

Plugging g2 = c, g3 = u into (2.16) and (2.21) gives

u = c
3
2 E6(q)

3
√

3E4(q)
3
2

, ω1 =
(4E4

3c

) 1
4

, ξ = 3
7
4 E4(q)

9
4

2
1
2 c

5
4 (E2

6 − E3
4)

F1 = 1
12 log

(
c

9
2

E4(q)3 − E6(q)2

E4(q)
9
2

)
, ∆ = 16(c3 − 27u2) . (4.2)

In this case the holomorphic ambiguity takes the form of the first expression in (3.15).
Solving recursively the holomorphic anomaly equation (2.10), one finds the first few terms:

F2 = ξ2

24122

[
5
3E3

2 + 3E6

E4
E2

2−
(
34E3

4 +21E2
6
)

E2
4

E2+h2(q)
]

F3 = ξ4

24124

[
5
6E6

2 + 10E6

E4
E5

2 +
(
16E3

4 +67E2
6
)

2E2
4

E4
2−

(
1465E6E3

4 +147E3
6
)

9E3
4

E3
2

−
(
11897E6

4 +59376E2
6E3

4 +6300E4
6
)

30E4
4

E2
2 +

(
104257E6E3

4 +95565E3
6
)

15E2
4

E2+h3(q)
]

F4 = ξ6

24126

[
1105
1296E9

2 + 865E6

48E4
E8

2 +
(

3589E2
6

24E2
4

+ 2039E4

72

)
E7

2 +
(

41491E3
6

72E3
4

+ 69869E6

216

)
E6

2

+
(

175987E4
6

240E4
4

− 43813E2
6

60E4
− 149791E2

4
720

)
E5

2−
(

76559E5
6

48E5
4

+ 399439E3
6

15E2
4

+ 10250789E4E6

720

)
E4

2

−
(

20125E6
6

4E6
4

+11223703E4
6

120E3
4

+92285669E2
6

1080 +1372051E3
4

270

)
E3

2+
(

154401743E5
6

360E4
4

+576047063E3
6

360E4

+328463299E2
4E6

630

)
E2

2−
(

14652664E6
6

45E5
4

+ 13723519199E4
6

3600E2
4

+ 11480517509E4E2
6

3150

)
E2

−
(

753433829E4
4

3150

)
E2+h4(q)

]
(4.3)

10We also note that the holomorphic anomaly equation for the sphere and the standard topological string
phase (ϵ1 = −ϵ2) is actually the same. What changes are the initial data, i.e. F1, and the gap conditions.
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The ambiguous part is given by

h2 = 1619
15 E6

h3 = −140891E4
6

45E3
4

− 1206371E2
6

90 − 124319E3
4

63 (4.4)

h4 = 26737369E7
6

540E6
4

+ 7883698699E5
6

3600E3
4

+ 21429183673E3
6

4050 + 25632734639E3
4E6

18900

which has been determined by imposing the gap conditions (2.29).

The conformal limit. The theory becomes conformal in the limit c → 0 and fits into the
class A according to (3.2). In this limit τ → eπi/3. Therefore E2, E6 become constants11

and E4 vanishes. More precisely, using (4.2), we find

u ≈
(

56

2933E6

) 1
5

a
6
5 ,

E4 ≈
(

26E4
6

33 54

) 1
5

c a− 4
5 ,

ξ ≈
(

21132

E659

) 1
5

c a− 9
5 . (4.5)

From the above formulae we notice that while both E4 and ξ go to zero in the limit c → 0,
their ratio stays finite and goes like

ξ

E4
≈ 6

5 E6 a
. (4.6)

Keeping only the leading terms in (4.3) and (4.4), and using (4.6), one finds

F2 ≈ − 7 E2
800 a2 ,

F3 ≈ − 7 E2
2

8000 a4 ,

F4 ≈ − 161 E3
2

768000 a6 + 26737369 E6
12960000000 a6 . (4.7)

The above formulae reproduce the result (3.12), with

β = 1 , δ = 3 , γ = 3
10 , κ = E6

E3
2

, x = E2ϵ2

6a2 , (4.8)

and
c0 = 1, c1 = −26737369

28 3 57 . (4.9)

Higher-genus prepotentials Fg can also be computed. Results for the ambiguity coefficients
cn are listed in (E.2). As we can see, the growth of cn is relatively fast. It is likely that the
sum over hypergeometric is divergent. However, a more detailed analysis is needed.

11Their numerical values are E2 ≈ 1.103, E6 ≈ 2.881.
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4.2 H1 theory

The SW curve for the H1 theory deformed by the second-order mass Casimir is

y2 = 4x3 − ux − m2 . (4.10)

In this case g2 = u and g3 = m2 leading to

u = 3E4m
4
3

E
2
3
6

, ω1 =
( 8E6

27m2

) 1
6

, ξ =

√
3
2E

3
2
6

2m(E3
4 − E2

6)

F1 = 1
12 log

(
m6 E3

4 − E2
6

E3
6

)
, ∆ = 16(u3 − 27m4) (4.11)

Here the holomorphic ambiguity takes the form of the second expression in (3.15). Solving
recursively the holomorphic anomaly equation (2.10), one finds the first few terms

F2 = ξ2

24122

[
5
3E3

2 + 3E2
4

E6
E2

2 +
(
−9E4

4
E2

6
−46E4

)
E2+h2(q)

]
(4.12)

F3 = ξ4

24124

[
5
6E6

2 + 10E2
4

E6
E5

2 +
(

63E4
4

2E2
6

+10E4

)
E4

2 +
(

9E6
4

E3
6
− 461E3

4
3E6

− 310E6
9

)
E3

2

+
(
−27E8

4
E4

6
− 7068E5

4
5E2

6
− 6871E2

4
6

)
E2

2 +
(

8289E7
4

5E3
6

+ 9425E4
4

E6
+ 6716E6E4

3

)
E2+h3(q)

]
.

The ambiguous part is given by

h2 = 351E3
4

5E6
+ 566E6

15

h3 = −1112E9
4

9E4
6

− 4842049E6
4

630E2
6

− 3186886E3
4

315 − 12220E2
6

21 (4.13)

which has been determined by imposing the gap conditions (2.29).

