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1 Introduction

The S-matrix in d+ 2 spacetime dimensions exhibits conformal properties akin to those of
correlation functions in a d dimensional conformal field theory (CFT) when expressed in a
basis of boost eigenstates [1]. Underpinning this relation is the well-known fact that the d+2
dimensional Lorentz group acts as the Euclidean global conformal group on the d dimensional
celestial sphere. This presents an opportunity to harness the power of CFT to make headway
in the attempt of a holographic description of bulk quantum gravitational physics in terms
of a lower-dimensional theory on the boundary of asymptotically flat spacetimes.

This is the goal of the celestial holography program. The identification of the symmetries
which must govern both sides of any holographically dual pair is an essential first step.
A concerted effort over the past few years has revealed that the infrared structure of
gauge theory and gravity encodes the symmetries of a “celestial conformal field theory”
(CCFT) that lives on the sphere at the null boundary of asymptotically flat spacetimes.
This builds on the realization that the Ward identities of four-dimensional asymptotic
symmetries, such as large gauge transformations, BMS supertranslations and superrotations,
are equivalent to quantum field theory (QFT) soft theorems [2–13]. When recast in the
conformal primary basis of boost eigenstates d + 2 dimensional soft theorems take the
form of correlation functions of conserved operators in CCFTd [14–22]. These conformally
soft operators give rise to d dimensional generators of the asymptotic symmetries in the
d + 2 dimensional asymptotically flat bulk spacetime [2, 14, 23–27]. Soft theorems and
conformal representation theory then determine all celestial symmetries.

This approach was taken in [26] to classify the symmetries of d = 2 CCFTs and
construct all SL(2,C) primary descendants. They are organized into conformal multiplets
that take the form of diamond-shaped descendancy relations — or celestial diamonds —
and encode the conformally soft operators and their conservation equations relevant to
construct conserved charges, as well as conformal Faddeev-Kulish dressings that render
celestial scattering amplitudes infrared finite.

In this work we tackle the more challenging problem of classifying the symmetries of
d > 2 dimensional CCFTs. The global conformal multiplets now take the form of celestial
necklaces and their precise structure, e.g. whether the necklace is plain or contains a diamond,
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depends on the dimensionality d of the CCFT and the types of conserved operators. From
a CFTd perspective the main new difficulty lies in the much richer structure of SO(d)
representations. Indeed, to capture all symmetries imposed by soft theorems requires an
important refinement of the naive extension of the d = 2 classification. Moreover, there
are different types of conserved operators depending on whether d is even or odd. Another
major difference is that soft theorems in d+ 2 > 4 dimensions do not correspond on the
nose to correlation functions of familiar conserved CFT operators such as currents and the
stress tensor. These operators arise only after applying a shadow transform to the soft
theorems [21].

We classify the primary descendants of CCFTd>2 with particular focus on those
associated to soft theorems. The conformally soft operators are conserved in the sense
that they have primary descendants which give either exactly zero or vanish up to contact
terms in correlation functions. In even d the independent types of descendant operators
are I, II, III (as in CCFT2) while in odd d they are I, II, S (for shadow), P (for parity).
Roughly speaking, the different types refer to whether the spin of a descendant is larger,
smaller or equal to that of its parent primary, albeit with refinements. We focus on traceless
and symmetric primaries whose primary descendants may or may not be traceless and
symmetric. Our results build on and extend the work of [28, 29], where the conditions for
descendants in CFTd to become primaries were studied and several (but not all) primary
descendant operators showing up in our work were constructed.

The most important operators are of type I and II as they are related to universal
soft theorems including the leading soft theorem for photons, gluons or gravitons and the
subleading soft graviton theorem as well as their shadow transforms. In contrast to CCFT2,
we need a more refined definition of type I and II operators for CCFTd>2 owing to the fact
that in general dimensions the representations of the SO(d) spin of the operator can be
more complicated than the traceless and symmetric one. Type III operators are expected
to play a role for the subleading soft photon and gluon theorems and the subsubleading soft
graviton theorem when d is even (as in CCFT2). Their form, however, is not yet known.
Moreover, in odd d the apparent absence of primary descendant operators with the correct
conformal dimensions to match those soft theorems presents an interesting puzzle. Primary
descendants of type P have opposite parity than the parent primary they descend from
(hence the name P), and are relevant in our work only for d = 3 where they replace certain
type I operators which do not exist in d = 3.

An interesting operator is that of type S. It is an independent primary in odd d while
in even d we prove that a suitable analytic continuation acts as the shadow transform for
soft operators in CCFTd (hence the name S). A relation between the shadow integral and
a certain differential operator was already pointed out in [21, 22]. In our work not only do
we explain the form of such differential operators in terms of the type S operators but we
also generalize this result to any spin and any subleading order of soft theorems.

Armed with this primary descendant classification and the knowledge of what types
of conserved operators follow from soft theorems we turn to the construction of conserved
charges. In quantum field theory symmetries are associated to Ward identities for Noether
currents. Integrating them over regions defines conserved charges in the form of topological
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surface operators. They are conserved in the sense that they do not change upon a
deformation of the region of integration so long as no other operator insertions are crossed
in the correlation function. We explain a general framework to define Noether currents from
operators with primary descendants in CFT. Some of these operators have non-canonical
higher derivative conservation equations and thus they lie below the unitarity bounds [28]
(this is the reason why they are less studied in the CFT literature). The technology we
use also applies to these operators, allowing us to classify Noether currents and conserved
charges for all operators with primary descendants in CCFTs.

While our main focus is on CCFTs in d > 2 dimensions, we take the opportunity to
review some of the literature on the symmetries of d = 2 CCFTs with a two-fold purpose.
The first is to add to the results of [26] a general expression for the CCFT2 Noether currents
associated to soft symmetries and a construction of infinite towers of conserved charges.
The second is to provide a contrast for the d > 2 dimensional case which has a much richer
structure. For example, while the CCFT2 Noether current construction is identical for all
types of primary descendants, in CCFTd>2 they take different forms for the different types
of conserved operators.

The natural language for correlation functions in CCFTd is the embedding space formal-
ism. Indeed, the defining properties of celestial amplitudes are exactly the transformation
properties of correlation functions of operators lifted to the embedding space [30]. Every
light ray passing through the origin in embedding space corresponds to a point in CFTd

space while different sections of the lightcone correspond to different conformally flat spaces
where the CFTd is defined. This ensures Weyl covariance of celestial amplitudes. Using
the all-out representation of the scattering amplitude, the in and out momenta are only
distinguished by an overall sign, thus null momenta live on the same set of null rays (at
antipodally related points) and the resulting CCFTd lives on a single celestial sphere.

The antipodal map is a crucial ingredient in showing the equivalence between asymptotic
symmetries and soft theorems [31]. In proving this connection one typically starts from
the conservation law for the charge associated to an asymptotic symmetry which is split
into “soft” and “hard” charges, and one lands on the soft theorem by a suitable (singular)
choice of the symmetry parameter. We find it, instead, more natural to start from soft and
hard operators defined as the “unsmeared charges” — that is after integrating over the
null coordinate on the conformal boundary of the spacetime but before integrating over
the celestial sphere. Indeed, it is this unsmeared conservation law for the combination of
soft and hard operators on the past and future null boundaries that is equivalent to the
Ward identity of the conserved operator showing up in the corresponding soft theorem.
We flesh this out for d = 2, but this perspective also applies to d > 2 where it is not
known how to recover soft theorems from conservation laws of asymptotic charges. Indeed
the role of infinite symmetry enhancements of the d+ 2 > 4 dimensional Poincaré group
are more mysterious. Interesting recent work related to this point appeared in [32], see
also [22, 33–35].

This paper is organized as follows. We begin in section 2 with a general discussion of
symmetries in quantum field theory which we then apply to celestial conformal field theory:
we review in section 2.1 general statements about QFT Ward identities and conservation
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laws, introduce celestial amplitudes via the embedding space formalism in section 2.2, and
discuss in section 2.3 conformally soft theorems and when they give rise to CCFT Ward
identities. In section 3 we recast the symmetries of d = 2 dimensional CCFTs in this
language. We briefly review the conformal multiplet structure in section 3.1, give a general
expression for the Noether currents and infinite towers of conserved charges in section 3.2,
use this language to discuss the Ward identities associated to soft theorems, and conclude
in section 3.4 with some remarks on the soft theorem = asymptotic symmetry connection
and the relation to the CFT framework used here. In section 4 we discuss the symmetries of
d > 2 dimensional CCFTs. We review in section 4.1 efficient technology to deal with SO(d)
tensors. We classify and construct in section 4.2 the primary descendants that encode the
celestial symmetries, in both even d and odd d, for which we compute in section 4.3 the
associated conserved charges. In section 4.4 we discuss d+ 2 dimensional soft theorems and
in section 4.5 their shadow transforms highlighting the differences between d > 2 and d = 2.
We end with a discussion of open problems in section 5. The appendices A, B, C, D, E
and F collect various details of the computations.

Notation. We work in mostly plus signature (−,+, . . . ,+), d+ 2 dimensional spacetime
indices are denoted by Greek letters µ, ν ∈ R1,d+1 while Latin letters a, b ∈ Rd are reserved
for indices in CCFTd which by our signature choice is Euclidean. Note that we use · for
contraction of both a and µ indices but from the context no confusion should arise.

2 Ward identities and charges in QFT and CCFT

The aim of this section is to review basic facts about symmetries in QFT and CCFT. In
quantum field theory symmetries are associated to Ward identities and conserved charges
are associated to topological surface operators. In section 2.1 we review the construction
of conserved charges from operators satisfying conservation equations that follow from
Ward identities. Of great interest for understanding quantum gravity in asymptotically flat
spacetimes are asymptotic symmetries whose associated Ward identities can be understood
from soft factorization theorems of QFT scattering amplitudes. Upon a basis change from
plane wave asymptotic states to conformal boost eigenstates momentum space amplitudes
can be recast as celestial amplitudes which take the form of correlation functions on the
co-dimension two celestial sphere. We introduce celestial amplitudes in section 2.2 using
the embedding space formalism.

2.1 Topological operators in QFT

We start with an elementary review on symmetries in QFTs (see e.g. [36] for more details).
Let us assume the existence of a conserved current Ja satisfying the following condition

∂aJ
a = 0 , (2.1)

which must be understood as an operator equation valid inside correlation functions away
from other insertions. A better definition for the conservation equation is provided by the
Ward identity which also defines the contribution of ∂aJa(x) when x coincides with another
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operator insertion. In general a Ward identity takes the form

〈∂aJa(x)O1(x1) . . .ON (xN )〉 =
N∑
i=1

δ(d)(x− xi)〈O1(x1) . . . δOi(xi) . . .ON (xN )〉 , (2.2)

where the variation δO(x) is some explicit operation on O(x).
Using the current J it is possible to define a topological surface operator

QΣ =
∫

Σ
dSaJa , (2.3)

where Σ is a d−1 dimensional (hyper)surface in Rd and dSa is the surface element multiplied
by the unit vector na normal to the surface Σ at each point.

The fact that Ja is conserved is crucial to ensure that the operator QΣ is topological,
namely it does not depend on the choice of Σ. To be precise QΣ in (2.3) is understood
as an operator that should be inserted in a correlation function and QΣ = QΣ′ as long as
there exists a way to deform Σ to Σ′ without crossing any other insertion in the correlation
function. If Σ = Σi is a closed surface that contains a single point xi with i ∈ [1, N ], from
the definition (2.2) and (2.3) it is easy to see that

〈QΣiO1(x1) . . .ON (xN )〉 = 〈O1(x1) . . . δOi(xi) . . .ON (xN )〉 . (2.4)

Here we used Gauss’s law to express (2.3) as the divergence of the current

QΣ =
∫
R
ddx∂aJ

a (2.5)

integrated over a region R ∈ Rd that is bounded by Σ = ∂R. Similarly, when Σ contains
a set of points the right-hand-side of (2.4) would be a sum of terms with δ acting on
each operator insertion inside Σ. From the (integrated) Ward identity (2.4) we see that in
practice QΣ just acts by taking a variation of the operators enclosed by Σ

QΣO(x) = δO(x) . (2.6)

When Σ contains all insertions and the Noether current is smooth in Rd we can deform the
integral to infinity and get zero. We find that the sum of the variations of each insertion
gives zero

0 =
N∑
i=1
〈O1(x1) . . . δOi(xi) . . .ON (xN )〉 , (2.7)

which defines a symmetry transformation.
In the quantization picture QΣ is what defines a conserved charge. Let us see how this

works. In order to quantize a theory we specify a foliation of the spacetime in hypersurfaces.
The Hamiltonian allows us to evolve from one slice of the foliation to the others. The
direction of the evolution is typically referred to as the quantization “time” t even if this
does not need to be a time direction, e.g. in Euclidean signature we can pick any direction
to be the quantization time. In CFTs it is often convenient to use the radial direction
as a quantization time. On each slice, which will be labelled by coordinates x, one can
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define a Hilbert space H of states and Hilbert spaces at different times are all isomorphic.
Correlation functions are computed as vacuum expectation values of time ordered products
of operators

〈O1(x1) . . .ON (xN )〉 = 〈0|T{Ô1(t1,x1) . . . ÔN (tN ,xN)}|0〉 , (2.8)

where T{. . . } implements time ordering with respect to the quantization time, |0〉 ∈ H is
the vacuum state and Ôi are quantum operators Ôi(ti,xi) : H→ H.

