
J
H
E
P
0
7
(
2
0
2
3
)
1
2
0

Published for SISSA by Springer

Received: April 21, 2023
Accepted: June 29, 2023
Published: July 13, 2023

Keeping matter in the loop in dS3 quantum gravity

Alejandra Castro,a Ioana Coman,b,c Jackson R. Flissa,c and Claire Zukowskid
aDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge,
Wilberforce Road, Cambridge CB3 0WA, United Kingdom
bKavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,
5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan
cInstitute for Theoretical Physics, University of Amsterdam,
Science Park 904, 1090 GL Amsterdam, The Netherlands
dDepartment of Physics and Astronomy, University of Minnesota Duluth,
1023 University Drive, Duluth, MN 55812, U.S.A.
E-mail: ac2553@cam.ac.uk, ioana.coman@ipmu.jp, jf768@cam.ac.uk,
czukowsk@d.umn.edu

Abstract: We propose a mechanism that couples matter fields to three-dimensional de
Sitter quantum gravity. Our construction is based on the Chern-Simons formulation of
three-dimensional Euclidean gravity, and it centers on a collection of Wilson loops winding
around Euclidean de Sitter space. We coin this object a Wilson spool. To construct the spool,
we build novel representations of su(2). To evaluate the spool, we adapt and exploit several
known exact results in Chern-Simons theory. Our proposal correctly reproduces the one-loop
determinant of a free massive scalar field on S3 as GN → 0. Moreover, allowing for quantum
metric fluctuations, it can be systematically evaluated to any order in perturbation theory.

Keywords: Chern-Simons Theories, de Sitter space, Wilson, ’t Hooft and Polyakov loops

ArXiv ePrint: 2302.12281

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP07(2023)120

mailto:ac2553@cam.ac.uk
mailto:ioana.coman@ipmu.jp
mailto:jf768@cam.ac.uk
mailto:czukowsk@d.umn.edu
https://arxiv.org/abs/2302.12281
https://doi.org/10.1007/JHEP07(2023)120


J
H
E
P
0
7
(
2
0
2
3
)
1
2
0

Contents

1 Introduction 1
1.1 Overview 4

2 dS3 gravity and Chern-Simons theory 5
2.1 A primer on dS3 spacetime 5
2.2 Chern-Simons theory and dS3 gravity: tree-level 7
2.3 SU(2) Chern-Simons theory: the partition function 10

2.3.1 Abelianisation 11
2.3.2 N = 2 supersymmetric localization 15

2.4 Chern-Simons theory and dS3 gravity: all-loop path-integral 19

3 Looping matter in 20
3.1 Single-particle representation theory 21

3.1.1 Unitary representations of so(1, 3) 21
3.1.2 Non-standard representations of su(2)L ⊕ su(2)R 22

3.2 SU(2) Chern-Simons theory: Wilson loop 28
3.2.1 Abelianisation 29
3.2.2 N = 2 supersymmetric localization 30

3.3 The Wilson spool: quantum gravity coupled to matter 30
3.3.1 Testing the proposal: Wj on a fixed background 32
3.3.2 Construction of Wj 34
3.3.3 Quantum gravity corrections to 〈Wj〉 38

4 Discussion 40

A Conventions 47

B Non-Abelian localization 49

C The S3 heat kernel 50

D The curved Casimir 54

1 Introduction

de Sitter (dS) spacetime is famous for its prominence in theoretical cosmology. It is also
infamous for its elusiveness in quantum gravity. One obstruction arises from the fact that
it is notoriously difficult to realize in string theory. Another point of frustration is that
despite its similarities with Anti-de Sitter (AdS) spacetime, basic and fundamental aspects
of a holographic description for de Sitter remain unsettled. The arguments supporting and
reflecting these obstructions can be found in, e.g., [1–4].
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There is however a context for which quantum gravity in dS has an advantage relative
to its AdS cousin. In three space-time dimensions one has the luxury of casting general
relativity (with or without a cosmological constant) in terms of a Chern-Simons theory [5, 6].
For a theory with a positive cosmological constant, i.e., dS3 gravity, the gauge group of the
Chern-Simons theory is SO(4) in Euclidean signature. This is an advantage since several
aspects of Chern-Simons theory are known exactly when the gauge group is compact. In the
absence of other degrees of freedom — for a pure theory of gravity — this partnership with
Chern-Simons has been leveraged successfully to discuss quantum aspects of dS3 gravity at
the perturbative and non-perturbative level [7–15].

Here we will push this advantage one step further. We will demonstrate that the
Chern-Simons formulation of dS3 gravity can address the following question: How does
quantum gravity alter the physics of matter fields in de Sitter?

It is useful to contrast this question between the metric and Chern-Simons formulations.
The metric couples naturally to matter through minimal coupling to a metric-compatible
connection. In the Chern-Simons formulation it is not clear how to write down such a
coupling while also maintaining the topological nature that makes it attractive as a theory
of gravity. In the context of effective field theory this situation is natural: Chern-Simons
theories arise as effective theories precisely by integrating out degrees of freedom above
some mass gap. These massive degrees of freedom are not invisible to the low-energy theory:
their remnants are topological line operators, Wilson lines, which are regarded, loosely, as
the worldlines of charged matter. With this tenet in mind we will build an effective coupling
that captures the physics of massive matter directly in the Chern-Simons theory.

In brief, we will show how to leverage exact results of Wilson loops with the purpose of
building a field that couples to Chern-Simons connections. This involves showing that a
path integral of a massive field can be viewed as a Wilson loop that “winds” arbitrarily
many times around the Euclidean spacetime. We call the resulting winding operator a
Wilson spool, which has a precise definition in classical and quantum gravity, and can
be computed to any order in the gravitational coupling, Newton’s constant, GN . Our
proposal is synergetic with the work of [16], however ours is constructed to have a broader
validity for Chern-Simons gravity.1 There are several ingredients and steps that go into our
construction, so let us elaborate on the specifics of our approach.

At a schematic level, let us first consider writing the gravitational partition function as
a sum of metric path-integrals weighted by the Einstein-Hilbert action, IEH, and performed
about saddle-point geometries M :

Zgrav =
∑
M

Zgrav[M ] =
∑
M

∫
[Dgµν ]Me

−IEH[gµν ] , (1.1)

where to leading order in a GN expansion, the saddle-point is given by a metric, g(M)
µν ,

that satisfies the Einstein equations. We can then consider coupling matter to this gravity
1Namely, the naïve application of [16] will lead to an incorrect scalar one-loop determinant in the classical

limit (GN → 0). In section 3.3.1 we illustrate how our proposal reproduces the one-loop determinant of
massive scalar fields correctly.
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path-integral about each saddle2 via

Zgrav+matter =
∑
M

Zgrav+matter[M ] =
∑
M

∫
[Dgµν ]Me−IEH[gµν ]Zmatter[gµν ] , (1.2)

where
Zmatter[gµν ] =

∫
[Dφ]eiSmatter[φ,gµν ] (1.3)

is the path-integral of a quantum field φ minimally coupled to a background geometry,
gµν . Whether or not a sum over geometries converges, or what it converges to, depends
sensitively on the UV completion of the theory of matter and quantum gravity. However,
on a more pragmatic level, we will restrict (1.2) to a given saddle M , and focus on the
quantum gravity corrections to fields quantized on the background, g(M)

µν . That is, we will
focus on 〈

Zmatter[M ]
〉

grav :=
∫

[Dgµν ]Me−IEH[gµν ]Zmatter[gµν ] . (1.4)

In this regard, let us define an object, W, such that

Zmatter[gµν ] = exp
(1

4W[gµν ]
)
. (1.5)

Formally expanding this out in the gravity path-integral gives

〈
Zmatter[M ]

〉
grav =

∫
[Dgµν ]Me−IEH[gµν ]

(
1 + 1

4W[gµν ] + . . .

)
= Zgrav + 1

4
〈
W
〉

grav + . . . .

(1.6)

W is what we coin the Wilson spool.What we will show is that
〈
W
〉

grav has a very precise
definition in Chern-Simons theory, and it can be evaluated to any order in GN . From
this point, we take on the task of evaluating the gravity path-integral with W inserted to
calculate 〈

logZscalar[M ]
〉

grav = 1
4
〈
W
〉

grav . (1.7)

Ultimately our ability to define and evaluate (1.7) relies on celebrated exact methods
for the SU(2) Chern-Simons path-integral on a topologically S3 manifold. However, in order
to follow through with this task, we need to address several aspects about the relationship
between gravity and Chern-Simons that make these methods somewhat unnatural. In
particular, there are three aspects we will incorporate:

Non-trivial background connections. One key aspect of the gravitational interpreta-
tion of Chern-Simons theory is that the connections are non-trivial: this is the minimal
requirement to have a locally invertible metric. We take this into account.
2We are being a little bit misleading here: Zmatter cannot be strictly decoupled from the sum as including

matter will shift the saddle, M . However this shift is at order GN . We will make more sense of this shortly in
the Chern-Simons context where the O(G0

N ) background fields will be connected to the topology upon which
we quantize the Chern-Simons theory. All “back-reactive” effects however will be handled in localization.
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Complex Chern-Simons levels. GN controls the imaginary part of the Chern-Simons
level k. Following the arguments in [17], we incorporate complex couplings together with
non-trivial background connections.

Non-standard su(2) representations. As illustrated in [18], fields in dS3 do not fall
into the traditional unitary representations of su(2). We will extend the representations
constructed in [18] to cover heavy and light scalar fields in dS3.

With these facts in mind, we then alter two well-known exact methods — Abelianisation and
supersymmetric localization — to accommodate these three aspects. We provide detailed
derivations that show how to evaluate the path integral, and Wilson loops, on S3 of SU(2)k
Chern-Simons theory. There are several moving parts to this story and much of the volume
of this paper is devoted to giving these elements solid foundation.

Having assembled all of these pieces, we are then able to utilize the above ingredients
to define W in terms of Wilson loops living in non-standard representations and to evaluate
it in the gravitational path-integral. This evaluation is more than schematic: we will show
that

〈
W
〉

grav reduces to a simple integral and has a well-defined GN expansion about the
S3 saddle. The tree-level, i.e. O(G0

N ), contribution is precisely the one-loop determinant of
a scalar field with mass m minimally-coupled to a background S3, i.e.,

lim
GN→0

〈
W
〉

grav
Zgrav[S3] = 4 logZscalar[S3] = 4 log det

(
−∇2

S3 + m2`2
)−1/2

. (1.8)

We also show that at any order of GN perturbation theory, the integral defining
〈
W
〉

grav is
finite and can be practically evaluated. This provides a useful framework for calculating
quantum-gravitational corrections to logZscalar[S3].

1.1 Overview

In a nutshell, this work is divided into two parts. The first part, described in section 2,
is devoted to the gravitational path integral on dS3 in the absence of matter fields. The
second part tackles our central question, how to quantify the coupling of matter to quantum
gravity, which we present in section 3. In the following we describe in more detail the
contents of each section.

We will begin with a review of some basic features of three-dimensional Euclidean de
Sitter space in section 2.1, and then review the classical relation between three-dimensional
gravity and Chern-Simons theory in section 2.2. This will establish our notation and our
basic ingredients. We will then move on to tackle quantum aspects of dS3 gravity using the
Chern-Simons formulation focusing on the S3 topology. The advantage is that Chern-Simons
theory can provide an all-loop answer for the path integral around a fixed topology. However,
to exploit this advantage we need to revisit and rederive results in SU(2)k Chern-Simons
theory: we have to incorporate a non-trivial background connection and a complex level in
the path integral. This is done in section 2.3, where we show carefully and in detail how
to adapt the methods of Abelianisation and supersymmetric localization. From here, we
obtain an exact result for the Chern-Simons path integral on S3. In section 2.4 we place
these exact results in a gravitational context and compare with prior literature.
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In section 3, we loop matter in. That is, we propose a method to incorporate matter
fields in the gravitational path integral. Our strategy is again to use the Chern-Simons
formulation, and the outcome is what we coin a Wilson spool. This is a delicate procedure,
but the payoff is that we will obtain an all-loop result that can be easily evaluated to any
order perturbatively in GN . To this end, in section 3.1, we first construct non-standard
representations of su(2)L⊕su(2)R: these mimic the single-particle representations of so(1, 3),
while being well-adapted to Chern-Simons theory. In section 3.2, we evaluate a Wilson
loop for the non-standard representations while also incorporating the new ingredients of
section 2.3. This again is done using Abelianisation and supersymmetric localization. And
finally, in section 3.3, by making use of Wilson loops of non-standard representations, we
present the Wilson spool. This object captures the path integral of a massive scalar field
coupled to dS3 gravity. We first provide various tests of our proposal and subsequently
provide a detailed construction of our proposal. We then follow by quantifying quantum
properties of the Wilson spool.

We end with an extended discussion in section 4, where we present new directions
and open questions based on our proposal. We have also included several appendices with
complementary material: appendix A covers conventions of su(2) and so(1, 3), appendix B
discusses non-Abelian localization (and its shortcoming for our purposes), appendix C
provides a review of the heat kernel on S3, and appendix D adds details on how to interpret
the Laplacian on S3 in terms of a local su(2)L ⊕ su(2)R action.

2 dS3 gravity and Chern-Simons theory

In this section we will review the relation between Chern-Simons theory and three-
dimensional general relativity with a positive cosmological constant, i.e., dS3 gravity [6].
Our presentation follows the work of [12, 13], which discusses the tree-level and loop relation
between the two theories.

In the first half of this section we review geometrical properties of dS3, and then
classical (tree-level) aspects of the theories at hand. The second half is devoted to quantum
aspects of dS3. Our aim is to capture perturbative corrections to all orders in GN via the
Chern-Simons formulation. An important and novel portion of our analysis is to alter known
methods to quantize Chern-Simons theory such that we meet the basic features that give
Chern-Simons theory a gravitational interpretation. These alterations are to incorporate
a non-trivial background connection and a complex level in the path integral. This is done
in section 2.3, where we show how to adapt the derivation of the exact Chern-Simons path
integral on S3 via two different methods commonly used in the literature: Abelianisation and
supersymmetric localization. In section 2.4 we discuss how these modifications are in perfect
agreement with perturbative results in the metric formulation of the gravitational theory.

2.1 A primer on dS3 spacetime

Three-dimensional Lorentzian de Sitter space can be realised as the hypersurface in R1,3

(what we will call embedding space) given by

ηABX
AXB = `2 , η = diag(−1, 1, 1, 1) , (2.1)

– 5 –
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Figure 1. The Penrose diagram of dS3. The blue region is the static patch covered by the
coordinates (2.3). The observer defining the patch lies at ρ = 0. Their causal horizon lies at ρ = π

2 .
Also depicted are the flow lines of D which are time-like in this patch.

where A,B ∈ {0, 1, 2, 3} and ` is the dS3 radius. Embedding space makes it manifest that
the isometry group of dS3 is SO(1, 3) which is generated by Killing vectors preserving this
hypersurface

LAB = XA
∂

∂XB
−XB

∂

∂XA
. (2.2)

More details on the group algebra, so(1, 3), as well as our conventions are given in appendix A.
Different parametrizations of (2.1) give different coordinate patches of global de Sitter.

A particular coordinate patch of interest to us in this paper is the coordinate patch
available to an observer moving along a timelike geodesic, called the static patch. Due to
the accelerated expansion of the spacetime, individual observers lose causal contact with
increasing portions of space which become hidden behind a causal horizon. Thus the static
patch covers a finite causal diamond, depicted as the blue region of the Penrose diagram
found in figure 1. The parametrization for this static patch is given by

X0 = ` cos(ρ) sinh(t/`) ,
X1 = ` cos(ρ) cosh(t/`) ,
X2 = ` sin(ρ) cos(ϕ) ,
X3 = ` sin(ρ) sin(ϕ) ,

(2.3)

for which the metric takes the following form

ds2 = ηABdXAdXB = − cos2 ρ dt2 + `2dρ2 + `2 sin2 ρ dϕ2 . (2.4)

The coordinates range over t ∈ (−∞,∞), ρ ∈ [0, π/2), ϕ ∈ [0, 2π) which covers the right-
wedge (“north-pole”) of the static patch. The point ρ = 0 corresponds to the worldline of
the observer defining the static patch, while ρ = π/2 corresponds to this observer’s causal
horizon. The metric (2.4) has an obvious time-like Killing vector, ζ = ∂t. This Killing vector
is in fact the same as the “dilatation” Killing vector, D = L03, of so(1, 3). As depicted in
figure 1, this Killing vector is not globally time-like, however.

– 6 –
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Euclidean de Sitter can be defined through the Wick rotation X0 = −iX0
E , which at

the level of the static patch coordinates can be achieved through t = −i`τ . The defining
equation (2.1) then defines a three-sphere and indeed the Lorentzian static patch metric
rotates to

ds2

`2
= cos2 ρ dτ2 + dρ2 + sin2 ρ dϕ2 , (2.5)

which is the metric for S3 in torus coordinates. Regularity at the horizon, ρ = π/2, requires
the identification τ ∼ τ + 2π, consistent with it being a coordinate for S3. The isometry
group of Euclidean de Sitter is easily seen to be SO(4) ' SU(2)× SU(2)/Z2. The SU(2)’s
are the left and right group actions acting on S3 which itself is diffeomorphic to SU(2) (the
explicit form of this left and right action is given in appendix D). As such we will label
these two groups by subscripts L and R. The Wick rotation of so(1, 3) to so(4) and the
subsequent splitting into su(2)L ⊕ su(2)R is given explicitly in appendix A.

2.2 Chern-Simons theory and dS3 gravity: tree-level

Now let us briefly review the Chern-Simons formulation of three-dimensional gravity [6];
see [7, 12] for more details and complementary aspects. Much like the previous subsection,
this portion is intended to lay out the necessary ingredients and to establish our notation.