The conformal limit. The theory becomes conformal in the limit m → 0 and fits into
the class B according to (3.2). In this limit τ → i. Therefore E2, E4 become constants12

and E6 vanishes. More precisely, using (4.11), we find

u ≈
(

35

210E4

) 1
3

a
4
3

E6 ≈ 32m2E2
4

3 a2

ξ ≈ 64m2

3a3 (4.14)

12Their numerical values are E2 ≈ 0.955, E4 ≈ 1.456.
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From the above formulae we notice that while both E6 and ξ go to zero in the limit m → 0,
their ratio stays finite and goes like

ξ

E6
≈ 2

a E2
4

. (4.15)

Keeping only the leading terms in (4.12) and (4.13), and using (4.15), one finds

F2 ≈ − E2
96 a2

F3 ≈ −243 E2
2 + 1112E4

279936 a4 (4.16)

The above formulae reproduce the result (3.12), with

β = 1 , δ = 2 , γ = 1
2 , κ = E4

E2
2

, x = E2ϵ2

6a2 , (4.17)

and
c0 = 1 , c1 = −139

972 . (4.18)

Higher-genus prepotentials Fg can also be computed. Results for the ambiguity coefficients
cn are listed in (E.3).

4.3 H2 theory

The SW curve for the H2 theory deformed by the second-order mass Casimir is

y2 = 4x3 − m2x − u2 . (4.19)

In this case g2 = m2 and g3 = u2 leading to

u =
√

E6m
3
2

3
3
4 E

3
4
4

, ω1 =
( 4E4

3m2

) 1
4

, ξ = 3
√

2E
3
2
4
√

E6(
E2

6 − E3
4
)

m

F1 = 1
12 log

(E3
4 − E2

6
)

m9

E
9
2
4

+ const , ∆ = 16(m6 − 27u4) (4.20)

Here the holomorphic ambiguity takes again the form of the first expression in (3.15).
Solving recursively (2.10) one finds the first few terms

F2 = ξ2

24122

[
5
3E3

2 + 3E2
4

E6
E2

2 +
(
−3E2

6
E2

4
−52E4

)
E2+h2(q)

]
(4.21)

F3 = ξ4

24124

[
5
6E6

2+
5
(
5E3

4+7E2
6
)

6E4E6
E5

2+
(

2E4
4

E2
6

+185E4

6 +26E2
6

3E2
4

)
E4

2−
(

251E3
4

6E6
+1207E6

9 +19E3
6

6E3
4

)
E3

2

−
(

153E5
4

2E2
6

+9167E2
4

6 +29353E2
6

30E4
+3E4

6
E4

4

)
E2

2+
(

2343E4
4

E6
+277747E6E4

30 +51607E3
6

30E2
4

)
E2+h3(q)

]
F4 = ξ6

24126

[
1105E9

2
1296 +

(
985E2

4
144E6

+ 805E6

72E4

)
E8

2 +
(

445E4
4

36E2
6

+ 8135E4

72 + 3781E2
6

72E2
4

)
E7

2

+
(

11E6
4

4E3
6

+ 54395E3
4

216E6
+ 117511E6

216 + 10921E3
6

108E3
4

)
E6

2 +
(

59E5
4

2E2
6
− 8509E2

4
48 − 4097E2

6
36E4

+ 13583E4
6

240E4
4

)
E5

2
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−
(

99E7
4

2E3
6

+ 1176895E4
4

144E6
+ 9441703E6E4

360 + 1150283E3
6

144E2
4

+ 577E5
6

24E5
4

)
E4

2

−
(

7273E6
4

E2
6

+775503E3
4

10 +97040443E2
6

1080 +15561623E4
6

1080E3
4

− 9E6
6

E6
4

)
E3

2

+
(

13905E8
4

4E3
6

+ 6407761E5
4

18E6
+ 512201711

360 E6E2
4 + 29391479E3

6
40E4

+ 42036497E5
6

1260E4
4

)
E2

2

−
(

160687E7
4

E2
6

+ 10391931E4
4

4 + 385527557
90 E2

6E4+ 8137162319E4
6

8400E2
4

+ 3300704E6
6

315E5
4

)
E2+h4(q)

]
(4.22)

The ambiguous part is given by

h2 = 147E3
4

5E6
+ 1178E6

15

h3 = −3529E6
4

14E2
6

− 1038589E3
4

126 − 6008447E2
6

630 − 150032E4
6

315E3
4

(4.23)

h4 = 63691E9
4

10E3
6

+ 25347539E6
4

30E6
+ 132133663

30 E6E3
4 + 150291551071E3

6
45360

+ 11994210803E5
6

37800E3
4

+ 12428E7
6

27E6
4

which has been determined by imposing the gap conditions (2.29).

The conformal limit. The theory becomes conformal in the limit m → 0 and fits into
the class A according to (3.2). In this limit τ → eπi/3. Therefore E2, E6 become constants13

and E4 vanishes. More precisely, using (4.20), we find

u ≈
( 8

27E6

)1
4

a
3
2

E4 ≈ m2E6
2a2

ξ ≈ 3m2

2a3 (4.24)

From the above formulae we notice that while both E4 and ξ go to zero in the limit m → 0,
their ratio stays finite and goes like

ξ

E4
≈ 3

E6 a
. (4.25)

Keeping only the leading terms in (4.21) and (4.23), and using (4.25), one finds

F2 ≈ − E2
128 a2

F3 ≈ − E2
2

2048 a4

F4 ≈ −243 E3
2 − 12428 E6

2654208 a6 (4.26)

13Their values are clearly the same as in the H0 theory.
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The above formulae reproduce the result (3.12), with

β = 1 , δ = 3 , γ = 3
4 , κ = E6

E3
2

, x = E2ϵ2

6a2 , (4.27)

and
c0 = 1 , c1 = −3107

3072 . (4.28)

Higher-genus prepotentials Fg can also be computed. Results for the ambiguity coefficients
cn are listed in (E.4).