In order to have QΣ as an operator acting on a single Hilbert space we pick Σ = Σt to
be a slice at some time t. The fact that QΣt is topological means that it does not change if
we consider it at a different time t′, or in other words that it is conserved in time QΣt = QΣt′ .
This of course should be considered again inside correlation functions and it assumes that
no other insertion appeared between time t and t′. Indeed, if an insertion O(t?,x) is present
with t < t? < t′, the difference QΣt −QΣt′ is not zero and is given by the commutator

〈0|T{[Q̂, Ô(t?,x)]Ô1(x1) . . . ÔN (xN )}|0〉 = 〈(QΣt −QΣt′ )O(t?,x)O1(x1) . . .ON (xN )〉
= 〈0|T{δÔ(t?,x)Ô1(x1) . . . ÔN (xN )}|0〉 .

(2.9)

Here we assumed that all points xi have time coordinates ti outside of the interval [t, t′]
and we used that the difference QΣt −QΣt′ can be rewritten — by opportunely deforming
the surfaces of integration — in terms of a single operator QΣ where Σ is a closed surface
that surrounds the point (t?,x). In the following we will use less precise notation for the
quantized picture and we will often write formulae like

[Q,O(x)] = δO(x) , (2.10)

which should be understood as (2.9) or as (2.4).
We thus find that given any operator that satisfies a generic Ward identity of the

form (2.2), we can associate a topological operator QΣ which in the quantization picture has
the meaning of a conserved charge. These statements are of course true for generic QFTs.

Ward identities of the form (2.2) appear by considering the soft theorems written in a
boost basis. One of the main goals of this paper is to classify the charges associated to such
Ward identities. Before getting to this classification program, in the rest of this section, we
review how the “soft” Ward identities arise.

2.2 Celestial amplitudes and embedding space

Let us consider a scattering amplitude A(pi) in d+2 spacetime dimensions dependent on the
momenta pi ∈ R1,d+1 and including the momentum conserving delta function. For simplicity
let us focus on the case where all particles are massless scalars (we will generalize to massive
and spinning particles below). The momenta are null p2

i = 0 and can be conveniently
parametrized as pµi = ωiq

µ
i where q2

i = 0. The celestial amplitude is defined by the following
change of basis1

M∆i
(qi) ≡

∫ ∞
0

(
N∏
i=1

dωiω
∆i−1
i

)
A(ωiqi) . (2.11)

1The amplitudes in (2.11) should be understood to depend on sets of momenta {pi = ωiqi} or null vectors
{qi} and labels {∆i}; we omit the brackets to avoid notational clutter. The incoming and outgoing labels
are also suppressed here; more about that in subsection 2.2.2.
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We notice that the function M∆i
(qi):

• is defined on the null cones q2
i = 0,

• is Lorentz invariant, namely it can only depend on scalar products qi · qj ,

• is homogeneous of degree −∆i in qi, namely M∆i
(λiqi) =

(∏N
i=1 λ

−∆i
i

)
M∆i

(qi) for
real coefficients λi.

These are exactly the transformation properties of correlation functions of operators in
embedding space [30]. So we can formally identify

M∆i
(qi) ≡ 〈O∆1(q1) . . .O∆N

(qN )〉 , (2.12)

where O∆(λq) = λ−∆O∆(q) are CFTd primary operators uplifted to embedding space —
which in the current context corresponds to the physical spacetime. Every light ray passing
through the origin in embedding space corresponds to a point in CFTd space. The CFTd
space is described by a section of the null cone. Different choices of sections correspond to
different spaces where the CFT lives. One does not lose any information by restricting a
correlation function to a section, in fact by homogeneity one can always uplift it to the full
null cone. There are a few important sections which are frequently used:

• the Poincaré section q0 + qd+1 = 1, parametrized by qµp = (1+x2

2 , xa, 1−x2

2 ) where
xa ∈ Rd,

• the sphere section q0 = 1, parametrized by qµs = 2
1+x2 (1+x2

2 , xa, 1−x2

2 ) where xa ∈ Rd,

• the cylinder section (q0)2 − (qd+1)2 = 1, parametrized by qµc = (cosh τ,Ωa, sinh τ)
with Ω2 = 1,Ωa ∈ Rd and τ ∈ R.

It is easy to show that the induced metric on the Poincaré section is the flat space
one, namely ds2 = δabdx

adxb. In general, by appropriately choosing a section, one can
obtain a correlation function defined in any conformally flat space. This is easy to see,
indeed the section qµ = Ω(x)qµp has induced metric given by the most generic conformally
flat metric ds2 = Ω(x)2δabdx

adxb. The correlation functions in embedding space are in
fact automatically Weyl covariant, which implies that the celestial amplitudes are also
Weyl covariant.

2.2.1 Celestial amplitudes for particles with mass and spin

The embedding space definition of celestial amplitudes can be generalized to the massive
case. The celestial amplitude for scattering of massive scalar particles is defined by [1]

M∆i
(qi) ≡

∫ ( N∏
i=1

Dpi

)
1

(−pi · qi)∆i
A(pi) , (2.13)

where the measure is over the mass shell Dp = dDpδ(p2 + 1)θ(p0). Also in this case M∆i
(qi)

is a homogeneous function of qi with weight −∆i. Therefore also massive celestial amplitudes
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transform as embedding space correlation functions. Massive celestial correlators [37, 38]
have received far less attention in the literature than their massless counterparts and it
would be desirable to study their properties more thoroughly. We leave this for future work.

Let us now consider a spin ` massless bosonic field Fµ1...µ` , where e.g. the case ` = 1
corresponds to photons Aµ and ` = 2 to gravitons hµν . Gauge invariance implies

Fµ1...µ`(p)→ Fµ1...µ`(p) + p(µ1Λµ2...µ`)(p) . (2.14)

For convenience we contract the field Fµ1...µ`(p) with some polarization vectors εµ such
that ε2 = 0 and p · ε = 0. We then define F (p, ε) ≡ Fµ1...µ`(p)εµ1 · · · εµ` . We can define
celestial amplitudes associated to À

i
(pi, εi), where all indices of the particle i are contracted

with εi, as

M∆i,`i(qi, εi) ≡
∫ ∞

0

(
N∏
i=1

dωiω
∆i−1
i

)
À

i
(ωiqi, εi) . (2.15)

The function M∆i,`i(qi, εi) satisfies

M∆i,`i(λiqi, αiεi + βiqi) =
(
N∏
i=1

λ−∆i
i α`ii

)
M∆i,`i(qi, εi) , (2.16)

and thus it again defines a correlation function of primary operators O∆i,`i with dimensions
∆i and spin `i in embedding space,

M∆i,`i(qi, εi) ≡ 〈O∆1,`1(q1, ε1) . . .O∆N ,`N (qN , εN )〉 . (2.17)

Here we are using a notation where the spinning operators in embedding space are contracted
with polarization vectors O∆,`(q, ε) ≡ O

µ1...µ`
∆,` (q)εµ1 . . . εµ` . Notice that in embedding space

the spinning operators O
µ1...µ`
∆,` (q) are required to obey the same gauge condition (2.14),

which from this construction is automatically satisfied.
To project the operator into CFTd space we need to both set q to a section while at the

same time projecting the embedding indices µi = 0, . . . , d+ 1 to CFTd indices ai = 1, . . . , d.
This is achieved by contracting the indices with the Jacobian of the immersion. E.g. for the
Poincaré section [30]

O
µ1...µ`
∆,` (q)→ O

a1...a`
∆,` (x) = ∂a1

x qµ1 . . . ∂
a`
x qµ`O

µ1...µ`
∆,` (q) . (2.18)

Often it is convenient to work in an index-free notation where all indices are contracted
with polarization vectors both in embedding and in CFTd space. To do so we can directly
project a polarization vector ε associated to an operator inserted at a point q to CFTd
space. E.g. if q is projected to the Poincaré section (and similarly for other sections), then
ε is projected as follows

εµ → ea∂
a
xq
µ , (2.19)

where ea is a polarization vector in Rd, generically not transverse to xa, that satisfies
eaea = 0 (see the discussion in section 4.1 to recover the indices of the tensor operators).
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2.2.2 Celestial in ↔ out states and the antipodal map

Let us comment on the role of in and out states for celestial amplitudes. We can adopt an
all-out formalism where we write all momenta as outgoing and flip the sign of incoming
momenta, namely the momenta are written as pµ = ηωqµ where η = +1 (η = −1) for
outgoing (incoming) particles. This implies that we can read off if a particle is in or out
from the sign of the energy component of qµ: q0 < 0 for incoming and q0 > 0 for outgoing
particles. We thus find that incoming operators naturally live on the null cone q2 = 0 with
q0 < 0 while outgoing operators live on the flipped null cone with q0 > 0. However, it is
not necessary to use two different cones because homogeneity relates operators insertions at
−q to insertions at q via O∆(−q) = (−1)−∆O∆(q). On the sphere section the map q → −q
which takes out ↔ in is achieved by flipping the sign of q0 and by performing the antipodal2
map xa → −xa

x2 , namely

−qµs =− 2
1+x2

(
1+x2

2 ,xa,
1−x2

2

)
−→

q0→−q0

xa→−xa
x2

qµs = 2
1+x2

(
1+x2

2 ,xa,
1−x2

2

)
. (2.20)

This map was discussed in the literature [31] as a continuity condition for the asymptotic
data at past and future null infinities when connected across spatial infinity, and can be
derived from the dynamics of the fields at spatial infinity [39, 40]. On the other hand in
embedding space this comes about trivially. Indeed a single light ray passing through the
origin defines a single point in CFTd space so independently of the sign of q0 it is natural
to consider in and out operators living in the same CFTd space. Moreover, since a light ray
intersects spherical sections with opposite values of q0 at antipodal points, the antipodal
matching condition is automatically imposed by the formalism.

2.3 Soft theorems and celestial Ward identities

Celestial amplitudes in gauge theory and gravity obey Ward identities [15–22, 41]. Their
origin in momentum-space amplitudes is the soft, or zero-energy, limit of massless particles.
The scattering amplitude of N hard particles and one soft particle factorizes into the
amplitude for the hard particles times a soft factor3

lim
ω→0

AN+1(ωq, ε) =
∑
k

S(1−k)(ωq, ε)AN , (2.21)

where the soft factors scale with powers of the soft particle’s energy, S(1−k) ∼ ω−k with the
leading term given by Weinberg’s soft pole ∼ 1/ω, and we have suppressed the dependence
of the amplitude on the N hard particles to avoid clutter. In QED the leading soft photon
factor is given by [42]

S(0)(ωq, ε) = e
N∑
i=1

Qi
1
ω

qi · ε
qi · q

, (2.22)

2In d = 2 using complex coordinates this map is written as z → −1/z̄, z̄ → −1/z.
3We restrict to tree-level scattering and express soft theorems in the SO(d) index-free notation.
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where pµi = ηiωiq
µ
i are the momenta of the hard particles and Qi are their charges. In

gravity the leading and subleading soft graviton factors are [42–45]

S(0)(ωq, ε) = κ

2

N∑
i=1

ηi
ωi
ω

(qi · ε)2

qi · q
, S(1)(ωq, ε) = −iκ2

N∑
i=1

(qi · ε)(q · Ji · ε)
qi · q

, (2.23)

where ηi = +1 for out particles and ηi = −1 for in particles. Here Jµνi is the total
angular momentum of particle i which can be decomposed as Jµνi = L

µν
i + S

µν
i , where

L
µν
i = −i

(
pi µ

∂
∂pνi
− pi ν ∂

∂pµi

)
is the orbital momentum and S

µν
i is the spin representation

of particle i. The leading soft factors in gauge theory and gravity are thus universal, in the
sense that they only depend on the momenta, angular momenta and electromagnetic charges
of the hard particles, but not on the details of the theory. The factorization property of
the S-matrix persists to more subleading orders. The subleading soft photon [46–49] and
subsubleading soft graviton [50] factors are respectively

S(1)(ωq,ε) =−ie
N∑
i=1

ηi
Qi

ωi

q ·Ji ·ε
qi ·q

, S(2)(ωq,ε) =−κ4

N∑
i=1

ηi
ω

ωi

(q ·Ji ·ε)2

qi ·q
, (2.24)

but are subject to (non-universal) modifications in effective field theory [51]. More subleading
soft theorems can also be studied but the expressions for the corresponding soft factors S(1−k)

are known to be non-universal [52, 53]. Let us also mention that the leading soft factors
S(0) are tree-level exact while S(1) receives a one-loop-exact correction in gravity [54, 55].
All other soft theorems are corrected by further quantum corrections. In this paper we will
focus on the tree level contributions.