As we noted in section 2.1, the splitting so(4) ' su(2)L ⊕ su(2)R of the isometry
algebra of Euclidean dS3 indicates that we will be interested in quantizing a pair of SU(2)
Chern-Simons theories

S = kLSCS[AL] + kRSCS[AR] , (2.6)

where
SCS[A] = 1

4π Tr
∫
M

(
A ∧ dA+ 2

3A
3
)
, (2.7)

and the trace is taken in the fundamental representation. The levels, kL/R, will be non-
integer and ultimately related to G−1

N . Following [17], the correct framework for approaching
this theory is through its complexification sl(2,C) with su(2) taken as a real form. As
emphasized in that paper a decomposition of levels consistent with reality of the action and
with Euclidean gravity with positive cosmological constant is given by3

kL = δ + is , kR = δ − is , (2.8)

where δ ∈ Z and s ∈ R. As further discussed in [17], quantum effects lead to a finite
renormalization of the levels

kL → rL = kL + 2 , kR → rR = kR + 2 . (2.9)

Importantly these are renormalized in the same way and can be regarded as a renormalization
of δ to δ̂ = δ + 2. For the rest of this section we will work with the renormalized levels.

3Strictly speaking, sl(2,C) Chern-Simons theory parameterized in this way describes Lorentzian gravity
with positive cosmological constant and with sl(2,R) as its real form. We obtain the Euclidean theory from
the Wick rotation: i.e. (supposing the negative sign of the metric is associated with e3) e3 → ie3, L3 → iL3.

– 7 –
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To see that indeed this can be related to a theory of gravity, we can decompose the
connections as

AL = i

(
ωa + 1

`
ea
)
La , AR = i

(
ωa − 1

`
ea
)
L̄a , (2.10)

where {La} and {L̄a} generate su(2)L and su(2)R, respectively.4 It is natural to interpret
ea as the dreibein and ωa = 1

2ε
abcωbc is the (dual) spin-connection. Indeed the action (2.6)

is equivalent to

iS = −IEH − iδ̂IGCS , (2.11)

where IEH is the Einstein-Hilbert action written in first-order (or Palatini),

IEH = − s

4π`

∫
εabce

a ∧
(
Rbc − 1

3`2 e
b ∧ ec

)
. (2.12)

Here Rab = εabc
(
dωc − 1

2ε
c
deω

d ∧ ωe
)
is the Riemann two-form, and we have a positive

cosmological constant, Λ = `−2. This identifies the imaginary part of the levels with
Newton’s constant

s = `

4GN
, (2.13)

which establishes that the semi-classical regime of this theory is the large-s limit. The second
part of this action, once restricted to torsion-free spin connections, is the gravitational
Chern-Simons action:

IGCS = 1
2π

∫
Tr
(
ω ∧ dω + 2

3ω
3
)

+ 1
2π`2

∫
Tr(e ∧ T ) , (2.14)

where T a = dea − εabcωb ∧ ec is the torsion two-form.
It is also simple to establish a relation at the level of the equations of motion. The

classical equations of motion of the Chern-Simons theories (2.6) are

dAL +AL ∧AL = 0 , dAR +AR ∧AR = 0 . (2.15)

The sum and difference of these equations translate, in terms of ea and ωa, to the vacuum
Einstein equation (with positive cosmological constant) and the vanishing of the torsion
two-form:

Rab = 1
`2
ea ∧ eb , T a = 0 . (2.16)

These derivations establish a correspondence between classical solutions in the metric
formulation of dS3 gravity and classical solutions in the Chern-Simons theory.

4With respect to this basis, we have

Tr(LaLb) = Tr
(
L̄aL̄b

)
= 1

2δab .

– 8 –
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Background configuration. It will be important to make explicit how to cast Euclidean
dS3 space, i.e., the three-sphere, in the language of Chern-Simons theory. We start by
constructing the appropriate flat connections on S3, which we will coin (aL, aR). Given the
metric (2.5), a convenient choice of dreibein is

e1 = `dρ , e2 = ` sin ρ dϕ , e3 = ` cos ρ dτ , (2.17)

with associated torsion-free spin connection

ω1 = 0 , ω2 = − sin ρ dτ , ω3 = − cos ρ dϕ . (2.18)

From these expressions, we find

aL = iL1dρ+ i(sin ρL2 − cos ρL3)(dϕ− dτ) = g−1
ρ g−1
− d(g−gρ) ,

aR = −iL̄1dρ− i
(
sin ρ L̄2 + cos ρ L̄3

)
(dϕ+ dτ) = −d(gρg+)g−1

+ g−1
ρ ,

(2.19)

where we used (2.10). The second equality of each line above emphasizes that aL and aR
are pure gauge with

gρ = eiL1ρ , g± = e−iL3(τ±ϕ) . (2.20)

The connections (2.19) are locally flat, however they possess a point-like singularity. These
are singularities for dτ and dϕ at ρ = π/2 and ρ = 0, respectively. These will be treated, as
distributions, by

d(dϕ) = δ(ρ)dρ ∧ dϕ , d(dτ) = −δ(ρ− π/2)dρ ∧ dτ . (2.21)

It is simple to extract the holonomies of aL and aR, which are important to record for
later use. For any cycle γ wrapping the singular points of the connections, the connections
possess holonomies

P exp
∮
γ
aL = g−1

ρ ei2πL3hLgρ , P exp
∮
γ
aR = gρe

i2πL̄3hRg−1
ρ . (2.22)

Requiring that the above group elements’ action on S3 ' SU(2) itself is single-valued implies
that hL, hR ∈ Z with either both even or both odd.5 In particular, for cycles wrapping the
causal horizon at ρ = π

2 , we have6

hL = 1 , hR = −1 . (2.23)

Finally, we report on the value of the on-shell action for this background. A short
calculation, which uses (2.21), shows that they have non-trivial action

rLSCS[aL] = −πrL = −πδ̂ − iπs , rRSCS[aR] = πrR = πδ̂ − iπs , (2.24)
5Namely, this geometric action, detailed in appendix D, is in the fundamental representation. In that

case ei2πL3hL/R is obviously the identity if hL/R is even. If hL and hR are both odd this yields the group
element (−1,−1) ∈ SU(2)L × SU(2)R which is also the identity inside the Z2 quotient.

6The holonomy about this point will play a special role in section 3.3.2, when we invoke regularity at the
horizon as a condition on scalar one-loop determinants.
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and thus
iS|tree−level = irLSCS[aL] + irRSCS[aR]

= π`

2GN
,

(2.25)

where we used (2.13). This is the correct on-shell action for dS3 [7, 12]. Note that the
gravitational Chern-Simons term of S3 vanishes identically.

2.3 SU(2) Chern-Simons theory: the partition function

We now turn to quantum aspects of dS3 gravity. Our aim is to perform the gravitational
path-integral about a fixed background S3 saddle.7 This will be done in the Chern-Simons
formulation of the theory which we introduced in section 2.2.

It is well-known that many observables in Chern-Simons theory can be evaluated
exactly, i.e., to all orders in perturbation theory and also including non-perturbative effects.
However, for our gravitational purpose, some caution is needed since these results are not
always applicable due to the subtle relation between Chern-Simons and gravity. Here we
will address these subtleties at the level of evaluating the path integral on S3. In a nutshell,
we will re-derive Zk[S3] for SU(2) Chern-Simons theory with level k, while allowing the
level to be complex and also allowing non-trivial background connections. These are two
key features that are persistent in the relation among the two theories, as we reviewed in
the previous subsection.

Let us therefore begin by reviewing some basic facts and definitions. The Chern-Simons
partition function over a three-manifold, M , is the path-integral

Zk[M ] =
∫ DA
V

eikSCS[A] (2.26)

over the action (2.7). Here A = AaLa is to be regarded as a connection one-form of a
principal SU(2) bundle overM , where {La} generates the su(2) Lie algebra.8 In the measure
we indicate, schematically, a division by the gauge group as 1/V.

There are three remarks that will be important in what follows. First, the action (2.7)
is clearly topological and the quantum theory itself is almost topological: its sole geometric
input is a choice of framing which arises from regularizing the phase of Zk. While there is
no “rule” for establishing the framing, partition functions differing by choices of framing
are related by well-established phases [19]. In this paper we will be careful to work with a
fixed convention for the phase of Zk.9

Second, our evaluation of (2.26) will cover complex values of the level k. In particular,
our derivations will hold for a decomposition as in done in (2.8)–(2.9).

Third, we will incorporate a flat background connection to the path integral (2.26). To
that end we will write

A = a+B . (2.27)
7We will briefly discuss about other topologies in section 4.
8Note that given the form of (2.7), we are working with the convention that A is anti-Hermitian in the

fundamental representation, i.e. Aaµ ∈ iR. We will use this convention consistently throughout.
9Which is ultimately related to two-units away from so-called “canonical framing”.
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Here a is a flat background connection on M — for most of our purposes M = S3. It
is important to emphasize at this point that, unlike what is typical for Chern-Simons
theory quantized on S3, we will not take the trivial background a = 0: such a background
leads to a degenerate metric which is an unnatural saddle for a theory of gravity. Instead
we want connections corresponding to a round S3 metric, i.e., they will be (2.19), with
holonomies (2.22)–(2.23), for each copy of the SU(2) theory. The field B captures the
quantum fluctuations that we will integrate over in the path-integral shortly afterward.

Adapting exact results. We now turn to the tools we will use for evaluating Zk[S3].
There are several ways to obtain Zk[S3], and we do not attempt to describe them all. We
selected methods for which the choice of background connections and background topology
(and later, expectation values for Wilson loops) are tractable in the path integral of SU(2)k
Chern-Simons theory. The two methods we will discuss in detail are:
Abelianisation. The process of Abelianisation was developed in [20–22]. In a nutshell, it
demonstrates how the non-Abelian Chern-Simons path integral can be reduced to a
two-dimensional Abelian theory, under suitable conditions present on the manifold M .

Supersymmetric localization. As a complementary method, we will show how one obtains
Zk[S3] via supersymmetric localization techniques [23] (see also [24]). The biggest penalty
here is the introduction of fermions in the path integral. Still, the outcome is robust and
completely agrees with Abelianisation.

Both methods will be capable of successfully accommodating the features necessary for dS3
gravity, and we stress that they report the same result (up to a trivial normalization). This
subsection will summarize the main steps of both methods, highlighting in particular the
features that need to be altered to accommodate gravity.

It is worth mentioning a third method. One can also contrast the two methods above
with the process of non-Abelian localization [25, 26]. Unfortunately, we find an obstruction
to utilizing this approach in dS3 gravity rigorously. The details of this obstruction are
detailed in appendix B.

2.3.1 Abelianisation

Abelianisation is a powerful method for evaluating the Chern-Simons path-integral for
compact, connected and simply-connected Lie groups with Lie algebra g on particular types
of three-manifolds [20–22]. In particular, Abelianisation is useful when it is possible to
choose the background M to be a circle fibration over a two-dimensional base, Σg, i.e.
M = M(g,p) can seen as a principal U(1)-bundle: U(1) → M(g,p)

π→ Σg with monopole
degree p. This is obviously relevant for us by considering M = S3 as a Hopf fibration.

The approach in [20–22] reduces computations from non-Abelian Chern-Simons theory
in three dimensions to computations in a two-dimensional Abelian q-deformed Yang-Mills
theory on Σg in the following way. Using the geometry of M we decompose10 the Chern-
Simons connection A ∈ Ω1(M, g) into “vertical” and “horizontal” parts,

A = σκ+AH , (2.28)
10This decomposition is similar to that adopted in [25].
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with respect to a globally-defined real-valued one-form κ on M , and where σ is a g-valued
scalar.11 Abelianisation works by adding BRST-exact terms to the action to fix the gauge
so that σ is a U(1)-invariant section of M × g. This allows us to “push” σ down to the
base, Σg, where it can be diagonalised, setting σ ∈ t (where t ⊂ g is a Cartan subalgebra).
The result of the gauge-fixing and the Abelianisation is that σ is t-valued and constant
along the U(1) fibers of M . The remaining fields can then be easily integrated out.

With an eye towards applying Abelianisation [21] to a background saddle relevant for
gravity, we will expand the Chern-Simons action, (2.7), about a flat background connection,
a, which is generically non-zero:

A = a+B , da+ a ∧ a = 0 . (2.29)

The difference between the Chern-Simons action for A and that of the background connection
is then

SCS[A]− SCS[a] = k

4π

∫
Tr
(
B ∧ daB + 2

3B
3
)
, (2.30)

where we have imposed flatness for a and dropped a total derivative. We have defined above
a “background exterior derivative” acting on p-forms as

daωp = dωp + a ∧ ωp − (−1)pωp ∧ a . (2.31)

We now will try to adapt Abelianisation to B, however we need to address the non-canonical
kinetic term in (2.30). We will write the background connection in terms of a group element,
g, as

a := g−1dg . (2.32)

In writing above, it might be the case that g is not single-valued on M . This fact manifests
itself in the possible existence of holonomies of a around the closed curve, γ, along a U(1)
fibre of M :

P exp
(∮

γ
a

)
= g−1

f gi = exp 2πm , (2.33)

where m ∈ g. Performing the field redefinition

B̃ := gBg−1 , (2.34)

we can recover a canonical kinetic form for B̃:∫
Tr
(
B ∧ daB + 2

3B
3
)

=
∫

Tr
(
B̃ ∧ dB̃ + 2

3B̃
3
)
. (2.35)

The cost of this, however, is that B̃ now possesses twisted boundary conditions: going
around the cycle γ defining (2.33) gives

B̃f = gfBg
−1
f = e−2πm̃ B̃i e

2πm̃ , (2.36)

11We will differ in notation slightly from previous literature [20–22] where σ is called φ. This is to keep
notation throughout the paper uniform and to make comparison of results clearer.
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where e2πm̃ = g−1
i e2πmgi. We can state these boundary conditions more clearly by decom-

posing B into a root-space compatible with m̃. That is writing B̃ = B̃(i)Ti + B̃(α)Tα where
Ti is a basis of a Cartan subalgebra containing m̃ and Tα is a basis of the root space for
this Cartan, then

B̃
(i)
f = B̃

(i)
i , B̃

(α)
f = e−2πα·m̃B̃

(α)
i , (2.37)

that is the fields aligned with the Cartan defined by m̃ retain their periodicity along γ while
fields aligned with roots transform by phases. In terms of g = su(2) we can write m̃ = ihL3
in which case

B̃
(3)
f = B̃

(3)
i , B̃

(±)
f = e∓i2πhB̃

(±)
i . (2.38)

At this point, we will procede to adapt the Abelianisation procedure [21] to B̃. To be
explicit, we will specialize to the case where M = S3.

Abelianisation on B̃. From here many of the steps mirror those in [21]. Namely, the
connection B̃ is split into

B̃ = Bκ +BH := σκ+BH , (2.39)

and similarly the exterior derivative on M is split into a “horizontal” piece (that is, along
the base, Σ) and an action along the fibre

d = (π∗dΣ) + κ ∧Lξ , (2.40)

where Lξ = {d, ιξ} is the Lie derivative along the fundamental vector field generating the
U(1) action. The action (2.35) can then be massaged to the form

k

4π

∫
Tr
(
B̃∧dB̃+ 2

3B̃
3
)

= k

4π

∫
Tr
(
σ2κ∧dκ+2σκ∧dBH +BH ∧κ∧LσBH

)
, (2.41)

up to total derivative. Above we have also defined

Lσ = Lξ + [σ, ·] . (2.42)

Fixing a gauge. The choice of gauge that allows the Abelianisation procedure to be
applied is12

Lξ(σκ) = 0 ⇔ Lξσ = ιξdσ = 0 , (2.43)

which states that σ is U(1)-invariant. We additionally gauge-fix that σ is valued in the
Cartan, t:

σl = 0 , (2.44)

where g = t ⊕ l. Without loss of generality we will choose this Cartan to align with
that defined by the holonomy of the background connection, a, (2.33) so that σ remains
single-valued on M . This gauge is fixed [21] by adding the following BRST-exact action∫

M
Tr(E ? σ + c̄ ? Lσc) =

∫
M

Tr(E ? σ + κ ∧ dκ c̄Lσc) , (2.45)

where E is a Lagrange-multiplier, and c and c̄ are ghosts. It is understood that the U(1)
invariant modes of these fields (i.e. those satisfying LξE

t = Lξc
t = Lξ c̄

t = 0) are not
path-integrated [21]. We can now describe integrating out modes.

12Note that ιξκ = 1 and ιξdκ = 0, so Lξκ = 0.
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Effect of integrating over fields.

• The part of BH valued in the Cartan sub-algebra, denoted Bt
H , contains the U(1)-

invariant modes B̂t
H obeying LξB̂

t
H = 0. Because they are t-valued, and since σ = σt as

a result of the gauge-fixing, (2.44), the term LσB̂t
H vanishes from (2.41). Thus the only

term of (2.41) in which the fields B̂t
H enter is

2σκ ∧ dB̂t
H , (2.46)

and integrating over these fields imposes the constraint that σ = constant on M .