4.4 E6 theory

The SW curve for the E6 theory deformed by the eighth-order mass Casimir is

y2 = 4x3 − m8x − u4 . (4.29)

In this case g2 = m8 and g3 = u4 leading to

u = E
1
4
6 m3

3
3
8 E

3
8
4

, ω1 =
( 4E4

3m8

) 1
4

, ξ = 2
√

2 3
5
8 E

9
8
4 E

3
4
6(

E2
6 − E3

4
)

m

F1 = 1
12 log

(E3
4 − E2

6
)

m36

E
9
2
4

+ const , ∆ = 16(m24 − 27u8) (4.30)

Here the holomorphic ambiguity takes again the form of the first expression in (3.15).
Solving recursively (2.10) one finds the first few terms

F2 = ξ2

24122

[
5E3

2
3 +

(
9E2

4
2E6

− 3E6

2E4

)
E2

2 +
(

6E2
6

E2
4
−61E4

)
E2+h2(q)

]
(4.31)

F3 = ξ4

24124

[
5E6

2
6 +

5
(
5E3

4 +3E2
6
)

E5
2

4E4E6
+
(

39E4
4

4E2
6

+ 115E4

4 + 3E2
6

E2
4

)
E4

2

+

(
81E6

4−4869E2
6E3

4−8165E4
6 + 57E6

6
E3

4

)
E3

2

72E3
6

+
(
−1566E5

4
5E2

6
− 107869E2

4
60 − 474E2

6
E4

− 3E4
6

4E4
4

)
E2

2

+
(
3969E9

4 +562005E2
6E6

4 +957017E4
6E3

4 +75585E6
6
)

E2

120E2
4E3

6
+h3(q)

]

F4 = ξ6

24126

[
1105E9

2
1296 +

(
985E2

4
96E6

+ 745E6

96E4

)
E8

2 +
(

303E4
4

8E2
6

+ 8399E4

72 + 70E2
6

3E2
4

)
E7

2

+
(
19143E9

4 +198654E2
6E6

4 +159643E4
6E3

4 +11244E6
6
)

E6
2

432E3
6E3

4

+
(
27459E12

4 +638676E2
6E9

4−734194E4
6E6

4−547740E6
6E3

4 +25455E8
6
)

E5
2

2880E4
4E4

6

−
(
2599047E12

4 +47027130E2
6E9

4 +64395032E4
6E6

4 +8268330E6
6E3

4−555E8
6
)

E4
2

2880E5
4E3

6

−
(
1954449E15

4 +135004860E12
4 E2

6 +452446390E9
4E4

6 +215240996E6
4E6

6 +12237645E8
6E3

4−540E10
6
)
E3

2

4320E4
6E6

4

– 15 –



J
H
E
P
0
7
(
2
0
2
3
)
1
9
5

+
(
484499421E12

4 +8105065554E2
6E9

4 +13840109482E4
6E6

4 +3239239130E6
6E3

4 +39065765E8
6
)

E2
2

10080E4
4E3

6

−
(
482143347E15

4 +70093473948E2
6E12

4 +394187429578E4
6E9

4 +312678218260E6
6E6

4
)

E2

100800E5
4E4

6

−
(
31095995615E8

6E3
4 +29687000E10

6
)

E2

100800E5
4E4

6
+h4(q)

]
(4.32)

The ambiguous part is given by

h2 = 441E3
4

10E6
+ 383E6

6

h3 = −21909E6
4

20E2
6

− 3426562E3
4

315 − 4063991E2
6

630 − 21205E4
6

252E3
4

(4.33)

h4 = 150204789E9
4

1600E3
6

+ 2879128369E6
4

1400E6
+ 731025235537E6E3

4
151200

+ 166127444801E3
6

90720 + 22522691E5
6

320E3
4

+ 8E7
6

27E6
4

which has been determined by imposing the gap conditions (2.29).

The conformal limit. The theory becomes conformal in the limit m → 0 and fits into
the class A according to (3.2). In this limit τ → eπi/3. Therefore E2, E6 become constants14

and E4 vanishes. More precisely, using (4.30), we find

u ≈ a3

6
√

6E
1
2
6

E4 ≈ 24 33E2
6 m8

a8

ξ ≈ 26 34E6 m8

a9 (4.34)

From the above formulae we notice that while both E4 and ξ go to zero in the limit m → 0,
their ratio stays finite and goes like

ξ

E4
≈ 12

E6 a
. (4.35)

Keeping only the leading terms in (4.31) and (4.33), and using (4.35), one finds

F2 ≈ E2
4a2

F3 ≈ − E2
2

32a4

F4 ≈
(

E3
2

192 + E6
81

)
1
a6 (4.36)

14Their values are clearly the same as in the H0 and H2 theories.
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The above formulae reproduce the result (3.12), with

β = 1 , δ = 3 , γ = 3 , κ = E6
E3

2
, x = E2ϵ2

6a2 , (4.37)

and
c0 = 1 , c1 = −8

3 . (4.38)

Higher-genus prepotentials Fg can also be computed in exactly the same manner as in the
previous examples.

4.5 E7 theory

The SW curve for the E7 theory deformed by the eighteenth-order mass Casimir is

y2 = 4x3 − u3x − m18 . (4.39)

In this case g2 = u3 and g3 = m18 leading to

u = 3
1
3 m4E

1
3
4

E
2
9
6

, ω1 =
√

2
3

E
1
6
6

m3

 , ξ = 3
13
6 E

2
3
4 E

19
18
6

2
3
2 m(E3

4 − E2
6)

F1 = 1
12 log

(
(E3

4 − E2
6)m54

E3
6

)
+ const , ∆ = 16(u9 − 27m36) (4.40)

Here the holomorphic ambiguity takes again the form of the second expression in (3.15).
Solving recursively (2.10) one finds the first few terms

F2 = ξ2

24122

[
5E3

2
3 +

(
E2

4
3E6

+ 8E6

3E4

)
E2

2 +
(

7E4
4

E2
6
−62E4

)
E2+h2(q)

]
(4.41)

F3 = ξ4

24124

[
5E6

2
6 + 10E5

2(17E3
4 +10E2

6)
27E4E6

+E4
2(191E4

4
18E2

6
+ 80E2

6
27E2

4
+ 754E4

27 )

+E3
2(229E6

4−7487E3
4E2

6−7250E4
6)

81E3
6

−E2
2(210E9

4 +142680E6
4E2

6 +577955E3
4E4

6 +101728E6
6)

270E4E4
6

−E2(6905E9
4 +128405E6

4E2
6 +59572E3

4E4
6−2624E6

6)
135E2

4E3
6

+h3(q)
]

(4.42)

The ambiguous part is given by

h2 = −191E3
4

15E6
+ 82E6

15

h3 = −302161E4
6

5184E3
4

− 2294657E3
4

2592 + 230203E2
6

3240 − 1544857E9
4

25920E4
6

(4.43)

(4.44)

which has been determined by imposing the gap conditions (2.29).
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The conformal limit. The theory becomes conformal in the limit m → 0 and fits into
the class B according to (3.2). In this limit τ → i. Therefore E2, E4 become constant15

and E6 vanishes. More precisely, using (4.40), we find

u ≈ 3 a4

210 E4

E6 ≈ 245 E6
4 m18

33 a18

ξ ≈ 246 E4
4 m18

3 a19 (4.45)

From the above formulae we notice that while both E6 and ξ go to zero in the limit m → 0,
their ratio stays finite and goes like

ξ

E6
≈ 18

E2
4 a

. (4.46)

Keeping only the leading terms in (4.41) and (4.43), and using (4.46), one finds

F2 ≈ 21E2
32a2

F3 ≈ −
(

21E2
2

128 + 1544857E4
330598817280

)
1
a4 (4.47)

The above formulae reproduce the result (3.12), with

β = 1 , δ = 2 , γ = 9
2 , κ = E4

E2
2

, x = E2ϵ2

6a2 , (4.48)

and
c0 = 1 , c1 = −4634571

10240 . (4.49)

Higher-genus prepotentials Fg can also be computed in exactly the same manner as in the
previous examples.

