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1 Introduction

The main subject of this note is a class of four-dimensional holomorphic quantum field
theories which emerge from the holomorphic twist of N = 1 supersymmetric gauge theo-
ries [1, 2] (see also [3–5]). Local operators in these holomorphic theories are endowed with
the structure of a holomorphic factorization algebra: a higher-dimensional analogue of the
vertex algebras which occur in two-dimensional holomorphic theories [6–9].

The holomorphic factorization algebra includes a BRST differential as well as a col-
lection of operations defined with the help of a descent procedure [10, 11]. A companion
paper [12] proposes a perturbative Feynman diagram expansion for these structures.1 As
usual, the contribution of a Feynman diagram combines theory-specific combinatorial data,
such as field content and a collection of interaction vertices, with some universal Feynman
integrals. In this paper we study these integrals in detail.

The operations which arise from the factorization algebra satisfy certain associativity
axioms. For example, the BRST differential should be nilpotent. One of our main results
is to derive an infinite collection of quadratic relations which are satisfied by the Feynman
integrals under consideration. These relations imply that the integrals do indeed provide
the coefficients for a well-defined factorization algebra structure, as long as the interactions
satisfy a collection of anomaly-cancellation conditions.

The separation of the factorization algebra data into theory-specific combinatorial
structures and universal coefficients which satisfy appropriate quadratic relations is strongly
analogous to what happens in two-dimensional TQFT examples [13–15] which inspired
much of our analysis. Although the details are different, the quadratic relations in this
paper and in these works follow from the same underlying geometric structure, which we
dub the “Operatope.”

As a bonus, we will find evidence that the quadratic relations can be employed to
evaluate the Feynman integrals recursively, providing an alternative to direct integration.
Although the details of our analysis are specific to four-dimensional holomorphic systems,
our computational strategy applies to a wider class of examples.

The Feynman diagrams which we study in this note have the following noteworthy
features:

• The external momenta associated to a vertex v, which we will often denote as λv, are
purely holomorphic.

• The arguments of the position space propagators, labelled by edges e of a graph,
include certain extra holomorphic shifts ze. In applications, these allow us to study
local operators which are formally bi-local or multi-local as functions of the holomor-
phic coordinates and play the role of generating functions for infinite towers of local
operators built out of an arbitrary number of holomorphic derivatives.

1An alternative perspective is that the Feynman integrals simply compute the holomorphic factorization
algebra structure for the free theory. Indeed, the factorization algebra includes infinite towers of operations
which control the perturbative deformation of the algebra itself.
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• The superfields we employ can be canonically identified with differential forms, as the
superspace coordinates have the same quantum numbers as the anti-holomorphic co-
ordinates on spacetime. As a consequence, manipulations involving supergraphs map
to standard manipulations of differential forms. In particular, the equations of mo-
tion involve the ∂̄ differential operator acting on forms, and the (super-)propagators
invert ∂̄.

• The Feynman diagrams we are interested in involve a sum over all possible ways to
“cut” a propagator in a more conventional Feynman diagram, by acting with ∂̄ on it.
We implement and simplify this sum using a trick involving differential forms on the
space of Schwinger parameters.

• Although we need IR and UV regulators at intermediate steps of the calculation, the
final answer is finite and does not require counterterms.

We denote the final answer associated to a given Feynman graph Γ as IΓ(λv; ze). This
should be interpreted as a generating function, i.e. we are interested in the coefficients of
the expansion of IΓ(λv; ze) as a power series in z and λ.

The quadratic relations we derive are also labelled by a graph Γ. They involve a sum
over all possible ways to obtain Γ by “nesting” a Feynman diagram Γ[S] inside a second
Feynman diagram Γ(S). Here S denotes a collection of vertices of Γ which induce the
subgraph Γ[S], and can be collapsed to obtain Γ(S). The relations take the schematic form

∑
S

σ(Γ, S) IΓ[S][λ+ ∂z′ ; z] IΓ(S)[λ′; z′] = 0 . (1.1)

The precise meaning of these terms will be explained in section 3.

1.1 Structure of the paper

Section 2 contains the definition of the integrand and integration contour for the Feyn-
man diagrams, as well as a coordinate change which trivializes the integrand and makes
the integral manifestly finite at the price of making the integration region complicated.
Section 3 derives a geometric identity satisfied by the integration regions which implies
an infinite collection of quadratic relations for the integrals. Section 4 contains examples
of calculations up to three loops. We demonstrate the use of the quadratic relations to
bootstrap higher loop answers from the explicit 1-loop integral. Section 5 briefly discusses
how the Feynman integrals appear in factorization algebra operations. Section 6 discusses
analogous calculations for other dimensions and twists. Appendix A collects some extra
details on the calculation of the 1-loop triangle Feynman diagram. Appendix B discusses
the gauge dependence of our Feynman integrals.

2 Definitions and properties of Feynman diagrams

In this section, we introduce the basic ingredients which are required to build the relevant
Feynman diagrams for our analysis. We also detail their basic properties. We start by
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studying the propagator and its “cut” form, and combine them to make the integrand
manifestly UV-finite. A judicious change of variables then maps the integral to the Fourier
transform of a complicated curvilinear polytope in the space of holomorphic loop momenta,
a.k.a. the Operatope. This sets the stage for a recursive “bootstrap” approach for their
calculation in section 3. We refer the reader to our companion paper [12] for a full derivation
of the Feynman diagrams we introduce in this section.

2.1 Basic definitions

Very schematically, the superfields φa of the holomorphic theory are functions of a super-
space with coordinates (xα, x̄α, dx̄α): these are holomorphic and anti-holomorphic coor-
dinates on R4 as well as odd coordinates dx̄α. They are thus identified with differential
forms with anti-holomorphic indices only. The free equations of motion take the form
∂̄φa = 0, and the superspace propagator can be taken to be proportional to the Bochner-
Martinelli kernel

P (x, x̄, dx̄) ≡ x̄2dx̄1 − x̄1dx̄2

|x|4
, (2.1)

where |x|2 = x1 x1+x2 x2. The propagator is the Green’s function for ∂ = dx1 ∂
∂x1 +dx2 ∂

∂x2 ,
i.e. we have

∂P (x, x̄, dx̄) = π2dx1dx2δ4(x) . (2.2)

Momentarily, we will introduce a UV-regulated version Pε(x, x̄, dx̄) of the propagator with
a smeared source.

The Feynman graph2 Γ, represents the pattern of Wick contractions in a given cal-
culation: each vertex represents an operator of the theory (which may be the interaction
Lagrangian), and each edge represents a contraction leading to a propagator factor. As the
propagator is a 1-form, the overall sign of a product of propagators will depend on the order
in which we multiply them. Henceforth, all occurrences of a graph Γ will come equipped
with some choice of relative order among the edges, so that a permutation of the order of
the edges of a graph will change the sign of IΓ(λv; ze) by the sign of the permutation.

In addition, we will denote the set of edges and vertices of the graph by Γ1 and Γ0
respectively. We will denote a generic edge in Γ by e and a generic vertex by v. We will
assign an orientation to edges so that e(0) is the first vertex of the edge e, and e(1) is
the second. The (wedge) product of two propagators between the same pair of vertices
vanishes, so there will be at most a single edge between any two vertices. As a result,
we will often refer to an edge by its endpoint vertices e(0) and e(1) since there can be no
ambiguity.3

The positions of vertices in spacetime are given by (xv, x̄v) and associated holomorphic
momenta are given by λv. The auxiliary holomorphic shifts in the propagator arguments
will be denoted by ze, with the caveat that changing the orientation convention for an edge
should change the sign of the corresponding shifts, i.e. zvv′ = −zv′v.

2Which we assume is connected, has at least two vertices, and has no edges joining a vertex with itself.
3If we pick some ordering of the vertices and orient the edges so that e(0) < e(1), we can assign a

lexicographic order to the edges. This is the ordering of edges we typically employ in examples.
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The integrand of our Feynman diagrams contains a total derivative of the form

∂̄

 ∏
e∈Γ1

Pε[e]

 , (2.3)

where Pε[e] is the regulated propagator associated to the edge e of the graph Γ. Using the
Leibniz rule, this becomes a sum over “cut” edges, where the differential acts on the edge
which is cut: ∑

e∈Γ1

(−1)e∂̄Pε[e]

 e′ 6=e∏
e′∈Γ1

Pε[e′]

 . (2.4)

Our first task will be to rearrange this expression into a more convenient form. We will then
combine it with a holomorphic measure containing the external momenta λv and define
the full integrand.

2.2 Propagator manipulations

For our propagators we employ a Schwinger parameterization

Pε(x, x̄) ≡
∫ ∞
ε

dt

t
(x̄2dx̄1 − x̄1dx̄2)Kt(x) , (2.5)

using the heat kernel
Kt(x) ≡ 1

t2
e−
|x|2
t . (2.6)

The heat kernel satisfies

∆Kt(x) = ∂tKt(x) , ∆ = ∂x1∂x1 + ∂x2∂x2 , (2.7)

so that if we define the operator

∂
∗ = dx1∂x2 − dx2∂x1 (2.8)

such that ∂∂∗ = dx1 ∧ dx2 ∆, then

Pε(x, x) =
∫ ∞
ε

dt ∂
∗
Kt(x) . (2.9)

As a result, the “cut” propagator is then the heat kernel itself

∂̄Pε(x, x̄) = Kε(x) d2x , (2.10)

where d2x = dx̄1 ∧ dx2. Notice the normalization:∫
C2
Kt(x)d2x

d2x

(2πi)2 = 1 . (2.11)

The propagator and cut propagator can be envisioned respectively as the integral of a
1-form integrated on the [ε,∞) half-line in Schwinger time, or as the evaluation of a 0-form
at t = ε. We can thus combine them into a single form4

P(x, x̄, t) ≡ dt

t
(x̄2dx̄1 − x̄1dx̄2)Kt(x) + d2x̄Kt(x) , (2.12)

and encode the choice between the two into a choice of integration contour in the t space.
4This crucial step was suggested to us by K. Costello.
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The sum over cut propagators in equation (2.4) can thus be written as an integral of∏
e∈Γ1 P[e] over a sum of co-dimension 1 contours in the space of Schwinger times:

∑
e∈Γ1

(−1)e [te = ε]×
e′ 6=e∏
e′∈Γ1

[
ε ≤ t′e <∞

]
. (2.13)

By also introducing an IR cutoff L, we denote the combined integration cycle as the “UV”
component ∂ε[ε, L]|Γ1| of the boundary of the hypercube [ε, L]|Γ1| in the space of Schwinger
parameters, i.e. the union of the facets sitting at te = ε for some e.