We can recast soft theorems as Ward identities for celestial amplitudes. The individual
terms in the energetically soft expansion of momentum-space amplitudes get mapped under
the Mellin transform to poles in the conformal dimension of massless operators in the
celestial correlation function,

1
ωk

∫∞
0 dωω∆−1

−→ 1
∆− k (2.25)

with k = 1, 0,−1 . . ., and the lower-point amplitudes are extracted by the residues at ∆ = k.4
The operators with these conformal dimensions obey conservation equations that take the
form of CCFT Ward identities. Our interest lies in identifying all the conserved operators
associated to conformally soft theorems in gauge theory and gravity. The (conformally)
soft limit will capture the leading contributions — namely the contributions that determine
the Ward identities — to the operator product expansion [15, 59] (while the full tower of
descendants can be accessed from soft-collinear limits [60]). This limit can be expressed as

lim
∆→k

(∆− k)〈O∆,`(q, ε)O∆1,`1 · · ·O∆N ,`N 〉 =
N∑
i=1

Ŝ
(1−k)
i (q, ε)〈O∆1,`1 · · · δO∆i,`i · · ·O∆N ,`N 〉 ,

(2.26)
4Here we focus on soft photons/gluons and gravitons. Conformally soft theorems for photinos and

gravitinos in d = 2 were discussed in [41] and their associated conformally soft charges in [56]; see
also [57, 58].
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where the conformally soft factor Ŝ(1−k)
i is defined as the ith soft factor in (2.21) stripped

off its ω dependence while the ωi dependence of (2.21) determines the operation δ on O∆i,`i .
As in (2.21) we have suppressed the arguments (qi, εi) of the hard particles to avoid clutter.

In what follows it will be most convenient to work in the Poincaré section where
q0 + qd+1 = 1 such that the null vector determining the propagation direction of the soft
particles is parameterized by

qµ(x) = 1
2
(
1 + x2, 2xa, 1− x2

)
, (2.27)

and similarly for the massless hard particles. The spacetime polarization vector projected
in the Poincaré section is

εµ(x, e) = ea∂aq
µ(x) = (x · e, ea,−x · e) , (2.28)

where the CCFTd polarization vectors ea are normalized such that e · e = 0. Note the
following simple rules to project scalar products of vectors qµi and εµi into the Poincaré section

qi · qj → −
x2
ij

2 , qi · εj → ej · xij , εi · εj → ei · ej , (2.29)

where xaij = xai − xaj . With that we can now easily express the d + 2 dimensional soft
theorems in CCFTd space in terms of operators O∆,`(x, e), or in terms of operators Oa1...a`

∆,` (x)
with explicit SO(d) indices that we may contract with polarization vectors ea1 . . . ea` .

We define the following conformally soft operators [14, 61]

Rak(x) := lim
∆→k

(∆− k)Oa∆,`=1(x) , Hab
k (x) := lim

∆→k
(∆− k)Oab∆,`=2(x) , (2.30)

where a, b = 1, . . . , d are the tensor indices for the spin 1 and spin 2 operators. Alternatively,
we can define them via the residues of the operators Oa∆,`=1,2 at ∆ = k. Contracting them
with the polarization vectors in CFTd space we get in index-free notation

Rk(x, e) = Rak(x)ea , Hk(x, e) = Hab
k (x)eaeb , (2.31)

which are the operators appearing in the CCFTd Ward identities (2.26) for ` = 1 and ` = 2.
Besides the conformally soft operators (2.30) it can be useful in CCFT to consider

the associated shadow operators. The shadow transform (see expression (3.8) for CCFT2
and (4.60) for CCFTd) maps a primary operator of dimension ∆ to a primary operator of
dimension d −∆. In celestial CFTd we will see that conformally soft shadow operators
are natural and physically important operators [21, 22] as they directly give rise to the
standard Ward identities for the global (local in d = 2) symmetries of CFTd.

In summary, by going to the conformal basis, soft theorems can be recast as Ward
identities of some operators with given integer dimensions ∆ (fixed by the order of the
expansion in ω) and spin ` (equal to the spin of the soft particle). The important observation
is that these operators are special in the CFT description because their dimension must be
protected. Indeed if ∆ acquired an anomalous dimension, it would no longer be possible to
associate to it an integer power of the ω expansion. We can thus conclude that in order to
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understand the soft operators one should look at the protected sector of CFT operators.
Luckily this is already classified. Indeed an operator is protected when there exists a
shortening condition of its conformal multiplet, which means that the operator must have a
descendant that becomes a primary. This happens for special values of the labels ∆, ` of
the primary. Our strategy is to use this classification to understand the properties of all
soft operators relevant for celestial CFTd and to build their associated charges.

3 Symmetries in celestial CFTd=2

The symmetries of d = 2 dimensional celestial CFTs implied by d+ 2 = 4 dimensional soft
theorems is the topic of a fairly large body of literature. Here we review some of the salient
features within the unified framework of section 2.2 which serves two objectives: it allows
us to write down a single formula for the Noether currents and conserved charges for all soft
theorems and it contrasts the discussion of celestial symmetries in higher dimensions. We
review in section 3.1 the global conformal multiplets that encode the operators responsible
for conformally soft factorization theorems in gauge theory and gravity — the celestial
diamonds introduced in [26]. These operators are conserved and when inserted in correlation
functions they give rise to celestial Ward identities. We give a general expression for the
associated Noether currents and infinite towers of topological charges in section 3.2 and
discuss their explicit form in examples in section 3.3. We contrast this CFT approach with
the equivalence between soft theorems and conservation laws for asymptotic symmetry
charges in section 3.4.

3.1 Celestial diamonds

Conformally soft operators in CCFT2 have protected integer dimensions. The strategy in [26]
was to compare these protected operators to global primary descendants in CFT2 which
also have protected integer dimensions and are associated to reducible global conformal
multiplets that are classified by representation theory.5

To review the primary descendant classification it is convenient to work in complex
coordinates z = x1+ix2 and z̄ = x1−ix2, define holomorphic an antiholomorphic derivatives
∂ ≡ ∂z and ∂̄ ≡ ∂z̄, and note that they implement the action of the Virasoro generators L−1
and L̄−1. The classification is then straightforward: we write the most general descendant
operator ∂n∂̄n̄O∆,`, and demand that it obeys the primary condition of being annihilated
by the Virasoro generators L1 and L̄1. The result of the computation is schematically
presented in figure 1 where the nodes correspond to primary operators and the arrows to
the right (left) denote the action of ∂ ↔ L−1 (∂̄ ↔ L̄−1).

We distinguish three categories of primary descendants I, II, III (defined below) depend-
ing on whether the spin of the primary descendant is larger, smaller or equal in absolute
value compared to the spin of the parent primary operator.

5While in standard CFT primary descendants are typically associated to null states, in CCFT for a
conventional choice of inner product this is not automatically true — see the discussion in [26]. In this work
we are interested in the classification of reducible conformal multiplets in CCFTd which is independent of
the choice of inner product.
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I
I

II
II

III

Figure 1. Celestial diamonds in d = 2. The picture shows the ∆ − ` plane, where the nodes
correspond to the position of primaries while the arrows pointing to the bottom right/left denote the
action of derivatives ∂/∂̄ (longer arrows correspond to higher numbers of derivatives). The diamond
picture on the left shows the existence of a nested structure of descendants that are themselves
primaries. The picture on the right is understood as a diamond with zero area.

The conformally soft operators of section 2.3 are primary operators with primary
descendants of one of these three types.

The universal soft theorems which scale as ω−k for k = 1, 0, . . . , 1− ` (where ` is the
spin of the soft particle) are associated to operators with type II primary descendants. The
subleading soft theorem scaling as ω−1+` are associated to type III operators that arise
in zero-area celestial diamonds. All the ever more subleading soft theorems are related to
primary descendants of type I.

Type I. A descendant of type I has spin n units larger in absolute value than its parent
primary. Type I descendant operators are further divided in Type Ia and Ib, where the
former is a descendant at level n of the form

OIa,n(z, z̄) ≡ ∂nO∆,+|`| , or OIa,n(z, z̄) ≡ ∂̄nO∆,−|`| , (3.1)

while the latter is a descendant at level 2|`|+ n of the form

OIb,2|`|+n(z, z̄) ≡ ∂2|`|+nO∆,−|`| , or OIb,2|`|+n(z, z̄) ≡ ∂̄2|`|+nO∆,+|`| . (3.2)

The operators OIa,n and OIb,2|`|+n become primary when

∆ = 1− |`| − n , n ∈ Z>0 . (3.3)

Type II. A level n descendant of type II has spin n smaller in absolute value than its
parent. Type II descendant operators are of the form

OII,n ≡ ∂̄nO∆,+|`| , or OII,n ≡ ∂nO∆,−|`| , (3.4)

and become primary when

∆ = 1 + |`| − n , n ∈ {1, . . . , 2|`| − 1} . (3.5)

These primary descendants only exist for |`| ≥ 1 in the range 1− |`| < ∆ < 1 + |`|.
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Type III. A type III descendant has the same absolute value of spin as the parent primary
and takes the form

OIII,2|`| ≡ ∂̄2|`|O∆,+|`| , or OIII,2|`| ≡ ∂2|`|O∆,−|`| . (3.6)

It becomes primary when
∆ = 1− |`| . (3.7)

Primary descendants of type I, II and III are associated to conserved operators from
which we can construct Noether currents and topological charges.

Before moving on to their construction, let us point out a notable feature of celestial
diamonds: the primary operators at the left and right corners are related by the shadow
transform in d = 2 CFT defined by the integral transform

S[Oh,h̄](z, z̄) ≡
Kh,h̄

2π

∫
d2w

Oh,h̄(w, w̄)
(z − w)2−2h(z̄ − w̄)2−2h̄

. (3.8)

Here and below we may equivalently trade the labels ∆, ` of the operators for h ≡ 1
2(∆ + `)

and h̄ ≡ 1
2(∆− `), and for the choice of normalization Kh,h̄ = 2 max{h, h̄} − 1 the shadow

squares to one up to a sign S[S[Oh,h̄]] = (−1)2(h−h̄). As we will see, shadow transformed
conformally soft primary operators are naturally associated to standard conserved operators
in CCFT.

3.2 Conserved charges

Having reviewed how to classify all primary descendants in CFTd=2, we are now in a position
to show how to get topological charges from the knowledge of these primary descendants.
We begin by rewriting formula (2.3) in d = 2 where it is convenient to use complex variables.
The topological charges obtained by integrating Noether currents can be expressed as6

QΣ =
∫

Σ
dSaJa = − 1

2πi

∮
Σ

(dzJ− dz̄J̄) , (3.9)

where we defined J≡ −2πJz and J̄≡ −2πJ̄z, and Σ is just a contour in d = 2.
In the following we show how to build the Noether current J (J̄) by opportunely

combining an operator O which has a primary descendant, with a parameter ε (ε̄). We start
by considering a primary operator O with dimension ∆ and spin |`| which has a level n
primary descendant and thus satisfies the following shortening condition

∂̄nO(z, z̄) = 0 . (3.10)

At this level, the shortening condition (3.10) (which should be considered as an operator
equation valid away from contact points) can be of any type I, II or III depending on the
value of ` and ∆ (which we assume to be fixed to one of the values defined in the previous
section). The rest of this section will hold regardless of the chosen type.

6Replace the outward-directed differential dSa orthogonal to Σ by a counterclockwise differential parallel
to a choice of contour defined via dSa = εabds

b where εzz̄ = −εz̄z = i
2 , whose holomorphic (antiholomorphic)

component is dz (dz̄).
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We can construct a Noether current J by combining O with a parameter ε as follows

Jε =
n−1∑
m=0

(−1)m∂̄mε(z, z̄)∂̄n−m−1O(z, z̄) . (3.11)

Conservation of the Noether current

∂̄Jε = 0 , (3.12)

requires that ε satisfies the same type of (higher-derivative) conservation equation as the
operator O, namely

∂̄nε(z, z̄) = 0 , (3.13)

which we shall call generalized Killing tensor equation. These conservation equations are
solved by making a polynomial ansatz for both O and ε,

O(z, z̄) =
n−1∑
m=0

z̄mO(m)(z) , ε(z, z̄) =
n−1∑
m=0

z̄mε(m)(z) , (3.14)

where each O(m)(z) and ε(m)(z) is holomorphic, and we further expand ε(m)(z) = ∑
n∈Z εm,nz

n.
Integrating the Noether current (3.11) we obtain

QεΣ = 1
2πi

∮
Σ
dzJε(z) ≡

n−1∑
m=0

∑
n∈Z

m!(n−m− 1)!εm,nQm,n , (3.15)

with n towers (m = 0, . . . , n− 1) of infinitely many charges (n ∈ Z),

Qm,n = (−1)m
2πi

∮
C
dzznO(n−m−1)(z) . (3.16)

Following the same arguments for the analogous conservation equations with ∂̄n→ ∂n we
can construct a Noether current J̄ε̄(z̄) and associated topological charge Q̄m,n. The infinite
tower is a special feature of d = 2.

While the construction of these charges is general for all types I, II and III of conserved
operators,7 their insertion in correlation functions and the action of these charges on other
operators depends on their type. Indeed, since the Ward identities associated to type I
operators do not have contact terms (see appendix B), the charges associated to type I
operators are trivial.8 In contrast, the charges for type II and III operators are non-trivial
as we will exemplify in the following.

7To be precise, for type I operators there are two shortening conditions (nameley Ia and Ib) for both
holomorphic and anti-holomorphic derivatives. So the Noether current (3.11) for type I, secretly satisfies
extra conservation equations in the z variable. In principle one could also define a type I Noether current
which is annihilated by both ∂ and ∂̄ by generalizing formula (3.11). The resulting current would not satisfy
extra relations, but a function annihilated by both these derivatives should be constant. This is yet another
way to see that type I operators should not be associated to non-trivial charges.