4.6 E8 theory

The SW curve for the E8 theory deformed by the twentyth-order mass Casimir is

y2 = 4x3 − m20x − u5 . (4.50)

In this case g2 = m20 and g3 = u5 leading to

u = E
1
5
6 m6

3
3

10 E
3

10
4

, ω1 =

√
2E

1
4
4

3
1
4 m5

 , ξ = 5 3
11
20 E

21
20
4 E

4
5
6√

2m
(
E2

6 − E3
4
)

F1 = 1
12 log

(E3
4 − E2

6
)

m90

E
9
2
4

+ const , ∆ = 16(m60 − 27u10) (4.51)

15Their values are clearly the same as in the H1 theory.
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Here the holomorphic ambiguity takes again the form of the first expression in (3.15).
Solving recursively (2.10) one finds the first few terms

F2 = ξ2

24122

[
5E3

2
3 +

(
24E2

4
5E6

− 9E6

5E4

)
E2

2 +
(

39E2
6

5E2
4
− 314E4

5

)
E2+h2(q)

]
F3 = ξ4

24124

[
5E6

2
6 +

10
(
2E3

4 +E2
6
)

E5
2

3E4E6
+
(

1776E4
4

150E2
6

+ 4088E4

150 + 361E2
6

150E2
4

)
E4

2

+
(
2592E9

4−85236E2
6E6

4−119429E3
4E4

6 +573E6
6
)

E3
2

1125E3
6E3

4
−
(
−307080E5

4
750E2

6
+ 1603513E2

4
750 − 468E4

6
750E4

4

)
E2

2

+
(

373864E2
6

750E4

)
E2

2−
(
−13392E9

4 +705816E2
6E6

4 +1812719E4
6E3

4 +165107E6
6
)

E2

1875E2
4E3

6
+h3(q)

]
(4.52)

F4 = ξ6

24126

[
1105E9

2
1296 +

(
197E2

4
18E6

+ 745E6

96E4

)
E8

2 +
(

80144E4
4

1800E2
6

+ 205727E4

1800 + 34279E2
6

1800E2
4

)
E7

2

+
(
1660608E9

4 +13257736E2
6E6

4 +495277E4
6E3

4 +11244E6
6
)

E6
2

27000E3
6E3

4

+
(
8688384E12

4 +117129744E2
6E9

4−201837711E4
6E6

4−104795596E6
6E3

4 +2173929E8
6
)

E5
2

450000E4
4E4

6

−
(
120661632E12

4 +1894444360E2
6E9

4 +2294021113E4
6E6

4 +241621016E6
6E3

4−1371E8
6
)

E4
2

2880E4
4E4

6
+ 39E6

6 E3
2

500E6
4

−
(
657891072E12

4 +43610234472E9
4E2

6 +155402608452E6
4E4

6 +70330783117E3
4E6

6 +2529429287E8
6
)

E3
2

675000E4
6E3

4

−
(
211652806254E9

4 +3413887736674E2
6E6

4 +5487101754954E4
6E3

4 +1215593719179E6
6
)

E2
2

42525000E4E3
6

+ +2142744527E5
6E2

2
6075000E4

4
+
(
2590531017336E10

4 +248754470552736E2
6E7

4 +1207090705967416E4
6E4

4
)

E2

425250000E4
6

+35035331393449E2
6E4E2

8859375 +
(
70923207769701E8

6E3
4 +31893238160E10

6
)

E2

425250000E5
4E4

6
+h4(q)

]
(4.53)

The ambiguous part is given by

h2 = 124E3
4

25E6
− 917E6

75

h3 = 21308148037E3
4

2835000 + 11593299743E2
6

2835000 + 56925211E4
6

1215000E3
4

+ 7183179683E6
4

8505000E2
6

h4 = −392331535221859E3
6

273375000 − 460255802444281E6E3
4

1913625000 − 8109292812051391E6
4

3827250000E6

− 460255802444281E9
4

3827250000E3
6

− 12356384824399E5
6

273375000E3
4

+ 4482151319E7
6

109350000E6
4

(4.54)

which has been determined by imposing the gap conditions (2.29).

The conformal limit. The theory becomes conformal in the limit m → 0 and fits into
the class A according to (3.2). In this limit τ → eπi/3. Therefore E2, E6 become constants
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and E4 vanishes. More precisely, using (4.51), we find

u ≈ a6

29 33 E6

E4 ≈ 39 230 E4
6 m20

a20

ξ ≈ 5 231 310 E3
6 m20

a21 (4.55)

From the above formulae we notice that while both E4 and ξ go to zero in the limit m → 0,
their ratio stays finite and goes like

ξ

E4
≈ 30

E6 a
. (4.56)

Keeping only the leading terms in (4.52), (4.53) and (4.54), and using (4.56), one finds

F2 ≈ 65E2
32a2

F3 ≈ −65E2
2

64a4

F4 ≈
(

1625E3
2

2048 + 22410756595E6
53747712

)
1
a6 (4.57)

The above formulae reproduce the result (3.12), with

β = 1 , δ = 3 , γ = 15
2 , κ = E6

E3
2

, x = E2ϵ2

6a2 , (4.58)

and
c0 = 1 , c1 = 22410756595

248832 . (4.59)

Higher-genus prepotentials Fg can also be computed in exactly the same manner as in the
previous examples.