We also record two useful facts:

(dt + ∂̄)P(x, x̄, t) = 0 , (2.14)

and
it∂t+x̄·∂̄xP(x, x̄, t) = 0 . (2.15)

2.3 Auxiliary coordinates

The combined propagator (2.12) can be written concisely as

P(x, x̄, t) = e−y·xd2y , (2.16)

in terms of auxiliary variables
y = t−1x̄ . (2.17)

This expression will greatly simplify many of our calculations. Indeed, as all the
position space integrals are Gaussian, we can easily trade the x̄ = x∗ physical integration
cycle for an integration cycle with real x̄ and imaginary x’s. Then we can trade the intricate
functional dependence and form manipulations in the x̄ and t coordinates for much simpler
expressions in the y coordinates, at the price of a more intricate integration region.

2.4 Translation invariance

When one considers scattering amplitudes, all vertices of a Feynman diagram are inte-
grated over spacetime, leading to a momentum-conservation delta function. In contrast,
our calculations are closer to that of a form factor: one of the vertices is kept at a fixed
position, say xv0 = 0, and all other vertices are integrated over, with an extra measure
factor of eλv ·xvd2xv. We thus have a holomorphic momentum λv for all v 6= v0, and we
find it convenient to define λv0 ≡ −

∑
v 6=v0 λv so that we have a momentum-conservation

identity ∑
v

λv = 0 . (2.18)

With this definition, translation symmetry makes the choice of which vertex that is
not integrated over immaterial: the Feynman integral for a different choice of fixed vertex,
v1 say, will be obtained by replacing

λv1 = −
∑
v 6=v1

λv (2.19)

in the expression for the Feynman integral with fixed v0.5
5Indeed, set x′v = xv − xv1 so that x′v1 = 0 and x′v0 = −xv1 . Then (2.18) implies that∑

v

xvλv =
∑
v

x′vλv .

– 5 –



J
H
E
P
0
7
(
2
0
2
3
)
1
2
7

Figure 1. The six simplest Laman graphs. These are the graphs which will appear at tree level (the
segment), 1-loop (the triangle), two loops (the bitriangle) and three loops in the four-dimensional
holomorphic theories we consider. Note that Laman graphs do not have to be planar.

2.5 Balancing conditions

Each propagator contributes an anti-holomorphic 1-form to the position integral, while the
cut propagator contributes an anti-holomorphic 2-form. The product of all propagators is
thus a form of degree (0, |Γ1| + 1) in position space, which has to be combined with the
holomorphic integration measure ∏

v 6=v0

eλv ·xv
d2xv

(2πi)2 , (2.20)

and integrated over R4|Γ0|−4; an R4 for each vertex position degree of freedom, minus an
overall translational symmetry. A diagram will thus be non-vanishing only if the holomor-
phic form degree and antiholomorphic form degree match, giving us a balancing condition:

2|Γ0| = |Γ1|+ 3 . (2.21)

We can actually impose a stronger constraint. Consider an arbitrary subset S of ver-
tices of Γ, and denote the corresponding induced subgraph6 by Γ[S]. Since Γ is connected,
the total form degree of the propagators in Γ[S] must be smaller than 2|Γ[S]0| − 2, i.e.

2|Γ0[S]| ≥ |Γ1[S]|+ 3 . (2.22)

Graphs with this property are called Laman graphs [16] (which also appeared in the earlier
references [17, 18]). We draw the first few in figure 1.

Laman graphs can be built recursively from a sequence of two types of (Henneberg)
moves:

1. Add a new vertex to the graph, together with edges connecting it to two distinct
previously existing vertices.

2. Subdivide an edge of the graph, and add an edge connecting the newly formed vertex
to a third previously existing vertex (distinct from the two endpoints of the original
(now subdivided) edge).

6A subgraph induced by a subset S of the vertices of a graph is the graph whose vertex set is S and
whose edge set consists of all the edges that have both endpoints in S.
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Fext
Fext

Figure 2. In the classical mechanical interpretation of Laman graphs as minimally rigid graphs,
each edge is imagined as a rigid rod and each vertex as a hinge. The triangle (left) is a Laman
graph: it is not deformable by an external force Fext, but would be if any edge were removed. The
square (right) is deformable.

Laman graphs were originally introduced as minimally rigid graphs drawn on the
plane. Non-technically, this means if we imagine replacing each edge with a rigid rod of
a fixed length, and each vertex by a hinge, then it will retain its shape when pressed on.
That is, it has no degrees of freedom besides rigid translations and rotations in the plane.
This property, though, would fail if we removed any edge. For example, if ones pushes on
a triangle made from rods and hinges, it would still retain it’s shape (and may only slide
or rotate). Meanwhile, a horizontal force on a square, which is not a Laman graph, would
cause it to collapse.7 This is drawn in figure 2.

The rigidity property of Laman graphs also holds if we fix the slopes of the edges in
the plane to generic values, instead of the lengths. The three surviving degrees of freedom
are then translations and scale transformations. An important feature of the edge slope
constraints is that they are linear in the positions of the vertices and thus have a unique
solution (if any). In particular, we can parameterize the shape of a Laman graph in the
plane by the slopes of its edges, the position of a vertex, and the length of an edge. This is
a very convenient parameterization [13] which we will employ extensively to simplify our
calculations.

2.6 Putting everything together

At this point we have assembled all the ingredients for a generic integrand:

ΩΓ[λ; z] ≡

 ∏
e∈Γ1

P(xe(0) − xe(1) + ze, x̄e(0) − x̄e(1), te)

 ∏
v∈Γ0|v 6=v0

eλv ·xv
d2xv

(2πi)2

 . (2.23)

Each edge e is associated to a propagator 1-form, with an extra holomorphic shift ze ∈ C2

and Schwinger time te. Each vertex v 6= v0 is associated to a position (xv, x̄v) ∈ R4 and to
a holomorphic momentum λv ∈ C2. We define λv0 so that the total momentum vanishes.

The Feynman integrals are:

IΓ[λ; z] ≡
∫
R4|Γ0|−4×∂ε[[ε,L]|Γ1|]

ΩΓ[λ; z] . (2.24)

7One may also notice that the square is only one edge away from being a Laman graph in two different
senses. On one hand, we could reinforce a diagonal of the square to form a “bitriangle” graph, which would
satisfy the Laman criteria. On the other hand, we could take any edge in the square and contract it down
to a point to produce the triangle graph, which is Laman. We will return to these points in section 3.
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Figure 3. For the one-loop calculation, the integration region can be identified with the positive
part of RP2 as L/ε → ∞. We plot this region for L/ε = 2, 4, 10, 100 in the t1, t2-plane, in the
Feynman gauge t1 + t2 + t3 = 1.

As discussed before, the overall sign of IΓ[λ; z] depends on a choice of ordering of the edges
of Γ, now encoded in the definition of the hypercube [ε, L]|Γ1|.8

A standard strategy to evaluate such an integral would be to first perform the Gaussian
integral over the (xv, x̄v)’s to obtain a form ωΓ[λ; z] in the space of Schwinger times te’s.
The form ωΓ is closed and has some interesting properties. In particular, it is scale-invariant
in the space of Schwinger times and can be written as the pull-back of a top form on the
corresponding real projective space RP|Γ1|−1.

Remarkably, as we send L→∞, the integration region ∂ε
[
[ε, L]|Γ1|

]
can be identified

with the positive part RP|Γ1|−1
> of RP|Γ1|−1.9,10 See figure 3 for an example of the integration

region of the one loop graph in the region of t’s. Furthermore, ωΓ[λ; z] appear to be non-
singular in RP|Γ1|−1

> and the integral is finite and well-defined.11

Despite these simplifications, ωΓ[λ; z] is an intricate function of the te variables and di-
rect integration is challenging beyond one loop. The curious reader may consult appendix A
for the explicit derivation of ωΓ at one loop.

It turns out that the functional form of ωΓ can be drastically simplified by a judicious
change of variables, at the price of making the integration region more intricate. The
change of variables can be described directly in terms of the te’s, but it’s more elegant to
step back to the original integral and do the coordinate change there.

8As the integrand is a closed form, we could alternatively integrate along the “IR” components at te = L

of the boundary of the hypercube to get the same answer (up to a sign). This is more cumbersome in
practice, as the IR cutoff L should be sent to infinity at the end of the calculation.

9This statement is reminiscent of the Cheng-Wu theorem [19].
10Essentially, the region of RP|Γ1|−1 where the e’th te is smaller than all other t’s can be identified with

the component te = ε, te′ ≥ ε in the original integral. Incidentally, we could have picked independent UV
cutoffs for each propagator and integrated over ∂

[∏
e∈Γ1

[εe,∞)
]
. Then each facet of the UV boundary

could be identified with the region of RP|Γ1|−1 where the e’th te/εe is smaller than all other t/ε’s, giving
the same RP|Γ1|−1

> answer.
11Convergence at the corners of RP|Γ1|−1

> is not immediately obvious, but the change of variables we
define momentarily makes finiteness manifest.

– 8 –



J
H
E
P
0
7
(
2
0
2
3
)
1
2
7

2.7 A convenient coordinate change

We are interested in IΓ[λ; z] as a power series in ze and λv around the origin. Without
loss of generality, we can take the λv momenta to be real and the ze shifts to be purely
imaginary. The Gaussian integral over complex conjugate x̄ = x∗ is then equivalent to an
integral done over real x̄v and imaginary xv’s. Once the integration contours for x̄v and
xv’s are independent, we can trade the x̄v and te coordinates for the combinations

ye = t−1
e (x̄e(0) − x̄e(1)) , (2.25)

which simplify the combined propagators as in equation (2.16). Notice that the ye’s change
signs in the same manner as the ze’s if we change our choice of orientation for an edge.
The balancing condition guarantees that the number of ye coordinates is:

2|Γ1| = (|Γ1| − 1) + 2(|Γ0| − 1) , (2.26)

and thus is the same as the number of independent x̄v and te coordinates.
The ye defined by (2.25) are global coordinates on the integration cycle R2|Γ0|−2 ×

∂ε
[
[ε, L]|Γ1|

]
and realize it as a polytope in R2|Γ1|. This is easy to show: if we are given the

ye we can determine the x̄e up to translations and scale transformations by the collection of
linear equations ye ∧ (x̄e(0)− x̄e(1)) = 0. The te are then immediately determined modulo a
scale transformation and gauge-fixed uniquely to ∂ε

[
[ε, L]|Γ1|

]
as discussed before. Once we

set one of the te to ε, the scale of the x̄e is also fixed and we can translate them to x̄v0 = 0.
The immediate consequence is that we can perform the integral in terms of the (xv, ye)

coordinates over R2|Γ0|−2 times the image of R2|Γ0|−2× ∂ε
[
[ε, L]|Γ1|

]
under (2.25). In these

new coordinates, the integrand simplifies to

ΩΓ[λ; z] ≡

 ∏
e∈Γ1

e−ye·(xe(0)−xe(1)+ze)d2ye

 ∏
v∈Γ0|v 6=v0

eλv ·xv
d2xv

(2πi)2

 , (2.27)

or equivalently

ΩΓ[λ; z] ≡

 ∏
e∈Γ1

e−ye·zed2ye

 ∏
v∈Γ0|v 6=v0

e

(
λv−

∑
e|e(0)=v ye+

∑
e|e(1)=v ye

)
·xv d2xv

(2πi)2

 . (2.28)

At this point, we can safely remove the IR regulator and do the integral directly on
the image ∆Γ of R2|Γ0|−2 × ∂ε

[
[ε,∞]|Γ1|

]
under (2.25):

IΓ[λ; z] ≡
∫

(iR)2|Γ0|−2×∆Γ
ΩΓ[λ; z] . (2.29)

The integration cycle ∆Γ has a nice geometric interpretation. Given a ye ∈ ∆Γ,
the (2.25) relations fix the slope of x̄e(1) − x̄e(0). The x̄v thus present Γ as a graph in
the plane, with fixed slopes for the edges. The residual translation symmetry is fixed by
x̄v0 = 0 and the overall scale can be fixed by setting the overall scale of the te, say by∑
e te = 1. The magnitude of an individual ye is unconstrained by (2.25), so the shape
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of ∆Γ is determined by the range of possible slopes which arise from embedding Γ in the
plane. It is specifically this polytope, as well as its generalizations, that we assign the name
“Operatope.”