• The Gaussian integrals over the fields Bl
H , B

t
H , (where Bt

H are not U(1)-invariant), and
over the ghost fields cl, ct give ratios of determinants [21]:

Det(iLσ)Ω0
H(S3,l)Det′(iLξ)Ω0

H(S3,t)

Det1/2(?κ ∧ iLσ)Ω1
H(S3,l)Det′1/2(?κ ∧ iLξ)Ω1

H(S3,t)
. (2.47)

At this point we need to pause to emphasize that these determinants are, in principle, to
be taken over fields with twisted boundary conditions defined by (2.37) along the U(1)
fibre. These boundary conditions do not affect the determinants over the Cartan-valued
fields. For fields living in the α root-space, given the form of Lσ, (2.42), the effect of the
twisted boundary conditions, (2.37), is to shift the eigenvalues of iLσ

2πn+ iα · σ → 2πn+ iα · σ − i2πα · m̃ , n ∈ Z . (2.48)

The absolute value of the ratio of these determinants can then be evaluated in manner
similar to [21] to give

Abs

 Det(iLσ)Ω0
H(S3,l)Det′(iLξ)Ω0

H(S3,t)

Det1/2(?κ ∧ iLσ)Ω1
H(S3,l)Det′1/2(?κ ∧ iLξ)Ω1

H(S3,t)

 = TS1(σ − 2πm̃) , (2.49)

where
TS1(x) = detl(1−Adex) =

∏
α>0

4 sin2(iα · x/2) (2.50)

is the Ray-Singer torsion of the connection along the fibre. For g = su(2) we can set
σ = −i2πσL3 (where σ is now a real constant) and m̃ = ihL3; for this choice we have

TS1(σ − 2πm̃) = 4 sin2(π(σ + h)) . (2.51)

We’ve stated this result somewhat generally, however it’s useful to keep in mind that for
the backgrounds of interest for this paper, h will always be integer valued (as discussed
at the end of section 2.2) and so (2.49) reduces to TS1 = 4 sin2(πσ). This is of course
consistent with (2.37) reducing to single-valued boundary conditions when h ∈ Z. The
phase of the determinants (2.47) can be defined through a regularized eta invariant and
is responsible for the renormalization of level k → r = k + 2 for g = su(2) [21].
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The end result of this is the expression13 of the Chern-Simons partition function as a
simple integral over a Cartan-valued field σ

Zk[S3] = eirSCS[a]
∫
t
dσ TS1(σ − 2πm̃) exp

[
−i r4πTrσ2

]
, (2.52)

up to inessential overall normalization and constant (r-independent) phase. We fix this
normalization/phase by fiat. More explicitly setting σ = −i2πσL3 and m̃ = ihL3, we
normalize Zk as

Zk[S3] = eirSCS[a]
∫
R

dσ sin2(π(σ + h))ei
π
2 r σ

2
. (2.53)

While the integral over σ begins life along the real axis, this integral is Gaussian and we
can formally define it through appropriate contour deformations depending on the phase of
r. It is simple to perform the integral (letting h ∈ Z)

Zk[S3] = eirSCS[a] eiφ
√

2
r

sin π
r
, (2.54)

where the phase of Zk

φ = 3π
4 −

π

r
= π

6 c + π

4 , c ≡ 3(r − 2)
r

, (2.55)

can be identified with a framing phase [19] (two-units away from canonical framing) plus a
phase stemming from a σ contour rotation.14

2.3.2 N = 2 supersymmetric localization

We now describe an alternative route to the exact calculation of the Chern-Simons partition
through localization techniques. We will focus particularly on N = 2 supersymmetric
localization [23]. One benefit of this approach is that much of the basic machinery has
been established with a non-trivial background connection, a, in mind allowing a fairly
straightforward incorporation of a 6= 0. However: the situations with non-trivial background
connections have historically arisen on manifolds with interesting topology (e.g. Lens spaces)
and many of the explicit results for S3 have been established with a = 0 (one notable
exception: [27]). Below we collect and synthesize these results in a way that is useful for
dS3 gravity.

Before jumping in, let us also make the following brief comments. Supersymmetry in the
context of de Sitter is a contentious subject, with much of the difficulty arising from realizing
unitary representations of the supersymmetry algebra in Lorentzian signature [28, 29]. In
this paper we will take a somewhat agnostic stance on this topic:15 by working directly in
Euclidean signature, we are ultimately discussing SU(2)k Chern-Simons theory on S3 whose
N = 2 supersymmetric extension is well-established. We use the existence of this symmetry
to our advantage to localize the path-integral all while verifying that the extension to N = 2

13We shift the level of the classical action trivially when SCS[a] ∈ Z.
14This latter phase is entirely a by-product of our conventions and does not occur in usual Chern-Simons

formulas. However we will give it a gravitational interpretation below.
15For discussions on the utility of supersymmetric localization to two-dimensional de Sitter space see [30].
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does not alter essential features of the original partition function. Ultimately, however, this
localization will simply verify the results of section 2.3.1.

Let us set the stage and collect the necessary background. Much of what follows mirrors
the friendly review [24]. The vector multiplet of three-dimensional N = 2 gauge theory is
given by fields

{Aµ, σ, D, λ, λ̄} , (2.56)

where A is a g = su(2) connection, σ, D are scalars,16 and λ, λ̄ are Dirac spinors. All
fields are g-valued and by convention we will take them all to be anti-Hermitian,17 with
supersymmetry variations parameterized by two Grassmann variables ε̄ and ε as specified
in [24]. The supersymmetric Chern-Simons action is

SSCS = 1
4π

∫
Tr
(
A ∧ dA+ 2

3A
3
)
− 1

4π

∫
d3x
√
gTr

(
λ̄λ− 2Dσ

)
, (2.57)

and enters the path-integral multiplied by the level k

ZSCS
k [S3] =

∫ DA
VG
Dλ̄DλDDDσ eikSSCS . (2.58)

To make subsequent notation less cumbersome, we will drop the “[S3]” above with it
understood that we are always working on the three-sphere. Note that on a formal level,
as far as the function dependence on k is concerned, the addition of the auxiliary fields in
the multiplet does not alter ZSCS

k with respect to the non-supersymmetric path-integral,
Zk [24].

The deformation that allows us to localize the path-integral ZSCS
k is the super-Yang-Mills

action

SSYM = −
∫

Tr
(1

2F ∧ ?F +Dσ ∧ ?Dσ
)

−
∫
d3x
√
gTr

(1
2(D + σ)2 + i

2 λ̄γ
µDµλ−

1
2 λ̄[σ, λ]− 1

4 λ̄λ
)
, (2.59)

where Dµ is the gauge-covariant derivative and γµ can be taken to be the Pauli-matrices
acting on spinor indices. SSYM is itself a super-derivative and therefore Q-exact. Adding
this to the path-integral with coefficient t, i.e.,

ZSCS+SYM
k (t) =

∫ DA
VG
Dλ̄DλDDDσ eikSSCS−tSSYM , (2.60)

is then innocuous: ZSCS+SYM
k (t) = ZSCS

k for any t, including in the limit t→∞ where the
path-integral localizes on the saddle of SSYM.

16The σ appearing here is a priori a different field than what appeared in section 2.3.1. We give it the
same name because, ultimately, it will play the same role in the final result.

17In comparison to the notation of [24], a field here is related to a field there by Φhere = iΦthere.
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Localization locus. In the t → ∞ limit, the path-integral localizes on the following
equations of motion

F = 0 , Dσ = dσ + [A,σ] = 0 , D + σ = 0 . (2.61)

We expand the solutions around a flat connection a = g−1dg, for some group element g.
Again, g may not be single-valued and a may possess a holonomy, à la (2.33),

P exp
(∮

γ
a

)
= exp(2πm) , (2.62)

for some curve γ. The other fields that have saddle solutions to (2.61) are given by

σ
(g)
0 = g−1σ0g , D0 = −σ(g)

0 , λ0 = 0 , λ̄0 = 0 , (2.63)

for σ0 a constant element of g. We require σ(g)
0 to be single-valued and so the constant

element defining the saddle must obey

[m,σ0] = 0 . (2.64)

With this we can take σ0 to be in a Cartan subalgebra containing m. We will scale
fluctuations as

A = a+ 1√
t
B , σ = σ

(g)
0 + 1√

t
σ̂ , D = −σ(g)

0 + 1√
t
D̂ ,

λ = 1√
t
λ̂ , λ̄ = 1√

t
ˆ̄λ ,

(2.65)

and perturb the action (2.57) around the saddle (2.63) as t→∞. The leading contribution
to SSCS is

lim
t→∞

SSCS = SCS[a]− Vol(S3)
2π Trσ2

0 . (2.66)

Meanwhile the leading contribution to tSSYM is

tSSYM = −
∫

Tr
(1

2daB ∧ ?daB + (daσ̂ + [B,σ(g)
0 ]) ∧ ?(daσ̂ + [B,σ(g)

0 ])
)

−
∫
d3x
√
gTr

(1
2
(
D̂ + σ̂

)2
+ i

2
ˆ̄λγµD(a)

µ λ̂− 1
2

ˆ̄λ[σ(g)
0 , λ̂]− 1

4
ˆ̄λλ̂
)

+ . . .

(2.67)

where da is the background exterior derivative (2.31), and D
(a)
µ is the spinor covariant

derivative with fixed connection, a. This action can be made Gaussian under a suitable gauge-
fixing and then path-integrated in standard fashion. We (very) briefly highlight the main
points of that procedure below, but many details can be found [24] and references therein.

Gauge choice. We will choose the gauge18

Ga[B] = d†aB ≡ − ? da ? B = 0 , (2.68)
18This gauge-fixing is only consistent when a is a flat-connection, implying that d2

a = 0 defines an
equivariant cohomology.
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whose Fadeev-Popov determinant, ∆a[B], can be enacted through adding ghosts c̄, c:

ZSCS+SYM
k = eikSCS[a]

∫
dσ0 e

−i k2π vol(M3)Trσ2
0

×
∫ DB
V
Dˆ̄λDλ̂DD̂Dσ̂Dc̄Dc δ[d†aB] e−tSSYM−Sghost , (2.69)

with action

Sghost =
∫

Tr
(
c̄ ∧ ?d†ada+t−1/2B c

)
=
∫
d3x
√
gTr

(
c̄ ∧ ?∆0

a c
)

+O(t−1/2) , (2.70)

where ∆0
a = d†ada is the a-deformed Laplacian acting on g-valued zero-forms.19 The ghost

determinants simply cancel the determinants from D̂ and σ̂ (as well as a Jacobian from
δ[d†aB]) and so we arrive at the promised Gaussian path-integral:

ZSCS+SYM
k = eikSCS[a]

∫
dσ0 e

−i k2π volM3Trσ2
0 ZGauss[σ0] , (2.71)

with

ZGauss[σ0] :=∫
[DB]kerd†a

Dˆ̄λDλ̂ e
1
2

∫
Tr(daB)2+

∫
Tr[B,σ(g)

0 ]2−
∫

Tr
(
i
2

ˆ̄λγµD(a)
µ λ̂− 1

2
ˆ̄λ[σ(g)

0 ,λ̂]− 1
4

ˆ̄λλ̂
)
. (2.72)

One-loop determinants. The remaining task is now to compute the one-loop de-
terminants from integrating out {B, ˆ̄λ, λ̂}. Recalling the procedure from section 2.3.1,
the first step is to “canonicalize” the kinetic terms by redefining the fluctuating fields
{B, ˆ̄λ, λ̂} → {B̃, ˜̄λ, λ̃} via

Φ = g−1Φ̃g , Φ ∈ {B, ˆ̄λ, λ̂} . (2.73)

As a result the one-loop integration becomes ostensibly simpler

ZGauss[σ0] =
∫

[DB̃]kerd† [D˜̄λDλ̃]e
1
2

∫
Tr(dB̃)2+

∫
Tr[B̃,σ0]2−

∫
Tr
(
i
2

˜̄λγµ∇µλ̃− 1
2

˜̄λ[σ0,λ̃]− 1
4

˜̄λλ̃
)
,

(2.74)
however, as we saw earlier, this is at the cost of twisting the fields along the curve γ:

Φ̃f = exp(−2πm̃)Φ̃i exp(2πm̃) . (2.75)

In terms of a root-space decomposition Φ̃ = Φ̃(i)Ti + Φ̃(α)Tα, then (2.75) reads

Φ̃(i)
f = Φ̃(i)

i , Φ̃(α)
i = exp(−2πα · m̃)Φ̃(α)

i , (2.76)

where Ti is a basis of the Cartan subalgebra containing σ0 and m, and Tα are a basis
of the α root space; {Φ̃(i), Φ̃(α)} are honest fields and not elements of g. The one-loop

19It is tacit in (2.69) that the zero modes of c̄, c under ∆0
a are not to be integrated over.
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determinants of the N = 2 vector multiplet with twisted boundary conditions, (2.76), was
described in [27] and we happily cite that result here

ZGauss[σ0] =
∏
α>0

sin(iα · (σ0 − 2πm̃))
π2 . (2.77)

Again, we’ve written ZGauss rather generally, but for the purposes of this paper, we can let
m̃ = ihL3 with h ∈ Z in which case it reduces to the usual expression for the Ray-Singer
torsion in terms of σ0 = −iσL3, i.e. ZGauss = sin2(πσ)/π2. The phase of ZGauss again is
responsible for the renormalization k → r = k + 2 as explained in [24]. Gathering these
results and fixing the normalization, we find again the familiar integral, (2.53),

ZSCS
k = eirSCS[a]

∫
R

dσ sin2(π(σ + h)) ei
π
2 rσ

2
, (2.78)

where again the integration contour over σ should be deformed depending on the phase of r.

2.4 Chern-Simons theory and dS3 gravity: all-loop path-integral

Having assembled these exact results, we now address the gravity path-integral about the
S3 saddle which, given the discussion in section 1 and section 2.2, we path-integral quantize
as the product of Chern-Simons theories

Zgrav[S3] = ZkL [S3]ZkR [S3] . (2.79)

Utilizing the exact partition function in the form of (2.53) and (2.78), the gravity path-
integral can be written as

Zgrav[S3] = eirLSCS[aL]+irRSCS[aR]

×
∫

dσLdσR ei
π
2 rLσ

2
L+iπ2 rRσ

2
R sin2(π(σL + hL)) sin2(π(σR + hR)) . (2.80)

The background holonomies, hL,R, being ±1, decouple from this integral which is Gaussian
and can be performed exactly:

Zgrav[S3] = e2πs
(
i e
−i π

rL
−i π

rR

) 2
√
rLrR

sin
(
π

rL

)
sin
(
π

rR

)
. (2.81)

Let us briefly dissect the phase in the parenthesis: the overall i stems from integration
contour deformations. Given the identifications (2.8) and (2.9), the σL integral (2.80) is
already damped, however the σR integral is anti-damped. Deforming the σR integration
contour to a damped region accounts for this i; this is wholly analogous to “Polchinski’s
phase” [31] arising from deforming the integration contour of the conformal mode in the
gravitational path-integral. The exponents are a combined framing phase.

At this point, this result, (2.81), is not surprising. Up to a total phase, our expres-
sion for Zgrav has been arrived at before through analytic continuation of the celebrated
SU(2) Chern-Simons partition function [12, 13, 15]. Here we have simply justified those
analytic continuations, and incorporated the background contributions of aL/R, through
Abelianisation and supersymmetric localization.
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It is instructive to cast (2.81) in gravitational terms. We recall from section 2.2 that

rL/R = δ̂ ± i s , s = `

4GN
. (2.82)

First, let’s inspect the case when δ̂ = 0, i.e., in the absence of the gravitational Chern-Simons
term (2.14). The path integral reads

log
(
Zgrav[S3]δ̂=0

)
= log

(8GN
i`

exp
(
π

2
`

GN

)
sinh2

(
4πGN

`

))
= π

2
`

GN
+ 3 log

(4GN
`

)
+ log

(
2π2i

)
+ 16π2

3
G2
N

`2
+ · · · .

(2.83)

The first line should be viewed as an exact expression in GN for the fixed background
manifold S3. The second line is the loop expansion as GN → 0, where rather curiously
the two-loop correction vanishes. In [13] the real part of logZgrav was shown to match the
graviton one-loop determinant on an S3 background at one-loop order (that is, O(G0

N ) and
O(logGN )). See [7, 12] for analogous results and matching on Lens spaces.

Next, when δ̂ 6= 0, the structure of the results is slightly different. Casting (2.81) in
terms of the gravitational variables, we find that the perturbative expansion is

logZgrav[S3] = log

e2πs
(
i e
−2πi δ̂

δ̂2+s2

) 2√
δ̂2 + s2

∣∣∣∣sin( π

δ̂ + is

)∣∣∣∣2


= 2πs+ log
(

2π2i

s3

)
+ π2

3
1
s2 − 2πi δ̂

s2 −
3
2
δ̂2

s2 + · · · .

(2.84)

Here we kept s as the coupling for clarity, instead of replacing GN . Again, the first line is
an exact result, and in the second line we are doing an expansion in GN (or equivalently
large s). It is important to mention that in this expansion δ̂ is kept fixed in the limit
GN → 0. The additional purely imaginary term in the perturbative expansion (as compared
to (2.83)) comes from the framing phase, and it only starts to contribute to Zgrav at O(G2

N ).
Furthermore, this framing term vanishes if the coefficient of IGCS renormalizes to δ̂ = 0.

3 Looping matter in

In this section we address our central question: how to couple matter to gravity in the
Chern-Simons formulation, and how to quantify this coupling beyond leading order in the
gravity path-integral. We will provide a concise and precise answer to these questions.

To that end, we will first cover the unitary representation theory of so(1, 3), the isometry
algebra of Lorentzian dS3. We will pay particular attention to representations corresponding
to massive scalar particles. Afterwards we will turn our attention towards the Euclidean
rotation, su(2)L ⊕ su(2)R, and see how to define non-standard representations of su(2)
mimicking the single-particle representations of so(1, 3). This is presented in section 3.1.

Having understood the particle content in a representation theoretic way, these non-
standard representations are begging to be utilized in Wilson loop observables. Thusly, in
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section 3.2 we will revisit our exact methods from section 2.3 to accommodate expectation
values of Wilson loops carrying non-standard representations. The two methods used are
Abelianisation and supersymmetric localization.

The end result of these analyses, presented in section 3.3, is to then propose a gauge-
invariant observable built from non-standard representations, an object we will call the
Wilson spool (a nomenclature that will become duly clear below). This is an object that
incorporates quantum gravity effects to a free massive scalar field minimally coupled to dS3
gravity. This object can be intuitively motivated from the worldline quantum mechanics of
a single-particle moving on S3, however we will construct the spool bottom-up through a
formula for one-loop determinants as a product over quasi-normal modes. Lastly, enjoying
the fruit of our labors from retooling Abelianisation and localization, we show how the
spool can be evaluated order-by-order in GN perturbation theory to give controlled and
finite quantum gravity corrections to scalar one-loop determinants.

3.1 Single-particle representation theory

Unitary representations of the SO(1, 3) de Sitter isometry group describe single-particle
states propagating on dS3 spacetime [32–35] (see [36] for multi-particle states). For the
purposes of a Chern-Simons description of Euclidean dS3 it will be useful to cast quantities
in terms of the Euclidean isometry algebra so(4) ' su(2)L ⊕ su(2)R and make use of its
split structure. Recently, it was shown how to mimic the essential features of light scalars
(m2`2 < 1) with novel representations of the so(4) algebra [18].

It is important to note that although so(1, 3) and so(4) share a common complexification
(as we review in appendix A), the representations constructed in [18] do not analytically
continue to standard representations of so(1, 3). Instead they furnish a representation
of quasi-normal modes of Lorentzian dS3, as opposed to single-particle states. As noted
by several authors [13, 18, 37–39], quasi-normal modes provide a rather useful basis for
computing a number of physical quantities. Particularly, in the context of Chern-Simons
gravity, classical Wilson lines carrying these representations have been shown to describe
Green’s functions and other gravitational probes in dS3 [18]. Already in [38] it was
emphasized that the quasi-normal mode spectrum of four-dimensional de Sitter is unitarily
realized in a non-standard way. We will connect to (and extend) these ideas further below.