8In [60] non-trivial charges were defined, by using light transform of type I operators. A similar picture
seems to hold in d > 2, where type I operators have trivial charges but their shadow transform give rise to
non-trivial ones as we will discuss in section 4.
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3.3 CCFTd=2 Ward identities

In this section we shall see how the construction of the charges applies to celestial CFTd=2.
To start we want to recast the soft theorems reviewed in section 2.3 as correlation functions
of conserved operators O∆,`(q, ε) in celestial CFTd=2. To do so, we review some simple
properties of the d = 2 kinematics. The Poincaré section, expressed in z and z̄ coordinates,
is given by

qµ(z, z̄) = 1
2 (1 + zz̄, z + z̄, i(z̄ − z), 1− zz̄) . (3.17)

We take as CCFT2 polarization vectors

ea+ = 1√
2

(1,−i) and ea− = 1√
2

(1, i) , (3.18)

which are normalized such that e+ · e− = 1 and verify e2
± = 0. They satisfy x · e− = 1√

2z

and x · e+ = 1√
2 z̄. In index-free notation, the embedding space polarization vectors of

positive and negative helicity orthogonal to qµ are

εµ+ = ea+∂aq
µ = 1√

2
(z̄, 1,−i,−z̄) , and εµ− = ea−∂aq

µ = 1√
2

(z, 1, i,−z) . (3.19)

They are normalized such that ε+ · ε− = 1 and satisfy ε+ · ε+ = 0, ε− · ε− = 0. To
express the d+ 2 = 4 dimensional soft theorems in the Poincaré section (3.17) we use that
q · qi = −1

2(z − zi)(z̄ − z̄i), as well as qi · ε+ = 1√
2(z̄i − z̄) and qi · ε− = 1√

2(zi − z), and note
that the helicity of massless particles in R1,3 gets identified with the spin ` in CCFT2.

Each soft theorem then corresponds to a spin ` primary operator O∆,`(z, z̄) with a
special conformal dimension ∆ which has a given level n primary descendant determined
by conformal representation theory. We apply our general expression for the Noether
current (3.11) to the soft theorems, and we show that our infinite towers of topological
charges reproduce the results in the literature. For the conformally soft operators (2.30)–
(2.31) with ∆→ k = 1, 0,−1, . . . it will be useful to introduce the mode expansion [61, 62]9

R+
k (z, z̄) =

n−1∑
m=0

z̄mR
(m)
k (z) , H+

k (z, z̄) =
n−1∑
m=0

z̄mH
(m)
k (z) , (3.20)

where we have added a + label for the spin ` = +|`| compared to (2.31). The corresponding
` = −|`| modes have a − label in (3.20) and z ↔ z̄. The leading soft photon theorem
(∆ = 1) and the leading and subleading soft graviton theorems (∆ = 1 and ∆ = 0) give rise
to Ward identities for type II primary descendants. The subleading soft photon theorem
(∆ = 0) and the subsubleading soft graviton theorem (∆ = −1) instead give rise to Ward
identities for type III primary descendants. The conformally soft operators with ever more
negative conformal dimensions give rise to type I primary descendants.

9Note that in the literature [61, 62] the labels are shifted, e.g. the sum there ranges between
k−`

2 ≤ m ≤ `−k
2 .
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3.3.1 Leading soft photon

The leading positive-helicity soft photon theorem corresponds to the insertion of a U(1)
current J(z) ≡ R+

1 (z) in the celestial correlation function, namely [6]

〈J(z)O∆1,`1 · · ·O∆N ,`N 〉 =
√

2e
N∑
i=1

Qi
1

z − zi
〈O∆1,`1 · · ·O∆i,`i · · ·O∆N ,`N 〉 , (3.21)

which satisfies ∂̄J(z) = 0 up to contact terms. The spin |`| = 1 operator ∂̄R1(z) is a primary
descendants of type II at level 1 and the Noether current (3.11) is simply

Jε(z) = ε(z)J(z) . (3.22)

Its conservation implies that the associated symmetry parameter has to satisfy ∂̄ε = 0 which
can therefore be expanded as ε(z) = ∑

n∈Z εnz
n and we get one tower of charges

Q0,n = 1√
2e

1
2πi

∮
Σ
dzznJ(z) . (3.23)

Similar statements are obtained for the negative-helicity soft photon upon z ↔ z̄ which
gives J̄ε̄ = ε̄J̄ and another tower of charges Q̄n contributing to (3.9). Due to the symmetry
of the celestial photon diamond [26] analogous statements hold for the shadow transformed
soft photon operator. The charges act on an operator with conformal dimension ∆, spin `
and charge Q as

[Q0,n,O∆,`(z, z)] = QznO∆,`(z, z) . (3.24)

The enhancement from a global Noether current where ε = const to a local one in CCFT2
corresponds to the large gauge symmetry in the D = 4 dimensional bulk.

3.3.2 Leading soft graviton

The leading positive-helicity soft graviton theorem corresponds to the insertion of an
operator H+

1 (z, z̄) in the celestial amplitude [2]

〈H+
1 (z, z̄)O∆1,`1 · · ·O∆N ,`N 〉 = −κ2

N∑
i=1

ηi
z̄ − z̄i
z − zi

〈O∆1,`1 · · ·O∆i+1,`i · · ·O∆N ,`N 〉 , (3.25)

that satisfies a non-standard (since higher-derivative) Ward identity with ∂̄2H+
1 (z, z̄) = 0

up to contact terms. Note that P (z) ≡ ∂̄H+
1 (z, z̄), which satisfies the more standard

conservation equation ∂̄P (z) = 0, is a descendant but not a primary. Instead, the spin
|`| = 2 operator ∂̄2H+

1 (z, z̄) is a primary descendant of type II at level 2. The associated
symmetry parameter also satisfies a higher-derivative conservation equation ∂̄2ε = 0 and
can be expanded as ε(z, z̄) = ε(0)(z) + z̄ ε(1)(z) where ε(m)(z) = ∑

n∈Z εm,nz
n for m = 0, 1.

The Noether current is

Jε(z) = H
(1)
1 (z)ε(0)(z)−H(0)

1 (z)ε(1)(z) , (3.26)

which yields two towers of charges

Qm,n ≡ −2
κ

(−1)m
2πi

∮
Σ
dzznH

(1−m)
1 (z) , m = 0, 1 . (3.27)
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From this we see that the operator P (z) = H
(1)
1 (z) (which is usually called the supertrans-

lation current) does not know about the infinite tower of conserved charges associated to
H

(0)
1 . This was emphasized in [63, 64] and is by now well-known in the celestial literature.

It is crucial to use (3.26) so to take into account all possible generators. Similar statements
hold for the negative-helicity soft graviton as well as for the shadow transform since the
leading celestial graviton diamond is symmetric. Using (3.25) it is easy to see that the
charges act as

[Qm,n,O∆,`(z, z̄)] = ηznz̄mO∆+1,`(z, z̄). (3.28)

In the above commutator, η = +1 for out operators and η = −1 for in operators. In some
of the literature (see e.g. [63]) the global charges are called Q0,0 ≡ P− 1

2 ,−
1
2
, Q0,1 ≡ P 1

2 ,−
1
2
,

Q1,0 ≡ P− 1
2 ,

1
2
, Q1,1 ≡ P 1

2 ,
1
2
. The action (3.28) corresponds to the enhancement of the

d+ 2 = 4 spacetime translations to BMS supertranslations. While m = 0, 1 in (3.27), all
other m ∈ Z supertranslations can be obtained from the commutator with the Virasoro
generators using the celestial OPE [63].

3.3.3 Subleading soft graviton

The subleading celestial graviton diamond is not symmetric [26] and so we get different
conservation equations for the conformally soft primary and its shadow. The subleading
negative-helicity soft graviton theorem corresponds to the correlation function

〈H−0 (z, z̄)O∆1,`1 · · ·O∆N ,`N 〉 = κ

2

N∑
i=1

(z − zi)2

z̄ − z̄i

( 2hi
z − zi

− ∂zi
)
〈O∆1,`1 · · ·O∆i,`i · · ·O∆N ,`N 〉 ,

(3.29)
while we recognize its shadow transform as a correlator with a stress tensor insertion [3, 23]

〈T (z)O∆1,`1 · · ·O∆N ,`N 〉 = κ
N∑
i=1

(
hi

(z − zi)2 + 1
z − zi

∂zi

)
〈O∆1,`1 · · ·O∆i,`i · · ·O∆N ,`N 〉 .

(3.30)
The stress tensor T (z) ≡ S[H−0 ](z) ≡ H̃+

2 (z) is conserved ∂̄T (z) = 0 up to contact terms,
as is the operator T̃ (z, z̄) ≡ H−0 (z, z̄) albeit in the form of a higher-derivative conservation
equation ∂3T̃ (z, z̄) = −∂̄T (z). The spin |`| = 2 operators ∂3H−0 (z, z̄) and ∂̄H̃+

2 (z) are
primary descendants of type II at, respectively, level 3 and level 1. The symmetry parameter
for the stress tensor is required to be holomorphic ∂̄ε = 0 in order for the Noether current

Jε(z) = ε(z)T (z) (3.31)

to be conserved. We obtain the tower of charges

Q0,n = 1
κ

1
2πi

∮
Σ
dzznT (z) , (3.32)

which act as Virasoro generators Q0,n+1 ≡ Ln

[Q0,n+1,O∆,`(z, z̄)] = zn[(n+ 1)h+ z∂z]O∆,`(z, z̄) . (3.33)
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They enhance the global to the local conformal transformations, or equivalently, Lorentz
transformations to Virasoro superrotations. Meanwhile, the symmetry parameter for
the shadow stress tensor satisfies the higher-derivative conservation equation ∂3ε̃ = 0.
Expanding ε̃(z, z̄) = ε̃(0)(z̄) + zε̃(1)(z̄) + z2ε̃(2)(z̄) we can write the Noether current as [65]

J̃ε̃(z̄) = 2H(2)
0 (z̄)ε̃(0)(z̄)−H(1)

0 (z̄)ε̃(1)(z̄) + 2H(0)
0 (z̄)ε̃(2)(z̄) , (3.34)

and get three towers of charges

Q̃m,n = 2
κ

(−1)m
2πi

∮
Σ
dz̄z̄nH

(2−m)
0 (z̄) , m = 0, 1, 2 . (3.35)

These charges act on generic operators as follows

[Q̃0,n,O∆,`(z, z̄)] =− z̄n∂zO∆,`(z, z̄) ,
[Q̃1,n,O∆,`(z, z̄)] =− z̄n(2h+ 2z∂z)O∆,`(z, z̄) ,
[Q̃2,n,O∆,`(z, z̄)] =− z̄n(2hz + z2∂z)O∆,`(z, z̄) .

(3.36)

Similar expressions are obtained for the opposite helicity charges.

3.3.4 Subleading soft photon and subsubleading soft graviton

There are further subleading soft theorems which correspond to correlation functions of
conserved operators albeit with primary descendants of a different type. The positive-helicity
subleading soft photon theorem can be expressed as [4]

〈R+
0 (z, z̄)O∆1,`1 · · ·O∆N ,`N 〉 =

−
√

2e
N∑
i=1

ηi
Qi

z − zi

(
2h̄i − 1− (z̄ − z̄i)∂z̄i

)
〈O∆1,`1 · · ·O∆i−1,`i · · ·O∆N ,`N 〉 ,

(3.37)

where the spin |`| = 1 operator R+
0 (z, z̄) is conserved as ∂̄2R+

0 (z, z̄) = 0 up to contact terms.
This corresponds to a type III primary descendant at level 2. For a symmetry parameter
satisfying ∂̄2ε = 0 we can write the Noether current

Jε(z) = R
(0)
0 (z)ε(1)(z)−R(1)

0 (z)ε(0)(z) , (3.38)

and obtain two towers of charges in terms of the two modes R(m)
0 for m = 0, 1. Similar

statements hold for the opposite helicty photon and its shadow. The associated charges

Qm,n = − 1√
2e

(−1)m
2πi

∮
Σ
dzznR

(1−m)
0 m = 0, 1 (3.39)

act on generic operators as follows [66]

[Q0,n,O∆,`(z, z̄)] = −ηQzn∂̄O∆−1,`(z, z̄) ,
[Q1,n,O∆,`(z, z̄)] = −ηQzn(2h̄− 1 + z̄∂̄)O∆−1,`(z, z̄) .

(3.40)
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Meanwhile, the positive-helicity subsubleading soft graviton theorem takes the form [12]

〈H+
−1(z, z̄)O∆1,`1 · · ·O∆N ,`N 〉=−

κ

4

N∑
i=1

ηi
z̄−z̄i
z−zi

(
2h̄i(2h̄i−1)−2(z̄−z̄i)2h̄i∂z̄i

+(z̄−z̄i)2∂2
z̄i

)
〈O∆1,`1 · · ·O∆i−1,`i · · ·O∆N ,`N 〉 .

(3.41)
The spin |`| = 2 operator H+

−1(z, z̄) is conserved as ∂̄4H+
−1 = 0 up to contact terms

which corresponds to a type III primary descendant at level 4. For ∂̄4ε = 0 we get the
Noether current

Jε(z) = 6H(0)
−1 (z)ε(3)(z)− 2H(1)

−1 (z)ε(2)(z) + 2H(2)
−1 (z)ε(1)(z)− 6H(3)

−1 (z)ε(0)(z) , (3.42)

and obtain four towers of charges in terms of the four modes H(m)
−1 for m = 0, 1, 2, 3.