The integration cycle ∆Γ comes with an orientation induced by the orientation of
R2|Γ0|−2 × ∂ε

[
[ε, L]|Γ1|

]
. The first factor has a natural orientation, the second has an

orientation determined by the ordering we chose for the edges of Γ. We can also think
about it as an orientation of RP|Γ1|−1.

Note that the xv integral simply imposes a vertex constraint:

λv =

 ∑
e|e(0)=v

−
∑

e|e(1)=v

 ye , (2.30)

which identifies the ye as the holomorphic momenta along the edges of Γ. Hence if we do
the xv integral first, we are left with what is essentially the Fourier transform

IΓ[λ; z] ≡
∫

∆Γ

 ∏
e∈Γ1

e−ye·zed2ye

 ∏
v∈Γ0|v 6=v0

δ

λv − ∑
e|e(0)=v

ye +
∑

e|e(1)=v
ye

 (2.31)

of a λ-dependent region in R2|Γ1| cut out by (2.30) and (2.25).
The vertex constraints (2.30) can be solved by writing ye as linear combination of λv’s

and some loop variables Y`. The definition (2.25) implies that a positive linear combination
of ye’s along any loop vanishes, i.e. ∑

e∈`
teye = 0 . (2.32)

This constrains Y` to live in some bounded region parameterized by the λv. The Fourier
transform of such a bounded region is a smooth function, analytic in ze around the origin.

Incidentally, these linear constraints on Y` can be inverted to give functions Y`(λ, t).
This is precisely the aforementioned coordinate change which brings ωΓ[λ; z] to a sim-
ple form.

2.8 Some symmetries

Basic scaling consideration show that IΓ[λ; z] has weight 2|Γ1| − 2|Γ0| + 2 if ze is given
weight −1 and λv is given weight 1.

A shift xv → xv + δv shows that

IΓ[λ, ze − δe(0) + δe(1)] = e
∑

v
λv ·δvIΓ[λ, ze] . (2.33)

We can use this freedom to express IΓ[λ, ze] as an exponential times a function of the linear
combinations of the ze which are invariant under the shift ze → ze − δe(0) + δe(1). There is
such a linear combination Z` for each independent loop ` in Γ.

A useful perspective on this parameterization is that if we expand out the ye as linear
combinations of λv and Y` and reorganize the coupling to ze accordingly∑

e

ye · ze =
∑

λv · z̃v +
∑
`

Y` · Z` . (2.34)
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Figure 4. The eight simplest sliding graphs. Unlike the Laman graphs, these graphs are not rigid
and have “moving parts” with one degree of freedom. These will give constraints on amplitudes up
to two loops through the quadratic relation(s) in (3.7) and (3.13).

If we shift ze → ze − δe(0) + δe(1), we have∑
e

ye · ze →
∑
e

ye · ze −
∑
v

λv · δv . (2.35)

If we set δv = z̃v we arrive at the desired∑
e

ye · ze →
∑
`

Y` · Z` . (2.36)

3 Graphs within graphs

Next we review a construction, inspired by [13–15], which gives a collection of quadratic
relations satisfied by the ∆Γ configuration spaces. In turn, these relations will imply
quadratic relations for the IΓ integrals and, in our companion paper [20], associativity of
the holomorphic factorization algebras built from the IΓ.

As anticipated in the introduction, the quadratic relations should be associated to the
possible ways one can produce some overall graph Γ̃ by replacing a vertex of a Feynman
diagram with a second Feynman diagram. We expect to find one relation for each such Γ̃.

In order for both building blocks to be Laman, Γ̃ must be a sliding graph: a graph Γ̃
such that

2|Γ̃0| = |Γ̃1|+ 4 , (3.1)

and 2|Γ̃0[S]| ≥ |Γ̃1[S]|+ 3 for all induced subgraphs, see figure 4.
Recall the mechanical analogy where a Laman graph gives a minimally rigid configu-

ration of rigid rods on the plane. “Minimally” here refers to the fact that the configuration
is generically not over-constrained, so that any small perturbation of the edge lengths can
be accommodated by a deformation of the graph.

In the same analogy, a sliding graph Γ̃ gives a configuration of rigid rods with an
intrinsic degree of freedom. Suppose that we are given two such Laman graphs Γ and Γ′ of
rigid rods on the plane and that the image of Γ is much smaller than the edge lengths of
Γ′. In such a situation, we could replace a vertex v′ in Γ′ with a copy of Γ rotated in any
way we wish, adjusting slightly the shape of Γ′ to restore the original edge lengths. The
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Figure 5. We depict the deformation space modulo translations and scale transformations of a
generic quadrilateral as the edge slopes are held fixed. We fix the leftmost edge location and length
to fix the translation and scale symmetry. The deformation space has limiting “ends” where the
quadrilateral degenerates to a triangle in two possible ways.

result will be a sliding graph Γ̃ of rigid rods, with a moduli space consisting essentially of
rotations of the small subgraph Γ relative to the ambient Γ′.

Something similar happens if we consider graphs in the plane with fixed edge slopes,
rather than edge lengths. In this context, a Laman graph is rigid up to translations and
scale transformations, while a sliding graph has an extra degree of freedom. The defor-
mation theory in this setup is even simpler, as the slope constraints are the combination
of a linear constraint and a linear inequality: the difference between the positions of two
vertices connected by an edge must lie in a specific half-ray in R2. See figure 5 for a simple
example.

Given two Laman graphs Γ and Γ′ in the plane, with fixed edge slopes, we can now make
Γ arbitrarily small and replace a vertex v′ in Γ′ with a copy of Γ of any sufficiently small
size, adjusting slightly the shape of Γ′ to restore the original edge slopes. This produces
a sliding graph Γ̃ with fixed edge slopes and a moduli space of deformations which locally
consists of rescaling the small subgraph Γ relative to the ambient Γ′.

A crucial difference with the rigid rods case is that we cannot make Γ arbitrarily large:
as the relative size of Γ grows, the procedure breaks down. We can still follow the moduli
space of deformations of Γ̃, though. The crucial idea is that a 1-dimensional moduli space
will generically have a second asymptotic end of the same type, where a different subgraph
becomes arbitrarily small compared with the rest of Γ̃.

Following [15], we will argue that both endpoints of any such deformation space give
rise to pairs (Γ,Γ′) of Laman graphs with fixed edge slopes. We will also show how to
count with signs the pairs (Γ,Γ′) in such a way that the two pairs associated to a given
deformation space cancel out in the sum. This will give us the desired quadratic identity.

3.1 A quadratic identity

Pick a sliding graph Γ̃ and use the map (2.25) to define a region ∆Γ̃ in the space of ye, just
as we did for Laman graphs. This map is now many-to-one: the pre-image L[y] of a point y
in ∆Γ̃ is generically one-dimensional, as long as we pick some gauge-fixing condition for the
te scale, such as∑e te = 1. Indeed, the x̄v map Γ̃ to the plane, with edge slopes determined
by the slope of the ye, and overall size determined by the te gauge-fixing condition.

The pre-image L[y] is thus precisely the moduli space of deformations we discussed
above. We will now characterize the endpoints of this moduli space. First of all, we can
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v1

v4

v5

v2

v3

7−→

v2

v3

p0

v4

v5

v1

Figure 6. We can take the left “square-triangle” sliding graph and shrink the subset given by the
triangle (red). The result is another triangle graph Γ̃(S), with a new vertex p0 corresponding to
the collapsed point of the triangle.

write (2.25) as
teye = x̄e(0) − x̄e(1) , (3.2)

and eliminate the x̄v by summing over edges around loops, obtaining linear constraints on
the te alone. These give us a line12 in RP|Γ̃1|−1 intersecting RP|Γ̃1|−1

> along a segment. The
endpoints of the segment are configurations where a group of te is much smaller than the
rest. Correspondingly, a collection S of x̄v is much closer than the others in the plane.
Given a subset S, we can define Γ̃[S] as the induced subgraph of Γ̃, and Γ̃(S) as the
graph obtained from Γ̃ by collapsing Γ̃[S] to a single new vertex p0, see figure 6. We will
sometimes refer to the graph Γ̃[S] as the “cut” diagram, in the sense that collapsing the
diagram is like excising S from the original Γ̃.

The linear nature of the problem makes it relatively easy to argue that a subset S of
the vertices of Γ̃ can shrink as we move along the pre-image of a generic ye only if both
Γ̃[S] and Γ̃(S) are Laman [15]. We will denote such a subset S as a “Laman” subset.

As we shrink S towards zero size, the te and x̄v give us solutions of (2.25) for Γ̃[S]
and Γ̃(S) with the same ye coordinates, where we identify edges of Γ̃[S] and Γ̃(S) with the
corresponding edges of Γ̃.

As a result, we have associated to each (generic) point ye ∈ ∆Γ̃ a pair of collections S0[y]
and S1[y] which can shrink as we move along L[y], as well as a point ye ∈ ∆Γ̃[S0[y]]×∆Γ̃(S1[y])
and a point ye ∈ ∆Γ̃[S′0[y]] ×∆Γ̃(S′1[y]).

The construction can be inverted: for every Laman subset S such that the graphs Γ̃[S]
and Γ̃(S) admit edges with slopes inherited from some ye, with vertices at positions x̄q and
x̄p respectively, we can build a solution x̄v by setting the positions of the vertices that are
inherited from Γ̃(S) to the corresponding x̄p location, and the vertices inherited from Γ̃[S]
to the location x̄p0 + εx̄q, for small ε. Candidate te can be built analogously, rescaling the
ones inherited from edges of Γ̃[S] by ε.

The slopes for the resulting Γ̃ embedding will be close to those of the original ye and
for sufficiently small ε we can correct the x̄v and te to match the ye. As a consequence, for
each point ye in ∆Γ̃[S] × ∆Γ̃(S) we get a point with the same ye coordinates in ∆Γ̃, such
that S = S0[y]. We also get a second subset S1[y] from the other endpoint. Thus the

12Recall that the number of loops is |Γ̃1| − |Γ̃0|+ 1.
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collection of regions ∆Γ̃[S] ×∆Γ̃(S) in R2|Γ̃1| for all Laman subsets S gives a double-cover
of the region ∆Γ̃.