In this subsection we will briefly review both the unitary representation theory of
SO(1, 3) as well as the non-standard representations of SO(4), emphasizing important
differences in how they are realized. In doing so, we will also extend the construction of non-
standard representations constructed in [18] to incorporate heavy scalar fields (m2`2 > 1)
in a unified way.

3.1.1 Unitary representations of so(1, 3)

Taking a real basis of generators LAB ∈ so(1, 3), unitary representations will realize anti-
Hermiticity

L†AB = −LAB . (3.1)
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In the conformal basis (see appendix A for our conventions) this amounts to the condition

D† = −D , M †ij = −Mij , P †i = −Pi , K†i = −Ki . (3.2)

This is the usual Hermiticity choice that is appropriate for building fields on a de Sitter
background [35].

The standard spinless representations are defined starting from a primary state
∣∣∣∆̄〉

with scaling dimension ∆̄ = 2−∆ as

D
∣∣∣∆̄〉 = ∆̄ , Ki

∣∣∣∆̄〉 = 0 , Mij

∣∣∣∆̄〉 = 0 . (3.3)

They have a Casimir

c
so(1,3)
2 = 1

2LABL
AB = D(2−D) + PiK

i + 1
2MijM

ij

= ∆̄(2− ∆̄) = ∆(2−∆) . (3.4)

For scalars this Casimir determines the mass of the field: cso(1,3)
2 = m2`2. A convenient

basis for building the representation is given by

|x〉 = ex
iPi
∣∣∣∆̄〉 . (3.5)

In terms of this, the de Sitter invariant norm is 〈x|y〉. Requiring anti-Hermiticity, (3.2), for
scalar representations constrains ∆ and the norm to be

∆ = 1 + ν , ν ∈ (−1, 1) , 〈x|y〉 ∝ 1
|x− y|2∆̄

, (3.6)

∆ = 1− iµ , µ ∈ R , 〈x|y〉 = δ2(x− y) . (3.7)

The former case above, (3.6), is the complementary series representation. It corresponds to
a “light” massive scalar via

ν2 = 1−m2`2 , m2`2 < 1 . (3.8)

The latter case, (3.7), is the principal series representation. It corresponds to a “heavy”
massive scalar via

µ2 = m2`2 − 1 , m2`2 > 1 . (3.9)

There are additional representations of so(1, 3) (such as spinning principal series) but we
will content ourselves to massive scalars for this paper. For a more detailed discussion of
unitary representations, see e.g. [36] and references within.

3.1.2 Non-standard representations of su(2)L ⊕ su(2)R
Keeping in mind the incorporation of matter into our Chern-Simons theory, we now want
to import these representations, or at least their essential features, into the Euclidean
theory. One potential and obvious obstruction is that the Euclidean isometry algebra
is su(2)L ⊕ su(2)R and the standard representation theory of su(2) does not admit any
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continuous (much less complex!) parameter that can play the role of ν or µ. This problem
was partially solved for light scalars in [18] by altering the inner product (or equivalently,
the notion of Hermitian conjugation). Such representations were deemed “non-unitary” in
that paper to highlight their differences (in particular, Hermiticity) from standard su(2)
representation theory. However “non-unitary” can connote a broad range of meanings.
The philosophy in this paper is that ensuring all states have positive norm, regardless of
the choice of Hermiticity, is the minimum requirement for a representation to be deemed
physical. To emphasize the physical importance of these representations, in this paper we
diverge in nomenclature from [18] and call these non-standard representations. We will
construct them now.

We will begin with some generalities about highest-weight representations. Recall that
the root-space basis of the su(2) algebra is generated by L3, L± satisfying

[L3, L±] = ±L± , [L+, L−] = 2L3 . (3.10)

The quadratic Casimir is

c2 = L2 = 1
2(L+L− + L−L+) + L2

3 . (3.11)

A highest weight representation for su(2) is constructed starting from a highest weight
state20 |j, 0〉 that satisfies

L3|j, 0〉 = j|j, 0〉 , L+|j, 0〉 = 0 . (3.12)

An arbitrary state is constructed from this by successive application of the lowering operator

|j,m〉 = Nj,m(L−)m|j, 0〉 . (3.13)

The Casimir of a highest-weight representation is given by its action on the highest-weight
state

c2|j, 0〉 = L2|j, 0〉 = cj |j, 0〉 , cj := j(j + 1) . (3.14)

To inform our construction of non-standard representations, it is useful to note the following
relations in the continuation from so(1, 3) to su(2)L⊕su(2)R (full details are in appendix A).
Firstly, the dilatation and spin generators of so(1, 3) map, respectively, to

D = −L3 − L̄3 , εijMij = iL3 − iL̄3 , (3.15)

and so highest-weight labels of su(2)L⊕ su(2)R remain good labels for the Cartan of so(1, 3).
Namely, they continue to the conformal dimension and spin as21

∆ = −jL − jR , s = jL − jR . (3.16)

For spinless representations jL = jR ≡ j, and so

∆ = −2j . (3.17)
20The label j here and throughout is what was called l in the previous paper [18].
21Besides here and appendix A, the label “s” for spin does not make any further appearances. There

should be no confusion with the imaginary part of the Chern-Simons level in (2.8).
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Secondly, the so(1, 3) Casimir is related to the su(2)L ⊕ su(2)R Casimir via

c
so(1,3)
2 = −2csu(2)L

2 − 2csu(2)R
2 . (3.18)

We then will have the following properties in mind which allow us to match onto the physics
of scalar fields in de Sitter:

• Continuous highest-weight j. Given the relation, (3.17), the highest-weights of the
representations must be allowed to vary continuously and possibly be complex to mimic
the conformal dimensions corresponding to massive particles.

• Negative Casimir. Given (3.18), the su(2) Casimir is in fact related to minus the
mass squared of a scalar particle and so to match physics appropriate for de Sitter, these
representations necessarily have a negative Casimir. From (3.14), this occurs in the
window −1 < Re(j) < 0. To satisfy this, we must allow for either negative or complex j.

• Paired representations. Since cj = c−1−j , there are two distinct representations at
a fixed Casimir when j lies in the window −1 < Re(j) < 0. Inside (3.17), sending
j → −1− j is akin to the “shadow” map in so(1, 3) sending ∆→ 2−∆. The use of both
representations was crucial to match gravitational physics in [18].

As alluded to above, we will accommodate the above features in su(2) by altering the
notion of Hermitian conjugation. Let us state what this non-standard Hermitian conjugation
looks like. We will first define a map, S, between highest-weight representations by its
action on basis states, (3.13), via

S|j,m〉 =
∣∣∣j̄,m〉 , (3.19)

where j̄ is related to j in a way to be determined shortly. The non-standard representations
in this paper are then defined with respect to the following Hermitian conjugation:

L†3 = S−1L3S , L†± = −S−1L∓S . (3.20)

We will additionally demand reality of the Casimir, c†2 = c2, which, acting on a highest-weight
state, fixes j̄ to be one of two cases

j̄ = j , or j̄ = −1− j . (3.21)

The former case, where S = identity, will lead to the representations from [18] which are
in fact related to the complementary series of so(1, 3). In this paper we will call them
complementary-type representations. In the latter case, S takes the form of a shadow map
(from here on, when we refer to S, it is always with this latter case in mind). Representations
obeying (3.20) in this case will be related to the principal series of so(1, 3). We will call
them principal-type.
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Complementary-type. These representations do not explicitly involve the shadow map
in their Hermitian conjugation,

L†3 = L3 , L†± = −L∓ . (3.22)

Regardless, they are still non-standard on account of the extra minus sign as compared
to the standard su(2) Hermitian conjugation.22 Analytically continued to so(1, 3) in the
conformal basis, this is

D† = D , M † = −M , P †i = Ki . (3.23)

This Hermiticity choice is perhaps familiar as the appropriate choice to describe fields
in Euclidean AdS space, which also has an SO(1, 3) isometry group in three dimensions.
In the context of de Sitter however this is in fact the Hermiticity choice appropriate for
quasi-normal modes equipped with the so-called “R-norm” constructed in [38].

Now let us consider the specifics of the highest weight su(2) representation given this
choice of Hermiticity. To determine the normalization in eq. (3.13), we evaluate the matrix
elements

〈j,m− 1|L+|j,m〉 = 〈j,m|L†+|j,m− 1〉∗

= −〈j,m|L−|j,m− 1〉∗ , (3.24)

iteratively starting from the highest weight state. On the one hand,

L−|j,m− 1〉 = Nj,m−1
Nj,m

|j,m〉 , (3.25)

while on the other hand

L+|j,m〉 = m(2j + 1−m) Nj,m

Nj,m−1
|j,m− 1〉 , (3.26)

which can be shown using the identity [L+, L
k
−] = 2

k∑
n=1

Lk−n− L3L
n−1
− . Then (3.24) implies

|Nj,m+1| =
√
m(m− 2j − 1) |Nj,m| . (3.27)

For complementary-type representations, we can assume without loss of generality that the
normalizations are real, i.e. |Nj,m| = Nj,m. We thus find for these representations

L−|j,m〉 =
√

(m− 2j)(1 +m)|j,m+ 1〉 ,

L+|j,m〉 = −
√
m(m− 2j − 1)|j,m− 1〉 .

(3.28)

Note that the minus sign in the L+ normalization is also necessary to satisfy the algebra
commutation relations.

22See [40] for a similar choice regarding representations of dS2.
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We must check that there are no negative norm states. We will do this inductively
assuming 〈j, 0|j, 0〉 = 1. For the first excited state, using the Hermiticity condition eq. (3.22)
we have

|L−|j, 0〉|2 = −2j , (3.29)

and so this will be positive if j < 0. Now we proceed inductively. Assume that 〈j,m|j,m〉 > 0
and consider

|L−|j,m〉|2 = (m− 2j)(1 +m)〈j,m|j,m〉 . (3.30)

This is also positive for j < 0. It then follows from induction that all basis states are positive.
In the usual su(2) representation theory, compactness together with unitarity enforce

that representations are finite dimensional. So the successive action of lowering operators
truncates. This manifests as a violation of norm positivity at m ≥ 2j+1. Since the maximum
value of mmax = 2j is an integer, j must be either integer or half integer. However, as
evident from eq. (3.30), for this non-standard representations norm positivity imposes no
limit on m and hence the representation is infinite dimensional. This also means that j is
no longer required to an be an integer or half integer. Thus, the highest-weight can take
continuous values, which was the first requirement for these non-standard representations.

We impose by hand the second requirement, −1 < j < 0 and write

j = −1
2(1 + ν) , ν ∈ (−1, 1) . (3.31)

The complementary-type representations provide spinless representations of su(2)L⊕ su(2)R
which translate to so(1, 3) conformal dimension via (3.17) as

∆ = 1 + ν . (3.32)

This is obviously related the complementary series, (3.6), and corresponds to a light massive
field with m2`2 = 1− ν2.

Lastly, it will be useful to define and evaluate a character associated to these represen-
tations. We will use

χj(z) ≡ Trj
(
e2πizL3

)
=
∞∑
m=0

e2πiz(j−m) = e2πiz(j+1)

e2πiz − 1 . (3.33)

In terms of ν, we have

χν(z) = eiπzν

2i sin πz . (3.34)

Principal-type representations. For the principal-type, we instead use Hermiticity
explicitly involving the shadow map, S, (3.19):

L†3 = SL3S , L†± = −SL∓S , (3.35)

with S sending j → j̄ = −1− j . This implies

j = 〈j, 0|L†3|j, 0〉
∗ = (−1− j)∗ , (3.36)
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which can be solved as
j = −1

2(1− iµ) , µ ∈ R . (3.37)

Given (3.17), this will be related to spinless principal series representations with

∆ = 1− iµ , (3.38)

analogous to eq. (3.7). It also satisfies the second requirement for our representations, since
the Casimir

cj = −1− µ2 , (3.39)

is negative for all µ ∈ R. In contrast to the complementary-type series, we are now describing
heavy fields with m2`2 = µ2 + 1.

We can again solve for the normalizations in (3.13) using the analogue of (3.24) but
for this different Hermiticity choice. This is

〈j,m− 1|L+|j,m〉 = −〈j,m|SL−S|j,m− 1〉∗ . (3.40)

Using (3.25) and (3.26), which hold identically in this case, we have

SL−S|j,m〉 =
Nj̄,m−1
Nj̄,m

|j,m〉 ,

L+|j,m〉 = −m(m− iµ) Nj,m

Nj,m−1
|j,m− 1〉 .

(3.41)

Unlike for the complementary-type, constructing the Nj,m’s here is a bit more involved:
they are naturally complex. Let

αj,m = Arg(Nj,m) , αj̄,m = Arg(Nj̄,m) , (3.42)

and also
φj,m = Arg(m− iµ) , m ≥ 1 , (3.43)

with the inner product (3.40) requiring

αj̄,m − αj,m − αj̄,m−1 + αj,m−1 = φj,mmod 2π . (3.44)

We are free to set αj,0 = αj̄,0 = 0 and also |Nj̄,m| = |Nj,m|. Then we can solve for the
norms to obtain

Nj,m−1 = eiαj,m−1−iαj,m
√
m|m− iµ|Nj,m , (3.45)

and the same for the barred copy, Nj̄,m. Thus we find for the action on states,

L−|j,m〉 = eiαj,m−iαj,m+1
√

(m+ 1)|m+ 1− iµ||j,m+ 1〉 ,

L+|j,m〉 = −eiαj,m−iαj,m+1+iφm
√

(m+ 1)|m+ 1− iµ||j,m− 1〉 .
(3.46)

We can now proceed inductively to check that the norm of all states are positive. We have

|L−|j, 0〉|2 = |1− iµ| > 0 . (3.47)
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Next
|L−|j,m〉|2 = (m+ 1)|m+ 1− iµ|〈j,m|j,m〉 , (3.48)

which is again positive assuming positivity of 〈j,m|j,m〉. This completes the induction.
As for the complementary series, there is no lower bound imposed by this condition. The
representations again do not truncate with successive action of lowering operators, and
there is no condition on j being integer or half integer. Thus, we again satisfy the first
requirement that the quantum number can take continuous values for these representations.
As mentioned before, the second requirement (negative Casimir) is automatically satisfied.

For these representations we will use the same definition for the character as in the
complementary-type series. Using this, we find

χj(z) = Trj
(
e2πizL3

)
=
∞∑
m=0

e2πiz(j−m) = e2πiz(j+1)

e2πiz − 1 . (3.49)

In terms of j this character takes the exact same functional form as (3.33). In terms of µ
this is

χµ(z) = e−πzµ

2i sin (πz) . (3.50)

3.2 SU(2) Chern-Simons theory: Wilson loop

Now we turn to using the above representations in expectation values of a Wilson loop. To
establish some notation, Wilson loops are defined by a trace in a specified representation, R,
of a path-ordered exponential of the integral of the connection, A, pulled back to a closed
one-dimensional submanifold, γ:

WR[γ] = TrR
(
P exp

∮
γ
A

)
, (3.51)

whose expectation values we will denote as

〈
WR[γ]

〉
=
∫ DA
V

eikSCS WR[γ] . (3.52)

In principle one could similarly consider the expectation values of multiple Wilson loops〈
WR1 [γ1]WR2 [γ2] . . .WRn [γn]

〉
along multiple non-intersecting paths, however for the purpose

here, we will restrict ourselves to a single observable.
Up to a choice of framing (described in section 2.3), Wilson loop expectation values can

only depend on topological features of the curves and the details of their representations and
in fact coincide with the colored link invariants of γ1∪γ2∪ . . .∪γn. The power of topological
field theory is that there are several methods for evaluating these expectation values exactly.
In section 2.3 we outlined two of those techniques, Abelianisation and supersymmetric
localization, in the context of evaluating the gravity path-integral. Below we re-examine
their utility for incorporating Wilson loops with non-standard representations.
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3.2.1 Abelianisation

Returning now to Abelianisation, section 2.3.1, we will place the Wilson loop (3.51) in the
fibre direction of M , i.e. along γ in eq. (2.33). Following [22], this operator then depends
only on the associated representation R and on the a+Bκ = a+ κσ part of the connection,
but not on BH . The inclusion of such Wilson loops does not change the evaluation of the
path-integral though Abelianisation and σ can be taken to be valued in t and constant on
M . The expectation value of a Wilson loop TrR(P exp(

∮
A)), whether normalised or not,

is the same as evaluating the partition function (2.26) with the character

TrRP exp
(∮

γ
(a+ κσ)

)
, (3.53)

inserted into the integrand, which leads to

〈WR[γ]〉 = eirSCS[a]
∫
R

dσ sin2(πσ)exp
(
i
π

2 r σ
2
)
χR(σ + h) . (3.54)

Recall that h captures the holonomy of a. An advantage of Abelianisation is that the
procedure does not depend on the nature of the representation R. Of course, it could be
that for infinite-dimensional representations the above integral diverges; we verify that
it does not. More explicitly, evaluating (3.54) with R being either of the non-standard
representations with χj from (3.33) or (3.49) (stated in terms of j, the characters are
equivalent for both representations) gives

〈Wj [γ]〉 = 1
2 e

irSCS[a]+i2π h jeiφ−i
2π
r
cj

√
2
r

sin
(
π(2j + 1)

r

)
, (3.55)

where we’ve again taken h ∈ Z. We have grouped the terms above in an intuitive manner. We
firstly have the classical contribution, exp(irSCS[a] + i2πh j), associated to the background
connection. Secondly we have the overall phase, exp

(
iφ− i2π

r cj
)
, where φ reappears from

eq. (2.55) as the combination of contour rotation phase and a framing phase. The addition
of cj = j(j+ 1) is the expected framing phase for Wj [19]. The last two terms, including the
sine-function, are also present when R is a finite-dimensional representation, and therefore
resonate with known expressions for a Wilson loop [19, 26, 41].

Despite the simplicity of the above result, we wish to emphasize that arriving at this
point is non-trivial: one naïve analytic continuation of the standard SU(2) result might
involve declaring 2j + 1 ≡ dj as the dimension of a finite dimensional SU(2) representation
and concluding that 〈Wj〉 does not have a sensible analytic continuation to our infinite-
dimensional non-standard representations. This is obviously not the case. Abelianisation
gives us a first-principles justification to apply the standard SU(2) results to non-standard
representations that is manifestly finite and sensible even for j ∈ C.