Analogous expressions can be obtained for the opposite helicity graviton and its shadow.
The associated charges

Qm,n = −4
κ

(−1)m
2πi

∮
Σ
dzznH

(3−m)
−1 , m = 0, 1, 2, 3 (3.43)

act on generic operators as follows [64]

[Q0,n,O∆,`(z, z̄)] = ηzn∂̄2O∆−1,`(z, z̄) ,
[Q1,n,O∆,`(z, z̄)] = ηzn(4h̄∂̄ + 3z̄∂̄2)O∆−1,`(z, z̄) ,
[Q2,n,O∆,`(z, z̄)] = ηzn(2h̄(2h̄− 1) + 8h̄z̄∂̄ + 3z̄2∂̄2)O∆−1,`(z, z̄) ,
[Q3,n,O∆,`(z, z̄)] = ηzn(2h̄(2h̄− 1)z̄ + 4h̄z̄2∂̄ + z̄3∂̄2)O∆−1,`(z, z̄) .

(3.44)

Again, η = +1 if O∆,`(z, z̄) is out and η = −1 if it is in. In both gravity and gauge theory cases
to take into account all possible generators one again needs to use the Noether currents (3.38)
and (3.42), or equivalently, keep track of all relevant modes in the expansion (3.20) as was
emphasized in [64, 66]. What sets these more subleading soft theorems apart is that the
type III primary descendants of the conformally soft operators R+

0 and H+
−1 are also their

shadows [26]:
1
2! ∂̄

2R+
0 = S[R+

0 ] ≡ R̃−2 , 1
4! ∂̄

4H+
−1 = S[H+

−1] ≡ H̃−3 . (3.45)

We will uncover a similar relation in higher dimensions in section 4.5, albeit in a much more
subtle form.

3.4 The soft, the hard and the topological charge

Let us conclude this section by commenting on the relation between the standard CFT
approach for computing charges from Ward identities and the charges associated to the
asymptotic symmetries of gauge theory and gravity at null infinity in the “soft theorem
= asymptotic symmetry” connection. The latter are constructed using the covariant
phase space formalism. Upon imposing the antipodal matching condition [31] charges for
asymptotic symmetries satisfy the classical conservation law

Q+ = Q− (3.46)
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between the past (−) and future (+) null boundary. At the level of the S-matrix the desired
conservation law becomes

〈out|Q+S − SQ−|in〉 = 0 . (3.47)

To prove this relation10 one typically splits the charge on each null boundary into a “soft
charge” Q±S that will be associated to zero energy modes and a “hard charge” Q±H that
contains the fields carrying energetic excitations. The role of the soft charge is to define a soft
operator Q±S =

∫
d2z ε(z, z̄) ·O±S (z, z̄) whose insertion in the S-matrix creates/annihilates

soft particles, while Q±H implements the asymptotic symmetry transformations on the matter
fields [Q±, . ] = δε(.). The symmetry parameter ε(z, z̄) depends on the coordinates on the
celestial sphere but not the (null) time coordinates. Upon a judicious choice of (singular)
parameters one finds that the conservation law

〈out|Q+
SS − SQ

−
S |in〉 = −〈out|Q+

HS − SQ
−
H |in〉 (3.48)

is equivalent to the associated soft theorem: the integral
∫
d2z on the left-hand-side of (3.48),

after integration by parts and using ∂̄ 1
z = 2πδ(2)(z), localizes to the insertion of a soft

particle while the one on the right-hand-side becomes the soft factor times 〈out|S|in〉.
Conversely, starting from the soft theorem we can “smear” both sides by integrating over
the sphere with some parameter ε(z, z̄) and recover the soft and hard charges which are
then guaranteed to obey the conservation law (3.47).

The standard way in CFT to construct conserved charges is to identify a conserved
operator satisfying a Ward identity and then integrating the associated Noether current over
a region of the CFT space. Soft theorems are equivalent to the insertion of conserved opera-
tors in correlation functions and conformal representation theory tells us the corresponding
Ward identities. Alternatively, these Ward identities can be obtained in the above language
— without the need of introducing a special parameter ε(z, z̄) — from an unintegrated version
of (3.48). That is we define soft and hard operators, OS and OH , through

Q±S =
∫
S2
d2z ε(z, z̄) ·O±S (z, z̄) , Q±H =

∫
S2
d2z ε(z, z̄) ·O±H(z, z̄) , (3.49)

which satisfy the “unsmeared” conservation law

〈out|O+
S S − SO

−
S |in〉 = −〈out|O+

HS − SO
−
H |in〉 . (3.50)

In Maxwell theory and Einstein gravity the hard operators O+
H are given by u-integrals of

the matter current ju and stress tensor Tuu and Tua, while the soft operators O+
S involve

(xa derivatives of) the field strength Fua and the news tensor Nab. The relation (3.50) holds
because of the constraint equation of the respective theory and the antipodal matching
condition imposed between the in and out fields. From the embedding-to-CFT-space
perspective, since a single light ray passing through the origin of spacetime defines a single
point in CFT space it is natural to consider the in and out operators as living on the
same celestial sphere. The right-hand-side of (3.50) computes the variation of the in and
out operators with distributional support at their location, while the left-hand-side gives

10See [67] for a review and references therein.
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the conservation equation for the conformally soft operators discussed in section 3.3. In
the standard CFT approach we would use this conservation equation, construct from it
a Noether current and integrate it over some region on the sphere to obtain the surface
charge. We can then relate this topological charge to the soft charge which integrates the
soft operator over the entire sphere.

Let us illustrate this for the simplest example: the soft photon theorem associated to
large gauge symmetry. From the constraint equation of Maxwell theory near future null
infinity, ∂uF (2)

ru +∂z̄F
(0)
uz +∂zF

(0)
uz̄ + e2j

(2)
u = 0 and the integrand of the global electric charge

?F = F
(2)
ru d2z, we find that the soft and hard operators are [67]

O+
S (z, z̄) = − 1

e2

∫
du(∂zF (0)

uz̄ + ∂z̄F
(0)
uz ) , O+

H(z, z̄)=
∫
duj(2)

u , (3.51)

where superscripts denote the inverse power of r in the large radius expansion. These
operators are associated with fields on the future null boundary while similar expressions
hold for the charges at the past boundary where the retarded time u is replaced by the
advanced time v. To compute the right-hand-side of (3.50) we use [67, 68]

[j(2)
u (u′, z, z̄),Φi(u, zi, z̄i)] = −QiΦi(u, zi, z̄i)δ(2)(z − zi)δ(u− u′) , (3.52)

where Φi(u, zi, z̄i) is a matter field of charge Qi. A similar expression holds for j(2)
v (v, z, z̄)

albeit with the opposite sign. We thus obtain for the hard operator insertion in the S-matrix

〈out|O+
HS − SO

−
H |in〉 = 〈out|

∫
duju(u, z, z̄)S − S

∫
dvjv(v, z, z̄)|in〉

=
n∑
i=1

δ(2)(z − zi)ηiQi〈O1 . . .Oi . . .On〉 ,
(3.53)

where ηi = ± distinguishes between in and out states. For the soft operator insertion we get

〈out|O+
S S − SO

−
S |in〉 = 1

e2∂z̄〈out|
∫
duF (0)

uz S − S
∫
dvF (0)

vz |in〉+ (z ↔ z̄)

= ∂z̄〈out|J+
z S − SJ−z |in〉+ (z ↔ z̄) ,

(3.54)

where we defined the soft photon current

J+
a = 1

e2

∫ +∞

−∞
duF (0)

ua , (3.55)

and a similar expression for the fields on the past boundary. The equality of the soft and
hard insertions (3.50) gives the following relation

∂z̄〈out|J+
z S − SJ−z |in〉+ (z ↔ z̄) =

n∑
i=1

δ(2)(z − zi)ηiQi〈O1 . . .Oi . . .On〉 . (3.56)

This takes the form of a conservation equation for a current

〈∂aJa(x)O1 . . .On〉 =
n∑
i=1

δ(2)(z − zi)ηiQi〈O1 . . .Oi . . .On〉 , (3.57)
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where xa is written in terms of z, z̄. This Ward identity can be used to build a Noether current
Jε by multiplying the current operator J ≡ Jz by a parameter ε(z, z̄). ForJε(z) = ε(z, z)J(z)
such that ∂̄Jε(z) = 0 (away from contact terms) we find that ∂̄ε(z, z̄) = 0 has to be satisfied
and is thus holomorphic ε(z, z̄) = ε(z). This condition must hold inside the region bounded
by Σ = ∂R where we are integrating the Noether current to construct the charge

Q±Σ =
∫
R
d2z∂̄

(
ε(z)J±(z)

)
=
∮

Σ
dz ε(z)J±(z) . (3.58)

Recall that the label ± refers to which operators (associated to in or out states) it acts on.
One may want to define QΣ = Q+

Σ−Q
−
Σ as the total charge. Expanding ε(z) = ∑∞

n=−∞ cnz
n

in a power series we can write a countable basis for the charges. Some of the charges are
actual symmetries: this happens for smooth ε(z) when QΣ is zero for a Σ that surrounds
all the operators — these are the global charges. Outside the region containing all the
operators ε(z) may have a pole and such local charges do not vanish, however, they act in a
precise way defined through the Ward identities.

Finally, to connect back to the above discussion note that the soft charge Q±S is defined
as an integral over the entire S2, while the topological charge Q±Σ is defined on a region R
bounded by Σ = ∂R in S2. We see that the two quantities are equivalent

Q±Σ =
∫
R
d2z∂̄(εJ±) ←→ Q±S =

∫
S2
d2zε∂̄J± , (3.59)

by assuming that ε does not have poles in the region R and that this region surrounds all the
operators. Notice that the definition of Q±Σ is more general than Q±S since it computes the
charges contained in a region Σ of the celestial sphere, which can be chosen at will. Similarly
one can define a more general version of the hard charge by integrating the right-hand-side
of (3.57) (times the parameter ε) on the same region R, which gives as a result the variation
of all operators contained in such region. As a result, the Ward identity can be rewritten in
the usual way as

[Q, · ] = δ( · ) , (3.60)

where the left hand side arises from the soft operator and the right-hand-side from the
hard one.

Let us wrap up by commenting on the special symmetry parameters ε = {ε, f, Y z} used
in the literature to go from the charge conservation laws for large gauge transformations,
BMS supertranslations and superrotations to the factorization theorems for the leading soft
photon, leading soft graviton and subleading soft graviton. To localize the sphere integrals
one takes ε = 1

z−w , f = z̄−w̄
z−w , and Y z = (z̄−w̄)2

z−w . Their form is readily explained: they
satisfy (up to contact terms) ∂̄ε = 0, ∂̄2ε = 0 and ∂̄3ε = 0 as required by the conservation
of the Noether currents. The choice of a parameter ε that depends on new variables w, w̄ is
non-canonical but it simply has the effect of mapping the charge with such ε to the local
conserved operator that defines them. In usual CFT manuals it is standard to reconstruct
an operator by resumming the Laurent expansion of the charges. E.g. for a current
J(w) = ∑

nw
−n−1Qn, where the charges Qn = 1

2πi
∮
dzznJ(z) are defined by Q

ε(z)=zn
Σ .

What is done in the CCFT literature is to consider the prescription J(w) = Q
ε(z)=1/(z−w)
Σ ,
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where Σ surrounds the pole at z = w, which is ultimately equivalent even if at a first sight
it may look like the parameter is fine-tuned. While being equivalent we think that the usual
CFT-inspired construction presented in this section is less confusing since it does not rely
in the introduction of special parameters.

4 Symmetries in celestial CFTd>2

We now discuss the symmetries in celestial CFTs in d > 2 dimensions. We start in section 4.1
by reviewing useful technology to deal with SO(d) tensors. In section 4.2 we then classify
the different types of primary descendant operators associated to CCFT symmetries using
conformal representation theory. By demanding that they satisfy some (higher-derivative)
conservation equations we construct in section 4.3 their associated charges. In section 4.4
and 4.5 we identify the types of conserved operators that soft theorems and their shadow
transforms give rise to and we build the associated charges.

4.1 Technology for SO(d) tensors

In the rest of the paper it will be convenient to use an efficient technology to deal with SO(d)
tensors [30, 69–71]. In this section we review how this works starting with the traceless and
symmetric representations and then generalizing to the mixed-symmetric ones.

4.1.1 Traceless and symmetric tensors

We will often encounter CFTd traceless and symmetric tensors contracted with polarization
vectors ea which square to zero. Let us review two ways to recover the indices either using a
special differential operator or a projector. First we introduce the differential operator [72]

Da
e ≡

(
d

2 − 1 + e · ∂e
)
∂ae −

1
2e

a∂e · ∂e . (4.1)

This can be used to differentiate the vectors ea and automatically renders the final expression
traceless and symmetric. E.g. given a tensor t(e) ≡ ta1...a`ea1 . . . ea` , we can recover the
indices by

ta1...a` = 1
`!(d2 − 1)`

Da1
e · · ·Da`

e t(e) . (4.2)

Indeed by taking derivatives of the polarization vectors we get a projector into traceless
and symmetric representations π`,

π`
(
a1 ··· a` ; b1 ··· b`

)
= 1
`!(d2 − 1)`

Da1
e · · ·Da`

e eb1 · · · eb` . (4.3)

This projector π` is defined in such a way that if we contract its indices bi with a tensor t
(not necessarily in an irreducible representation) it gives back a tensor t′ that depends on
the indices ai which are symmetric and traceless,

t′a1...a` = π`
(
a1 ··· a` ; b1 ··· b`

)
tb1...b` . (4.4)
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Another way to get back the open indices is to use the projector itself. Indeed the projector
contracted with unconstrained vectors ê, f̂∈ Rd (now ê2, f̂2 6= 0) is known in a closed form

π`(f̂; ê) ≡ π`
(
a1 ··· a` ; b1 ··· b`

)
f̂a1 êb1 · · · f̂a` êb` (4.5)

= `!
2`(d/2− 1)`

|ê|`|f̂|`Cd/2−1
`

(
ê · f̂
|ê||f̂|

)
, (4.6)

where Cn` (x) is a Gegenbauer polynomial. Now, since ê, f̂ are unconstrained, by taking
simple derivatives ∂ê, ∂f̂ we can open the indices of the projector which can then be
contracted with the tensor. E.g. a traceless and symmetric tensor ta1...a` can be recovered
from its contracted form t(e) by11

ta1...a` = 1
(`!)2∂

a1
f̂
· · · ∂a`

f̂
π`(f̂; ∂e) t(e) . (4.7)

This method is easily generalizable to the more complicated cases which we will need in the
following.