We can refine this statement by keeping track of the orientation of the neighbourhood
of the point under consideration. For a Laman graph Γ, we equipped the ∆Γ moduli
spaces with an orientation oΓ which depends on the chosen ordering of the edges of Γ.
Schematically, we can write ∏

e∈Γ1

dte = dρΓ oΓ , (3.3)

where oΓ is the orientation on RP|Γ1|−1, and thus ρΓ is an overall scale.
Recall that, near an endpoint, a coordinate along L[y] can be identified with ρΓ̃[S]. We

can write ∏
e∈Γ̃1

dte = σ(Γ̃, S)

 ∏
e∈Γ̃[S]1

dte

 ∏
e∈Γ̃(S)1

dte

 , (3.4)

with σ(Γ̃, S) being the signature of the permutation required to match the ordering of
edges of Γ̃ with the concatenation of the ordering of edges used in ∆Γ̃[S] and in ∆Γ̃(S). See
section 4 for examples of the signs.

Altogether, this implies13 the relation:∏
e∈Γ̃1

dte = σ(Γ̃, S)dρΓ̃[S]dρΓ̃(S)oΓ̃[S]oΓ̃(S) . (3.5)

We can roughly identify ρΓ̃(S) with an overall scale and ρΓ̃[S] as a coordinate along L[y].
The quantity

σ(Γ̃, S)oΓ̃[S]oΓ̃(S) (3.6)

gives us a local orientation on ∆Γ̃.
Crucially, the local orientations associated to two endpoints of the same L[y] always

disagree with each other, as ρΓ̃[S] is a coordinate oriented away from the endpoint of the
preimage. We thus derive the relation:∑

LamanS
σ(Γ̃, S)∆Γ̃[S] ×∆Γ̃(S) = 0 , (3.7)

in the space of chains in R2|Γ̃1|. Indeed, the terms in the sum cover the neighbourhood of
any generic point of ∆Γ̃ twice with opposite local orientation and thus add up to zero. See
figure 7 for a toy version of such a cover as well as figure 8 for another perspective of the
double cover.

3.2 A quadratic relation for the Feynman integrals

In order to promote the relation in (3.7) to a relation satisfied by the I integrals, we can
consider the integral ∫

R2|Γ0|−2×∆Γ̃[S]×∆Γ̃(S)

ΩΓ̃[λ; z] (3.8)

13We are implicitly using the fact that Laman graphs have an odd number of edges.
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7−→ − − + = 0

Figure 7. A rough analogue of ∆Γ̃ consisting of a square region in the plane (left). The region
can be decomposed into two triangular region in two ways by cutting along the diagonal. The
difference between the two decompositions, which is a signed sum of triangular regions, obviously
vanishes (right).

•

•

•

Figure 8. We could also consider the four triangular regions as the projection on the plane of the
facets of a tetrahedral region in space, with orientation induced by the projection. The preimage
of a point in the square is a segment analogous to L[y], with endpoints on two facets shown in red,
which certifies the cancellation of a neighbourhood of the point in the signed sum.

for a sliding graph Γ̃ and Laman subset S. We will denote vertices associated to Γ̃[S] by v,
and vertices associated to Γ̃(S) by p. Without loss of generality, we can pick the reference
vertex v0 to belong to S. We can take v = v0 and p0 to be the new vertex.

We start with the second factor in ΩΓ̃, which factors nicely to:
∏

v∈Γ̃0[S]|v 6=v0

eλv ·xv
d2xv

(2πi)2

∏
p∈Γ̃0(S)|p 6=p0

eλp·xp
d2xp

(2πi)2 . (3.9)

However, the first factor is a bit more subtle: although we can factor it as∏
e∈Γ̃1[S]

e−ye·(xe(0)−xe(1)+ze)d2ye
∏

`∈Γ̃1(S)

e−y`·(x`(0)−x`(1)+z`)d2y` , (3.10)

we need to be careful with the edges ` which end on vertices of Γ̃[S], as the corresponding
positions x`(0) or x`(1) differ from xp0 = 0.

We can compensate for this difference by shifting z` → z` + x`(0) or z` → z` − x`(1) if
the edges end on Γ̃[S]. We can then convert these xv shifts to difference operators ex`(0)·∂z`

or e−x`(1)·∂z` and combine them with the corresponding eλv ·xv factors to e(λ`(0)+∂z` )·x`(0) and
e(λ`(1)−∂z` )·x`(1) .

This allows us to factor ΩΓ̃ “operatorially” as

ΩΓ̃[λ; z] = ΩΓ̃[S][λv + ∂v; ze]ΩΓ̃(S)[λp; z`] , (3.11)
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with
∂v ≡

∑
`|`(0)=v

∂z` −
∑

`|`(1)=v
∂z` . (3.12)

Here e and v denote edges and vertices of Γ̃ inherited from Γ̃[S] and ` and p denote edges
and vertices of Γ̃ inherited from Γ̃(S).

Integrating over R2|Γ0|−2 ×∆Γ̃[S] ×∆Γ̃(S) leads to the crucial identity:

∑
LamanS

σ(Γ̃, S) IΓ̃[S][λv + ∂v; ze] IΓ̃(S)[λp; z`] = 0 . (3.13)

We should observe that the shift symmetries of the IΓ are necessary for this identity to
be well-defined. Indeed, as the λv for v ∈ Γ̃[S]0 do not add up to 0, the choice of reference
vertex in IΓ̃[S][λv + ∂v; ze] would naively seem to matter. But

∑
v∈Γ̃[S]0

(λv + ∂v) = λp0 +
∑

`∈Γ̃(S)1|`(0)=p0

∂z` −
∑

`∈Γ̃(S)1|`(1)=p0

∂z` (3.14)

annihilates IΓ̃(S)[λp; z`], by the infinitesimal version of the shift symmetry (2.33) at p0.
We should also observe that the simplest class of sliding graphs consists of two Laman

graphs fused at one vertex. The quadratic identity for such “butterfly” sliding graphs
has two terms, corresponding to the collapse of either of the two Laman graphs, and is
essentially trivial: if we pick the fused vertex as a reference for both graphs there are no
shifts and we just get something like IΓIΓ′ −IΓ′IΓ = 0. The relative sign follows from the
fact that Laman graphs have an odd number of edges.

4 Examples

In the following we label the vertices of graphs by numbers and use the lexicographic order
for the (unoriented) edges.14 See figure 9.15

4.1 The segment: tree-level propagator

The simplest example is the graph consisting of a single edge:

λ1λ2
z12 . (4.1)

If we set the first point at the origin, we can write:

Ω = e−y12·(−x2+z12)d2y12 e
λ2·x2 d2x2

(2πi)2 . (4.2)

The ∆ region coincides with the y12 plane.
14The vertex labelling follows the conventions employed by Mathematica’s CanonicalGraph function, but

we caution the reader that these conventions are version dependent.
15We have included accompanying code for these examples in both the supplementary material as well

as at [21].
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λ1λ2
z12

λ1

λ2

λ3

z12

z13

z23 λ1λ2

λ3

λ4

z13

z14

z23

z24

z34

λ1

λ2

λ3
λ4

λ5

z14

z15

z23z24

z25

z34

z35
λ1 λ2

λ3 λ4

λ5

z13

z15

z24

z25

z34
z35 z45

λ1

λ2

λ3

λ4

λ5

z14

z15

z24

z25

z34

z35
z45

Figure 9. We give six examples of Laman graphs for which we have given a choice of vertices.
The indices associated to the z’s between vertices are such that swapping the indices introduces a
minus sign.

Performing the x2 integral sets y12 = −λ2, and we arrive at

I = eλ2·z12 . (4.3)

The other choice of reference vertex gives the equivalent

I = e−λ1·z12 . (4.4)

The functional form of the answer is also fixed directly by the expected shift symmetry
of I : the graph has no loops and must have weight 0 under scaling of λv and ze in opposite
directions.

4.2 The bi-segment: the first sliding graph

The bi-segment sliding graph with two edges:

λ1 λ3 λ2z13 z23 , (4.5)

provides us with the first example of a quadratic relation. It is also the first example of
a trivial quadratic relation, which places no constraints on I beyond the shift symme-
try (2.33). We will still spell out the details for completeness.

In the quadratic relation (3.7) we have two terms: I13 acting on I23 and vice-versa

0 = λ1λ3 z13 λ1+3λ2 z23 − λ2λ3 z23 λ1λ2+3 z13 , (4.6)

where λ2+3 is a shorthand notation for λ2 +λ3. If we were to pick vertex 3 as the reference
vertex for both graphs, the relation trivializes: no λ variables are shifted and the relation
becomes

0 = e−λ1·z13e−λ2·z23 − e−λ2·z23e−λ1·z13 . (4.7)
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However, if we pick vertex 1 as the reference in the first term, we get the same expression
in a more complicated way:

0 = e(λ3−∂z23 )·z13e−λ2·z23 − e−λ2·z23e(λ2+λ3)·z13 (4.8)
= eλ3·z13e−λ2·(z23−z13) − e−λ2·z23e(λ2+λ3)·z13 . (4.9)

4.3 The triangle: one-loop diagram

This is the basic triangle diagram:

λ1 λ3

λ2

z13

z12 z23 (4.10)

This is the only Feynman amplitude we will need to compute by direct integration. Even
so, the integral is only really needed to get an overall constant, as the full functional form
could be determined via the quadratic identity associated to the square graph. We will
discuss that momentarily.

We isolate a direct calculation of ω to appendix A. The region ∆ consists of values
for y12, y23, y13 such that y13 is a positive linear combination of y12 and y23:

y13 = t12
t13
y12 + t23

t13
y23 . (4.11)

Equivalently, y12, y23 and y31 = −y13 are vertices of a triangle in the momentum plane
which includes the origin. The orientation of ∆ is controlled by the orientation of the
triangle in the momentum plane.

We can pick vertex 1 as the reference vertex and perform a linear change of coordinates:

y12 = µ2 + y23 , y13 = µ3 − y23 , (4.12)

so that

Ω [λ; z] ≡ e−µ2·z12−µ3·z13e−y23·(z12+z23−z13)d2y23
∏
v=2,3

e(λv+µv)·xvd2µv
d2xv

(2πi)2 . (4.13)

The integral over xv and µv enforces λv + µv = 0, leaving us with

I [λ; z] = eλ2·z12+λ3·z13

∫
y∈(0,λ2,−λ3)

e−y23·(z12+z23−z13)d2y23 , (4.14)

where the integration region is the triangle with vertices 0, λ2, −λ3. Indeed, setting
t12 + t23 + t13 = 1, we have

y23 = t12λ2 − t13λ3 . (4.15)
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Defining the loop momentum Z = z12 + z23 − z13, we compute

I [λ; z] = eλ2·z12+λ3·z13(λ2 ∧ λ3)
∫ 1

t12=0

∫ 1−t12

t13=0
et13λ3·Z−t12λ2·Zdt13dt12 (4.16)

= eλ2·z12+λ3·z13 (λ2 ∧ λ3)
(λ3 · Z)

∫ 1

t12=0

[
eλ3·Z+t12λ1·Z − e−t12λ2·Z

]
dt12 (4.17)

= eλ2·z12+λ3·z13 (λ2 ∧ λ3)
(λ3 · Z)

[
e−λ2·Z − eλ3·Z

(λ1 · Z) + e−λ2·Z − 1
(λ2 · Z)

]
dt12 , (4.18)

so that finally:

I [λ; z] = −eλ2·z12+λ3·z13(λ2 ∧ λ3)
[

e−λ2·Z

(λ1 · Z)(λ2 · Z) + eλ3·Z

(λ1 · Z)(λ3 · Z) + 1
(λ2 · Z)(λ3 · Z)

]
.