5 NS limit: β = 0

In this section we consider the NS limit ϵ1 → 0, i.e. β → 0 [76]. In this limit the prepotential
takes the form

F =
∑
g=0

ϵ2g
2 Fg (5.1)

where
Fg = F0,g = lim

β→0
β2g Fg(β) (5.2)

The holomorphic anomaly (2.9) for F̂ = F − F0 becomes

∂E2F̂ = 1
24
(
∂aF̂

)2
(5.3)
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or equivalently, using (5.1),

∂E2F̂g = 1
24

g−1∑
g′=1

∂aF̂g′∂aF̂g−g′ (5.4)

This equation allows to compute all F̂g terms recursively starting from F1, given in (2.18).
Sending β → 0 and using (2.17), we get

F̂1 = 1
24 log 1024(E3

4 − E2
6)

27ω12
1

≈
m→0

γ̃ log
(

a

ϵ2

)
+ const (5.5)

with
γ̃ = lim

β→0
β2γ = d − 1

2 . (5.6)

Equation (5.4) has been extensively studied in the context of the WKB expansion
for a certain class of quantum mechanical operators corresponding to AD theories with
some deformations [74, 75, 83–85]. See also [32, 86–89] for other works relating WKB and
non-lagrangian theories.

Here we are interested in the conformal limit where such deformationss are turned off.
From the point of view of quantum mechanics this corresponds to having a potential with a
single term of the form V (x) = xn, n ≥ 3. Parallel to (3.10) we make the following Ansatz
to capture the conformal limit16

ϵ−2
1 F = γ̃

2 log (E2) +
∑
n≥0

(
E2δ

Eδ
2

)n

fn(x) , x = E2ϵ2
2

6a2 . (5.7)

Equation (5.3) can then be solved order by order in E2δ. At zero order we have17

γ̃ − 2x3f ′
0(x)2 + 2xf ′

0(x) = 0 (5.8)

where the boundary conditions are chosen such that the solution does not have negative
power-like behavior as x → 0. This gives

f0(x) =
√

2γ̃x + 1 − xγ̃ log
(

γ̃x+
√

2γ̃x+1+1
γ̃x

)
− 1

2x
. (5.9)

At the first order in E2δ, (5.3) gives

x
(
2x2f ′

0(x) − 1
)

f ′
1(x) + δf1(x) = 0 . (5.10)

Using (5.9) we obtain

f1(x) = c1

(
γ̃x −

√
2γ̃x + 1 + 1
γ̃x

)δ

, (5.11)

16Recall that F in this paper is defined up to a multiplicative constant.
17We recall that in this conformal limit a and E2 can be treated as independent variables.
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where c1 is the integration constant. Likewise, at second order we find

f2(x) =
(

γx −
√

2γx + 1 + 1
γx

)2δ (
c2 − c2

1
δ2

γ
√

2γx + 1

)
(5.12)

where c2 is the integration constant and c1 is as in (5.11). In principle higher-order fn

terms can also be obtained in a similar manner. However, in contrast to the case of finite β,
when β = 0 we do not have a general form for fn. The value of the integration constants cn

is fixed by the holomorphic ambiguity.

The example of H0. Let us spell out some detail for the case of H0. The starting
point of the recursion is given in (5.5), where m is the relevant coupling c5/4. The special
geometry relations are as in (4.2) and we have γ̃ = 1/10, δ = 3. The ambiguity is of the
form (3.15) (first line) and the gap condition is given in (2.30). Using these initial conditions
and running the equation (5.3), we obtain

F2 = 1
24 122 ξ2

[
E2E2

6
3456E2

4
+h2(q)

]

F3 = 1
24 124 ξ4

[
− E3

2E3
6

4458050224128E3
4
−E2

2
(
6E3

4E2
6 +5E4

6
)

1486016741376E4
4
−E2

(
474E3

4E6+1427E3
6
)

7430083706880E2
4

+h3(q)
]

F4 = 1
24 124 ξ4

[
E5

2E4
6

739537035580145664E4
4

+ E4
2
(
24E3

4E3
6 +23E5

6
)

739537035580145664E5
4

+ E2
2
(
5688E6

4E6+55638E3
4E3

6 +47141E5
6
)

1848842588950364160E4
4

+ E3
2
(
2502E6

4E2
6 +8011E3

4E4
6 +1250E6

6
)

5546527766851092480E6
4

+E2
(
1572732E9

4 +95314012E6
4E2

6 +199451203E3
4E4

6 +24620960E6
6
)

129418981226525491200E5
4

+h4(q)
]

(5.13)
with

ξ = 3
7
4 E

9
4
4

2
1
2 c

5
4 (E2

6 − E3
4)

, (5.14)

and

h2 = 79E6
5

h3 = − 21983E4
6

22290251120640E3
4
− 5611E3

4
8668430991360 − 47731E2

6
11145125560320

h4 = 8670019E7
6

19412847183978823680E6
4

+ 382204771E5
6

18488425889503641600E3
4

+ 107731843E3
4E6

8088686326657843200 + 706159453E3
6

13866319417127731200 .

(5.15)

– 22 –



J
H
E
P
0
7
(
2
0
2
3
)
1
9
5

The results perfectly agree with those obtained in [74]. The conformal limit c → 0 can be
computed using (4.5) and (4.6), and gives

F̂ ≈ log(a)
10 + E2

2400a2 −
E2

2
288000a4 + 4375E3

2 +8670019E6
90720000000a6

− 34680076E2E6+6125E4
2

7257600000000a8 + 26010057E2
2E6+2450E5

2
145152000000000a10

− 8523712429375E3
2E6+516140625E6

2 +261612601805031778E2
6

1401079680000000000000a12

+ 155131566214625E4
2E6+14661054900894611191E2E2

6 +6709828125E7
2

784604620800000000000000a14 +O

( 1
a16

)
.

(5.16)
This agrees with (5.7) for

c1 = 8670019
52500 , c2 =−1458581050220478983

2627625000 . (5.17)

6 Outlook

This paper exploits the holomorphic anomaly equation to compute the partition function
of intrinsically strongly coupled SCFT’s with eight supercharges living on a generic Ω-
background. We studied one-parameter deformations of such theories allowing for an
exact integration of the anomaly equation, order by order in the ϵ expansion of the Ω-
deformed prepotential. Within this framework, we observed important simplifications at the
conformal point. The Ω-deformed prepotential is given by the elegant formula (1.1) in terms
of hypergeometric functions, with coefficients cn determined by the gap conditions. It would
be interesting to understand whether this non-trivial re-organization of the ϵ expansion of
the partition function can improve the precision in the computation of extremal correlators
made in [45, 62], and shed light on the analytic structure of the exact answer. We will
report on this in [90].