Lastly we note for future utility that the above arguments regarding Abelianisation
continue to hold if we allow a general coefficient,23 α, inside the path-ordered exponential:

W
(α)
R [γ] = TrRP exp

(
α

2π

∮
γ
A

)
, (3.56)

23We will discuss potential issues of gauge-invariance related to this in section 3.3.
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allowing us to define an expectation value for W (α), at least formally, as the integral

〈W (α)
R [γ]〉 = eirSCS[a]

∫
R

dσ sin2(πσ)exp
(
i
π

2 r σ
2
)
χR

(
α

2π (σ + h)
)
. (3.57)

Doing this integral exactly is much harder, however it can be performed in perturbation
theory for large r.

3.2.2 N = 2 supersymmetric localization

We can similarly re-examine supersymmetric localization procedure in section 2.3.2 in the
context of Wilson loops. In order to do so, we will need to modify WR to ensure it maintains
supersymmetry. We will assume that its path, γ, is taken along a great circle preserving
supersymmetry. Note that the background connection may possess holonomy à la eq. (2.62).
The supersymmetric Wilson loop is given by

WR[γ] = TrRP exp
(∮

γ
(A+ ds |ẋ|σ)

)
. (3.58)

Inserting this into the path-integral, (2.60), it is clear that in the t→∞ limit this operator
localizes around its saddle point value

WR =̂ TrRP exp
(∮

γ

(
a+ ds |ẋ|σ(g)

0

))
=̂ TrR exp(i2π(h + σ)L3) , (3.59)

where =̂ denotes “true inside the path-integral.” The expectation value then localizes to
integral

〈WR[γ]〉 = eirSCS[a]
∫
R

dσ sin2(πσ)exp
(
i
π

2 r σ
2
)
χR(σ + h) . (3.60)

This matches (3.54). Again these arguments do not rely on the nature of the represen-
tation, R, appearing in (3.60). As such, (3.60), continues to hold for our non-standard
representations and the integral can be performed to give the same, finite, results as in
Abelianisation, (3.55). Additionally, upon inclusion of an arbitrary parameter, α,

W
(α)
R [γ] = TrRP exp

(
α

2π

∮
γ
(A+ ds |ẋ|σ)

)
(3.61)

remains supersymmetric and the arguments regarding localization continue to hold. As
such 〈W (α)

R 〉 can still be defined through the integral (3.57).

3.3 The Wilson spool: quantum gravity coupled to matter

We want to now leverage the ability evaluate Wilson loops exactly to give insight into
how to couple matter into (and integrate out of) our quantum gravity path-integral. Said
another way, we have the tools to evaluate the expectation values of Wilson loops, however
we want to know what gravitational physics lies in those expectation values.
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We will state the main result shortly, however let us preface it with a few points of
guiding intuition:

• At low-energies, Wilson lines represent the worldlines of massive particles that have been
integrated out. This intuition extends, at least at the classical level, to Chern-Simons
theories of gravity where Wilson lines can be represented as worldline quantum mechanics
with equations of motion equivalent to geodesic motion [42–44].

• In Euclidean signature, looped worldlines also compute one-loop determinants of massive
scalar fields via the heat kernel representation. When the base space is compact, the one-
loop determinant includes a sum over worldlines wrapping the compact space arbitrarily
many times. We illustrate this explicitly for S3 in appendix C.

Relying on these two pieces of intuition we expect that the one-loop determinant of a
scalar field will be (roughly) related to an object packaging multiply wound Wilson loop
observables.

Let us now state the correspondence: consider fixed connections AL and AR which
define a non-degenerate metric geometry which is topologically S3.24 Then the one-loop
determinant of a massive scalar field minimally coupled to that background is given by

logZscalar[AL, AR] = 1
4Wj , (3.62)

where

Wj := i

∫
C

dα
α

cosα/2
sinα/2 TrRj

(
P exp α

2π

∮
AL

)
TrRj

(
P exp −α2π

∮
AR

)
, (3.63)

is an object we deem the Wilson spool. The α contour of integration is C = C+ ∪ C−
with C− and C+ running upwards along the imaginary α axis to the left and to the right,
respectively, of the poles at α = 0, as depicted in figure 2. As we will show in section 3.3.2,
the integration over α is implementing the sum over worldlines wrapping the compact space.
The representations appearing in Wj are precisely the non-standard su(2) representations
discussed in section 3.1 and correspond to the mass of a minimally-coupled scalar field via

j = −1
2
(
1 +

√
1−m2`2

)
. (3.64)

The appeal of (3.62)–(3.63) is that all of its components involve quantities that are
precisely defined in Chern-Simons theory. This will allow us to take a step further: we will
be able to evaluate〈

logZscalar[S3]
〉

grav = 1
4
〈
Wj
〉

grav

= i

4e
irLSCS[aL]+irRSCS[aR]

∫
dσLdσR ei

π
2 rLσ

2
L+iπ2 rRσ

2
R sin2(πσL)sin2(πσR)

×
∫
C

dα
α

cosα/2
sinα/2χj

(
α

2π (σL+hL)
)
χj

(
− α

2π (σR+hR)
)
, (3.65)

24That is, in the metric language, still quantized about the S3 saddle. In the gauge-theory language, not
disconnected by a large gauge transformation from the background connections aL/R.
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Figure 2. Left: the integration contour, C = C+ ∪ C−, defining Wj depicted in red. Poles in the
integrand are depicted as blue “×”’s. Middle and right: possible deformations for evaluating Wj .

which is the gravitational path integral (2.80) with the Wilson spool inserted. Here χj(z)
are the characters of the non-standard representations — either (3.33) or (3.49) — and
hL/R are the holonomies of the classical connections aL/R:

hL = 1 , hR = −1 . (3.66)

This is an object that we can systematically compute to any order in GN . It is a prescription
for coupling massive fields to dynamical gravity using the Chern-Simons formulation of the
dS3 gravity.

In the following subsections we will scrutinise and derive our proposal by tackling
different fronts. We will start in section 3.3.1 by testing some of the elementary properties
of (3.63): we will discuss gauge invariance, and verify that it correctly reproduces the
one-loop determinant of a massive scalar field on S3 in the GN → 0 limit. In section 3.3.2
we will give a first-principles derivation of (3.63) and further illustrate that our proposal is
not fine-tuned to choices specific to S3, and hence, it is an effective mechanism to couple
matter to dynamical gravity in Chern-Simons theory. Finally, in section 3.3.3 we will
quantify 〈Wj〉grav, and in particular, its quantum gravity corrections through an expansion
in powers of GN .

3.3.1 Testing the proposal: Wj on a fixed background

Gauge invariance. Let us briefly remark on the gauge-invariance of (3.63). A cantan-
kerous reader may object that large gauge transformations require precise quantization
of coefficients appearing in Wilson loop operators. However given that we are discussing
perturbative quantization about a particular gravitational saddle, we will only require the
invariance of (3.63) under small gauge transformations. Indeed, a generic large gauge trans-
formation will shift the saddle, changing the value of either IEH or IGCS; gravitationally this
is tied to the fact that only gauge transformations connected to the identity are equivalent
to diffeomorphisms. Under small gauge transformations (gL, gR), (with gL/R single-valued),
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the traces in Wj transform by conjugation, i.e.,

TrRj
(
Pe

α
2π

∮
AL
)
→ TrRj

(
g
α
2π
L ◦ Pe

α
2π

∮
AL ◦ g−

α
2π

L

)
,

TrRj
(
Pe−

α
2π

∮
AR
)
→ TrRj

(
g
− α

2π
R ◦ Pe−

α
2π

∮
AR ◦ g

α
2π
R

)
.

(3.67)

These traces are invariant because gL/R are connected to the identity: we can define their
exponent, at least formally, as

gL = exp(iξaLa) ⇒ g
α
2π
L := exp

(
i
α

2πξ
aLa

)
(3.68)

and similarly for gR. This definition acts naturally on the su(2)L/R representations appearing
in the trace. Therefore the Wilson spool is invariant, Wj → Wj , under these gauge
transformations.

One-loop determinant on S3. Before diving into the more rigorous derivation of (3.62)
in the next subsection, it is instructive to evaluate (3.63) and compare it to a one-loop
determinant of a massive scalar field on S3. That is, we want to test that

lim
GN→0

〈
logZscalar[S3]

〉
grav

Zgrav[S3] = logZscalar[S3] = log det
(
−∇2

S3 + m2`2
)−1/2

, (3.69)

evaluated using a round S3 metric is actually (3.63), when the connections are given by the
classical configuration (2.19)–(2.22).

From (3.62) and (3.63) we have25

logZscalar[S3] = i

4

∫
C

dα
α

cosα/2
sinα/2 χj

(
α

2πhL
)
χj

(
− α

2πhR
)

= − i

16

∫
C

dα
α

cosα/2
sin3 α/2e

i(2j+1)α , (3.70)

where we used (2.22) and the explicit expression of the character in (3.33) or (3.49). We can
now pull C± towards the real line — depicted as the middle cartoon of figure 2 — to pick
up the third-order poles at α = ±2πn, respectively. Keeping track of orientations, we find

logZscalar[S3] =
∑
±
∓π2

∞∑
n=1

d2

dα2

(
ei(2j+1)α

α

)∣∣∣∣∣
α=±2πn

=
∑
±

(
− 1

8π2Li3
(
e∓2πµ

)
∓ µ

4πLi2
(
e∓2πµ

)
− µ2

4 Li1
(
e∓2πµ

))
.

(3.71)

In the second line we used the information for the principal-type representations, where
j = −1

2(1− iµ) and µ2 = m2`2 − 1; a similar result holds for the complementary-type repre-
sentation, where j = −1

2(1 + ν). We also used the definition of the polylogarithm functions,

Liq(x) =
∞∑
n=1

xn

nq
. (3.72)

25As reflected by the first equality of (3.69), we can also start from (3.65) and take the limit rL → is→ i∞
and rR → −is → −i∞. In this limit, the Gaussian integrals localize to σL/R ∼ 0, and the result is
again (3.70).
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We have written (3.71) in an inherently symmetric form, however one can also choose
to wrap C− to the right, as in the rightmost cartoon of figure 2, doubling the contribution
of poles on the positive real line, as well as picking up the quadrupole pole at α = 0, or
alternatively using a conspiracy of polylog identities.26 This gives

logZscalar[S3] = πµ3

6 − 1
4π2Li3

(
e−2πµ

)
− µ

2πLi2
(
e−2πµ

)
− µ2

2 Li1
(
e−2πµ

)
. (3.73)

This makes the comparison to the three-sphere one-loop determinant (C.21), evaluated
independently via heat kernel, very clear. In this regard, a few comments are in order:

1. Because the above polylogarithms involve sums over e−n2πµ, their appearance is the first
sign that (3.63) packages contributions of Wilson loops wound many times around the
S3. We will comment further on this interpretation below.

2. In the above computation there is no need to minimally subtract any divergences. As
we will see in section 3.3.2 there is an iε prescription in our construction, and it turns
out that it is enough to render the entire computation finite.

3. In comparison to the heat kernel method (C.21), or the methods used in [13, 39], the
finite terms in logZscalar[S3] there agree perfectly with (3.73).

4. It is worth comparing in more detail with [13]. In particular we note that the measure and
characters in the first line of (3.70) agree,27 albeit the contour prescription is different.
One advantage of the procedure here is that (3.63) allows us to track the gravitational
dependence: we can integrate out the matter field while keeping gravity off-shell.

The analysis done here provides a non-trivial test that our proposal is capturing the desired
observable. However, one might still be skeptical regarding its physical interpretation (and
hence utility in other contexts). We will address this in the next portion by providing a
more rigorous derivation of (3.62)–(3.63).

3.3.2 Construction of Wj

Let us now construct (3.63) under the following guiding principles: we want to find an
operator that (i) utilizes the su(2)L ⊕ su(2)R structure naturally, (ii) is gauge-invariant,
(iii) is evaluable inside the gravitational path-integral, and (iv) has a recognizable physical
meaning in the classical, s→∞, limit. Focusing on this last point, let us take inspiration28

from a procedure pioneered by Denef, Hartnoll, and Sachdev (DHS) [37] for constructing
26Namely,

Li1(z) = Li1(z−1)− log(z)− iπ ,

Li2(z) = −Li2(z−1)− 1
2 log(z)2 − iπ log(z) + π2

3 ,

Li3(z) = Li3(z−1)− 1
6 log(z)3 − iπ

2 log(z)2 + π2

3 log(z) .

27In appendix A we show that certain combinations of our non-standard characters match Harish-Chandra
characters of SO(1, 3).

28We also take notable inspiration from the recent application of the DHS formula in [39].
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one-loop determinants from quasi-normal mode spectra and generalize this to an expression
satisfying the first three points.

The salient point of [37] is to regard

Zscalar = det
(
−∇2 + m2`2

)−1/2
(3.74)

as a meromorphic function of ∆ = 1 +
√

1−m2`2, where m is the mass of the scalar field
and try to identify its zeroes and poles as m2 is varied: if these can be identified, then up
to an overall analytic function (fixed by asymptotics), Zscalar must be equal to a rational
product with the same zeroes and poles. For a scalar field Zscalar has poles at solutions to
−∇2 + m2`2 = 0. For either a Euclidean black hole or Euclidean de Sitter background, these
poles lie precisely on quasi-normal mode frequencies. An additional constraint comes from
the fact that determinants are defined with respect to boundary conditions and demanding
regularity of field configurations appearing in (3.74) at the horizon; in Euclidean signature
this implies each mode must also be a Matsubara frequency with appropriate horizon
temperature, TH . As a result, Zscalar takes the following form as a function of ∆

Zscalar = eP (z∗,z̄∗)
∏
z∗,z̄∗

∏
n∈Z

(
|n|+ i

z∗(∆)
2πTH

)−dz∗/4(
|n| − i z̄∗(∆)

2πTH

)−dz̄∗/4
, (3.75)

where z∗(∆) and z̄∗(∆) are quasi-normal and anti-quasi-normal modes, implicitly dependent
on the mass through ∆. We have allowed for possible degeneracies, dz∗ and dz̄∗ , in the
spectrum. Lastly, eP (z∗,z̄∗) is an analytic function which can be determined by matching
Zscalar to asymptotics in m2 (e.g by taking m2 →∞ and matching to heat kernel coefficients).

Let us now extend this logic in a manner that makes the action of su(2)L ⊕ su(2)R
manifest. We will do this first for the S3 Laplacian and then generalize to curved backgrounds
from there. Two important data points towards this are, firstly, that for the S3 background
the su(2)’s can be represented on scalar functions via left and right acting (or right- and
left-invariant, respectively) vector fields, {ζa}a=1,2,3 and {ζ̄a}a=1,2,3 such that

∇2
S3 = −2ζaζa − 2ζ̄aζ̄a = −2cL2 − 2cR2 , (3.76)

where cL/R2 is the quadratic Casimir of su(2)L/R. The explicit forms of these vector fields can
be found in appendix D. The second data point is that, as shown in [18], scalar fields lie in
non-standard representations whose weight-spaces line up with the spectrum of quasi-normal
modes on dS3. This suggests the su(2)L ⊕ su(2)R manifest object

Zscalar[S3] = det
(
2cL2 + 2cR2 + m2`2

)−1/2
, (3.77)

where we expect the weights of non-standard representations to appear in a similar manner
as the quasi-normal modes in the original DHS construction. We can now ask, à la DHS,
treating Zscalar as a meromorphic function of ∆, what function matches the poles of (3.77)?
It is clear that Zscalar will have a pole for each state of a su(2)L ⊕ su(2)R representation,
Rj ⊗Rj ,29 satisfying

j(j + 1) = −m2`2

4 . (3.78)
29As mentioned in section 3.1.2, we must take jL = jR = j for a scalar determinant since jL− jR is related

to the SO(1, 3) spin.
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These are precisely the non-standard representations with j = −1
2(1 + ν) for m2`2 < 1 and

j = −1
2(1− iµ) for m2`2 > 1. A particular weight, (λL, λR) of Rj ⊗Rj can contribute to

Zscalar if it leads to a field configuration that is regular at the horizon. Consider then the
parallel transport of a field living in Rj ⊗Rj around a closed curve γ enclosing the horizon,
ρ = π

2 :

Φf = Rj

(
P exp

(∮
γ
aL

))
ΦiRj

(
P exp

(
−
∮
γ
aR

))
, (3.79)

where the minus sign in front of aR arises because it is the connection for the right-acting
SU(2) which involves inverse group elements. As mentioned multiple times above, aL and
aR will possess holonomies hL and hR, respectively, around γ: that is there exists some
single-valued group elements uL/R such that

P exp
(∮

γ
aL/R

)
= u−1

L/Re
i2πhL/RL3uL/R . (3.80)

Single-valued-ness of Φ restricted to the (λL, λR) weight sector implies that this weight can
contribute a pole to Zscalar if

λLhL − λRhR ∈ Z . (3.81)

The logic following DHS leads us the following formula for Zscalar

Zscalar[S3] =
∏

(λL,λR)∈Rj⊗Rj

∏
n∈Z

(|n|−λLhL+λRhR)−1/4(|n|+λLhL−λRhR)−1/4

×
∏

(λ̄L,λ̄R)∈Rj̄⊗Rj̄

∏
n∈Z

(
|n|−λ̄LhL+λ̄RhR

)−1/4(
|n|+λ̄LhL−λ̄RhR

)−1/4
,

(3.82)

where the second line occurs from noting that since Zscalar is a function only of the Casimir
it will receive poles30 from weights appearing in not only in Rj ⊗Rj but also the “shadow
representations,” Rj̄ ⊗ Rj̄ with j̄ = −1 − j. This is all up to a potential holomorphic
function eP which is trivial for S3 [37].

