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Abstract: Missing kinematic information of known invisible particles, such as neutrinos,
limit several high-energy physics analysis. The undetected particle carries away momentum
and energy information, preventing the total reconstruction of such an event. This paper
presents a new method to handle this missing information, referred to as the Generalised
Known Kinematics (GKK) approach. Its event-by-event probability density distributions
that describe the physically allowed kinematics of an event. For GKK, we consider the
available kinematic information and constraints given by the assumed final state. Summing
these event-wise distributions over large data sets allows the determination of parameters
that influence the event kinematics. Examples are particle masses obscured by the missing
information on the invisible final-state particles. The method is demonstrated in simulation
studies with τ+τ− events in e+e− collisions at the Υ (4S) resonance, presenting a new,
promising approach for measuring the τ lepton mass.
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1 Introduction

Electron-positron colliders provide an ideal environment for precision measurements because
of the well-known initial state and simpler final-state kinematics compared to hadron
colliders. However, there is a class of events with non-reconstructable final state kinematics.
The existence of invisible particles causes this, most commonly neutrinos ν, that escape
detection, which leads to a degradation of measurement precision. In this work, we discuss
a new method to mitigate the problem of invisible particles in particle-pair events. We
present the method using the example of τ -pair production in e+e− annihilation data,
e+e− → τ+τ−. However, the method generalises to any similar problem statement.

We consider the case with boosted τ leptons that separate their decay products well in
two opposite hemispheres. For τ leptons, a decay is of the general form

τ → nV +mI, (1.1)

with a number of n visible daughters V and m invisible daughters I. There is always at
least one invisible particle I involved. The existence of invisible particles mI prevents us
from a straightforward determination of observables in the final state, which relies on the
complete kinematic information of the τ . An example observable is the τ mass, which
would be accessible via the invariant mass of the final state.

There are several approaches to tackling this problem. For example, ARGUS proposed
an approximate method to determine the τ -mass from its τ → 3πντ decay mode [1]. Using
energy and momentum conservation, ARGUS derived a τ pseudo mass by neglecting the
neutrino mass and approximating the flight direction of the τ as the flight direction of
the charged 3π (hadronic) system. Then, the pseudo mass distribution exhibits a sharp
threshold behaviour in the region close to the τ mass. ARGUS measures the τ -mass by
determining the endpoint of the τ -pseudo mass distribution. This method generalises to
other τ -decays that fulfil n ≥ 3 and m = 1, with n charged particles.

– 1 –



J
H
E
P
0
7
(
2
0
2
3
)
1
0
1

The CLEO collaboration developed another possible solution [2], similar to considera-
tions for the W± [3]. The CLEO approach considers a particular class of events with one
invisible particle I. Kinematic considerations show that the three-momentum of the τ lies
on a cone around the three-momentum vector of the respective visible system V . CLEO
reconstructs the τ -pair kinematics from constraints given by the decay cones on both sides
around the three-momentum of the visible system, assuming a mass-less I. They use the
simplifying assumption that the plane defined by the three-momentum vectors of V and I
is equal for both decays of the τ -pair.

Similar to [4], the proposed method avoids this simplification and is valid for τ -pair
events with at least one τ lepton decaying with one invisible particle I. We define this event
to be of type τh (a hadronic τ -decay)

τh → nhVh + Ih, (1.2)

with nh ≥ 1, Vh being hadrons, and Ih the tau-neutrino ντ . Here, we derive the probability
distribution of the kinematics of I and calculate the observable of interest, with a set of
candidates drawn from the kinematic probability distribution of I rather than a single
value. That means we get a distribution of values instead of obtaining a single value
per event. The sum of all distributions for all events accumulates to a new distribution,
a limiting distribution. The limiting distribution allows determining the observable of
interest without the bias of the missing particles. We call this approach Generalised Known
Kinematics (GKK).

2 Concept

For measuring any quantity, the optimal observable is a uniform minimum-variance unbiased
estimator of a statistic. The idea of GKK, as developed in this article, is inspired by the
concept of such an estimator. For this concept to work, a statistic T used to determine
the estimator of interest must contain all available information [5]. However, particle pair
events with invisible particles lose kinematic information. Due to physical constraints, we
can recover some of the lost information and determine a statistic T ′, which is complete
concerning the kinematic information.