4.1.2 Mixed-symmetric tensors

In general, in d dimensions the representations of SO(d) of the spin of tensor operators can
be more complicated with respect to the traceless and symmetric one. They are labelled by
a set of [d/2] numbers ` = (`1, . . . , `[d/2]−1, |`[d/2]|) where `i ≥ `i+1 which can be associated
to a Young tableau with `i boxes in the i-th row. In odd dimensions all the labels `i are
greater or equal than zero while in even d the label `[d/2] of the last row can be negative, so
the Young tableau has to be labelled by its absolute value |`[d/2]|. We can place the indices
of the tensor in the boxes of the Young tableau, as follows

a ≡

a1
1 ··· ··· ··· ··· ··· a1

`1

a2
1 ··· ··· ··· a2

`2
...

...
... . . .

ak1 ··· ak`k

, (4.8)

with k ≤ [d/2]. The indices on the rows are symmetrized while the ones on the columns
are antisymmetrized, all traces are then removed. Since the indices are not all symmetric
or antisymmetric, these representations are sometimes called mixed-symmetric tensor
representations. E.g. a traceless symmetric operator with spin ` corresponds to (`1 =
`, `2 = 0 . . . , `[d/2] = 0). As before we can obtain an index-free notation by contracting
the indices (4.8) with a set of polarization vectors ei with i = 1, . . . k, such that the
indices aij (for j = 1, . . . , `i) of the i-th row are contracted with `i identical vectors ei,
such that ei · el = 0 for i, l = 1, . . . , k. Using this method any mixed-symmetric tensor ta
that depends on the indices a in (4.8) can then be encoded by an index-free expression
t(e1, . . . , ek) ≡ t(e).

11Notice that since we are in Rd we may equivalently use upper or lower indices.
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In order to recover the indices it is convenient to introduce projectors into mixed-
symmetric representations π`(a; b) [69, 70] which depend on two sets of indices a,b as
in (4.8), namely

π`(a; b) ≡ π`


a1
1 ··· ··· ··· ··· ··· a1

`1

a2
1 ··· ··· ··· a2

`2
...

...
... . . .

ak1 ··· ak`k

;

b11 ··· ··· ··· ··· ··· b1`1

b21 ··· ··· ··· b2`2
...

...
... . . .

bk1 ··· bk`k

 . (4.9)

Upon contraction of a tensor with one of the two sets of indices, the projector gives back a
tensor dependent on the other set of indices opportunely symmetrized ta = π`(a; b)tb. In
particular, contracting two projectors we obtain the usual idempotence π`(a; b)π`(b; c) =
π`(a; c). It is possible to compute the projectors in a closed form [69] when contracted with
two sets of unconstrained vectors f̂≡ {f̂1, . . . , f̂k} and ê≡ {ê1, . . . , êk},

π`(ê; f̂) ≡ π`(a; b)
k∏
i=1

`i∏
j=1

ê
aij
i f̂

bij
i , (4.10)

the simplest example being (4.5). To obtain an uncontracted projector we take derivatives
of the vectors êi, f̂i.

Given the contracted tensor t(e) we can obtain the uncontracted one ta (opportunely
symmetrized) by simply taking derivatives ∂ei of all ei and symmetrizing the result with a
projector, namely

t(f̂) =
(

k∏
i=1

1
`i!

)
π`(f̂; ∂e)t(e) , (4.11)

where ∂e ≡ {∂e1 , . . . , ∂ek} and the normalization is introduced to compensate for the
factorials coming from powers of derivatives (e.g. ∂nxxn = n!). In (4.11), the tensor ta is
still contracted with a set of vectors f̂, but since they are unconstrained one can simply
recover the indices by taking usual derivatives

ta =
(

k∏
i=1

1
`i!

)
∂
a1

1
f̂
· · · ∂

a1
`1

f̂
· · · ∂a

k
1

f̂
· · · ∂

ak`k
f̂
t(f̂) . (4.12)

4.2 Celestial necklaces

The soft operators introduced in section 2.3 are protected operators with integer dimensions.
Indeed, they belong to reducible conformal multiplets — that is multiplets that satisfy
shortening conditions where a descendant in the multiplet becomes a primary. In this
section we explain how to determine the symmetries of CCFTd by classifying primary
descendants in CFTd.

The general logic is the same as the one discussed in section 3.1 for CCFT2 but there
are crucial differences in CCFTd>2 which render the classification much more challenging.
Let us give a flavor of the classification before going into the detailed discussion in the
preceding subsections. Acting on a primary O∆,` with a combination of derivatives produces
a descendant O′∆′,`′ . For this descendant to be itself a primary it has to be annihilated by the
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generator of special conformal transformations Ka, that is it has to satisfy [Ka,O′∆′,`′(0)] = 0.
The first major difference in d > 2 is that the degeneracy of descendant operators at a
given level and spin is typically larger than one, e.g. both ∂ν∂µOµ∆ and �O

µ
∆ are level two

descendants of Oµ∆ in the vector representation. This means that there may (and in fact
does) exist a special linear combination of such descendants that becomes primary when ∆
takes a special value. The second complication is the much richer structure of SO(d) spin
representations. In d > 2 we write derivatives with tensor indices and we should define the
resulting tensor such that it transforms in an irreducible representation of SO(d). This can
be conveniently done using the projectors into irreducible SO(d) representations defined in
section 4.1. Naively, we would now have to build the most general descendant operator in
CFTd and require it to be a primary.

Fortunately, our task is much less daunting since the quantum numbers ∆, `,∆′, `′ for
when a descendant O′∆′,`′ of a primary O∆,` becomes a primary itself are already classified
by representation theory. This imposes a remarkably strong constraint on O′ which often
— in fact every time O′ appears with degeneracy equal to one — can be used to fix the
primary descendant’s exact form even before checking that it is a primary. How to find
the set of quantum numbers from representation theory is explained in [28] where many O′

are explicitly constructed. Here we will review and extend the construction of the different
types of descendant operators and when they become primaries. In even d the independent
types of descendant operators are I, II, III (as in CCFT2) while in odd d they are I, II, S,
P.12 Our main focus will then be on those types that arise from protected CCFTd operators
associated to soft theorems.

The most important primary descendants, associated to universal soft theorems, corre-
spond to type I and II. In contrast to CCFT2, we need a more refined definition of type I
and II operators for CCFTd>2. A level n descendant of type I has spin n units larger than
its parent primary, while a type II descendant at level n has spin n units smaller than its
parent primary. As discussed in section 2.2, in general dimensions d the representations of
SO(d) of the spin of the operator can be more complicated than the traceless and symmetric
one and a primary operator O∆,` is labeled by a set of [d/2] numbers ` = (`1, . . . , `[d/2])
where `i ≥ `i+1 in addition to its conformal dimension ∆. The types I and II are thus
refined by a label k corresponding to the `k that is increased or decreased. In the following
we construct these type Ik and IIk descendant operators and review the conditions for them
to become primaries. They will arise in sections 4.4 and 4.5 when we discuss the universal
soft theorems and their shadow transforms.

In this context there is another relevant primary descendant which we refer to as type
S. Interestingly, we will show in section 4.5 that (an analytic continuation of) the type S
operator can be used to compute shadow transforms of primaries which themselves have
respectively type I and type II primary descendants.

In odd d there exists another type of descendant operator which we refer to as type P.
For our purpose, the only relevant type P operators will arise for d = 3, but we will discuss

12We use a slightly different nomenclature with respect to [28]: while the definition of types I, II here
match the ones of [28] and [26], in odd d what is called type III in [28] is referred to as type S here (for
shadow), type IV in [28] is called type P here (for parity) and in even d type V in [28] is referred to as type
III here (in accordance with the nomenclature of [26] in d = 2).
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I1

I2

I[ d2 ]

II[ d2 ]

II2

II1

(a)

I1

I[ d2 ]

P

II[ d2 ]

II1

(b)

Figure 2. Celestial necklaces in even dimensions (a) and odd dimensions (b).

it for completeness. A discussion on the role of charges for type I operators responsible
for more subleading soft theorems that receive non-universal contributions is presented in
appendix B. We leave the discussion of type III operators for future work.

We schematically illustrate in figure 2 the structure of a conformal multiplet in CFTd.
The conformal dimension grows downwards but the rest of the diagram is schematic since
an accurate representation would require a [d/2] + 1 dimensional picture labelled by the
variables ∆, `1, . . . , `[d/2]. Not all cases are presented: the type III descendants in even d
are not depicted, and neither is the type S operator in odd d which would be represented by
a separate diagram with just a single arrow — since it is the only one that relates operators
with half integer conformal dimensions it cannot have nested primary descendants.

For the classification we will make use of operators contracted with polarization vectors
O∆,`(x, e) where we use the notation e≡ {e1, . . . , e[d/2]} as in section 4.1.2. It is important
to stress that these polarization vectors are just a book-keeping device to simplify equations
and computations with tensor indices, making all expressions scalar. The logic is that
the vectors ei are contracted with the indices in the i-th row of the Young tableau. The
operator O∆,`(x, e) is thus a homogeneous function of degree `i in the variable ei. In order
to increase the spin `i by one unit we need to introduce one extra vector ei. Conversely,
to reduce the spin `i of the operator by one unit, we need to take one derivative in ei.
Finally, in order to opportunely symmetrize the indices we will make use of the projectors
of section 4.1.2.

4.2.1 Type I operators

Type I operators have larger spin compared to the parent primary they descend from. In
particular given a primary O∆,` with dimension ∆ and spin ` = (`1, . . . , `[d/2]), its type Ik
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descendant of level n is defined by the unique operator with spin `′ such that `′i = `i + nδik,
namely with the k-th spin label increased by n units. Let us consider the primary O∆,`(x,f)
contracted with constrained polarization vectors f. In order to obtain its Ik, n descendant
we need to introduce n new vectors fak and n new derivatives ∂ax. Since f2

k = 0, there is a
single way to do so, namely13

OIk,n(x, e) ≡

[d/2]∏
i=1

1
`′i!

π`′(e; ∂f)
[
(fk · ∂x)nO∆,`(x,f)

]
. (4.13)

Here we use the notation introduced in section 4.1.2, namely e ≡ {e1, . . . , e[d/2]}, f ≡
{f1, . . . ,f[d/2]} and ∂f ≡ {∂f1 , . . . , ∂f[d/2]}. The meaning of this formula is simple: the term
(fk · ∂x)n increases the label `k by n units while the projector is only used to properly
symmetrize the indices according to the prescription in (4.11) (here we used constrained
vectors e, but the result would have been the same with unconstrained ê). Notice that all
the variables fi (the ones contracted with the operator and the n extra vectors fk) are being
removed by derivatives coming from the projector and the final expression is independent of
fi. By construction 1 ≤ n≤ `k−1− `k (the label `0 here is defined to be infinite), otherwise
the descendant would be labelled by a Young tableau with row `k−1 shorter that `k, which
is not allowed. Type Ik descendants become primaries when

∆ = ∆∗Ik,n ≡ k − `k − n . (4.14)

In the following we discuss examples of type Ik operators where the parent primary O∆,` is
taken to be traceless and symmetric that will be relevant in section 4.4.

Example: type I1 operators. The simplest case corresponds to k = 1. The type I1
descendant operators at level n take the form

OIk=1,n(x, e) = (e · ∂x)nO∆,`(x, e) , (4.15)

where e here is a single polarization vector. Equivalently, in index notation

O
a1...a`+n

Ik=1,n
(x) = ∂{a1

x ∂a2
x . . . ∂anx O

an+1...al+n}
∆,` (x) , (4.16)

where the brackets implement symmetrization and subtraction of the traces. Using (4.14)
we find that these operators are primaries when ∆ = 1 − `1 − n. For a scalar operator
O∆ (labeled by ` = (0, . . . , 0)), its type I1 descendant at level n = 1 takes the simple form
OaI1,1 = ∂aO∆. It becomes primary when the parent operator O∆ has dimension ∆ = 0,
which is the dimension of the identity operator. Indeed ∂aO = 0 when O is the identity.