Let us now take the log of (3.82). We will write this log in terms of a Schwinger
parameter, α, as

logM = −
∫ ∞
×

dα
α
e−αM , (3.83)

where
∫∞
× indicates that we are regulating the UV divergence at α ∼ 0. We will discuss

this regulator very explicitly in a moment. Noting that∑
n∈Z

e−|n|α = coshα/2
sinhα/2 , (3.84)

we can perform the integer sum in (3.82); at this step one can infer that Zscalar[S3] contains
winding (looped) contributions. Finally, the sum over weights can be organized into
representation traces, i.e.,∑

(λL,λR)∈Rj⊗Rj

eαλLhL−αλRhR = TrRj
(
eαhLL3

)
TrRj

(
e−αhRL3

)
, (3.85)

30Crossterms such as Rj ⊗Rj̄ also have the same Casimir however they cannot contribute because the
resulting field will have non-trivial spin.
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which we happily recognize as a Wilson-loop along aL/R. Gathering these facts, the log
of (3.82) becomes

logZscalar[S3] = 1
4

∫ ∞
×

dα
α

coshα/2
sinhα/2

{
TrRj

(
Pe−i

α
2π

∮
γ
aL
)

TrRj
(
Pei

α
2π

∮
γ
aR
)

+ TrRj
(
Pei

α
2π

∮
γ
aL
)

TrRj
(
Pe−i

α
2π

∮
γ
aR
)

+ j → j̄

}
.

(3.86)

Let us now discuss the regulator. Noting that the first two lines of (3.86) can be combined
into a single integral over

∫∞
× +

∫−×
−∞, our proposal is to displace the α contour away from

the poles at α = 0 symmetrically via an iε prescription:(∫ −×
−∞

+
∫ ∞
×

)dα
α
f(α) := 1

2 lim
ε→0

∑
±

∫ ∞
−∞

dα
α± iε

f(α± iε) . (3.87)

If the integrand, f , has no poles at α = 0 then the Sokhotski-Plemelj formula relates this to
the principal part, P

∫ dα
α f(α) := limε→0

(∫−ε
−∞+

∫∞
ε

)
dα
α f(α), however for integrands with

additional poles, such as in (3.86), these objects differ. As we saw in section 3.3.1, our
prescription (3.87) not only gives the correct regulated scalar one-loop determinant in the
GN → 0 limit, but is entirely finite inside the quantum gravity path-integral. We take
this moment to emphasize that once we make this choice of regulator there are no further
ambiguities in any finite GN calculation.

Lastly as a matter of cosmetic convenience, we redefine31 α → −iα to arrive at our
final result:

logZscalar[S3] = i

4

∫
C

dα
α

cosα/2
sinα/2 TrRj

(
Pe

α
2π

∮
aL
)
TrRj

(
Pe−

α
2π

∮
aR
)
, (3.88)

where again C = C− ∪ C+ is the union of two contours running up the imaginary axis just to
the left and right of zero. Another cosmetic benefit: the two contours also nicely package
in the contribution of the shadow representations.

Given that our expression for logZscalar on S3 is nicely expressed as gauge-invariant,
Wilson loop observables of the background connections, we naturally extend this definition
to non-trivial connections, AL and AR. Namely, we claim that the one-loop determinant of
a scalar field minimally coupled to a background geometry determined by AL and AR is
given by

logZscalar[AL, AR] = i

4

∫
C

dα
α

cosα/2
sinα/2 TrRj

(
Pe

α
2π

∮
AL
)
TrRj

(
Pe−

α
2π

∮
AR
)
, (3.89)

which concludes our construction of the Wilson spool. One might object that since the
construction of (3.88) as Wilson loops relied on the su(2)L ⊕ su(2)R isometry of S3, there
is no reason to expect that we can extend to a Laplacian on generic curved background

31This is an integration variable redefinition, not an integration contour deformation.
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(which might have no isometries) as presented in (3.89). There is no sleight of hand here,
however. In appendix D we show that by modelling a three-manifold with “locally tangent
three-spheres” we can express its Laplacian as the curved Casimir of local su(2)L ⊕ su(2)R
action on its tangent spaces.

3.3.3 Quantum gravity corrections to 〈Wj〉

In this last portion we will focus on the quantum version of the Wilson spool, given by (3.65),
and report on the quantum effects of our proposal. In particular, we will report on the
predictions we can make regarding mass renormalization.

We have〈
logZscalar[S3]

〉
grav = i

4e
irLSCS[aL]+irRSCS[aR]

∫
dσLdσR ei

π
2 rLσ

2
L+iπ2 rRσ

2
R sin2(πσL)sin2(πσR)

×
∫
C

dα
α

cosα/2
sinα/2χj

(
α

2π (σL+hL)
)
χj

(
− α

2π (σR+hR)
)
. (3.90)

Recall that the gravitational couplings are related to rL/R via

rL = δ̂ + is , rR = δ̂ − is , s = `

4GN
. (3.91)

Evaluating (3.90) exactly as a function of rL/R is cumbersome, hence we will proceed
perturbatively in GN , with δ̂ fixed. This expansion is systematic and the procedure will
include the following steps:

1. Beginning with the integral form of (3.90), we normalize the Gaussian integrals by
σL/R → r

−1/2
L/R σL/R such that the integrand now admits a perturbative expansion in 1/s

which is ultimately a Taylor expansion in σL/R.

2. At any order in 1/s perturbation theory, the Gaussian σL/R integrals can be performed.

3. Afterwards the α contour, C, can be pulled towards the real line to pick up the poles at
2πZ 6=0.

4. The sum over the poles can then be performed to yield potential polylogarithms.

To implement these steps, we will organize corrections to the scalar one-loop determinant
on S3 as a GN`−1 expansion:〈

logZscalar[S3]
〉

grav
Zgrav[S3] = logZscalar[S3] +

∞∑
m=1

(
GN
`

)2m
(logZ)(2m) . (3.92)

The term (logZ)(2m) encodes the contributions from expanding the numerator and de-
nominator of (3.92) separately. Note that only even powers of GN`−1 enter here; this will
be more manifest below. The denominator is easily expanded from (2.81) and it is given
in (2.84). The expectation value of the spool can be organized as

〈
logZscalar[S3]

〉
grav = e

π`
2GN

∫
dσLdσRei

π
2 (σ2

L+σ2
R)
∫
C

dα
α

cosα/2
sinα/2Ij [σL, σR;α] , (3.93)
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with

Ij [σL, σR;α] = i

4|δ̂ + is|
sin2

 πσL√
δ̂ + is

 sin2

 πσR√
δ̂ − is


× χj

 α

2π

1 + σL√
δ̂ + is

χj
 α

2π

1− σR√
δ̂ − is

 .
(3.94)

From here it is clear that a small GN (or large s) expansion can be organized as a polynomial
expansion of Ij in σL and σR which we cast as

Ij [σL, σR;α] = 64π4
(
GN
`

)3
e

π`
2GN σ2

Lσ
2
R

I(0,0)[α] +
∞∑

m,n=1
I(m,n)
j [α]σ2m

L σ2n
R

 . (3.95)

The prefactors are the leading contribution Zgrav[S3], which we normalize by (3.92). The
first term, I(0,0)[α] = i

4χj
(
α
2π
)2, is what we previously evaluated in (3.70), giving logZscalar

on the classical S3. Each subleading term can be evaluated as moments of the Gaussian
σL/R integrals (only even moments can contribute to this expansion). After doing these
integrals we can evaluate the remaining α integration, that is∫

C

dα
α

cosα/2
sinα/2I

(m,n)
j [α] , (3.96)

in the following way: given the form of the characters (3.49) ((3.34)) appearing in Ij , it
is easy to see that I(m,n)

j will continue to have poles at α = ±2πn. We are then free to
deform C to wrap these poles along the real axis to pick up their residues, just as we did
in evaluating I(0,0)[α]. The result is the sum over n ∈ Z 6=0 of the residues of I(m,n)

j [α].
Again, given the form of the characters, (3.49), the summands inevitably involve Laurent
polynomials of n weighted by ei2π(2j+1)n and so the end results can be expressed in the
form of polylogarithms of various orders. This entire procedure can be implemented easily
on a computer algebra system.

It is instructive to quantify this expansion at leading order. For concreteness we select
the principal-type representations. The first non-trivial correction to (3.92) is

(logZ)(2) =
∑
±

3∑
i=0

z
(2)
i [±µ]Li−i

(
e∓2πµ

)

= z
(2)
0 [µ] + 2

3∑
i=0

z
(2)
i [µ]Li−i

(
e−2πµ

)
,

(3.97)

with

z
(2)
0 [µ] = −

(8π
3 −

4
π
− 4iδ̂

)
µ3 −

(
8π − 72

π
− 12iδ̂

)
µ ,

z
(2)
1 [µ] =

(
8π2

3 + 6− 4iπδ̂
)
µ4 +

(
8π2 − 138− 12iπδ̂

)
µ2 − 24 ,

z
(2)
2 [µ] = −12π

5 µ5 + 52πµ3 + 48πµ ,

z
(2)
3 [µ] = −4π2µ4 − 16π2µ2 .

(3.98)
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It is natural to identify these corrections with a renormalization of the mass of the scalar
field32 (or more naturally, a renormalization of µ =

√
m2`2 − 1). To see this let us denote

the renormalized mass µR which is related to the bare mass, µ, by

µR = µ+ G2
N

`2
δ(2)
µ + . . . , (3.99)

such that, via direct calculation from (3.70), or (3.73), we obtain at O(G2
N ),

logZscalar[S3]
∣∣∣
µ

= logZscalar[S3]
∣∣∣
µR
− π

2
G2
N

`2
cosh(πµR)
sinh(πµR)µ

2
Rδ

(2)
µ + · · · . (3.100)

We can then identify quantum gravity corrections, (3.92), to this order as a renormalization
of the mass

δ(2)
µ = − 2

πµ2
R

sinh(πµR)
cosh(πµR)(logZ)(2) . (3.101)

In the large mass limit, where µ2
R ∼ m2

R`
2 � 1, we find

δ(2)
µ = 48

5 µ
3
R e
−2πµR + · · · . (3.102)

Equations (3.97) and (3.98) give predictive statements about de Sitter quantum gravity,
namely how it renormalizes the mass to O(G2

N ). We emphasize however that the spool
allows one, in principle, to calculate this renormalization to all orders in a systematic and
finite manner.

Finally, we remark on the peculiar imaginary contributions in (3.98). They are due to
the imaginary contribution of the gravitational Chern-Simons term, which is not surprising
from section 2: the action (2.14) is parity odd. This leads to an imaginary coupling in
Euclidean signature, and its effects were already present in the loop corrections reported
in (2.84). When coupling to matter, we again encounter imaginary contributions related to
δ̂. We take this as an indication that it is reasonable to simply consider theories with δ̂ = 0.

4 Discussion

In this paper we revisited the Chern-Simons formulation of three-dimensional de Sitter
quantum gravity quantized about its S3 saddle. Our goal was to address how to couple
matter to this theory and compute physically relevant quantities in the gravity path-integral.
Along the way we have established several new results.

Firstly, we have retooled known exact methods for SU(2) Chern-Simons, namely
Abelianisation and N = 2 supersymmetric localization, to accommodate the complex levels
and non-trivial background connections, two ingredients necessary to admit a saddle-point
appropriate for a round S3 metric. These techniques have been applied previously in the
literature [20–24], however here we have verified their applicability and reproduced known
results for the gravity path-integral on S3.

32Because we are only considering the one-loop determinant a possible wavefunction renormalization
decouples from this calculation.
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Secondly, in the interest of capturing single-particle spectra of dS3, we defined an
alternative notion of Hermiticity on su(2) that allowed us to construct representations
that contain necessary features of single-particle representations of de Sitter, namely a
continuous parameter to identify with a mass. These representations were first considered
in [18] for light fields (m2`2 < 1) and we have extended the construction include heavy fields
(m2`2 > 1). Utilizing these representations we then investigated their role in Wilson loop
expectation values. We verified the validity of the above exact techniques for evaluating
these Wilson loops with non-standard representations.

Finally, having assembled all of the above pieces, we defined a new object, the Wilson
spool, which, at the classical (GN → 0) level reproduces the one-loop determinant of a
massive scalar field. We further showed that this object can be evaluated at any order in
GN perturbation theory and argued that it gives intrinsically finite and predictive quantum
gravity corrections to the scalar one-loop determinant.

There is much to this story that remains to be explored. Let us highlight some of the
more pressing open questions below.

Spinning fields. So far our discussion has entirely focused on massive scalars and their
effective description in Chern-Simons gravity. However de Sitter space also allows for
massive spinning fields that we have so far overlooked. In terms of the representation theory
of SO(1, 3) these fields lie in the spinning principal series. As a question of representation
theory, it would be satisfying to enlarge our framework of non-standard su(2) representations
from section 3.1.2 to encapsulate the spinning principal series. Doing so will likely require
once again altering conditions on Hermiticity and in particular altering the form of the
shadow map, S, used to build the representations. Incorporating these representations into
a Wilson spool that correctly reproduces their sphere partition function poses a further
challenge. This is because the sphere partition function of a massive spinning field is more
complicated than the simple representation theory of transverse-traceless fields suggests; in
addition, one needs to carefully treat zero mode divergences in the path-integral. This point
was emphasized in [13] which also showed that the calculation could be nicely organized
into “bulk” and “edge” contributions. With regards to constructing the Wilson spool, it is
clear that extra care must be taken in using the DHS formula in order to account for this
new “edge” contribution; we expect [45] to be a helpful guide. It would be very interesting
to understand exactly the role of this edge contribution in the Chern-Simons theory.

Additional topologies. So far all of our calculations have been performed about the
S3 saddle of the gravitational path-integral. While this may be seen as the leading saddle
in the Euclidean path-integral, it was emphasized in [12] that the gravitational path
integral includes contributions from a series of additional saddles. Some of these Euclidean
saddles are Lens space geometries, L(p, q); these are quotients of the three-sphere, i.e,
L(p, q) = S3/Zp.

At the perturbative level, it would be interesting to extend our Wilson spool construction
to these additional L(p, q) topologies. Verifying that 〈Wj [M ]〉, at GN → 0, reproduces the
one-loop determinant of a massive scalar field on a three-manifold M is a non-trivial test of
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the proposal.33 One should also be able to capture systematically the subleading corrections,
and verify that they are finite and accessible. On a technical level, many exact techniques
(e.g., Abelianisation) are tailored precisely for considering Wilson loops on Lens spaces
(and more generally, Seifert manifolds); still, one must verify that additional gravitational
features (i.e., complex level and non-standard representations) do not spoil these methods.

There is an interesting non-perturbative aspect to this line of questioning as well. While
global dS3 analytically continues to S3, these non-trivial L(p, q) saddles were argued to
contribute to the physics of a static patch in [12]. An important result of their analysis,
however, is that the resulting saddle-point sum (the “Farey tail sum”) diverges in a manner
that cannot be regulated. It would interesting to investigate the fate of the Wilson spool
under this Farey tail divergence, i.e., loop in matter in the sum. If the perturbative results
hold, then the Wilson spool will provide a concrete prescription for extending the Farey
tail to gravity+matter via∑

M

〈
logZscalar[M ]

〉
grav∑

M
Zgrav[M ] =

∑
M

1
4〈Wj [M ]〉∑

M
Zgrav[M ] . (4.1)

An important question is whether the above ratio is finite (despite the saddle-point sum
of Zgrav itself diverging). If so, it would be an intriguing hint that the inclusion of matter
regulates some of the pathologies of dS3 quantum gravity.

Higher-loop matching. We have given a prescription for computing quantum corrections
to the Wilson spool to all orders, and we provided a gravitational match to a one-loop
determinant in the GN → 0 limit. Likewise, it would be interesting to gravitationally match
the sub-leading corrections. In particular, one would like to verify our mass renormalization
formula in (3.101) by evaluating loop corrections due to graviton exchanges in the scalar
propagator.

Another approach is to contrast our corrections against the methods advocated
in [46–49]. In their context, Wilson lines in SL(2,R) Chern-Simons theory are used to
report on the anomalous dimensions of massive particles on AdS3. It would be interesting
to adapt and apply that approach to the SU(2) theory and compare against the results in
section 3.3.3.

Edge modes. While the philosophy of this paper has concentrated on Chern-Simons
gravity as a framework for addressing quantum gravity directly, one obvious advantage to
this framework is the possibility of commenting on a possible “dS/CFT” dictionary. This
is because Chern-Simons theories exhibit a “bulk/edge correspondence” when quantized
on manifolds with boundary. This observation has led to the proposal that the edge-mode
spectrum provides a realization of the dS/CFT dictionary [15, 50] in three dimensions.
In this proposal one prepares the Hartle-Hawking state through path-integration on a
Euclidean three-ball and then real-time evolves to future infinity. The resulting wave-
function is then dual to the partition function of a Wess-Zumino-Witten (WZW) model

33At the level of the gravitational sector, the derivations in [12] show that exact Chern-Simons theory
results match the graviton determinant at one-loop about each Lens space.
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living on the future two-sphere. There are significant differences in how the semi-classical
limit is realized in [15, 50] compared to this paper. Regardless, it is tempting to speculate
how the representation theory constructed in this paper fits into this proposed dS/CFT
dictionary and what the implications are for the unitarity of the putative dual. To further
illustrate this point, WZW models carry a spectrum generating ŝu(2)k affine current algebra

[Jan , Jbm] = iεabcJcm+n + kmδm+nδ
ab , (4.2)

which are the inheritance of Chern-Simons gauge transformations that have support on
the boundary. States of this CFT can be organized into representations of this algebra.
These representations can be built in a standard way starting from representations of the
non-affine su(2) spanned by {Ja0 }: given such a representation, R, of su(2) one demands

Jan |v〉 = 0 ∀ n > 0 , ∀ |v〉 ∈ R . (4.3)

The affine representation, R̂, is then obtained by the action of arbitrary products of {Jan<0}
acting on basis states of R. A subtle point of this construction however is that unitarity of
R is not a guarantee of the unitarity of R̂. This situation is well known to those familiar
with the affine ŝl(2,R)k current algebra: unitary highest-weight representations of sl(2,R)
invariably lead to affine representations containing negative norm states [51, 52]. Here a
problem potentially arises even for ŝu(2)k due to the complex level, k = δ + is. That is
to say, even if we tailor an inner-product on R such that all states have positive norm
(as we did in section 3.1.2), R̂ could still contain negative (or even complex) norm states
depending on how Hermitian conjugation is promoted to ŝu(2)k. As a simple example,
under the standard definition

(Jan)† :=
(
Ja†

)
−n
, (4.4)

the state J3
−1|j, 0〉 (where |j, 0〉 is the highest-weight state of one of the non-standard

representations) has complex norm:∣∣∣J3
−1|j, 0〉

∣∣∣2 = 〈j, 0|J3
1J

3
−1|j, 0〉 = k ∈ C . (4.5)

This does not necessarily imply non-unitarity of the boundary CFT: one lesson from
section 3.1.2 is that there is potential freedom in defining inner-products and so one may
yet find some suitable replacement of (4.4) that ensures positive norm states in the WZW
model. What we can say at this point is that norm-positivity of bulk representations
does not guarantee norm-positivity of the WZW model. There are aspects of the dS/CFT
proposal in [15, 50] that suggest non-unitary features of the dual CFT (e.g. imaginary
central charge). Whether or not these features indicate a fundamental non-unitarity or
perhaps a weaker form of unitarity (such as norm-positivity under a novel inner-product)
requires a careful analysis of the representation theory of (4.2) with imaginary level, k. We
intend to revisit this question in the near future.