Let us consider a sample of τ -pair events, with two hemispheres τ1 and τ2, of which
we want to measure an observable dependent on the momentum-spectrum of the visible
daughters in the rest-frame of τ2.

We can identify particle-pair events by reconstructing one of the two particles undergoing
a well-known decay. In this case, we demand the τ1 hemisphere be a type τh decay, a
hadronic τ -decay, which we will call tag-side. Reconstruction of the tag-side allows studying
the properties of the second particle τ2, the so-called signal-side, without introducing a
reconstruction bias.

We simplify the τ1 decay into a two-body decay, with the invisible particle I1 and
the visible-daughters-system V 1

eff by combining all n1V1 daughters into an effective par-
ticle V 1

eff =
⊕n1

i=1 V
i

1 , with its four momentum pµ
V 1
eff

given by the set of four-momentum
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vectors [pµ
V 1

1
, . . . , pµ

V
n1

1
]:

pµ
V 1
eff

=
n1∑
i=1

pµ
V i1
. (2.1)

The missing information of I1 translates into a probability distribution function for the τ1
momentum vector using energy-momentum conservation and the isotropic distribution of
the decay of I1 in the rest-frame of τ1. This isotropic distribution results in a cone-shaped
momentum distribution for I1 around the τ1 momentum in the centre-of-mass system of the
event. Now, we can turn the argument around and constrain the τ1 momentum direction
on a cone around the V 1

eff direction, as shown in figure 1.
As a first step, the τ1-energy Eτ1 is determined. In τ+τ−-events, neglecting initial state

radiation, we approximate Eτ1 as half of the centre of mass beam-energy
√
s,

Eτ1 ≈
√
s

2 . (2.2)

This approximation also allows determining the magnitude of the τ1-momentum in the
centre-of-mass system via the known τ -mass, mτ . Doing so, we can derive the angle θ
between the V 1

eff-momentum ~pV 1
eff

and the τ1-momentum ~pτ1 by using the law of cosines,1

cos(θ) =
~pτ1 · ~pV 1

eff

|~pτ1 ||~pV 1
eff
|
. (2.3)

The three-momentum of τ1 can be deconstructed into a parallel (~pτ1,||) and perpendicular
(~pτ1,⊥) component with respect to the V 1

eff momentum direction (see figure 1). Constraining
τ1 on a cone around V 1

eff allows parameterising ~pτ1 such that the unknown direction is
expressed in terms of the azimuth angle ϕ in a cylindrical coordinate system parallel to V 1

eff.
We know that each possible ~pτ1 on the cone is equally probable, so sampling the ~pτ1-

distribution is simply stepping through the equally distributed ϕ, providing a set of equally
probable candidates for the τ1 momentum. In contrast to other cone-based approaches such
as [2, 3], this sampling approach is the concept of GKK.

The finite detector resolution can cause this approach to yield ~pτ1-momentum candidates
which deviate considerably from the actual ~pτ1 of the event. This deviation makes it
worthwhile to add further physical constraints. In the case of particle pair events, we can
utilise the signal side for these constraints.

First, we consider a particular case and generalise afterwards. In the case of e+e− →
τ+τ− events, we can have events where both τ1 and τ2 decay hadronically. In this case, we
can reconstruct the τ2 momentum similarly to τ1 with the corresponding angles θ′ and ϕ′.
This results in two momentum cones, as depicted in figure 2. If the momenta of V 1

eff and
V 2

eff were perfectly known, we could reconstruct the analytic solutions of the τ -momenta by
inverting the momentum on one of the two sides and looking for the momentum-vectors that
fulfil the requirements imposed by energy and momentum conservation. Both τ momenta
must be back-to-back in the centre-of-mass frame and lie on their respective cones. In
general, this leads to two solutions. In extreme cases, we obtain either one solution (the
cones touch each other) or infinite (the cones are on top of each other).