Example: type I2 operators. Let us now proceed to k = 2. The simplest example of
type I2 descendants arises when the parent primary is a vector operator Oa∆ (i.e. `1 = 1 and
`i = 0 for 2 ≤ i ≤ [d/2]). Since 1 ≤ n ≤ `1 − `2 = 1, this operator has a single type Ik=2
primary descendant at level n = 1 which transforms in the (1, 1) representation, i.e. it is an

13This formula generalizes the one of [28] to any k. Some examples of k = 2 primary descendants were
already defined in appendix B of [29].
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antisymmetric tensor with two indices. This descendant in index notation takes the simple
form OabI2,1 = ∂

[a
O
b]
∆ and becomes primary when ∆ = 1. Another simple example which

will play a role in the following is the type Ik=2 primary descendant of a spin two tensor
operator Oa1a2

∆ (with `1 = 2 and `i = 0 for 2 ≤ i ≤ [d/2]). This has two possible type Ik=2
descendants at level n = 1, 2 which respectively increase by one or two units the label `2.
Restoring the indices (using the projectors (4.9) which are explicitly defined in appendix A)
these descendants can be written as

O
a1

1a
1
2,a

2
1

I2,n=1 (x) = π(2,1)(a,b)∂b21Ob
1
1b

1
2

∆ (x) , O
a1

1a
1
2,a

2
1a

2
2

I2,n=2 (x) = π(2,2)(a,b)∂b21∂b22Ob
1
1b

1
2

∆ (x) ,
(4.17)

and become primaries respectively when ∆ = 1 and ∆ = 0.
In general the level n type I2 descendants of symmetric and traceless operators (i.e.

with `2 = 0) become primary when

∆ = 2− n , n = 1, . . . , `1. (4.18)

Operators of type Ik for k = 1 or k = 2 can appear as descendants of traceless and symmetric
primaries. Conversely the cases of k > 2 can only appear if the parent primary is not
traceless and symmetric (due to the condition 1 ≤ n≤ `k−1 − `k). We do not consider the
latter since usual Lagrangian fields (such as photons and gravitons) transform in traceless
and symmetric representations and thus define primaries O∆,` in symmetric and traceless
representations.

4.2.2 Type II operators

Type II operators have smaller spin compared to the parent primary they descend from. The
level n descendant of type IIk of a primary O∆,` with dimension ∆ and spin ` = (`1, . . . , `[d/2]),
is defined by the unique operator with spin label `k decreased by n units with respect to
the parent primary, and it only exist for 1 ≤ n≤ `k − `k+1 (to avoid `k+1 larger than `k).
In order to build this operator in index-free notation we need to introduce n derivatives ∂ax
and contract them with n derivatives of the k-th polarization vector,14

OIIk,n(x, ê) ≡ (`k − n)!
`k!

(∂êk · ∂x)nO∆,`(x, ê) , (4.19)

where we again make use of the notation ê≡ {ê1, . . . , ê[d/2]} introduced in section 4.1.2.
Here for clarity of the formula, we consider O∆,` to be contracted with unconstrained
vectors êi, so that simple derivatives in êi open its indices.15 Type IIk descendants become
primaries when

∆ = ∆∗IIk,n ≡ d+ `k − k − n . (4.20)
In the following we discuss examples of type IIk operators where the parent primary O∆,` is
taken to be traceless and symmetric that will be relevant in section 4.5.

14In even dimensions, the type Ik=d/2 would have two distinct realizations like the types Ia and Ib in
CFT2. The formula (4.19) gives the analogue of operator Ia in (3.1). In this paper the type Ik=d/2 operators
are not needed, so we do not present the formula for the analogue of the type Ib operators.

15If we start with an operator contacted with constrained vectors fi, we can recover the unconstrained ones
êi by using a projector as follows O∆,`(x, ê) ≡

(∏[d/2]
i=1

1
`i!

)
π`(ê; ∂f)O∆,`(x,f). After taking the derivatives

in êi in (4.19) we can get back to constrained vectors êi → ei with ei · ej = 0.
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Example: type II1 operators. In the simplest case of k = 1, descendant operators of
type II1 take the form16

OIIk=1,n(x, e) = (De · ∂x)n

(2− d
2 − `)n(−`)n

O∆,`(x, e) , (4.21)

where e is a single (constrained) vector and the role of Da
e, defined in (4.1), is to recover

the tensor indices that are contracted with those constrained vectors. In index notation we
can express them as

O
a1...a`−n

IIk=1,n
(x) = ∂a`−n+1 . . . ∂a`O

a1...a`−na`−n+1...a`
∆,` (x) . (4.22)

For a vector (tensor) operator O
a1...a`−n

∆,` labeled by ` = (`1, 0, . . . , 0) with `1 = 1 (`1 = 2),
its type II1 descendant at level n = 1 takes the simple form OII1,1 = ∂aO

a
∆,`=1 (OaII1,1 =

∂aO
ab
∆,`=2). It becomes a primary for ∆ = d− 1 (∆ = d) corresponding to the dimension of

a conserved current (stress tensor). The primary descendant implements the conservation
of such operators.

When O∆,` is traceless and symmetric no possible IIk≥2 primary descendant can be
constructed since 1 ≤ n≤ `k+1 − `k = 0 for any k ≥ 2. Therefore in this work we will not
consider type IIk≥2 primary descendants and formula (4.21) (or equivalently (4.22)) will be
sufficient.

4.2.3 Type S operators

Type S primary descendants have the same spin as their parent primaries and become
primaries themselves when

∆ = ∆∗S,n ≡
d

2 − n , n = 1, 2, . . . . (4.23)

For this paper it will suffice to consider traceless symmetric parent primary operators O∆,`
whose level n descendants of type S are given by

OS,n(x, e) ≡ DS,nV1 · · · Vn−1O∆,` (4.24)

where

DS,n ≡ V0 · V1 · · · Vn−1 , Vj ≡ ∂2
x − 2 (∂x · e)(∂x ·De)

(d2 + `+ j − 1)(d2 + `− j − 2)
. (4.25)

It is easy to see that the quantum numbers of the primary descendant (∆ = d
2 + n, `) are

shadow-related (namely ∆ → d − ∆) to the ones of its parent primary (∆ = d
2 − n, `).

Indeed primary descendant operators of type S have an interesting relation with the shadow
transform in CFT (hence the name S) which we discuss in section 4.4.

16This expression is equivalent to (4.19) for k = 1 upon using (4.1). The form (4.21) is often more
convenient in explicit computations since working with constrained vectors e allows one to drop all terms
proportional to e2.
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4.2.4 Type P operators

The type P primary descendant exists only in odd d. It appears when the parent primary
has dimension

∆ = ∆∗P,n ≡
d+ 1

2 − n , n = 1, . . . , `[ d2 ] . (4.26)

The type P primary descendant appears at level 2n−1 (thus it has dimension ∆′ = d−1
2 +n,

which is the shadow dimension of the parent operator), has the same spin as its parent and
has the opposite parity (thus the name P). Indeed it is built using the ε tensor, for this
reason this operator has a strong dependence on d (e.g. we do not know how to analytically
continue it in d) and it is so far known only in d = 3.

For traceless and symmetric parent primaries O∆,` we have `[ d2 ] = 0 in all d > 3, and
thus their primary descendants will not play a role in our discussion. However when d = 3
we have `[ d2 ] = `1 possible primary descendants of this type. The type P operator in this
case, defined in formula (128) of [28], takes the form

OP,n(x, e) ≡ ε(e, ∂x, De)W0 · W1 · · ·Wn−2O∆,`(x, e) , (4.27)

where the label n takes the values n = 1 . . . ` and we introduced ε(e, ∂x, De) ≡ εabcea∂bxDc
e

and
Wj = ∂2

x − 2 (∂x · e)(∂x ·De)
(`+ j + 1)(`− j − 1) . (4.28)

In CFT3 these operators appear when ∆ = 2− n, which is the exact same condition as for
type I2! This is not a coincidence:17 indeed type Ik=2 operators do not exists in d = 3 since
they are only defined when k > [d/2] and type P operators take their place. This is easily
explained, as in d = 3 an operator with `2 = 1 can be dualized using the epsilon tensor and
rewritten in term of a parity-odd operator with `2 = 0. This means that in CFT3 the type
I2 descendants will be replaced by type P.

The easiest instance of such an operator appears for a parent primary of spin ` = 1. In
this case the n = 1 type P operator is given by

OaP,n=1 = εab1b2∂
b1
x Ob2∆ , (4.29)

and becomes a primary when ∆ = 1. It is clear that this operator has the exact same
properties as the type Ik=2 operator, where the antisymmetrization of the indices bi here is
performed by the contraction with the epsilon tensor. Similarly for spin ` = 2 the n = 1
type P operator takes the form

Oa1a2
P,n=1 = ε

{a1|
b1b2

∂b1x O
b2|a2}
∆ , (4.30)

where the indices ai are made symmetric and traceless. This descendant also becomes a
primary when ∆ = 1. Finally we have the n = 2 example

Oa1a2
P,n=2 = ε

{a1|
b1b2

∂b1x (∂2
xδ
|a2}
b3
− ∂x b3∂|a2}

x )Ob2b3∆ , (4.31)

which becomes primary at ∆ = 0.
17See also the discussion in appendix E.6.4 of [73].
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4.3 Conserved charges

In section 2.1 we saw that for a given Noether current Ja with ∂aJa = 0 built from conserved
operators we can define a topological charge QΣ by integrating Ja. Unlike in CFT2 where all
conservation equations for the operators take the same form, in CFTd>2 there are distinct
types that gives rise to different expressions for the Noether currents and charges. In
the following we discuss the different types of charges relevant for higher-dimensional soft
theorems and CCFTd.

4.3.1 Charges for type II

Let us consider an operator O∆,` with a type IIk primary descendant at level n (thus we
are implicitly setting ∆ = ∆∗IIk,n) with spin `′ such that `′i = `i − δikn. From O∆,` it is
possible to construct a current operator,

Jε a(x) =
π`′(∂e; ∂

f̂
)∏[d/2]

r=1 (`′r!)2
∂a
f̂k

n−1∑
j=0

(−1)j(∂
f̂k
· ∂x)n−1−jε(x, e)(∂

f̂k
· ∂x)jO∆,`(x, f̂) , (4.32)

where e and f̂ are sets of [d/2] vectors, ∂x acts on the expression immediately to the right
while ∂

f̂
is understood to act on everything to the right. Here ε is a function of x with tensor

indices transforming in the representation `′ with indices contracted with the vectors e.
This form of Jεa (x) may look complicated at first but it is rigidly fixed to have the most

generic vector operator which can be conserved. Indeed the divergence of the current takes
the following simple form

∂aJεa =
π`′(∂e; ∂

f̂
)∏[d/2]

r=1 (`′r!)2

[
(∂

f̂k
· ∂x)nε(x, e)O∆,`(x, f̂) + ε(x, e)(−∂

f̂k
· ∂x)nO∆,`(x, f̂)

]
. (4.33)

This result is due to the cancellation of most terms in the sum on (4.32) because of the
sign (−1)j : in fact only the terms with j = 0 and j = n− 1 survive. Moreover, the second
term in the square bracket in (4.33) vanishes because of the type IIk primary descendant
condition. Therefore conservation ∂aJεa(x) = 0 implies a condition on the parameter ε,
which, after some massaging,18 takes the form

π`(e; ∂f) [(fk · ∂x)nε(x,f)] = 0 . (4.34)

This condition is the same as that of a descendant of type Ik at level n. The subscript of
the projector does not match with (4.13) because here `′ is the original spin of the tensor
ε while ` is the spin of the new tensor obtained after acting with the derivatives (while
in (4.13) it is the opposite). Thus to build a current with a type IIk operator we need a
parameter ε that satisfies a type Ik shortening condition. In summary, we found that a
current of the form (4.32) is conserved if and only if the parameter satisfies (4.34). Using
this current one can write conserved charges in the standard way as in (2.3).

18We apply the following transformations. First we exchange f̂↔ ∂f̂ in the following sense: e.g. for vectors
Aa and Ba their scalar product can be written as AaBa = (Aa∂af̂ )(Bbf̂b) = (Ba∂af̂ )(Abf̂b). We apply the
projector π`′ to ε using (4.11). Finally we write the operator O contracted with a new projector into the
representation π`.
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Example: type II1 Noether current. Of prime interest in celestial CFTd are operators
of type II1 and their associated charges which we will focus on in the following. In this case
we spell out the form of the current in index notation. We consider a symmetric traceless
spin ` operator O satisfying ∂a1 . . . ∂anO

a1...a` = 0 with n ≤ `. We construct a Noether
current by combining it with a spin `−n symmetric traceless tensor parameter εa1,...a`−n

(x).
The Noether current (4.32) reduces to the form [74]

Jε a = Oaa1...a`−1∂a1 . . . ∂an−1εan...a`−1

−∂a1O
aa1...a`−1∂a2 . . . ∂an−1εan...a`−1

+∂a1∂a2O
aa1...a`−1∂a3 . . . ∂an−1εan...a`−1

...
+(−1)n−1∂a1 . . . ∂an−1O

aa1...a`−1εan...a`−1 .