(4.19)
As expected, this expression can be expanded out as a power series:

I [λ; z] = (λ2 ∧ λ3)eλ2·z12+λ3·z13
∞∑
n=0

1
(n+ 1)!(λ2 + λ3) · Z [(λ3 · Z)n − (−λ2 · Z)n]

= (λ2 ∧ λ3)eλ2·z12+λ3·z13
∞∑
n=0

∞∑
m=0

1
(n+m+ 2)! · (λ3 · Z)n(−λ2 · Z)m . (4.20)

The expression has the same symmetries as the triangle diagram. For example, rewrit-
ing it in terms of λ1, λ2 we get:

I [λ; z] = −e−λ1·z13−λ2·z23(λ1 ∧ λ2)
[

1
(λ1 · Z)(λ2 · Z) + e−λ1·Z

(λ1 · Z)(λ3 · Z) + eλ2·Z

(λ2 · Z)(λ3 · Z)

]
(4.21)

which is just obtained from the previous expression by permuting 1 7→ 2 7→ 3 7→ 1. It is also
antisymmetric under permutation of the 2 and 3 vertices: the sign is due to a reordering
of the edges.

The shift symmetry is also manifest. We will find it useful to write:

I [λ; z] = e−λ1·z13−λ2·z23f [λ1, λ2; z12 + z23 − z13] , (4.22)

with

f [λ1, λ2;Z] = −(λ1 ∧λ2)
[

1
λ1 ·Z λ2 ·Z

+ e−λ1·Z

λ1 ·Z (−λ1−λ2) ·Z + eλ2·Z

λ2 ·Z (−λ1−λ2) ·Z

]
.

(4.23)
The symmetries of the triangle become:

f [λ2, λ1;−Z] = −f [λ1, λ2;Z] , (4.24)
f [λ1, λ2;Z] = eλ2·Zf [λ2,−λ1 − λ2;Z] = e−λ1·Zf [−λ1 − λ2, λ1;Z] . (4.25)
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4.4 The square: bootstrapping one-loop

This is the basic square diagram:

λ1

λ2

λ3

λ4

z12

z13

z24

z34

(4.26)

The quadratic identity associated to this sliding graph is non-trivial. The four possible
Laman subsets of the square consist of pairs of consecutive vertices: one edge of the square
is contracted leaving behind a triangle. We thus get a four-term difference equation for
the I ’s:

0 = λ1λ2 z12

λ1+2

λ3

λ4

z13

z24

z34 + λ2λ4 z24

λ1

λ2+4

λ3

z12

z13

z34

+ λ1λ3 z13

λ1+3

λ2

λ4

z12

z34

z24 − λ3λ4 z34

λ1

λ2

λ3+4

z12

z13

z24 ,

(4.27)
where each segment graph on the left acts on the triangle graph to its right. This in turn
leads to an equation in terms of four f [λ1, λ2;Z], which we will use to bootstrap the
one-loop result from the previous section.

Before proceeding with the bootstrap calculation, it is worthwhile to visualize the
geometric setup leading to the quadratic relation. The region ∆ associated to the square
is easily described: we have four points y12, y24, y43 = −y34 and y31 = −y13 whose convex
envelope includes the origin. Generically, the origin will belong to exactly two of the
triangles defined by dropping one of the points, as in the right-hand side of figure 7.

For each of these triangles, the three vertices will thus belong to ∆ . The remaining
point belongs, trivially, to ∆ . We thus have a double-cover of ∆ by regions of the
form ∆ ×∆ .

For any given generic ye, the space L[y] of positive te’s such that ∑e teye = 0 is clearly
convex and thus is a segment. For each of the two triangles the origin belongs to, we can
find a positive linear combination of the vertices which vanishes. This gives a point of L[y]
with one of the te = 0. These are the two endpoints of L[y].
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Figure 10. The origin is denoted by the node, and the dotted lines denote a “diagonal” for the
two concave quadrilaterals. In the first two quadrilaterals the origin lies inside, while it lies outside
the last quadrilateral. In the first quadrilateral, the two triangles that cover the origin share the
top edge on the square. In the last two quadrilaterals, the two triangles share the dotted line, i.e.
share a “diagonal” of the convex quadrilateral.

We can use this geometric setting to derive the relative signs in the quadratic identity,
as explained in the previous section, but we can also figure it out by hand. There are
three cases to consider: the quadrilateral formed by y12, y24, y43 and y31 can be convex,
non-convex and including the origin, and non-convex and not including the origin. In each
case, we can compare the relative orientation of the triangles which do contain the origin.
We find that they have the same orientation in the momentum plane if they share an edge
belonging to the quadrilateral, and opposite orientation if they share a diagonal, as in
figure 10. Hence the oriented sum:

∆ [y12]×∆ [y24, y43, y31]−∆ [y24]×∆ [y43, y31, y12]
+∆ [y43]×∆ [y31, y12, y24]−∆ [y31]×∆ [y12, y24, y43] , (4.28)

in the space of ye vanishes. These are the same signs which arise in the general identity
from the relative permutations of the edges.

Coming back to the quadratic relation in (4.27), we have

0 = e−(λ1+∂z13 )·z12 I [λ1 + λ2, λ3; z13, z24, z34]
+ e−(λ2−∂z12 )·z24 I [λ1, λ2 + λ4; z12, z13,−z34]
+ e−(λ1+∂z12 )·z13 I [λ1 + λ3, λ2; z12, z34, z24]
− e−(λ3−∂z13 )·z34 I [λ1, λ2; z12, z13, z24] . (4.29)

We now apply the shift symmetry of (2.33) to write the argument of I only in terms of
loop variables. I.e. we use the shift symmetry of I to decompose each I in the form:

I [λ; z] = eg(λ,zij)f [λ;Zloop] , (4.30)

where g(λ, zij) is some SU(2)-invariant bilinear function of the λi and zij . In practice,
we do this for some reference canonical graph, obtaining a formula like (4.22), and then
substitute in our particular sets of λ and zij for our four relevant graphs.

At first glance, each of the four f [λ;Zloop] has a different argument for Zloop. For
example, in the first graph it is z13 +z34−z24, while the argument from the second graph is
z12−z34−z13. However, since the exponentials of derivatives (coming from the propagators)
act as shifts on the various arguments of the f [λ;Zloop], we find that the final expression
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will only depend on one loop variable, Z = z13 + z34 − z24 − z12, coming from the original
square sliding graph itself!

Implementing the various exponential shifts and momentum conservation, λ4 = −λ1−
λ2 − λ3, the quadratic relation takes the form:

0 = + e−λ1·(z12+z24)−λ2·z24−λ3·z34f [λ1 + λ2, λ3;−Z]
+ e−λ1·(z13+z34)−λ2·z24−λ3·z34f [λ1,−λ1 − λ3;Z]
+ e−λ1·(z13+z34)−λ2·z24−λ3·z34f [λ1 + λ3, λ2;Z]
− e−λ1·(z13+z34)−λ2·z24−λ3·z34f [λ1, λ2;Z] . (4.31)

We can strip off some of the exponentials from the general quadratic identity to leave a
bootstrappable equation involving only a single loop variable:

0 = eλ1·Zf [λ1 + λ2, λ3;Z] + f [λ1,−λ1 − λ3;−Z]
+ f [λ1 + λ3, λ2;Z]− f [λ1, λ2;−Z] . (4.32)

This is the final form of the quadratic identity, which should be supplemented by the
symmetry relations (4.24) for the triangle graph.

We can check that the integrated expression (4.19) for the triangle diagram indeed
satisfies the above relations. It is also interesting to assess to what degree the quadratic
identity, combined with the symmetries of the triangle and homogeneity degree 2 under
the scale transformation (under which the λa’s have charge 1 and Z’s have charge −1),
fixes the functional form of f . Experimentally, working order-by-order in the power series
in λ’s and Z’s, these constraints do appear to be sufficient to fix the functional form of f
when combined with global SU(2) invariance, generated by the vectorfields

λ1
2∂λ2

2
+ λ1

3∂λ2
3
− Z2∂Z1 , λ2

2∂λ1
2

+ λ2
3∂λ1

3
− Z1∂Z2 . (4.33)

This is reasonable: a different choice of gauge for the propagators would have likely given
different answers which satisfy the same quadratic relations and give rise to an equiva-
lent holomorphic factorization algebra structure. The propagators we choose are SU(2)
invariant.

4.5 The bitriangle: two-loop diagram properties

The only two-loop Laman graph is the bitriangle:

λ1

λ3

λ2

λ4

z13

z14

z23

z34

z24

(4.34)
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The corresponding region ∆ is easy to describe: the triangles in the momentum plane
with vertices y13, y34, y41 = −y14 and y23, y34, y42 = −y24 must both include the origin.
The intersection of ∆ with the momentum conservation constraints gives a λ-dependent
polyhedral region in the space of two loop momenta.

The function we are interested in is I [λ1, λ2, λ3; z13, z14, z23, z24, z34]. Explicitly, we
could solve the momentum constraints as:

λ1 = y13 + y14 ,

λ2 = y23 + y24 , (4.35)
λ3 = −y13 − y23 + y34 ,

which identifies two independent loop variables for the bitriangle:

Z1 = z13 + z34 − z14 , Z2 = z13 − z23 + z24 − z14 . (4.36)

Using the shift symmetries (2.33), gives us the decomposition:

I [λ1, λ2, λ3; z13, z14, z23, z24, z34] = e−λ1·z14+λ2·(z13−z14−z23)+λ3·(z13−z14)f [λ1, λ2, λ3;Z1, Z2] .
(4.37)

The function f has weight 4 under the symmetry giving weight 1 to λ’s and −1 to z’s.
The bitriangle graph also has a Z2

2 symmetry group, generated by the two reflections:
1 ↔ 2 and 3 ↔ 4, from flipping the diagram along the vertical and horizontal axes re-
spectively. These two symmetries of I [λ1, λ2, λ3; z13, z14, z23, z24, z34] imply the following
relations for f [λ1, λ2, λ3;Z1, Z2]:

Z(12)
2 : f [λ1, λ2, λ3;Z1, Z2] = eλ4·Z2f [λ2, λ1, λ3;Z1 − Z2,−Z2] , (4.38)

Z(34)
2 : f [λ1, λ2, λ3;Z1, Z2] = e−λ2·Z2f [λ1, λ2, λ4;−Z1,−Z2] , (4.39)

where λ4 = −λ3 − λ2 − λ1 as always.
The I amplitude satisfies two quadratic relations involving sliding graphs with two

loops, such that the bitriangle graph emerges from the contraction of a single edge. These
quadratic relations will thus be linear in I , possibly with sources built from the triangle
amplitude. We will investigate these in the following two sections.