Wilson lines. We may also ask if there is a natural gravitational interpretation to cutting
open the Wilson loop observables to yield Wilson lines. Of course Wilson lines are not
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gauge-invariant in and of themselves: one must append to their endpoints massive degrees of
freedom carrying a representation of the gauge group. It was shown in [18] (based on previous
applications to AdS3 space [53]) that de Sitter Wilson lines have a useful gravitational
interpretation in their classical limit when their endpoint matter representations satisfy a
particular Ishibashi condition; see (D.12). As we explain in appendix D, this condition is
equivalent to imposing that the endpoint of the Wilson line transforms as a scalar, given
the identification of dS3 as a coset space. We would like to know if some of the techniques
of this paper can be leveraged in pushing the results of [18] beyond the classical limit. An
obvious obstacle to this program is constructing an appropriate diffeomorphism-invariant
path-integral with definite endpoints described by Ishibashi states. Of course much of this
conceptual difficulty lies in the absence of a boundary to which to anchor the endpoints of a
Wilson line. As an alternative, we might consider introducing a boundary by hand by cutting
open the Euclidean path-integral, say along the hemisphere of the S3: such a procedure is
in fact natural for preparing the Hartle-Hawking state. Evolving this state, Wilson lines
anchored to future infinity might present useful applications to cosmological correlators (or
to nascent Ryu-Takayanagi-like proposals for entanglement entropy in dS/CFT [50]). An
additional hurdle is that it is not clear how to generalize the exact results considered in
section 3.2 to open-ended observables. Instead, one might apply a semi-classical expansion
and try to compute GN corrections evaluated explicitly for the non-standard representations.
It would be interesting to check whether the quantum corrected Chern-Simons calculation
has a natural gravitational interpretation.

〈
logZscalar

〉
vs. log

〈
Zscalar

〉
. As constructed, the Wilson spool, W, is naturally related

to logZscalar of a massive scalar field and as such its expectation value,
〈

logZscalar
〉

grav,
naturally computes quantum gravity corrections to logZscalar. It is important to contrast
this with log

〈
Zscalar

〉
grav.

Properly normalizing expectation values with respect to Zgrav, these two objects coincide
at first non-trivial order in perturbation theory, O

(
G2
N/`

2). However they generically
differ at higher orders. In analogy to disorder-averaging, this is similar to the difference
between quenched and annealed disorder.34 However counter to this analogy with disorder-
averaging, inside the Chern-Simons theory

〈
logZscalar

〉
grav is somewhat straight-forward to

compute, while log
〈
Zscalar

〉
grav is very difficult to compute: Zscalar requires exponentiating

the spool, and so it includes arbitrary products of Wilson loop observables. To avoid
contact singularities, one should displace these loops slightly from each other and such
a prescription could, in general, allow multiple loops to link together. Classifying and
organizing the links that can appear in the expansion of Zscalar is already a highly non-trivial
task. Subsequently, evaluating Zscalar inside the Chern-Simons path-integral poses another
substantial challenge: except for special classes of links (such as torus links) there is a
scarcity of efficient techniques for evaluating link invariants, much less techniques that we
can trust for complex levels and non-standard representations.

34This is only an analogy: we are not advocating that the Chern-Simons path-integral, at least about a
fixed saddle, calculates a disorder-average.
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It is also worth highlighting the corresponding difficulty in the metric formulation,
which ultimately stems from a difference in which order we perform the path-integrals. For〈

logZscalar
〉

grav, it is clear that we must perform the scalar path-integral first. For a scalar
field minimally coupled to a metric, gµν , we have a Gaussian action and one can integrate
the scalar field out to arrive at logZscalar[gµν ] as an effective functional of gµν . This can be
then evaluated (at least perturbatively) in the remaining gravitational path-integral. On
the other hand, for

〈
Zscalar

〉
grav, the ordering is ambiguous and one might instead perform

the gravity path-integral first. Indeed we may view log
〈
Zscalar

〉
grav ≡ −Fscalar as the scalar

free-energy after integrating out gravity. Even in GN perturbation theory this is perilous as
graviton exchanges can induce irrelevant interactions for the scalar field, leaving the matter
path-integral intractable.

Despite these difficulties in both the Chern-Simons and the metric formulations, we
might (wildly) speculate that this quantum-gravity corrected free-energy is related to a sum
(with some unspecified measure) of linked spools over all possible n-links, i.e.,

∞∑
n=1

1
4nn!

∑
n links

〈
Wj [γ1]Wj [γ2] . . .Wj [γn]

〉 ?∼ e−Fscalar . (4.6)

It would interesting to test such a relation in future work.

The Wilson spool in AdS3. The focus of this paper has been on the Chern-Simons
formulation of three-dimensional quantum gravity with positive cosmological constant.
However Chern-Simons gravity has arguably been more fully explored in the context of
negative cosmological constant, i.e. AdS3. It is natural to ask if the Wilson spool is a useful
object in this context. Indeed the DHS formula provides a broad construction for one-loop
determinants including fields on a black-hole background [37]. We expect that the Wilson
spool can be constructed in a wholly similar way to section 3.3 for the BTZ saddle of AdS3
gravity. Furthermore, in [53] it was already pointed out that gravitational Wilson loops
wrapping the BTZ horizon arbitrarily many times reproduce logZscalar of a scalar on a
fixed BTZ background in the classical limit

∑
n 6=0

1
|n|

TrRPen
∮
ALTrRPe−n

∮
AR

∣∣∣∣∣∣
classical

= logZscalar[BTZ] , (4.7)

for appropriate highest-weight representations of sl(2,R) (see [53] for more details). This
echoes (3.62) and (3.63) when the α integrand possesses no additional poles. Making this
suggestive matching more precise is an obvious follow-up. Compared to S3, Euclidean
AdS3 lacks the same library of exact methods for evaluating the spool inside the Chern-
Simons path-integral. Nevertheless, formulating one-loop determinants in the Chern-Simons
language may still provide a useful organizing framework for calculating gravitational
corrections to one-loop determinants.

In connection to other directions mentioned above, AdS3 has an advantage. On AdS3
there is a robust interpretation of the boundary and how to interpret boundary conditions.
In the past, this has meant that it is clear how to anchor the endpoints of Wilson lines [44],
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which allows a more concrete exploration to our previous questions regarding Wilson lines.
If there is a practical definition of the Wilson spool on AdS3 for loops, one can imagine then
an appropriately defined open-ended Wilson spool might provide an organizing structure
to 1/c corrections to CFT correlators that naturally incorporates an intertwining between
holomorphic sectors.35

Observational consequences. We have presented a calculation for the quantum correc-
tions to log Zscalar, which can be interpreted as a mass renormalization. We emphasize that
this result is new, and serves as a prediction for 3d de Sitter gravity. The corrections are
suppressed in powers of GN/`, as might be expected in a theory of quantum gravity. More
recently, however, [55, 56] suggested that certain quantum gravity effects may couple UV
and IR scales, and thus be governed by larger scale overall. The basic idea is to consider
quantum fluctuations δL in lengths related to horizon fluctuations of a causal diamond. In
several different models, the expectation value 〈δLδL〉 was shown to scale like `PL with L
an IR scale, rather than `2P as one might naively expect. The original calculations were
coordinate dependent, and it would be interesting to consider a setup where one obtains
a coordinate-independent calculation of length fluctuations by considering the natural
observable for lengths: a Wilson loop. Then 〈δLδL〉 should relate to 〈WW 〉, where W is
a Wilson loop operator. In this paper we have presented an exact calculation for 〈W 〉,
including the first calculation (to our knowledge) of quantum corrections for a Wilson loop
in de Sitter spacetime. It may be interesting to explore an extension to the two-point
function to try to connect to this proposal.
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A Conventions

Let us review several useful bases for the conformal algebra so(1, 3). One choice is to build
it from the antisymmetric generators LAB = −LBA, (A,B = 0, 1, 2, 3) which satisfy the
commutation relations

[LAB, LCD] = −ηACLBD + ηBCLAD − ηBDLAC + ηADLBC , (A.1)

where
ηAB = diag(−1, 1, 1, 1) . (A.2)

This basis acts naturally as (generalized) rotations in embedding space, R1,3, i.e. as the set
of Killing vectors, LAB = XA∂B −XB∂A. This is also a real basis of the Lie algebra with
group elements obtained by exponentiation by a real parameter θAB:

g = exp
(
θABLAB

)
, (A.3)

and so standard unitary representations of SO(1, 3) will come with a inner product compat-
ible with the following Hermiticity condition (we will discuss other choices of Hermiticity in
section 3.1.2):

L†AB = −LAB . (A.4)
A useful basis for constructing representations consists of the standard generators D, Pi,
Ki, Mij (i, j = 1, 2) of the Euclidean conformal algebra, which are related to LAB above as

LAB =

 0 1
2(Pi −Ki) D

−1
2(Pi −Ki) Mij −1

2(Pi +Ki)
−D 1

2(Pi +Ki) 0

 . (A.5)

Starting from (A.1) it is easy to check that the Euclidean conformal generators satisfy the
commutation relations

[D,Pi] = Pi ,

[D,Ki] = −Ki ,

[Ki, Pj ] = 2(δijD −Mij) ,
[Pi,Mjk] = δijPj − δikPj ,
[Ki,Mjk] = δijKj − δikKj ,

[Mij ,Mkl] = −δikMjl + δjkMil − δjlMik + δilMjk .

(A.6)

Another useful basis making the so(1, 2) subalgebra manifest is given by {Ja,Pb}a,b=1,23
related to LAB as

J1 = iL13 , J2 = −iL23 , J3 = L12 ,

P1 = iL01 , P2 = iL02 , P3 = −L03 ,
(A.7)

and obeying
[Ja,Jb] = εabcη

cdJd ,
[Ja,Pb] = εabcη

cdPd ,
[Pa,Pb] = −εabcηcdJd ,

(A.8)

with η = diag(1, 1,−1).
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Map to su(2)L ⊕ su(2)R. Now we want to map this algebra to su(2)⊕ su(2). To do so
it is first useful to Wick-rotate the {Ja,Pb} basis, to so(4) via

J1 = iP1 , J2 = iJ2 , J3 = −P3 ,

P1 = J1 , P2 = P2 , P3 = iJ3 ,
(A.9)

with {Ja,Pb} obeying
[Ja, Jb] = −εabcδcdJd ,
[Ja,Pb] = −εabcδcdPd ,
[Pa,Pb] = −εabcδcdJd .

(A.10)

Lastly the splitting to su(2)⊕ su(2) is given by

Pa = i
(
La − L̄a

)
, Ja = i

(
La + L̄a

)
, (A.11)

with {La} and {L̄a} generating the two su(2)’s:

[La, Lb] = iεab
c Lc , [L̄a, L̄a] = iεab

c L̄c , [La, L̄b] = 0 . (A.12)

For the sake of ease of comparison, let us rewrite this map in terms of the conformal basis:

D = −(L3 + L̄3) ,
M = i(L3 − L̄3) ,
P1 = L− + L̄− ,

P2 = i
(
L− − L̄−

)
,

K1 = −
(
L+ + L̄+

)
,

K2 = i
(
L+ − L̄+

)
,

(A.13)

where M = 1
2ε
ijMij and L± = L1 ± iL2 as usual. We briefly point a couple of features of

this mapping. Firstly, representations that are labelled by {L3, L̄3} eigenvalues, (jL, jR),
can equivalently be labelled by their conformal weight, ∆, and spin, s, the eigenvalues of D
and −iM , respectively, via

∆ = −jL − jR , s = jL − jR , (A.14)

which facilitates how we will utilize su(2) representations to describe particle content on
dS3 described in section 3.1. Secondly, the so(1, 3) quadratic Casimir maps to twice the
sum of the su(2) Casimirs:

c
so(1,3)
2 = D(2−D) +

∑
i=1,2

PiKi +M2

= −2
(
(L3)2 + L3 + L−L+ + (L̄3)2 + L̄3 + L̄−L̄+

)
= −2csu(2)L

2 − 2csu(2)R
2 .

(A.15)
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Lastly we point out that the Hermiticity of a real so(1, 3), (A.4), is unnatural from the
point of view of the su(2)⊕ su(2):

(L3)† = −L̄3 , (L±)† = −L̄± . (A.16)

This stems from the fact that so(1, 3) and su(2)⊕ su(2) are not isomorphic as real algebras.
Instead we have identified the generators in their common complexification, sl(2,C).

While we do not utilize the following result, it is amusing that one can form the so(1, 3)
representation characters from the su(2)⊕ su(2) characters defined in section 3.1.2. More
explicitly, from (3.50), we see that the following combination gives

χjL(zL)χjR(zR) + χj̄L(zL)χj̄R(zR) = e2πijLzL+2πijRzR + e2πij̄LzL+2πij̄RzR

(1− e−2πizL)(1− e−2πizR) , (A.17)

where j̄L/R = −1− jL/R. Writing q = e−iπ(zL+zR) and w = eiπ(zL−zR)

χjL(zL)χjR(zR) + χj̄L(zL)χj̄R(zR) = wsq∆ + w−sq∆̄

(1− w−1q)(1− wq) , (A.18)

where ∆ and s are identified as (A.14) and ∆̄ = 2−∆. This is in fact the Harish-Chandra
character for the so(1, 3) spinning principal series [34]. For s = 0 this matching follows
from the observation that a q-expansion of the Harish-Chandra character lies up with the
frequencies and degeneracies of quasi-normal modes [13] and this quasi-normal expansion is
precisely realized as the weight spaces of our non-standard representations. However, to
be clear, for s 6= 0, the above matching is simply a suggestive observation: as of yet, we
have not constructed non-standard su(2)L ⊕ su(2)R representations corresponding to the
spinning principal series.

B Non-Abelian localization

Non-Abelian localization is a method developed in [25, 26] for computing partition functions
and expectation values of Wilson loops of SU(2)k Chern-Simons theory on a Seifert manifold.
In this case, M is a circle bundle over a Riemann surface and so admits a locally free U(1)
action that rotates the S1 fibers. [26] showed that for Wilson loops whose curve, γ, wraps a
circle fiber (a Seifert loop), the stationary phase approximation to the path-integral is exact
leading to the following expectation value for finite dimension dimensional representations
of SU(2):

〈
Wj [γ]

〉
= 1

2πie
− iπ(1+(2j+1)2)

2(k+2)

∫ +∞

−∞
dx chj

(
e
i3π
4
x

2π

)
sinh2

(
e
iπ
4
x

2

)
e−

k+2
8π x2

, (B.1)

where chj(x) = sin(π(2j + 1)x)/ sin(πx) is the SU(2) character associated to the finite-
dimensional representation with highest-weight j. (We use this notation to distinguish it
from the characters defined in section 3.1.2).

The main idea leading to (B.1) is to recast the expectation value as a symplectic integral
of the canonical form

Z(ε) =
∫
X

exp(Ω− S/ε) , (B.2)
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which has a cohomological interpretation and which localises onto the critical points of a
classical action S. In the new form (B.2) of the path-integral, X is a symplectic manifold
with symplectic form Ω, and a Lie group H acts on X in a Hamiltonian fashion with moment
map µ : X → h∗, where h∗ is dual to the Lie algebra h of H and where S = (µ, µ)/2. The
two key ideas to obtain the symplectic description (B.2) of the Seifert loop path-integral are:

1. The Chern-Simons path-integral gets recast as a symplectic integral by employing a shift
symmetry that acts on the gauge field A. This decouples one of its components from the
path-integral, thereby reducing this to the integral of a two-dimensional theory.

2. When the path-integral includes a Wilson loop, it is necessary to rewrite the classical
description (3.51) as a path-integral over an auxiliary bosonic field U attached to the
curve γ and coupled to the connection A as a background field.

This second point follows from the Borel-Weil-Bott theorem, realizing an irreducible rep-
resentation R (with highest-weight λ) as the quantization of the co-adjoint orbit Oλ ⊂ g∗

passing through λ. R is thus identified with the space of holomorphic sections of a unitary
pre-quantum line bundle over Oλ carrying a canonical flat connection Θλ. This leads to
the description of the Wilson loop as a path-integral over an auxiliary field U : γ −→ Oλ,
which reads

WR[γ] =
∫
DU exp[icsR(U ;A|γ)] , csR(U ;A|γ) =

∮
γ
U∗(Θλ(A)) . (B.3)

It is this rewriting of (3.51) as a symplectic path-integral, (B.3), that imposes an obstruction
for using this method for Chern-Simons gravity. Namely, the Borel-Weil-Bott theorem
requires R to be a finite dimensional irreducible representation of G and the status of the
non-standard representations from section 3.1.2 under this theorem is unknown. Thus,
despite the obvious similarities of the final integral formula for 〈WR〉, (B.1), to the formula
arrived through Abelianisation and supersymmetric localization, (3.54), we do not rely on
this method in this paper.

C The S3 heat kernel

In this appendix we show how the one-loop determinant of a massive scalar field can be
written as a worldline path-integral. Importantly, we show explicitly that this determinant
utilizes an infinite sum of worldlines wrapping the sphere multiple times. To this end we
will use the formalism of the heat kernel.