In the NS phase of the Ω background (ϵ1 = 0), we show that (1.1) undergo a non-
trivial re-organization in which the hypergeometric functions become simpler functions,
see e.g (5.9) and (5.11). This results are relevant for the study of quantum periods of
anharmonic oscillators. We will report more on this in [90].
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A SW curves for SQCD

In this appendix we review the SQCD/AD dictionary for SW curves. The SW curves for
a SU(2) gauge theory with 0 < Nf < 4 hypermultiplets transforming in the fundamental
representation of the gauge group are given by

ŷ2 + ŷP (x) + q

Nf∏
i=1

(x − mi) = 0 (A.1)

with q = Λ4−Nf /4 and

P (x) =


x2 − u Nf = 1 ,

x2 − u + q Nf = 2 ,

x2 − u + q(x −
∑

i mi) Nf = 3 .

(A.2)

is chosen in such a way that u = 1
2trφ2. The periods of the holomorphic one-form are

∂a(u)
∂u

= 1
2πi

∮
α

dx

w(x) ,
∂aD(u)

∂u
= 1

2πi

∮
β

dx

w(x) (A.3)

with

w(x)2 = d0

4∏
i=1

(x − ei) =
4∑

i=0
dix

4−i = P (x)2 − 4q

Nf∏
i=1

(x − mi) (A.4)

The quantum correlator of the gauge theory can be obtained from the large x-expansion of
the SW differential

−2πiλ = x
d log ŷ(x)

dx
≈

∞∑
n=0

⟨trφn⟩
xn

≈ 2 + 2u

x2 + . . . (A.5)

leading to u = 1
2trφ2. To write the elliptic curve (A.4) into the Weierstrass form, we

introduce the variables (y, z) related to (w, x) via
1

x − e4
= z

ν
+ δ , w = i ν y

2(z + νδ)2 (A.6)

with

ν = d0

3∏
i=1

(ei − e4) , δ = 1
3
∑ 1

ei − e4
(A.7)

In the new variables the SW curve takes the Weierstrass form

y2 = 4z3 − g2z − g3 (A.8)

with

g2 = 4d2
2

3 − 4d1d3 + 16d0d4

g3 = 8d3
2

27 − 4
3d1d3d2 −

32d0d2d4
3 + 4d2

3d0 + 4d2
1d4 (A.9)

Finally the discriminant of the Weierstrass is given by

∆ = 16(g3
2 − 27g2

3) (A.10)

– 24 –



J
H
E
P
0
7
(
2
0
2
3
)
1
9
5

A.1 H0 theory

The AD H0 theory can be obtained by tuning the parameters spanning the moduli space of
SU(2) with Nf = 1 fundamental flavors. For Nf = 1, the elliptic curve is given by

y2 = 4z3 − g2z − g3 (A.11)

with

g2 = 64u2

3 + 16Λ3m

g3 = 512u3

27 + 64
3 Λ3mu + 4Λ6 (A.12)

The AD point is obtained by taking

u = 3Λ2

4 + uAD
Λ

4
5

4 − cAD
Λ

6
5

4 , m = −3Λ
4 + cAD

Λ
1
5

4
z = z̃Λ

8
5 , y = ỹΛ

12
5 (A.13)

and keeping the leading order in uAD, cAD → 0. This leads to

ỹ2 = 4z̃3 + 4cADz̃ − 4uAD (A.14)

The same SW curve can be obtained from the quartic expression

w2 = z8
( 1

z7 + cAD
z5 + uAD

z4

)
, (A.15)

where the SW differential is given by [91] (see also [92] for a review)

λ = w

z4 dz (A.16)

A.2 H1 theory

The AD H1 theory can be obtained by tuning the parameters spanning the moduli space of
SU(2) with Nf = 2 flavors transforming in the fundamental representation of the gauge
group. The elliptic curve is given by

y2 = 4z3 − g2z − g3 (A.17)

with

g2 = 4
3
(
Λ2
(
Λ2 + 12µ2 − 12m2

)
+ 16u2 − 4Λ2u

)
g3 = 8

27
(
Λ4
(
Λ2 + 18µ2 + 36m2

)
− 6Λ2u

(
Λ2 − 12µ2 + 12m2

)
+ 64u3 − 24Λ2u2

)
with m = 1

2(m1 + m2), µ = 1
2(m1 − m2). The AD point is obtained by taking

u = Λ2

2 + Λ
2
3 uAD + Λµ − Λ

4
3

4 c , m = Λ
2 − Λ

1
3

4 c

z = z̃Λ
4
3 , y = ỹΛ2 (A.18)
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and taking uAD, c and µ small

ỹ2 = 4z̃3 − 4
(

4uAD + c2

3

)
z̃ − 4

( 2
27c3 − 8

3c uAD + µ2
)

(A.19)

The same curve is obtained starting from the standard H1 quartic form

w2 = z8
( 1

z8 + c

z6 + µ

z5 + uAD
z4

)
(A.20)

A.3 H2 theory

The AD H2 theory can be obtained by tuning the parameters spanning the moduli space of
SU(2) with Nf = 3 flavors transforming in the fundamental representation of the gauge
group. The elliptic curve is given by

y2 = 4z3 − g2z − g3 (A.21)

g2 = 64u2

3 +8Λ
3
(
2C3−3C2m+6m

(
m2+u

))
+Λ2

(
C2+6m2−4u

3

)
−Λ3m

2 + Λ4

192

g3 = 512u3

27 +32
9 Λu

(
2C3+6m

(
m2+u

)
−3C2m

)
− Λ5m

96 + Λ6

13824

+ Λ2
(

C2
2 − 4C2m2 − 16C3m

3 − 8C2u

3 + 20m4 + 20u2

9

)
(A.22)

+ Λ3

18
(
−21C2m + 2C3 − 30m3 + 30mu

)
+ Λ4

144
(
3C2 + 54m2 − 4u

)
with

m = 1
3
∑

i

mi , C2 =
∑

i

(mi − m)2 C3 =
∑

i

(mi − m)3 (A.23)

The AD point is obtained by taking

u = 5Λ2

64 − Λ
1
2

(
uAD + c3

24

)
+ 3Λ

3
2

16 c + Λ
16c2 , m = −Λ

8 − Λ
1
2

4 c

z = z̃Λ , y = ỹΛ
3
2 (A.24)

and taking uAD, c and C2, C3 small

ỹ2 = 4z̃3 + z̃

(
4cuAD + c4

12 − 2C2

)
− 4u2

AD + c6

432 − c2C2
6 − 4C3

3 (A.25)