1θ is given by cos(θ) because in the polar coordinates, it is confined between 0 and π.
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φ
⃗pV1
eff

θ⃗pτ1,⊥
⃗pτ1,∥

⃗pτ1

Figure 1. Visualisation of the GKK method. The true τ1 momentum-vector, ~pτ1 , is shown in
black. θ indicates the angle between the ~pτ1 and ~pV 1

eff
, the resulting momentum vector sum for all

visible daughters, V 1, is shown in yellow. The invisible particle, I1, involved in the decay leads to
an angular offset, which we parameterise by θ and ϕ. The red dashed lines indicate the components
of the τ -momentum. ~pτ,‖ is parallel to ~pV 1

eff
, ~pτ,⊥ is orthogonal. The unknown component is then

translated into the direction of ~pτ,⊥, parameterised by the azimuth angle, ϕ.

φ
⃗pV2
eff

θ′ 

⃗pV1
eff

θ ⃗pτ1,⊥
⃗pτ1,∥⃗pτ2,∥⃗pτ2,⊥

φ′ 

⃗pτ2 ⃗pτ1
Figure 2. Visualisation of the GKK method in a special case where both taus are of type τh. Here,
we depict a τ+τ− event in the Centre of Mass System (CMS). The true τ -momentum-vectors are
black. We divide the tau-pair events into a τ1- and a τ2-side. θ and θ′ indicate the angle between
the true τ momentum vector and the sum of all reconstructed daughters on the tag and signal
side, depicted in yellow and blue, respectively. The τi-momentum can be deconstructed into two
components indicated in red. A component that is parallel to the daughter momentum ~pV i

eff,‖
, ~pτi,‖,

and one that is perpendicular, ~pτi,⊥. The unknown direction of ~pτi
is translated into the direction

of ~pτi,⊥. The direction of ~pτi,⊥ can be parametrized by the azimuth angles ϕ and ϕ′, for τ1 and
τ2 respectively.
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τ1 Smeared 
Cone

τ2
True Cone

Physical Candidates

Figure 3. Illustration of detector smearing effects on the reconstructed τ -momentum-candidates
distributed on a cone. When both taus in a τ+τ− event belong to the τh type, the τ -cones are
expected to intersect at two points, with one point being the actual τ -momentum. These points are
represented by the solid-lined circles labelled as “True Cone.” However, due to detector smearing,
the cones can vary in width and be misaligned, resulting in the true τ -momentum not being one of
the two intersections. The dashed-lined circles labelled as “Smeared Cone” illustrate this effect. To
address this issue, the regions where the smeared cones overlap have to be considered to determine
a physically viable range, shown in red.

The accuracy of reconstructed values is affected by finite detector resolution, resulting
in imperfect knowledge of ~pV ieff for i = 1, 2. As a consequence, cones may not align perfectly,
as illustrated in figure 3. Detector smearing and information loss from Ii can cause over- or
underestimation of angles θ and θ′, leading to slightly misaligned cones. Instead of seeking
a single ~pτ -candidate in both τ1 and τ2 statistics, we search for ~pτ1-candidates that are on
or within the ~pτ2-cone which corresponds to the physically viable candidates, as shown in
figure 3.2

This approach can be generalised to the case in which only τ1 decays are of type
τh, and τ2 has an unspecified number of invisible particles m2I2. In this case, we cannot
determine a cone of τ2-momentum candidates. Instead, we can give a constraint to the
momentum-candidate-cone of τ1 by maximising the θ′ to a θ′max and defining a maximised
τ2-momentum-cone, as shown on the right side of figure 4. How θ′ is maximised is discussed
in section 3. We constrain the ~pτ1-cone by demanding that it has to be within or on the
cone of ~pτ2-candidates given by θ′max, indicated on the left of figure 4. This method rejects
all ~pτ1-candidates outside the momentum constraints of the event. From now on, events
that pass the momentum constraints are referred to as physical candidates, whereas rejected
candidates are non-physical. As a further refinement step, we can redo the τ1 cone sampling
with a restricted range of ϕ to the range given by the physical candidates ϕnew. This way,
we only give weight to τ1 candidates of the physical ϕ-range.