4.6 The square-triangle: bootstrapping two-loops

The square-triangle graph is:

λ1

λ5

λ4

λ3

λ2

z15

z14

z45

z35

z24

z23 (4.40)

– 23 –



J
H
E
P
0
7
(
2
0
2
3
)
1
2
7

We will pick the two independent loop variables:

Z1 = z14 + z45 − z15 , Z2 = z35 − z15 + z14 − z24 + z23 . (4.41)

The quadratic relation associated to this graph has 4 terms: we can either collapse
an edge of the square which is not shared by the triangle, giving a bi-triangle graph, or
collapse the triangle and produce a second triangle (see figure 6). That is, we have:

0 = λ2λ3 z23 λ1

λ5

λ4

λ2+3

z15

z14

z45

z35

z24

− λ2λ4 z24 λ1

λ5

λ2+4

λ3

z15

z14

z45

z35

z23

− λ3λ5 z35 λ1

λ4

λ3+5

λ2

z14

z15

z45

z24

z23

−

λ1

λ4

λ5

z14

z15

z45

λ1+4+5

λ2

λ3

z24

z35

z23 .

(4.42)
The quadratic relation associated to this graph thus involves a source term given by the
insertion of a triangle into a triangle.

After using the shift symmetries for the triangle (4.22) and bitriangle (4.37), and
stripping the exponential pre-factors, we obtain the following quadratic relation entirely in
terms of λ’s and loop variables:

f [λ1, λ4 + ∂Z2 ;Z1]f [−λ2 − λ3, λ2;−Z1 + Z2]
= eλ4·Z1+(λ2+λ3)·Z2f [λ1, λ2 + λ3, λ4;Z1, Z2]
− eλ4·Z1+(λ2+λ3)·Z2f [λ1, λ3, λ2 + λ4;Z1, Z2]
− eλ4·Z1f [λ1, λ2,−λ1 − λ2 − λ4;−Z1,−Z2] . (4.43)

We have verified that this relation, together with SU(2) invariance and reflection sym-
metries, fixes f at least up to quadratic order in the z’s. At the leading order, we have

f [λ1, λ2, λ3; 0, 0] = 1
24(λ1 ∧ (λ2 + 2λ3))(λ2 ∧ (λ1 + 2λ3)) . (4.44)

4.7 The flying V: a check on two-loops

In addition to the square-triangle graph above, the bitriangle is involved in a second non-
trivial quadratic relation coming from a 5-vertex sliding graph in the shape of a flying V.
In particular, the graph with labelling

λ1

λ2

λ3

λ4

λ5

z14

z15

z24

z25

z34

z35

(4.45)
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whose loop variables we denote by

Z1 = z14 − z34 + z35 − z15 , Z2 = z14 − z24 + z25 − z15 , (4.46)

has a quadratic relation involving 6 terms. All 6 terms involve collapsing one edge, leaving
a segment graph acting on a bitriangle. Altogther, the quadratic relation induced from
this graph is

0 = λ3λ4 z34 λ1

λ5

λ3+4

λ2

z15

z14

z35

z25

z24

− λ3λ5 z35 λ1

λ4

λ3+5

λ2

z14

z15

z34

z24

z25

+ λ2λ4 z24 λ1

λ5

λ2+4

λ3

z15

z14

z25

z35

z34

− λ2λ5 z25 λ1

λ4

λ2+5

λ3

z14

z15

z24

z34

z35

(4.47)

+ λ1λ4 z14 λ2

λ1+4

λ5

λ3

z24

z25

z15

z34

z35

− λ1λ5 z15 λ2

λ1+5

λ4

λ3

z25

z24

z14

z35

z34

.

As before, we can use the propagators to shift the arguments of the bitriangles, reduce
the equations using the shift symmetries, and divide out by phases to obtain the following
quadratic relation in terms of the (reduced) bitriangles f :

0 = f [λ1, λ2, λ3 + λ4;Z1, Z2]− e−λ3·Z1−λ2·Z2f [λ1, λ2,−λ1 − λ2 − λ4;−Z1,−Z2]
+ f [λ1, λ3, λ2 + λ4;Z2, Z1]− e−λ3·Z1−λ2·Z2f [λ1, λ3,−λ1 − λ3 − λ4;−Z2,−Z1]
+ e−(λ1+λ2+λ4+λ4)·Z2f [λ2, λ3, λ1 + λ4;−Z2, Z1 − Z2]
− e−λ3·Z1−(λ2+λ4)·Z2f [λ2, λ3,−λ2 − λ3 − λ4;Z2, Z2 − Z1] . (4.48)

It is straightforward to check that our previous answer for the bitriangle satisfies this
relation (and we check this vanishes for our bootstrapped bitriangle to quadratic order in
the z’s). At leading order, i.e. when all z = 0, the quadratic relation confirms that

0 = 1
24(λ1 ∧ (λ2 + 2(λ3 + λ4)))(λ2 ∧ (λ1 + 2(λ3 + λ4)))

− 1
24(λ1 ∧ (λ2 − 2(λ2 + λ4)))(λ2 ∧ (λ1 − 2(λ1 + λ4)))

+ 1
24(λ1 ∧ (λ3 + 2(λ2 + λ4)))(λ3 ∧ (λ1 + 2(λ2 + λ4)))

− 1
24(λ1 ∧ (λ3 − 2(λ3 + λ4)))(λ3 ∧ (λ1 − 2(λ1 + λ4)))
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+ 1
24(λ2 ∧ (λ3 + 2(λ1 + λ4)))(λ3 ∧ (λ2 + 2(λ1 + λ4)))

− 1
24(λ2 ∧ (λ3 − 2(λ3 + λ4)))(λ3 ∧ (λ2 − 2(λ2 + λ4))) . (4.49)

4.8 The tritriangle: bootstrap at three-loops

As a final example, we consider the bootstrapping of a three-loop diagram. There are
multiple three-loop diagrams. We focus on the following tritriangle:16

λ1 λ2

λ3 λ4

λ5

z13

z15

z24

z25

z34

z35 z45 (4.50)

We define loop variables:

W1 = z13 + z34 + z45 − z15 , (4.51)
W2 = z13 + z35 − z15 , (4.52)
W3 = z15 − z25 + z24 − z34 − z13 . (4.53)

Using the shift-symmetries, we obtain

IΓ[λ, ze] = e−
∑4

v=1 λv ·δvf [λ,W1,W2,W3] (4.54)

with respect to the canonical ordering, where δ1 = z15, δ2 = z25, δ3 = z15 − z13, and
δ4 = −z13 + z15 − z34. In advance, we note that the graph has one Z2 symmetry, which
induces

f [λ1, λ2, λ3, λ4;W1,W2,W3]
= e(λ3+λ4)·Z3f [λ2, λ1, λ4, λ3,W2 +W3,W1 +W3,−W3] . (4.55)

One quadratic relation for the three loop diagram involves the following sliding graph:

λ1

λ2

λ3

λ4
λ5

λ6
z13

z15

z24

z26

z36

z45

z46
z56

(4.56)

We choose the following independent loop variables for the sliding graph:

Z1 = z15 + z56 − z36 − z13 , (4.57)
Z2 = z15 + z34 + z46 − z36 − z13 , (4.58)
Z3 = z45 − z15 + z13 + z36 − z26 + z24 . (4.59)

16This is the only one which would contribute perturbative corrections to the differential in a theory with
cubic interactions.
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Up to an overall factor, the source term in the quadratic relation comes from the
bitriangle acting on the triangle. The exact quadratic relation is

0 = λ1λ3 z13

λ1+3λ6

λ5λ4

λ2 z36

z15z56z46

z26

z45

z24 + λ1λ5 z15

λ3λ6

λ1+5λ4

λ2 z36

z15z56z46

z26

z45

z24

− λ3λ6 z36

λ2λ3+6

λ4λ5

λ1 z26

z24z46z56

z13

z45

z15 − λ5

λ6

λ4

λ2

z56

z45

z46

z26

z24

λ1

λ2+4+5+6

λ3

z15

z13

z36 .

(4.60)
Using the shift symmetries (4.22), (4.37), and (4.54), on the quadratic relation, this induces
the following bootstrappable relationship on the tritriangle equation:

f [λ2, λ5 + ∂Z3 , λ4;Z2 + Z3, Z1 + Z3]f [λ1,−λ1 − λ3;−Z3]
= f [λ2, λ1, λ4, λ5;Z1 + Z3, Z2 + Z3,−Z3]
− f [λ2, λ1 + λ3, λ4, λ5;Z1 + Z3, Z2 + Z3,−Z3]
− e−(λ4+λ5)·Z3 f [λ3, λ2, λ1 + λ5, λ4, Z2, Z1, Z3] . (4.61)

After imposing SU(2)-invariance, and the constraints generated by this equation with
z = 0, we find that the final result for f at zeroth order in the loop variables is almost
fixed. In particular, we find that there is still one degree of freedom left over, and the
discrete symmetry of the graph does not add any additional constraint.