To briefly remind the reader, the heat-kernel is defined formally as

Km2(x, y;β) := 〈x|e−β(−∇2+m2`2)|y〉 , (C.1)

which can be used to assign meaningful expressions to, e.g., functional determinants in
Euclidean signature

log det
(
−∇2 + m2`2

)
= tr log

(
−∇2 + m2`2

)
= −

∫ ∞
0

dβ
β

∫
ddx

√
g(x)Km2(x, x;β) ,

(C.2)
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or a Green’s function

Gm2(x, y) = 1
−∇2 + m2`2

=
∫ ∞

0
dβ Km2(x, y;β) , (C.3)

up to regularization. More precisely we define Km2 as the solution to the heat equation
with a delta-function localized initial source, i.e.,

(∇2
(x) −m2`2)Km2(x, y;β) = d

dβ
Km2(x, y;β) , (C.4)

and
lim
β→0

Km2(x, y;β) = 1√
det g(x)

δd(x− y) . (C.5)

On S3, because this defining equation and initial condition are spherically symmetric, Km2

can only depend on the geodesic arclength, θ, between x and y. We can express this length
conveniently in embedding space coordinates, where X,Y ∈ R4, as θ = arccos(X · Y ).

There are multiple routes for solving for Km2(θ;β) on S3 exactly; for example, through
solving (C.4) as an ordinary differential equation in θ or through analytic continuation from
H3. Here, we will take a circuitous route, with our aim being to relate Km2 to a world-line
path integral. For this approach, we first express Km2 as a formal sum over eigenfunctions
of ∇2

S3 , that is

Km2(x, y;β) = e−βm2`2
∞∑
l=0

∑
~m
Y∗l,~m(x)e−βl(l+2)Yl,~m(y) , (C.6)

where Yl, ~m are a complete set of hyper-spherical harmonics. We make this expression look
line a path-integral we need to replace our discrete summands with continuous variables.
To this end, we introduce two auxilliary variables, α and p, such that we can replace the
discrete quadratic Casimir with a Gaussian:

Km2(x, y;β) = e−β(m2`2−1)
∞∑
l=0

∑
~m
Y∗l,~m(x)

∫ dαdp
2π eiα(p−l−1)e−βp

2Yl,~m(y) . (C.7)

Next, we make use of the identity∑
~m
Y∗l,~m(x)Yl,~m(y) = dl

VS3
Pl(cos θ) , (C.8)

where dl = (l + 1)2 is the degeneracy of l eigenvalues, VS3 = 2π2 is the volume of S3,
and Pl(x) is the hyper-spherical Legendre polynomial. The generating function of these
polynomials is

1− t2
(1− 2tx+ t2)2 =

∞∑
l=0

dl Pl(x) tl , (C.9)

which leads us to

Km2(θ;β) = −e
−β(m2`2−1)

8π2

∫
dp
∫ dα

2πi
cos(α/2) sin(α/2)

sin2
(
α+θ

2

)
sin2

(
α−θ

2

)eiαpe−βp2
. (C.10)
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At this point we are ready to perform a trick: we will cast the integral over p as a path
integral of a point particle. To do so, we introduce an auxiliary worldline, parameterized
by τ ∈ [0, 1], and introduce two dynamical variables: the position X(τ) and momentum
P (τ). The degree of freedom X will act as a Lagrange multiplier forcing Ṗ = 0, and hence
P (τ) = p. More concretly, we can write (C.10) as

Km2(θ;β) = −N e−β(m2`2−1)
∫
DX|Xf=0

Xi=0 DP |Pi=Pf

×
∫ dα

2πi
cos(α/2) sin(α/2)

sin2
(
α+θ

2

)
sin2

(
α−θ

2

)ei
1∫
0

dτ αP+i
1∫
0

dτ X Ṗ−β
1∫
0

dτ P 2

. (C.11)

The factor N parameterizes numerical ambiguities in the definition of the measures DXDP ,
which we will be imprecise about. Note that in the measure we impose Dirichlet boundary
conditions on X, i.e., X(0) = X(1) = 0. This allows us to integrate the action by parts,
and subsequently integrate out P , which gives

Km2(θ;β) = −N e−β(m2`2−1)
∫
DX|Xf=0

Xi=0

×
∫ dα

2πi
cos(α/2) sin(α/2)

sin2
(
α+θ

2

)
sin2

(
α−θ

2

)e− 1
4β

1∫
0

dτ(Ẋ+α)2

.

(C.12)

We are now in a position to give a new interpretation to α. The integration over X began
life with Dirichlet boundary conditions, however integrating over α endows X with winding
degrees of freedom. To be explicit about this let us note that the α integral has second
order poles36 at α = ±θ + 2πn. The residue about these poles is given by

Km2(θ; s) = N e−β(m2`2−1)

4πβ

∫
DX|Xf=0

Xi=0
∑
n∈Z

θ + 2πn
sin θ e

− 1
4β

1∫
0

dτ(Ẋ+θ+2πn)2

. (C.13)

Next, we write (4πβ)−1 as the free path-integral over two more scalar degrees of freedom,
X2 and X3, with Dirichlet boundary conditions. This gives

Km2(θ;β) = N e−β(m2`2−1)
∫ ∑

n∈Z
D ~X(n)

θ + 2πn
sin θ e

− 1
4β

∫ 1
0 dτ ~̇X2

(n) , (C.14)

where ~X(n) = (X1
(n), X

2, X3) and X1
(n) ≡ X + (θ + 2πn)τ . The boundary conditions on

~X(n) are
~X(n)(0) = ~0 , ~X(n)(1) = (θ + 2πn, 0, 0) . (C.15)

36We have been cavalier about the α contour in (C.7) however we can more properly utilize α as a
Lagrange multiplier via

δ(p− l − 1) =
∫ ∞
−∞

dα

2π cos(α(p− l − 1))

and prescribe +iε to the positive exponential and −iε to the negative exponential. This is equivalent to
writing

∫
C
dα
2π e

iα(p−l−1) where C consists of a contours running ε above and below the real axis with opposite
orientation.
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The expression in (C.14) is precisely the exact worldline path-integral of a massive scalar
field on S3 expressed in a set of Riemann normal coordinates, see e.g. [57]. However, one
important feature is that this expression includes a sum over a saddles that wind around
the geodesic arclength, θ (this contribution was missed in [57]). This is the price to pay for
replacing our discrete basis of eigenfunctions by a continuous path-integral and ultimately
has its root in the simple fact that S3 is compact.

Now let’s look at the one-loop determinant. As stated in (C.2) it is related to the heat
kernel via

logZscalar ∼
1
2

∫ ∞
0

dβ
β

∫
d3x

√
g(x)Km2(x, x; s)

∼ 1
2VS3

∫ ∞
0

dβ
β

lim
θ→0

Km2(θ;β) ,
(C.16)

where ∼ indicates that we should implicitly include the regulator, Rε(β) = e−ε
2/4β which

tames the β → 0 (UV) behavior. Taking the coincident limit of (C.12), one finds

Km2(0;β) = N e−β(m2`2−1)
∫
DX|Xf=0

Xi=0

∫
dα

2πi
cos(α/2)
sin3(α/2)e

− 1
4β

1∫
0

dτ(Ẋ+α)2

. (C.17)

The integral over α is straightforward to evaluate: it reduces to residues at the poles
α = 2πn. With this we have

Km2(0;β) = N e−β(m2`2−1)
∫ ∑

n∈Z
DX|X(1)=2πn

X(0)=0

(
− 1

2β + Ẋ2

4β2

)
e
− 1

4β

1∫
0
dτẊ2

. (C.18)

And finally, performing the path integral over X gives

Km2(0;β) = − 1
2π

e−β(m2`2−1)
√

4πβ
∑
n∈Z

(
− 1

2β + π2n2

β2

)
e
−π

2n2
β . (C.19)

Here N has been adjusted such that we recover (C.10).
The next step is to insert (C.19) into (C.16), and perform the integral over β. There

are two aspects to keep in mind. First, the integral over β converges for m2`2 > 1, and so
we will write µ2 = m2`2 − 1 which we assume to positive. Second, we will introduce our UV
regulator: we will replace the n = 0 term by Rε(β) = e−ε

2/4β (all other terms in the sum
over n are finite). Incorporating this we find

logZscalar = 1
2VS3

∫ ∞
0

dβ
β

e−µ
2β

(4πβ)3/2

(
e−ε

2/4β + 2
∞∑
n=1

(
1− 2π2n2

β

)
e
−π

2n2
β

)

= 1
2VS3

(
e−ε|µ|

2πε3 (|µ|ε+ 1)− 1
4π4

∞∑
n=1

e−2πn|µ|
(

1
n3 + 2π|µ|

n2 + 2π2µ2

n

))
.

(C.20)

Taking the limit ε→ 0, we find the following one-loop determinant:

logZscalar[S3] = π

2ε3 −
πµ2

4ε + πµ3

6
− 1

4π2

(
Li3(e−2πµ) + 2πµLi2(e−2πµ) + 2π2µ2Li1(e−2πµ)

)
, (C.21)
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where we used the definition of the polylogarithm

Lia(x) =
∞∑
n=1

xn

na
, (C.22)

and VS3 = 2π2. This answer was independently arrived at by [13] which our answer matches.
It is also worth noticing that under the replacement µ → iν, with ν2 = 1 − m2`2 and
m2`2 < 1, (C.21) is real: this gives the one-loop determinant of a light scalar field.

D The curved Casimir

In this appendix we add details to the claim from section 3.3 that the one-loop determinant
on a round S3 is equivalent to a determinant over quadratic Casimirs

det
(
−∇2

S3 + m2`2
)

= det
(
2c(L)

2 + 2c(R)
2 + m2`2

)
. (D.1)

We will then show that this result can be generalized, expressing the Laplacian on a
curved three-dimensional manifold (away from the S3 saddle) as the Casimir of local
su(2)L ⊕ su(2)R action.

We begin by noting that S3 is globally diffeomorphic to SU(2) with the map (in the
fundamental representation) given by

(ρ, τ, ϕ)→ gS3 =
(

cos ρ eiτ sin ρ e−iϕ
− sin ρ eiϕ cos ρ e−iτ

)
. (D.2)

The isometry group SU(2)L × SU(2)R/Z2 acts naturally on this geometry via left and right
action,37 given by

(gL, gR) : gS3 → gLgS3g−1
R . (D.3)

This isometry group is generated by left (right) acting Killing vectors, {ζa} and {ζ̄a}

ζµa ∂µgS3 = −LagS3 , ζ̄µa ∂µgS3 = gS3La , (D.4)

given explicitly by

ζ1 = −icosφ−
sin 2ρ ∂+ + i

2 sinφ−∂ρ + i cot 2ρ cosφ− ∂− ,

ζ2 = i
sinφ−
sin 2ρ ∂+ + i

2 cosφ−∂ρ − i cot 2ρ sinφ− ∂− ,

ζ3 = i∂− ,

ζ̄1 = −icosφ+
sin 2ρ ∂− + i

2 sinφ+∂ρ + i cot 2ρ cosφ+∂+ ,

ζ̄2 = −isinφ+
sin 2ρ ∂− −

i

2 cosφ+∂ρ + i cot 2ρ sinφ+∂+ ,

ζ̄3 = −i∂+ ,

(D.5)

37With (−1,−1), generating the Z2, acting trivially.
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where φ± = τ ± ϕ. The left (right)-Maurer Cartan forms,38

σaLa = −dgS3g−1
S3 , σ̄aLa = g−1

S3 dgS3 , (D.6)

are dual to these Killing vectors: σaµζ
µ
b = σ̄aµζ̄

µ
b = δab . Note that σa and σ̄a are related by

conjugation. As a result either serves as a valid metric frame, where

gµν = −1
2Trf (σµσν) = −1

2Trf (σ̄µσ̄ν) , (D.7)

and the associated metric is the round three-sphere metric

gµνdxµdxν = dρ2 + cos2 ρ dτ2 + sin2 ρ dϕ2 . (D.8)

It is also easy to verify that the forms satisfy the Maurer-Cartan structure equations

dσ + σ ∧ σ = 0 , dσ̄ + σ̄ ∧ σ̄ = 0 . (D.9)

By direct computation we discover that the su(2)L ⊕ su(2)R quadratic Casimir, expressed
as vector fields, is precisely the scalar Laplacian on the background (D.8), determined by σ
(or σ̄). That is,

− 2
(
c

(L)
2 + c

(R)
2

)
= −2

(
δabζaζb + δabζ̄aζ̄b

)
= ∇2

S3 . (D.10)

In fact each Casimir separately satisfies c(L)
2 = c

(R)
2 = −1

4∇
2
S3 .

Now we want to generalize this to curved three-manifolds, expressing ∇2
M as a Casimir

acting on representations of a local su(2)L⊕ su(2)R action. To this end, it is useful to model
a three-manifold, M , by “locally tangent Euclidean de Sitter spaces” (as opposed to tangent
R3 vectors spaces, as typical in Riemannian geometry) on which the su(2)’s act naturally.39

Actually, it is somewhat useful to first think about modelling M in Lorentzian signature,
where dS3 admits a natural quotient structure: dS3 = SO(1, 3)/SO(1, 2). A basis of so(1, 3)
making this manifest is {Ja,Pa}a=1,2,3 in (A.8). The subgroup so(1, 2) = span{Ja} consists
of boosts/rotation while so(1, 3) 	 so(1, 2) = span{Pa} are translations. The statement,
“dS3 = SO(1, 3)/SO(1, 2)” is simply equivalent to the statement that “points” are objects
that are stabilized by boosts/rotations but not by translations. A function on this quotient
is a scalar when it is boost/rotation invariant:

Φ is a scalar on dS3 ⇔ JaΦ = 0 . (D.11)

Using the map from so(1, 3) to su(2)⊕ su(2) in appendix A, this Wick rotates to Euclidean
signature as the su(2)L ⊕ su(2)R condition

(L3 − L̄3)Φ = (L+ − L̄−)Φ = (L− − L̄+)Φ = 0 , (D.12)
38These should be not be confused with the σ’s appearing as integration variables in Abelianisation or

localization, e.g., (3.54).
39More formally, we are modeling M as a Cartan geometry based on the homogeneous space G/H =

SO(1, 3)/SO(1, 2) for which AL⊕AR is the Wick rotation of its Cartan connection, A . We will not need any
heavy machinery from this formalism, however it does give us a nice framework for organizing the thoughts
of this appendix. See [58] for a friendly review.
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which is precisely the Ishibashi condition from [18, 53]. This is a concrete reason why the
su(2)L ⊕ su(2)R Ishibashi states are naturally connected with de Sitter geometry [18].

Returning to our manifold, M , since we are describing the gravity path-integral about
the S3 saddle, we will let M be diffeomorphic to S3. We can then model M as “locally de
Sitter” through a map G : S3 → SU(2) locally satisfying the Ishibashi condition, (D.12).
The curvature of M is expressed through the coupling to AL and AR, in the following way.
We fix a fiducial point, x0 ∈ S3 and a fiducial group element g0 ∈ SU(2). We require that
G is determined at another nearby point, x, via parallel transport along a curve γ : x0 → x

while maintaining the Ishibashi condition

G(x) = P exp
(∫ x

x0
AL

)
g0 P exp

(
−
∫ x

x0
ÃR

)
, ÃR = ΣIshAR Σ−1

Ish , (D.13)

where ΣIsh(·)Σ−1
Ish is the intertwiner from su(2)R → su(2)L determined by (D.12). Details

of this map can be found in [18]. We can now follow the recipe at the beginning of this
appendix to build vector fields, {La = Lµa∂µ}a=1,2,3 and {L̄a = L̄µa∂µ}a=1,2,3, corresponding
to local su(2) action:

Lµa∂µG(x) = −LaG(x) , L̄µa∂µG(x) = G(x)La . (D.14)

Differentiating equation (D.13), we find

LµaTrf
(
(ALµ − GÃRµG−1)Lb

)
= −1

2δab ,

L̄µaTrf
(
(G−1ALµG − ÃRµ)Lb

)
= 1

2δab .
(D.15)

When AaLµ − (GÃRµG−1)a is invertible this can be solved for La and L̄a. Invertibility also
implies that we can regard

σµ = −
(
ALµ − GÃRµG−1

)
, σ̄µ =

(
G−1ALµG − ÃRµ

)
, (D.16)

as co-frames defining a non-degenerate metric on M

gMµν = −1
2Trf (σµσµ) = −1

2Trf (σ̄µσ̄µ) , (D.17)

with L and L̄ their frames. Because σ and σ̄ are dual one-forms they still satisfy Maurer-
Cartan structure equations

dσa + iεabcσb ∧ σc = dσ̄a + iεabcσ̄b ∧ σ̄c = 0 , (D.18)

which can easily be verified by noticing that differentiating (D.13) and using (D.16) implies
dG = −σaLaG = Gσ̄aLa. It is important to note that σ and σ̄ identically satisfy (D.18)
without imposing any additional flatness conditions on the connections, AL and AR. Instead
we should regard them as a special choice of coframe.

We now use La and L̄a to build a curved Casimir, C2, as

C2 = δabLaLa + δabL̄aL̄b . (D.19)
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In what follows we will show that C2 is equivalent to the Laplacian associated to the
metric, (D.17). The argument is fairly simple: given a set of frames, Eµa , and associated
coframes, eaµ, for a metric, gµν , the scalar Laplacian can be written as

∇2
g = δabEaEb + δabdiv(Ea)Eb , (D.20)

where the divergence of a vector field, div(X), is defined implicitly through the volume
form, Ωe = e1 ∧ e2 ∧ . . . ∧ ed, as LXΩe = div(X)Ωe (here LX is the Lie-derivative). Given
that both σa and σ̄a are valid coframes (up to normalization) for gMµν it follows that

∇2
M = −2δab

(
LaLb + div(La)Lb + L̄aL̄b + div(L̄a)L̄b

)
. (D.21)

Lastly we note that for co-frames satsifying Maurer-Cartan structure equations, (D.18),
their associated frames are divergenceless:

LLaΩσ = d iLaΩσ = 1
2εabcd

(
σb ∧ σc

)
= iεabcε

bdfσd ∧ σf ∧ σc = iεabcε
bdfεdfc Ωσ = 0 ,

(D.22)
and so the Laplacian is exactly the curved Casimir, (D.19),

C2 = −1
2∇

2
M . (D.23)

This gives us confidence that after deforming AL and AR away from their S3 saddle-point
value, the Wilson spool, (3.63), still computes a determinant of a Laplacian on the geometry
created by AL and AR. Again, we emphasize that in the course of this construction, no
flatness conditions have been imposed on AL and AR: we have instead used local su(2)⊕su(2)
action to find a special basis of frames for which the Laplacian takes a simple form.40
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