2Cones that do not overlap are neglected because they are deemed unphysical. This increases the
likelihood that the actual τ -momentum is within the sampling range. Additionally, there is a higher
probability of overestimating cones since underestimated cones are likely to not intersect and thus result in
rejected events.
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⃗pV2
effθ′ 

⃗pτ2

θ′ max

⃗p max
τ2

-Coneτ1

Physical 
Area

Nonphysical 
Area

Max 
Cone

φnew

Mapping the 
Max-Cone

Figure 4. On the left, the construction of the maximised cone, using θmax, is displayed. We do
this in the case of two or more invisible particles in the τ2-decay because the missing information
prevents us from constructing the τ2-candidate cone. Instead, we can construct a cone with the
maximum possible deviation of the τ2-momentum and the momentum of all visible τ2-daughters.
We can map this cone on a 2D-plain and the cone of the τ1, which by definition has to be of type
τh. As defined in the text, the “Max-Cone” gives us the physical area constraining the τ1-cone to a
certain range ϕnew. We can sample this physical ϕ-range again, resulting in a narrower probability
distribution of the ~pτ1 .

3 Mathematical description

After we presented the concept of the GKK method in section 2, we are now going to discuss
the implementation in more detail. We condensed the τ1-decay’s visible and invisible decay
products into an effective two-particle-decay problem if τ1 is of type τh. Here, we express
the invisible daughter’s I1 four-momentum pµI1

as

pµI1
= pµτ1 − p

µ
V 1
eff
. (3.1)

We can determine the angle θ, displayed in figure 1, by calculating the mass of I1, mI1 ,
with two scalar products pµI1

pµ,I1 and pµτ1 pµ,V 1
eff
. First, we compute

m2
I1 = m2

τ1 +m2
V 1
eff
− 2(pµτ1pµ,V 1

eff
) (3.2)

to replace pµτ1pµ,V 1
eff

in

pµτ1pµ,V 1
eff

= Eτ1EV 1
eff
− cos(θ)|~pτ1 ||~pV 1

eff
|, (3.3)

which we solve for cos(θ), resulting in

cos(θ) =
2Eτ1EV 1

eff
+m2

I1
− (m2

τ1 +m2
V 1
eff

)

2 |~pτ1 ||~pV 1
eff
|

. (3.4)

We can now study how to get θmax. To maximise θ, we have to minimise cos(θ). All
components of equation (3.4) are given by the detected event, except for mI1 , so we
minimise cos(θ) by setting mI1 = 0.
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The expressions derived from hereon are dependent on the reference frame; thus, the
following considerations are only valid in the centre-of-mass frame. We consider all appearing
quantities to be in the centre-of-mass frame. The τ1 momentum vector ~pτ1 is decomposed as

~pτ1 = ~pτ1,‖ + ~pτ1,⊥ . (3.5)

With the parallel component of ~pτ1 to ~pV 1
eff

~pτ1,‖ = |~pτ1 | cos(θ)~nV
1
eff
‖ , (3.6)

and the orthogonal component of ~pτ1 to ~pV 1
eff

~pτ1,⊥ = |~pτ1 | sin(θ)~nV
1
eff
⊥ , (3.7)

we get
~pτ1 = |~pτ1 | cos(θ)~nV

1
eff
‖ + |~pτ1 | sin(θ)~nV

1
eff
⊥ . (3.8)

The angle θ is given by equation (3.4), ~nV
1
eff
‖ is a unit vector in the direction of ~pV 1

eff
, and

~n
V 1
eff
⊥ perpendicular to ~pV 1

eff
. We estimate the absolute value of the τ1 momentum |~pτ1 | as

|~pτ1 | =
√(

Eτ1

)2 −m2
τ1 , (3.9)

using Approximation (2.2) and the decay-topology. This leaves only one unknown, the unit
vector ~nV

1
eff
⊥ . We can define a basis for ~pV 1

eff
, with a parallel basis vector

~e
V 1
eff

‖ =

0
0
1

 (3.10)

and the orthogonal basis vector

~e
V 1
eff

⊥ =

cos(ϕ)
sin(ϕ)

0

 . (3.11)