To overcome this, we study an additional sliding graph:

λ1 λ2

λ3

λ4

λ5

λ6

z13

z14

z25

z26

z34

z35

z46

z56 (4.62)

With independent loop variables:

Z ′1 = z13 + z35 + z56 − z64 − z41 , (4.63)
Z ′2 = z13 + z34 − z14 , (4.64)
Z ′3 = z13 + z35 − z25 + z26 − z46 − z14 . (4.65)

The reduced quadratic equation is:

0 = eλ2+6·Z′1f [λ2, λ2+6− ∂Z′1 ;Z ′1−Z ′3]f [λ1,−λ1+3+4, λ3;Z ′2, Z ′1]

− e−λ2+3+5·Z′2+λ2·Z′3f [λ1, λ2+3+5 + ∂Z′1 + ∂Z′3 ;Z ′2]f [λ1+3+4, λ2, λ5;Z ′1−Z ′2,−Z ′2 +Z ′3]

+ f [λ1, λ2, λ3, λ5;Z ′1, Z ′2,−Z ′3]− e−λ2·Z3f [λ1, λ2, λ4, λ6;−Z ′1,−Z ′2, Z ′3] . (4.66)
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Where λi1+i2+···+ik := λ1 + λ2 + · · · + λk, and momentum conservation means that
λ6 = −∑5

i=1 λi.
Combining this additional quadratic relation with our previous quadratic relation, we

obtain the final answer for the tritriangle:

f [λ1, λ2, λ3, λ4; 0, 0, 0]

= 1
864(λ1 ∧ λ2)3 + 1

288(λ1 ∧ λ3)(λ1 ∧ λ2)2 + 1
288(λ1 ∧ λ4)(λ1 ∧ λ2)2

− 1
96(λ1 ∧ λ3)(λ2 ∧ λ3)(λ1 ∧ λ2)− 1

96(λ1 ∧ λ4)(λ2 ∧ λ3)(λ1 ∧ λ2)

− 1
96(λ1 ∧ λ4)(λ2 ∧ λ4)(λ1 ∧ λ2) + 1

144(λ2 ∧ λ3)(λ2 ∧ λ4)(λ1 ∧ λ2)

− 1
288(λ2 ∧ λ3)(λ1 ∧ λ2)2 − 1

288(λ2 ∧ λ4)(λ1 ∧ λ2)2 + 1
288(λ1 ∧ λ4)2(λ1 ∧ λ2)

+ 1
288(λ2 ∧ λ3)2(λ1 ∧ λ2) + 7

96(λ3 ∧ λ4)2(λ1 ∧ λ2) + 1
144(λ1 ∧ λ3)(λ1 ∧ λ4)(λ1 ∧ λ2)

− 1
48(λ1 ∧ λ3)(λ1 ∧ λ4)(λ2 ∧ λ3) + 1

96(λ1 ∧ λ3)2(λ2 ∧ λ4)− 1
96(λ1 ∧ λ4)2(λ2 ∧ λ4)

+ 1
96(λ1 ∧ λ4)(λ2 ∧ λ3)2 − 1

96(λ1 ∧ λ3)(λ2 ∧ λ4)2 − 1
96(λ1 ∧ λ4)2(λ2 ∧ λ3)

− 1
48(λ1 ∧ λ3)(λ1 ∧ λ4)(λ2 ∧ λ4) + 1

48(λ1 ∧ λ3)(λ2 ∧ λ3)(λ2 ∧ λ4)

− 1
48(λ1 ∧ λ3)(λ2 ∧ λ3)(λ3 ∧ λ4) + 1

16(λ1 ∧ λ4)(λ2 ∧ λ3)(λ3 ∧ λ4)

− 1
48(λ1 ∧ λ4)(λ2 ∧ λ4)(λ3 ∧ λ4)− 1

96(λ1 ∧ λ3)(λ2 ∧ λ4)(λ1 ∧ λ2)

+ 1
96(λ1 ∧ λ3)(λ2 ∧ λ3)2 + 1

48(λ1 ∧ λ4)(λ2 ∧ λ3)(λ2 ∧ λ4)

− 1
8(λ1 ∧ λ3)(λ2 ∧ λ4)(λ3 ∧ λ4) . (4.67)

5 Operations from Feynman diagrams

For completeness, we can briefly sketch how the IΓ(λv; ze) generating functions are com-
bined with theory-specific data to produce the operations of the associated holomorphic
factorization algebra, leaving the details to our companion paper [12]. This section is
logically independent from the rest of the paper.

The main actors of the story are “semi-chiral” operators O in the free holomorphic
theory, which are operator-valued (0, ∗) forms which satisfy a descent relation (Qfree+∂̄)O =
0. We denote as Qfree the BRST operator of the free theory. These operators are built
(with no renormalization ambiguities) as polynomials in semi-chiral superfields φa, which
satisfy the same relation, as well as their holomorphic derivatives. Such local operators
can be usefully collected into generating functions of the schematic form:

O(x, x̄; sk) =
∏
k

φak(x+ sk, x̄) =
∑
nk≥0

∑
mk≥0

∏
k

(s1
k)nk(s2

k)mk
nk!mk!

∂nkx1 ∂
mk
x2 φak(x, x̄) . (5.1)
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The semi-chiral operators are uniquely characterized by their 0-form part O(0)(0, 0)
evaluated at the origin, which is the same polynomial evaluated on the 0-form parts
φ

(0)
a (0, 0) and their holomorphic derivatives. We can project more general (possibly non-

local) expressions to a semi-chiral operator in three steps:

1. Drop any (0, n) form component of φa for n > 0, i.e. set the anti-holomorphic differ-
entials dx̄ to 0.

2. Taylor-expand every φa(x, x̄) at the origin and drop all anti-holomorphic derivatives.

3. Promote the resulting O(0)(0, 0) back to a full operator O.

In other words, we project:

φa(x, x̄)→
∑
n≥0

∑
m≥0

(x1)n(x2)m
n!m! ∂n1 ∂

m
2 φ

(0)
a (0, 0)→

∑
n≥0

∑
m≥0

(x1)n(x2)m
n!m! ∂n1 ∂

m
2 φa . (5.2)

We denote this projection as Π.
The most basic higher operations in the free factorization algebra are defined schemat-

ically as:

{On, · · · ,O1,O0}λn,...,λ1 = Π
[
Qfree

∫
R4n

:
[
n∏
k=1
Ok(xk, x̄k)

eλk·xk

(2πi)2

]
O(0)

0 (0, 0) :
]
. (5.3)

This definition has to be applied in a specific manner, which we now detail.
The Wick contractions produced by the normal-order operation assemble a Feynman

graph Γ with n+ 1 vertices. The Wick contractions use the two-point function

〈φa(x+ s, x̄)φb(x′ + s′; x̄′)〉 = ηabP (x− x′ + s− s′, x̄− x̄′) . (5.4)

Here ηab is a Grassman-odd pairing between fields which appears in the kinetic term in
the action and Pε(x, x̄) is the propagator. Note the shift of the holomorphic argument,
which we denote as ze = s− s′, for the Wick contraction corresponding to an edge e. Only
the pairing ηab depends on the specific theory, and is otherwise a constant which can be
brought out of the Feynman integral.

All fields which are not Wick contracted survive in the final answer. The action of
Qfree should be traded for an action of the total differential Dolbeault ∂̄ and integrated
by parts to act on the product of propagators only. The projection step Π then maps
φa(x+ s, x̄)→ φa(x+ s, 0), which can be further manipulated to

φa(x+ s, 0) = ex·∂φa(s, 0) , (5.5)

in order to bring all surviving fields out of the Feynman integral while shifting

λv → λv +
∑
k

∂k . (5.6)

Here, ∂k is a holomorphic derivative acting on the k-th surviving field and k runs over fields
associated to the vertex v.
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This step fully decouples the Feynman integral from the combinatorial data of a specific
theory. The contribution of Γ to the operation then takes the schematic form

∑
Γ
±IΓ(λ+ ∂; z(s))

∏
k

φak(sk, 0)
∏
e

ηe . (5.7)

In this expression, the ∂ shifts act on the s∗ variables for the surviving fields in the product,
while the ze(s) contain the s∗ variables for the Wick-contracted fields. We denote by ηe
the pairings arising in the Wick contraction for the edge e, and included a Grassmann
sign ± accounting for any reordering of the fields involved in the Wick contractions of the
propagators in the integral and of the fields in the final answer.

When one considers associativity relations for these operations, the output of one
operation is used as the input for another. This gives a sum of terms with schematic form

± IΓ(λ+ ∂; z(s))IΓ′(λ′ + ∂′; z′(s))
∏
k

φak(sk, 0)
∏
e

ηe , (5.8)

labelled by a pair of Feynman diagrams Γ and Γ′ used respectively in the definition of the
two operations. The two Wick contraction steps effectively produce a bigger diagram Γ̃,
where a vertex v′ of the Feynman diagram Γ′ is replaced by a copy of Γ, and edges of Γ′
which were incident on v′ are now connected to some vertices of Γ. Here some of the ∂
derivatives in the first factor act on the z′ in the second factor.

The natural way for associativity relations to hold for a generic theory is for the sum
of terms with a fixed overall Γ̃ to individually vanish. We indeed derived such a theory-
independent quadratic relation on the IΓ. We could now work backwards to derive the
precise form of the associativity relations. We will do so in a separate publication [12].

There are more general operations in the factorization algebra where the holomorphic
measures are replaced by some more general (2n, ∗) forms on the configuration space of
distinct points in R4 − (0, 0). As long as these can be written as polynomials in the
propagator P and its holomorphic derivatives, they can be expressed in terms of the IΓ
integrals.

6 Lower-dimensional analogues and other generalizations

The holomorphic twist of 4d N = 1 gauge theories has strong formal similarities with the
holomorphic-topological twist of 3d N = 2 gauge theories [11, 22, 23] and the topological
B-twist of 2d (2, 2) gauge theories [24, 25].

In all of these situations there are two exact linear combinations of derivatives and
the action is built from holomorphic-topological or topological analogues of the ∂̄ operator.
The relevant Feynman diagrams are again Laman graphs and can be analyzed in a manner
closely analogous to that of this paper.

In this section we will sketch the relevant analysis. We will also briefly discuss similar
situations where the number of exact derivatives is different from 2.
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6.1 Two-dimensional topological B-twist

In the two-dimensional setting, the ∂̄ operator is replaced by the de Rham differential

d = dx1∂x1 + dx2∂x2 . (6.1)

Here xi denote real 2d coordinates.
The rotation-invariant propagator can be taken to be

dθe
2π = 1

2π
x1dx2 − x2dx1

|x|2
, (6.2)

where θe is the angle of xe(0) − xe(1) on the 2d plane. If we employ a Schwinger time
regularization we can use a combined propagator

P2d = 1
π
e−s

2
d2s , s = x√

t
. (6.3)

Indeed, such a combined propagator is annihilated by the dt + d combination, and thus,
expanding

P2d = 1
πt
e−
|x|2
t d2x− 1

2π
dt

t2
e−
|x|2
t (x1dx2 − x2dx1) , (6.4)

we find that∫ ∞
ε

1
2π

dt

t2
e−
|x|2
t (x1dx2 − x2dx1) = 1

2π

(
1− e−

x2
ε

)
x1dx2 − x2dx1

|x|2
(6.5)

is a regularized propagator with source

1
πε
e−
|x|2
ε d2x . (6.6)

The 2d integrand is assembled from the P2d with no shifts and no extra measure factors.
The integrals I2d

Γ will provide coefficients for the 2d topological factorization algebra in the
plane. In particular, they will provide coefficients for the L∞[−1] operations on the bulk
local operators of the B-twisted theory and thus for the Maurer-Cartan equation which
controls deformations of the theory.

Again, we can proceed in two ways:

• We can go back to x and t coordinates and do the x integral to get some ω2d
Γ on the

positive real projective space of Schwinger parameters.

• We can work in the s coordinates, which are integrated over the same ∆Γ regions we
employed in 4d.