The same curve is obtained starting from the standard H2 quartic form

w2 = z6
(

1
z6 + c

z5 + µ

z4 + uAD
z3 + M2

z2

)
(A.26)

after the identification

C2 = 1
24
(
c4 + 16µ2 + 192M2 − 8µc2

)
C3 = 1

288
(
64µ3 − c6 − 24c2µ2 + 576c2M2 − 2304µM2 + 12c4µ − 24c2µ2

)
(A.27)
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B Modular functions

In this section we collect some definitions and useful modular identities. The Eisenstein
series are defined as

Ek(q) = 1 + 2
ζ(1 − k)

∞∑
n=1

nk−1q2n

1 − q2n
(B.1)

A basis of modular forms is given by E4, E6 and the quasi-modular form E2. They are
related to the theta functions via

E4 = 1
2(θ8

2 + θ8
3 + θ8

4)

E2
6 = 1

8
[
(θ8

2 + θ8
3 + θ8

4)3 − 54 28 η24
]

E2 = 12q∂q log η(q) (B.2)

We introduce the functions

K2 = θ4
3 + θ4

4 , L2 = θ4
2 (B.3)

Under S-duality they transform as

K2(−1/τ) = −τ2 K2(τ) + 3L2(τ)
2

L2(−1/τ) = −τ2 K2(τ) − L2(τ)
2 (B.4)

whereas under T -duality they transform as

K2(τ + 1) = K2(τ)
L2(τ + 1) = −L2(τ) (B.5)

In terms of these variables the Eisenstein series read

E4 = K2
2 + 3L2

2
4 , E6 = K2(K2

2 − 9L2
2)

8 (B.6)

C c-deformation of H1

In this appendix we work at β = 1 and consider a deformation of H1 obtained by turning
on the IR-relevant coupling c. The SW curve is now described by a cubic curve with

g2 = u , g3 = c u − 4c3 (C.1)

and discriminant
∆ = 16(u − 3c2)(u − 12c2)2 (C.2)

We notice that we have now two monopole points u = 3c2 and u = 12c2. It is convenient in
this case to introduce the modular functions K2 and L2 related to E4 and E6 via

E4 = K2
2 + 3L2

2
4 , E6 = K2(K2

2 − 9L2
2)

8 (C.3)
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Plugging this into (2.16) and solving for ω1 and u one finds three inequivalent solutions

u = 3c2
(

1 + 3L2
2

K2
2

)
, ω1 = i

√
K2
3c

u = 12c2 (K2
2 + 3L2

2
)

(K2 − 3L2)2 , ω1 = i
√

3L2 − K2√
6
√

c

u = 12c2 (K2
2 + 3L2

2
)

(K2 + 3L2)2 , ω1 = −i
√
−K2 − 3L2√

6
√

c
. (C.4)

These solutions correspond to three different duality frames related by S, T transforma-
tions (B.4), (B.5). In order to make contact with the results derived in section 4.2 for the
mass-deformed H1 theory, we choose the duality frame given by the second line in (C.4).
To make formulae simpler, it is convenient to define

K̂2 ≡ −K2 − 3L2
2 , L̂2 ≡ −K2 + L2

2 , (C.5)

which correspond to the ST transformations of K2 and L2 respectively. This leads to

F1 = 1
12 log

(
c9 L̂2

2(L̂2
2 − K̂2

2 )2

K̂9
2

)
, ξ = 2

i
K̂

5
2
2√

27c3L̂2
2(K̂2

2 − L̂2
2)

(C.6)

Likewise we define uD, ω1D = daD/du, FD
g by the same formulae (C.4) replacing K2 → K̂2

and L2 → L̂2.
The holomorphic ambiguity for the theory has the following form (see [74])

hg =
3g−4∑
i=0

L̂2i
2 K̂

3(g−1)−2i
2 hg,i (C.7)

with coefficients hg,i determined by requiring that both Fg and FD
g satisfy the gap conditions

when a → 0 and aD → 0 respectively, i.e. q → 0 or qD → 0. Solving recursively, the
holomorphic anomaly equation (2.10) one finds the first few terms

F2 = ξ2

243

5E3
2

3 +
3E2

2

(
K̂2

2 + L̂2
2

)
2K̂2

+ E2

(
−81L̂4

2
4K̂2

2
− 55K̂2

2
4 + 15L̂2

2

)
+ h2(q)


F3 = ξ4

245

(
5E6

2
6 + E5

2

(
5K̂2 −

20L̂2
2

3K̂2

)
+ E4

2

(
59L̂4

2
8K̂2

2
+ 83K̂2

2
8 − 263L̂2

2
12

)

+ E3
2

(
447L̂6

2
8K̂3

2
− 403K̂3

2
18 − 77L̂4

2
2K̂2

+ 465K̂2L̂2
2

8

)
+ h3(q)

+
E2
(
199822K̂8

2 − 779495K̂6
2 L̂2

2 + 1133751K̂4
2 L̂4

2 − 801225K̂2
2 L̂6

2 − 376245L̂8
2

)
480K̂3

2

−
E2

2

(
77573K̂8

2 − 254926K̂6
2 L̂2

2 + 292815K̂4
2 L̂4

2 − 129600K̂2
2 L̂6

2 + 65610L̂8
2

)
480K̂4

2

 (C.8)
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where

h2 = 1619K̂3
2

120 − 279L̂4
2

8K̂2
− 111K̂2L̂2

2
4 (C.9)

h3 = −11660261K̂6
2

40320 − 3753L̂10
2

8K̂4
2

+ 20885K̂4
2 L̂2

2
16 − 303615L̂8

2
128K̂2

2
− 733469K̂2

2 L̂4
2

320

+ 31887L̂6
2

16 (C.10)

These are such that

FD
g = (−1)g−122g−1 B2g

2g(1 − g)
1

a2g−1
D

+ O(a0
D)

Fg = (−1)g−122g−2 B2g

2g(1 − g)
1

a2g−1 + O(a0) . (C.11)

The conformal limit. This is a theory of type B, hence τ∗ = i at the conformal point.
In particular at this point both L2 and K2 are finite with

K2
∣∣∣
τ=i

= 3L2
∣∣∣
τ=i

, L2
∣∣∣
τ=i

= 31/2√E4
∣∣∣
τ=i

(C.12)

and

a ≈ 32i
√

2c3/2K2
2

27
(
L2 − K2

3

)3/2 + 4i
√

2c3/2(6E2 + 4K2)

9
√

L2 − K2
3

+ O

√L2 −
K2
3

 (C.13)

as well as

F2 ≈− E2
96a2 , F3 ≈

(
− E2

2
1152−

139E4
34992

)
1
a4 , F4 ≈ −E2

(
7533E2

2 +106752E4
)

40310784a6 ,

F5 ≈
−597051E4

2−17173728E2
2E4−44454429E2

4
8707129344a8 , . . .