In this basis, ~pV 1
eff

is given in z-direction. So, by determining the basis transformation from

the detector basis to ~eV
1
eff
‖ ,

Dy(ρ) ·Dz(ξ) · ~n
V 1
eff
‖ = ~e

V 1
eff
‖ , (3.12)

we get an expression of ~nV
1
eff
⊥ ,

~n
V 1
eff
⊥ = Dz(ρ)T ·Dy(ξ)T · ~eV

1
eff
⊥ . (3.13)

Here, Dy(ρ) and Dz(ξ) are the rotation matrices around the y- and z-axis of the detector
respectively. Their definitions are

Dy(ρ) =

cos(ρ) 0 − sin(ρ)
0 1 0

sin(ρ) 0 cos(ρ)

 (3.14)
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and

Dz(ξ) =

 cos(ξ) sin(ξ) 0
− sin(ξ) cos(ξ) 0

0 0 1

 . (3.15)

The angles ρ and ξ are the two polar angles of the laboratory frame of reference, which
rotate ~nV

1
eff
‖ into the basis ~e V 1

eff
‖ . By combing the above results, we obtain the expression

~n
V 1
eff
⊥ =

cos(ξ) cos(ρ) cos(ϕ)− sin(ξ) sin(ϕ)
sin(ξ) cos(ρ) cos(ϕ)− cos(ξ) sin(ϕ)

− sin(ρ) cos(ϕ)

 . (3.16)

With the general expression of ~pτ1 and the knowledge of the distribution function f(ϕ) =
const., we can sample ~pτ1 . We obtain a statistic of size N for each event, being [1pµτ1 , . . . ,

n pµτ1 ].
By sampling the tag momentum with f(ϕ), we obtain a statistic independent of ϕ, so the
statistic is only dependent on the momentum of V 1

eff.
We can use the τ1-momentum statistic to determine the τ2-daughters’ momentum

statistics in the τ2 rest frame, as discussed before. The resulting distribution function of the
rest-frame momentum p?(ϕ) cannot be analytically inverted, as a closed form is not known
to the authors. In principle, we expect an analytical description of the limiting distribution,
which could be part of future studies of the GKK method. For the rest of this work, we
consider purely numeric approaches.

4 Results

In order to illustrate the capabilities of the GKK method in τ+τ− events, we consider
the momentum spectrum of a τ− → π−ντ decay, the signal-side, in the τ -rest-frame. As
described in section 2, we first sample a set of pµτ candidates of the tag-side τ , considering the
decay mode τ− → π−π+π−ντ . We use the set of pµτ to boost the signal-side π−-momentum,
pµπ, into the rest-frame of the signal τ . We denote the momentum of the signal-side in
the τ -rest-frame as pτπ. In the process τ− → π−ντ , we expect a peak at pτπ = mτ−mπ

2 .
First, we illustrate in figure 5 how the resulting GKK limiting distribution (in short, GKK-
distribution) forms. We do this by stacking the pτπ-distributions of each event. As the
number of events increases, a limiting distribution emerges, which should only depend on
the parameter of interest (in our particular case, pτπ). With 25 events, a clear peak emerges
around the expected pτπ ≈ 0.82 GeV. If there are enough events and the input-mass for mτ

is the actual mass, as is the case with the blue line in figure 6a, a sharp peak emerges at
the expected momentum. We interpret this behaviour as a washed-out version of the actual
distribution. Other examples for this may be found in [6].

4.1 GKK: a new method to measure the τ -mass

In order to use the GKK method for τ -mass measurements, we need to understand the
behaviour of the GKK method. We studied the influence of the τ -mass input, which is
needed to calculate the GKK distribution. This was done by considering the input masses

– 8 –
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Figure 5. Step by step formation of the GKK limiting distribution for the τ → πν decay. Here, for
every τ+τ− event, we calculate a set of 1000 possible π-momentum candidates. The blue curve gives
an example distribution for one event. The limiting distribution emerges in the plot by stacking
many events, as indicated by the step-by-step distributions.

mτinput , which deviated by ∆m from the mass value mτPDG = 1776.86± 0.12MeV [7] used
in the event generation:

∆m = mτinput −mτPDG . (4.1)

Figure 6a illustrates the influence of ∆m. Here, we compare the resulting limiting distri-
bution for three different ∆m = 0, 0.05, 0.1 GeV. To quantify the influence of ∆m, we also
calculate the Full-Width Half Maximum (FWHM) of the resulting limiting distributions.
This quantity is a measure of the spread or smearing of the distribution. Figure 6b shows
the relation of FWHM versus ∆m.