The latter strategy makes immediate contact with the work of [13]. Indeed, recall
that the constraints on ∆Γ do not affect the overall scale of se, but only their slopes.
We can employ polar coordinates (re, θe) on the se plane and perform the radial integrals
right away: ∫ ∞

0

1
π
e−r

2
eredredθe = dθe

2π . (6.7)
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We are thus left with
I2d

Γ =
∫

∆θ
Γ

∏
e

dθe
2π , (6.8)

over the analogue ∆θ
Γ of ∆Γ for the slopes θe. Notice that the I2d

Γ here are just numbers.
This is precisely the sort of integral which occurs in [13]. A crucial and very non-trivial

result in that reference is that these integrals vanish identically (except for the segment)
and thus the L∞[−1] operations and Maurer-Cartan equation do not receive quantum
corrections in the 2d B-model on the plane.17

It is interesting to look at the first strategy and compute some examples of ω2d
Γ . We

did so at the first few loop orders and found that ω2d
Γ vanishes identically. It would be

interesting to give a direct combinatorial proof of this fact: it would provide an alternative
proof of Kontsevich’s formality theorem [13].

Observe that the Gaussian integral leading to ω2d
Γ can be done separately for the x1

v

and x2
v coordinates. Each separate integral leads to a middle-dimensional form ηΓ on the

positive real projective space. For odd loop number the Gaussian integrand is odd under
space reflections and ηΓ vanishes. For even loop number, instead, ηΓ is non-zero and the
vanishing of

ω2d
Γ = ηΓ ∧ ηΓ (6.9)

is a non-trivial fact.
We can also observe that the same factorization occurs in 4d: the Gaussian integral

over x1
v and x̄1

v gives some middle-dimensional form ρΓ(λ1
v) such that

ωΓ = ρΓ(λ1
v) ∧ ρΓ(λ2

v) . (6.10)

Finally, one may explore other gauges where the integrals I2d
Γ do not automatically

vanish. In reasonable gauges, the quadratic relations will still hold and severely constrain
the possible values of the I2d

Γ .

6.2 Three-dimensional holomorphic-topological (HT) twist

In the three-dimensional setting, the ∂̄ operator is replaced by the mixed differential

d′ = dxR∂xR + dx̄C∂x̄C . (6.11)

Here we denote the coordinates as (xC, x̄C, xR).
If we employ a Schwinger time regularization we can use a combined propagator

P3d = 1√
π
e−s

2−xydyds , s = xR√
t
, y = xC

t
. (6.12)

Indeed, such a combined propagator is annihilated by the dt+d′ combination, and therefore,
expanding

P2d = 1√
πt3

e−
|x|2
t dx̄CdxR − 1

2
√
π

dt

t
5
2
e−
|x|2
t (x̄CdxR − 1/2xRx̄C) , (6.13)

17Quantum corrections occur and are very important in the presence of boundaries.
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we find that ∫ ∞
ε

1
2
√
π

dt

t
5
2
e−
|x|2
t (x̄CdxR − 1/2xRx̄C) (6.14)

is a propagator which regularizes the standard propagator

1
4
x̄CdxR − 1/2xRdx̄C

|x|3
, (6.15)

with regularized source
1√
πε3

e−
|x|2
ε dx̄CdxR . (6.16)

The 3d integrand is assembled from the P2d with holomorphic shifts ze and holomor-
phic measure factors involving some λv. The integrals I3d

Γ will provide coefficients for the
3d holomorphic-topological factorization algebra.

Again, we can proceed in two ways:

• We can go back to x and t coordinates and do the x integral to get some ω3d
Γ on the

positive real projective space of Schwinger parameters.

• We can work in the (y, s) coordinates, which are integrated over some non-relativistic
version ∆̃Γ of ∆Γ.

The first strategy immediately gives

ω3d
Γ = ρ(λ) ∧ η , (6.17)

which vanishes for odd loop number but appears to be non-trivial and interesting for even
loop number.

The second strategy should allow one to derive standard quadratic identities for I3d
Γ

from geometric relations for the ∆̃Γ regions.

6.3 Further generalizations

We can tentatively generalize our results to situations with any number of topological or
holomorphic directions, involving a kinetic term built from the mixed differential

d′ = dxR∂xR + dx̄C∂x̄C (6.18)

where now xR has T components and x̄C (and thus xC) has H components. For more
results see [26].

We can employ again a mixed propagator

PT,H = 1
π
T
2
e−s

2−xydHydT s , s = xR√
t
, y = xC

t
. (6.19)

The main difference is that the propagators are (H + T )-forms and the holomorphic mea-
sures are H-forms. Thus we need

(H + T )|Γ1| = (H + T )(|Γ0| − 1) + (|Γ1| − 1) , (6.20)

– 33 –



J
H
E
P
0
7
(
2
0
2
3
)
1
2
7

i.e.
(H + T )|Γ0| = (H + T − 1)|Γ1|+H + T + 1 , (6.21)

as well as
(H + T )|Γ0[S]| ≥ (H + T − 1)|Γ1[S]|+H + T + 1 (6.22)

for induced subgraphs. We could dub such graphs as “(H + T )-Laman”.18

The Feynman integrals can be either reduced to the integral of top forms

ωH,TΓ =
H∏
i=1

ρΓ(λi∗) ∧ (ηΓ)T (6.23)

on the positive real projective space of Schwinger parameters, or expressed as manifestly
finite integrals over appropriate regions ∆H,T

Γ in the space of (se, ye).
The latter approach should allow one to give geometric proofs of quadratic identities for

the Feynman integrals labelled by graphs Γ for which the global (H +T )-Laman condition
is violated by one unit, leading to 1-dimensional moduli spaces above every point in ∆H,T

Γ
with endpoints where some (H + T )-Laman subgraph shrinks.
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A Evaluation of the one-loop integrand

As an example, we illustrate the derivation of ω . We need to evaluate∫
C4
d2x1 d

2x2 e
λ1·x1+λ2·x2 ∂

[
Pε1(x1 + z1)Pε2(x2 + z2)Pε3(x1 − x2 + z3)

]
(A.1)

=
∫
C4
d4x1 d

4x2 e
λ1·x1+λ2·x2 Kε1(x1 + z1) εab∂xa2Kt2(x2 + z2)∂xb1Kt3(x1 − x2 + z3)

−
∫
C4
d4x1 d

4x2 e
λ1·x1+λ2·x2 εab∂xa1Kt1(x1 + z1)Kε2(x2 + z2)∂xb2Kt3(x1 − x2 + z3)

+
∫
C4
d4x1 d

4x2 e
λ1·x1+λ2·x2 εab∂xa1Kt1(x1 + z1)∂xb2Kt2(x2 + z2)Kε3(x1 − x2 + z3) .

18If H+T = 1, the condition reduces to |Γ0| = 2 but multiple edges are allowed between the two vertices.
For the 2d holomorphic case, the relevant Feynman diagrams are discussed in [27] and lead to standard
Vertex Algebra operations.

– 34 –



J
H
E
P
0
7
(
2
0
2
3
)
1
2
7

We can now introduce the Schwinger times and complete the Gaussian integrals. For
example, the first term on the r.h.s. of the equality involves the Gaussian integral:

=
∫
C4
d4x1 d

4x2 e
λ1·x1+λ2·x2 ε

ab x̄a2 x̄
b
1

t21 t
3
2 t

3
3

[
e−t

−1
1 x̄1·(x1+z1)−t−1

2 x̄2·(x2+z2)−t−1
3 (x̄1−x̄2)·(x1−x2+z3)

]
= −e−

t1(z2+z3)+(t2+t3)z1
t1+t2+t3

·λ1−
(t1+t3)z2+t2(z1−z3)

t1+t2+t3
·λ2 t1

(t1 + t2 + t3)3 ε
abλa1λ

b
2 ,

to be integrated in t2 and t3 at t1 = ε1. This gives us the dt2 dt3 component of ω .
Incorporating the last two terms in (A.1), we obtain

ω = −e−
t1(z2+z3)+(t2+t3)z1

t1+t2+t3
·λ1−

(t1+t3)z2+t2(z1−z3)
t1+t2+t3

·λ2 t1dt̂1 − t2dt̂2 + t3dt̂3
(t1 + t2 + t3)3 (λ1 ∧ λ2) , (A.2)

with the pairing (x ∧ y) = x1y2 − x2y1, where dt̂i denotes removing the ith component
in ∏e dte.

As expected, this can be interpreted as a form on RP2 with homogeneous coordinates
ti. The integration regions combine leading to the integral of an exponential over a triangle
in the t1, t2 plane. A simple strategy to evaluate the ti integral is to rescale the ti so that
t1 + t2 + t3 = 1 as in figure 3.

B General gauges and gauge-covariance

Consider replacing the combined propagator by a more general expression

P(x, x̄, t) = F (y, x)d2y , (B.1)

so that the smeared source becomes

F (x̄/ε, x)ε−2d2x̄ . (B.2)

We want the source to become a δ function as ε→ 0. Schematically, we can require∫
F (x̄/ε, x)ε−2xnx̄md2x̄

d2x

(2πi)2 → 0 , (n,m) 6= (0, 0) . (B.3)

Assuming that we can again treat x̄ and x as independent variables, the ε dependence can
be pulled out and we obtain a simpler constraint∫

F (y, x)xnd2y
d2x

(2πi)2 → 0 , n > 0 , (B.4)

i.e. ∫
F (y, x)d2y = (2πi)2δ(2)(x) . (B.5)

This guarantees that the tree-level diagram remains unchanged. Higher loop diagrams
can be executed as before, as integrals over R2|Γ0|−2 × ∆Γ. They will satisfy the same
quadratic identities since factorization of the integrand proceeds as before. We can denote
them as IPΓ .
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We can also tentatively characterize how the IFΓ vary as we vary F continuously.
Without loss of generality, we can preserve the constraint in (B.5) on P if we shift it by an
exact form dyH on the y plane. At the leading order, the variation IP+dyH

Γ − IPΓ involves
the usual integral, with one propagator replaced by dyH. The integrand is thus a dy-exact
form and can be integrated by parts to an integral over the boundary of ∆Γ.

The boundary integral will receive contributions which are again labelled by some
Laman subgraph Γ[S] induced by a subset S of vertices, as the t’s associated to edges in
Γ[S] become much smaller than the rest. As this happens, the loop constraints for the
contracting edges will again be solved by points in ∆Γ[S]. The graph Γ(S), on the other
hand, is not Laman. It essentially has one edge too many to be Laman. We could denote
it as a “minimally overconstrained” graph. The associated region ∆Γ(S) has co-dimension
1 in the space of y’s.

Based on these geometric considerations, we can express the variation of IPΓ as a sum
of terms of the schematic form

IPΓ[S][λ+ ∂; z] JP,HΓ(S)[λ; z] , (B.6)

where JP,HΓ(S) is defined in the same manner as IPΓ[S], but with one propagator replaced by H.
In the context of holomorphic factorization algebras, the JP,HΓ(S)[λ; z] integrals provide coeffi-
cients for what is essentially an infinitesimal operator redefinition which relates operations
before and after the deformation.

It is also useful to observe that not all ways to insert a Laman graph into a minimally
overconstrained graph give a Laman graph. They may give a graph which satisfies the
global constraint on the number of edges and vertices, but fails some constraints for subsets.
Such graphs will give quadratic constraints of the schematic form IJ + JI = 0, which can
also play an useful role in the proof that the deformation of the holomorphic factorization
algebra given by P → P + dyH is, in an appropriate sense, trivial.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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