(C.14)
which agrees with the results of section 4.2. This provides an explicitly test that the
conformal limit is independent of the deformation we perform.

D SQCDNf =3 at the conformal point

The SW curve of SQCD with Nf = 3 flavors of equal mass m = −Λ
8 is described by a curve

in the Weirstrass form with

g2 = 1
192

(
64u − 5Λ2

)2
, g3 =

(
64u − 5Λ2)2 (17Λ2 + 128u

)
27648

∆ = −Λ2 (64u − 5Λ2)4 (7Λ2 + 256u
)

65536 (D.1)

For this choice, formula (2.16) can be explicitly solved and one finds

u = −
Λ2
(
17 E

3/2
4 + 10E6

)
128

(
E

3/2
4 − E6

) , ξ =
16
√

2
3

(
E

3/2
4 − E6

)
3Λ(E3/2

4 + E6)
(D.2)
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and

F1 = 1
12 log

Λ18E9
4

(
E

3/2
4 + E6

)
(
E

3/2
4 − E6

)8

 (D.3)

Plugging this into the anomaly equation, one finds for the first few gravitational corrections
at β = 1

F2 = ξ2

24122

5E3
2

3 +
3E2

2

(
3E

3/2
4 +4E6

)
E4

−
E2

(
−36E

3/2
4 E6+7E3

4+12E2
6

)
E2

4
+h2(q)


F3 = ξ4

24124

[
5E6

2
6 +

(5E6

E4
−5E

1
2
4

)
E5

2−
(

8E2
6

E2
4

+49E6

E
1
2
4

−E4

2

)
E4

2

+
(

68E3
6

3E3
4

+48E2
6

E
3
2
4

−520E6

9 +96E
3
2
4

)
E3

2−
(

48E4
6

E4
4

+144E3
6

E
5
2
4

+482E2
6

E4
−7108

5 E
1
2
4 E6+4669e2

4
6

)
E2

2

+
(

12E3
6

E2
4

− 9676E2
6

5E
1
2
4

+ 101773E4E6

15 − 22947E
5
2
4

5

)
E2+h3(q)

]

F4 = ξ6

24126

[
1105E9

2
1296 +E8

2

(
5E6

E4
− 625

√
E4

48

)
+

E7
2

(
−3543E

3/2
4 E6+3130E3

4 −270E2
6

)
36E2

4

+ 1
108E6

2

(
9912E2

6

E
3/2
4

−31530E
3/2
4 + 2448E3

6
E3

4
+73105E6

)

+
E5

2

(
128520E

3/2
4 E3

6 +232890E
9/2
4 E6+172505E6

4 +235218E3
4E2

6 +27480E4
6

)
360E4

4

+
E4

2

(
442080E

3/2
4 E4

6 +2633742E
9/2
4 E2

6 +5296335E
15/2
4 −7947226E6

4E6+939180E3
4E3

6 +94080E5
6

)
360E5

4
+

E2
2

(
2372448E

3/2
4 E4

6 −696242070E
9/2
4 E2

6 −897505518E
15/2
4 +1568619971E6

4E6+52768708E3
4E3

6 +733600E5
6

)
1260E4

4

− E3
2

540E6
4

(
1555200E

3/2
4 E5

6 +2157384E
9/2
4 E3

6−54053697E
15/2
4 E6+27173594E9

4 +20978368E6
4E2

6

+3306360E3
4E4

6 +311040E6
6
)

− E2

25200E5
4

(
512517120E

3/2
4 E5

6−3951672720E
9/2
4 E3

6−95049030780E
15/2
4 E6+53185189825E9

4

+49201422412E6
4E2

6 +1174650320E3
4E4

6 +92288000E6
6
)

+h4(q)
]

(D.4)

The ambiguous part is given by

h2 = 1106E6
15 − 171E

3
2
4

5

h3 = −1648E4
6

9E3
4

− 24144E3
6

35E
3/2
4

− 1234978E2
6

315 + 292119
35 E

3
2
4 E6 −

850279E3
4

126

h4 = 795392E7
6

27E6
4

+ 2311168E6
6

15E
9/2
4

+ 13813852E5
6

45E3
4

+ 79514072E4
6

315E
3/2
4

+ 9197665261E3
6

28350

− 3057458963E
3/2
4 E2

6
1260 + 15201332353E3

4E6
3780 − 3669761651E

9/2
4

1680 (D.5)
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The conformal limit. This is a theory of type A, hence τ∗ = e
πi
3 . By perturbing around

this point we get

a ≈ 9
√

3E4
8
√

E6
(D.6)

and
F2 ≈ − E2

128a2 F3 ≈ − E2
2

2048a4

F4 ≈ 3107E6
663552a6 − 3E3

2
32768a6 F5 ≈ 34177E2E6

5308416a8 − 97E4
2

3145728a8

...

(D.7)

These can be resummed using the hypergeometric functions (3.12) and in agreement
with (4.28). This provides an explicitly test that the conformal limit is independent of the
deformation we perform.

E Holomorphic ambiguities for H0, H1, H2 at β = 1

The holomorphic anomaly equation determines Ẑ(a, β) up to the E2-independent part
of (3.12), i.e.

Ẑ(a, β)|E2→0 =
∞∑

n=0
cn

(
−ϵ1ϵ2

6a2

)nδ−γ
2

En
2δ . (E.1)

In this appendix we list the first few cn coefficients at β = 1 for the three AD theories we
analyzed in this paper.

H0.
c2 = −3411230845030961039

21732514 ,

c3 = −11228416395151247860243314067849
22534521 ,

c4 = −336921369293660561201677735133941404089137439
23535528 ,

c5 = −54446679876958884558177953879909686803701101902116733352249
24336536 . (E.2)

These coefficients determine the behavior of fg in (3.9) up to g = 18.

H1.
c2 = −399471589

60466176 ,

c3 = −231844286893415
176319369216 (E.3)

These coefficients determine the behavior of fg in (3.9) up to g = 7.

H2.
c2 = −23495274215

22132 ,

c3 = −4120670292728086475
23134 ,

c4 = −6480114817503034769242602575
24335 . (E.4)

These coefficients determine the behavior of fg in (3.9) up to g = 15.
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