We observe two essential aspects of the GKK distribution from figure 6a. First, the
true/expected momentum pτπ,exp is within the GKK-distributions peak region. We define
the peak region between the two exponentially decreasing flanks of the distribution. Second,
a simple peak search to determine the τ -mass will not yield reliable results since a mismatch
of the assumed and actual value of the mass, ∆m, leads to a distortion of the peak shape.
For non-zero ∆m, the maximum of the distribution does not represent the actual pτπ,exp.
Instead, we observe that the width of the distribution increases with increasing ∆m.

Figure 6b allows quantifying the dependence of the width on ∆m, the Full-Width Half
Maximum, FWHM, of the GKK-distribution for different values of ∆m. We calculate the
FWHM of the distribution numerically. Here, the FWHM depends linearly on ∆m for
negative and positive ∆m values. We do not observe any significant differences in the
behaviour of a positive or negative ∆m.

We interpret the GKK-distribution’s behaviour as follows: the boost calculation incor-
porates the τ -mass to compute the boost in the τ -rest-frame and determine the candidate
cone of the τ -momenta. A mismatch between the true and the input value leads to a
smearing effect in both cases. We use the distribution’s width to quantify the smearing.

This result means it is possible to determine the τ -mass by scanning through mτinput

hypotheses. For example, we can determine the τ -mass by minimising the FWHM in a
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Figure 6. The FWHM distribution illustrates the effect of the GKK distribution’s smearing
behaviour for different deviations of the mass hypothesis used to calculate the GKK distribution. (a)
GKK distribution for the π-momentum of the τ → πν decay for 3× 105 events in the τ -rest-frame.
The effect of ∆m is demonstrated for the GKK distribution. (b) Full-Width Half Maximum (FWHM)
for different ∆m. Here, Toy MC denotes simulation data.

numerical approach with different mτinput . Figure 7a illustrates two examples of the FWHM
distribution close to the actual simulation value. The distribution minimum corresponds to
mτPDG . Furthermore, we have found that the maximum peak value of the GKK distributions
can also be used to extract the τ -mass. Again, figure 7b clearly shows that the extremum is
at mτPDG for both examples. Figures 7c and 7d show the mean, as black dots, and the 68%,
90% and 95% confidence levels, as bands, produced from 100 independent toy simulations
without detector resolution.3 We note that the GKK method clearly distinguishes the
mτPDG in the plots, indicating a precision of at least the step size of 10 keV for this method.
All 100 toy simulations showed an extremum in the same peak, indicating the result’s high
robustness. The red dot with the error bar indicates the PDG average and corresponding
(statistical) uncertainty for the mτ mass. With the generated data set, the GKK method
is less limited by statistical uncertainty than methods used in the past. We expect that
systematic uncertainties will dominate future measurements.

4.2 Sensitivity study with realistic detector smearing

To assess the capability of estimating the τ -mass, we simulated detector effects by introducing
Gaussian smearing according to the momentum resolution of state-of-the-art detector
systems [9]. We consider a data set of 1.2 million signal τ+τ− events, corresponding to
an integrated luminosity of about 500 fb−1 at the Υ (4S) resonance. We estimate the
reconstruction efficiency with about 15% according to a recently published result [10].

3Please note that the mτinput scan yields a distribution as indicated by the examples in figures 7a and 7b
or the black dots. The confidence level shows the variance in the width of the FWHM or maximum peak
value distribution.
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Figure 7. GKK-distribution’s Full-Width Half Maximum (FWHM), plots (a) and (c), and Maximum
Peak Value, plots (b) and (d), for a τ -mass hypothesis (mτinput) scanned around the initial simulation
value of 1.77686GeV/c2 in 10 keV/c2 steps. Plots (a) and (b) show the GKK distribution’s FWHM
and maximum peak value for two data sets with a shallow FWHM slope (Example 1) and a steep
FWHM slope (Example 2), exemplifying the possible variations. The extrema for the FWHM and
Maximum Peak Value are clearly at mτPDG for both data sets. Plots (c) and (d) show the confidence
intervals indicating the expected slope variation for this scan’s FWHM or Maximum Peak value.
The PDG Statistical Uncertainty indicates the world average (dot) and the corresponding lowest
statistical uncertainty measured by BaBar [8] (red line). The displayed uncertainty also coincides
with the total uncertainty of the PDG’s average mass value.
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Figure 8. The Maximum Value distribution illustrates the effect of the GKK-distribution’s smearing
behaviour for different deviations of the mass hypothesis used to calculate the GKK distribution. (a)
GKK-distribution for the π-momentum of the τ → πν decay for 1.2× 106 events in the τ -rest-frame
with simulated detector effects. The effect of ∆m is demonstrated for the GKK distribution. (b)
Maximum Value for different mτ hypotheses with statistical uncertainty, see text for details. We fit
the decreasing left and right parts of the Maximum Value distribution with two linear functions
(black lines). Our estimate for mτ is the intersection of the two linear functions; see text for details.

Figure 8a displays the resulting GKK-distribution when considering detector effects in
equivalence to figure 6a.

We observe that the detector resolution effects cause a broadening of the GKK distri-
bution when comparing the blue dashed lines of figures 6a and 8a. When comparing the
blue-dashed lines with the orange and green dotted lines in figure 8a, we observe that the
effect of ∆m is retained for the GKK distribution.

We estimate the sensitivity of the mτ measurement using the Maximum Value, nmax
b

distribution. In this case, the uncertainty of the numerically determined value is given by
the Poisson error of the candidates in the bin. We model the increasing and decreasing
parts of the Maximum Value distribution with two linear functions, respectively, because
this is a plausible first-order approximation. We estimate mτ as the peak of the Maximum
Value distribution and determine this peak as the intersection of the two linear functions.
Our estimate is:

mτ = 1776.86± 0.09 [MeV], (4.2)

in agreement with the input value of 1776.86 [MeV]
Currently, the ARGUS method is the leading method for measuring the τ -mass at

e+e−-colliders well above the τ+τ−-production threshold [8, 11]. It has worse precision than
the one used by the BES III collaboration exploring the τ+τ−-production threshold [12, 13].

The method proposed here uses the information of all available events in the chosen
decay topology for measuring the τ -mass. This property is an advantage compared to the
ARGUS method, which uses only the subsample of the events close to its distributions
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endpoint [1]. Moreover, the ARGUS method has an intrinsic bias, which must be corrected
based on simulation studies. In contrast, the GKK method proposed here provides a
direct estimate for the τ -mass without the need for further method-based corrections. We
see the potential that the GKK method can improve the accuracy and precision of the
τ -mass measurement compared to the ARGUS method. At the very least, it provides a
complementary approach to the current method.

5 Conclusions

We have presented a new method for determining observables in particle-pair events. Using
an explicit example, we demonstrated the method as τ+τ− events in e+e− collisions. We
showed that inferring physical constraints for missing information leads to a probability
distribution that can be treated numerically and shows the properties of an unbiased best
estimator. We demonstrated the example of the τ -mass measurement as a concrete use
case of the GKK method, where the mass can be extracted without the need for further
method-based corrections. Moreover, this method can determine the mass of a new physics
particle in τ -events. Here, we turn around the argument. Instead of two fixed daughter-
particle masses, we replace one with the known mother-particle mass. The peak position
determines the unknown daughter-particle mass, making the GKK method suitable for a
massive invisible particle search.

We showed that the GKK method could lead to an improvement in parameter estimation.
The τ -mass example displayed an apparent linear behaviour enabling a future precise mea-
surement. Further studies which evaluate the performance in an actual detector environment
are necessary to evaluate the possible improvements over present-day techniques.

Furthermore, other properties of the GKK method remain to be studied. We expect an
analytic description of the GKK distribution’s limiting distribution. A possible function
family could be the Asymmetric Generalised Gaussian Family of Distributions [14]. With
an analytic description, we believe that the parameter estimation and smearing could be
described more reliably than with the numeric approach used until now.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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