(4.35)

Conservation of (4.35), i.e. ∂aJεa = 0, requires that ε is a generalized conformal Killing
tensor satisfying

∂{a1 . . . ∂anεan+1...a`} = 0 , (4.36)

which is a level n type I1 primary descendant condition. The general solution to this
equation is given by [74]

εa1...a`−n
= qµ1 . . . qµ`−1∂a1q

ν1 . . . ∂a`−n
qν`−ncµ1...µ`−1;ν1...ν`−n

, (4.37)

where q is defined in the Poincaré section (2.27) and the constant tensor cµ1...µ`−1;ν1...ν`−n

transforms in the irrep (`− 1, `− n). To see that (4.37) is a solution of (4.36), first notice
that ∂a∂bqµ = δab(1,~0,−1), thus the result is proportional to δab which is removed when we
consider traceless combinations of the indices a, b. This means that every time a derivative
∂ai (with i = 1, . . . , n) in (4.36) acts on a ∂aiqνi (with i = 1, . . . , `− n) in (4.37) the result
is zero. All derivatives in (4.36) must then act on the q’s without derivatives in (4.37). The
result is a product of ` equal terms ∂biqσi symmetrized in the indices bi, which is contracted
with a tensor in the representation (`− 1, `− n). This makes the result vanishing because
of the mixed symmetrization (indeed a tensor in the (` − 1, ` − n) irrep can be at most
contracted with `− 1 symmetrized vectors). The charge obtained by integrating (4.35) is
given by

QεΣ =
∫

Σ
dSa

n−1∑
i=0

(−1)i∂a1 . . . ∂aiO
aa1...a`−1(x)∂ai+1 . . . ∂an−1εan...a`−1(x) , (4.38)

with ε(x) given by (4.37). Often it will be more convenient to use Gauss’ divergence theorem
and compute the charge from the volume integral of the divergence of the current. Indeed us-
ing (4.36) the divergence can be simply written as ∂aJεa =(−1)n−1εan...a`−1∂a1 . . . ∂anO

a1...an...a`

and thus the charge takes the simpler form19

QεΣ = (−1)n−1
∫
R
ddx εan+1...a`(x)∂a1 . . . ∂anO

a1...an...a`(x) , (4.39)

where ∂R = Σ. We will see examples of type II1 charges in section 4.5.
19Often we will redefine the charge by multiplying it by an overall coefficient to make its action look nicer

which is equivalent to rescaling the constant coefficients in (4.37).
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4.3.2 Charges for type I

Here we explain a construction for charges associated to type I operators.
Let us consider a primary O∆,` with a primary descendant of type Ik at level n. As

explained earlier the primary descendant has spin labelled by `′i = `i + nδik. It is formally
possible to build an operator Jεa such that ∂aJεa = 0 out of O∆,`. The construction goes as
follows. First we define an operator Jεa by an opportune contraction of derivatives with the
primary O∆,` and with a parameter function ε,

Jε a = π`′(∂e; ∂f)∏[d/2]
i=1 (`′i!)2

fak

n−1∑
j=0

(−1)j(fk · ∂x)n−1−jε(x, e)(fk · ∂x)jO∆,`(x,f) . (4.40)

Here ε is a function of x transforming in the representation `′ of SO(d) (like the primary
descendant of O∆,`) and it is contracted with polarization vectors e = {e1, . . . , e[d/2]}. The
divergence of Jεa takes the form

∂aJεa = π`′(∂e; ∂f)∏[d/2]
i=1 (`′i!)2

[
(fk · ∂x)nε(x, e)O∆,`(x,f) + ε(x, e)(−fk · ∂x)nO∆,`(x,f)

]
. (4.41)

The second term in the square bracket vanishes because of the primary descendant condi-
tion (4.13). We thus find that Jεa is divergenceless when20

(∂
f̂k
· ∂x)nε(x, f̂) = 0 . (4.42)

This condition on ε is the same as that of a descendant of type IIk in (4.19). So in practice
to construct a current from an operator with a primary descendant of type Ik we find that
the associated parameter should satisfy a shortening condition of type IIk.

Let us give a couple of examples for this construction in some simple k = 1, 2 cases.

Example: type I1 Noether current. First we consider a vector operator O∆,`=1, with
a primary descendant of the type Ik=1 at n = 1 defined by ∂{aOb} = 0. We can use this to
build a Noether current

Jε a(x) = ε{ab}(x)Ob(x) . (4.43)

Conservation of J can be written as

0 = ∂aJεa (x) = [∂aε{ab}(x)Ob(x) + ε{ab}(x)∂aOb(x)] , (4.44)

but the second term in the square bracket vanishes because of ∂{aOb} = 0. Therefore
∂aJεa (x) = 0 implies that the parameter satisfies ∂aε{ab}(x) = 0.

Example: type I2 Noether current. Let us now turn to a vector operator O∆,`=1with
a type Ik=2 primary descendant at level n = 1, defined by ∂[aOb]. The associated Noether
current can be written as

Jε a = ε[ab](x)Ob(x) . (4.45)

Using ∂[aOb] = 0, we find that Jε is conserved if ∂aε[ab] = 0.
20This equation is obtained from a few manipulations of the first term of (4.41): 1) replacing f→ f̂, 2)

exchanging f̂↔ ∂f̂ as explained in footnote 18, 3) applying the projector to ε using (4.11).
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While the construction of type I charges works in principle, in practice these charges
take a trivial form and so they do not represent actual symmetries of the theory. This is
due to the fact that the Ward identities for type I operators do not contain contact terms
as we explain in appendix B.

4.4 CCFTd>2 Ward identities

Conformally soft theorems in CCFTd>2 and their associated celestial Ward identities were
discussed in [21, 22].21 Here we make use of our primary descendant classification to explain
systematically the origin of conserved operators.

4.4.1 Leading soft photon theorem

In the Poincaré section, using equation (2.29), we can easily express the soft photon factor as

S(0)
p (ω, x, e) = −2e

N∑
i=1

Qi
1
ω

(xi − x) · e
(xi − x)2 . (4.46)

The soft theorem (2.21) with the soft factor (2.22) can be mapped to the conformal basis
where the power 1/ω selects the operator Ra1(x) defined in (2.30). We thus obtain the
following conformally soft theorem

〈R1(x,e)O∆1,`1(x1,e1) . . .O∆N ,`N
(xN ,eN )〉=

N∑
i=1

Ŝ
(0)
i (x,e)〈O∆1,`1(x1,e1) . . .O∆N ,`N

(xN ,eN )〉 ,

(4.47)
where R1(x, e) = Ra1(x)ea and the hatted soft factor takes the form

Ŝ
(0)
i (x, e) ≡ −2eQi

(xi − x) · e
(xi − x)2 . (4.48)

By acting on both sides of the equation with the operator ∂e · ∂x, we can easily compute
how the divergence of Ra1(x) behaves when inserted in a correlation function,

〈∂axR1 a(x)O∆1,`1(x1, e1) . . .O∆n,`N (xN , eN )〉 =

2e
N∑
i=1

Qi
d− 2

(xi − x)2 〈O∆1,`1(x1, e1) . . .O∆N ,`N (xN , eN )〉 .
(4.49)

For d 6= 2 the dependence on x of the right-hand-side of (4.49) is powerlaw, which is different
from usual Ward identities where x only appears in the argument of a delta function. Thus
from (4.49) it is clear that Ra1(x) is not conserved for d 6= 2. However, from the classification
of section 4.2 we notice that Ra1(x) has a type I2 primary descendant at level n = 1. This
descendant has dimensions ∆ = 2, spin (1, 1) (namely has two antisymmetric indices) and
takes the form defined in section 4.2.1,22

O
a,b
I2,1(x) = 1

2(∂aRb1(x)− ∂bRa1(x)) , (4.50)

21See also [75, 76].
22See also equation (3.1) of [76].
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and it is a primary according to (4.18) since the dimension of R1 is equal to one. Using
formula (4.47) we can compute the insertion of (4.50) in a correlation function. The result
is exactly zero and it is also easy to see that no contact terms arise from this procedure23 (as
noticed also in [21]). This means that we cannot write non-trivial charges for this operator
— see appendix B for details. Notice that this primary can be defined in any dimension
d ≥ 4. In d = 3 this should be replaced by the type P operator defined in (4.29).

4.4.2 Leading soft graviton theorem

For gravity the soft factor expressed in the Poincaré section is

S(0)
p (ω, x, e) = −κ

N∑
i=1

ηi
ωi
ω

((xi − x) · e)2

(xi − x)2 . (4.51)

In the conformal basis the leading soft graviton theorem becomes

〈H1(x, e)O∆1,`1 . . .O∆N ,`N 〉 =
N∑
i=1

Ŝ
(0)
i (x, e)〈O∆1,`1 . . .O∆i+1,`i . . .O∆N ,`N 〉 , (4.52)

where H1(x, e) = Hab
1 (x)eaeb, the hatted soft factor takes the form

Ŝ
(0)
i (x, e) ≡ −κηi

((xi − x) · e)2

(xi − x)2 , (4.53)

and the shift in ∆i of the ith operator is due to the factor of ωi in (4.51). From the
divergence

〈∂bx∂axH1 ab(x)O∆1,`1 . . .O∆N ,`N 〉 = −κ
N∑
i=1

ηi
(d− 1)(d− 2)

(xi − x)2 〈O∆1,`1 . . .O∆i+1,`i . . .O∆N ,`N 〉 ,

(4.54)
we see that Hab

1 (x) is not a conserved operator in d > 2.
As in the soft photon case, one can nevertheless use the classification of section 4.2.1

to show that Hab
1 (x) has a primary descendant. It is of type I2 and level n = 1 with

dimensions ∆ = 2 and spin (2, 1) and takes the form π(2,1)(a,b)∂b21Hb11b
1
2

1 (x) as defined
in equation (4.17). By substituting the expression of the projector written in (A.7) the
primary descendant can be written as follows

O
a1

1a
1
2,a

2
1

I2,n=1 (x) = 1
3

(
2∂a2

1H
a1

1,a
1
2

1 − ∂a1
2H

a1
1,a

2
1

1 − ∂a1
1H

a2
1,a

1
2

1

)
+ 1

3(d− 1)

(
2δa1

1,a
1
2∂cH

ca2
1

1 − δa1
1,a

2
1∂cH

ca1
2

1 − δa2
1,a

1
2∂cH

ca1
1

1

)
. (4.55)

Inserting this operator in correlation functions gives again zero without contact terms, so H1
does not give rise to non-trivial charges (see appendix B). This type of primary descendant
operator was considered in equation (3.6) of [76] but there the full symmetrization of the
indices was not performed, thus the resulting operator was not transforming in an irreducible
representation of SO(d). Again this primary descendant is only defined for d ≥ 4, while in
d = 3 this should be replaced by the type P in (4.30).

23Indeed the type I2 operator annihilates the soft factor even when we introduce a regulator ε,

∂[b (xi − x)a]

(xi − x)2 + ε2
= (xi − x)[a(xi − x)b] − ((xi − x)2 + ε2)δ[ab]

(xi − x)2 + ε2
= 0 .
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4.4.3 Subleading soft graviton theorem
The subleading soft graviton factor can be expressed in the Poincaré section as

S(1)
p (ω, x, e) = −κ

N∑
i=1

(xi − x) · e
(xi − x)2

[
(xi − x)2

2 e · ∂xi + (xi − x) · e
(
− (xi − x) · ∂xi + ωi∂ωi

)
+ i(xi − x) ·Mi · e

]
,

(4.56)
where we denote ∂xi ≡ ∂

∂xi
, ∂ωi ≡ ∂

∂ωi
and Mab

i is antisymmetric in its indices and
implements rotations of the tensor indices of the i-th operator. The subleading conformally
soft graviton theorem is given by

〈H0(x, e)O∆1,`1 . . .O∆N ,`N 〉 =
N∑
i=1

Ŝ
(1)
i (x, e)〈O∆1,`1 . . .O∆i,`i . . .O∆N ,`N 〉 , (4.57)

where H0(x, e) = Hab
0 (x)eaeb and since (4.56) is already of O(ω0) the hatted soft factor

takes the same form
Ŝ

(1)
i (x, e) = S

(1)
i (ω, x, e) . (4.58)

Unlike in d = 2 where insertions of H0 with ` = −2 (` = +2) acted on by three (anti)
holomorphic derivatives can be shown to vanish up to contact terms, in d > 2 we cannot act
with more than ` derivatives ∂x while decreasing the spin of the operator. Instead, in order
to identify the conserved operators we make use of the primary descendant classification of
section 4.2.

We find that Hab
0 (x) has a primary descendant of type I2 and level n = 2 with

dimensions 2 and spin (2, 2) which takes the form π(2,2)(a,b)∂b21∂b22Hb11b
1
2

0 (x) defined in (4.17).
Substituting the projector of appendix A the operator can be written as24

O
a1

1a
1
2,a

2
1a

2
2

I2,n=2 (x) = (4.59)

1
6

{
−2
(
∂2δa

2
1,a

2
2

d−2 −∂a2
1∂a

2
2

)
H
a1

1 a
1
2

0 −2
(
∂2δa

1
1,a

1
2

d−2 −∂a1
1∂a

1
2

)
H
a2

1 a
2
2

0

+
(
∂2δa

1
1,a

2
2

d−2 −∂a1
1∂a

2
2

)
H
a2

1 a
1
2

0 +
(
∂2δa

2
1,a

1
2

d−2 −∂a2
1∂a

1
2

)
H
a1

1 a
2
2

0

+
(
∂2δa

1
1,a

2
1

d−2 −∂a1
1∂a

2
1

)
H
a1

2 a
2
2

0 +
(
∂2δa

1
2,a

2
2

d−2 −∂a1
2∂a

2
2

)
H
a1

1 a
2
1

0

−
(
∂a

1
2δa

1
1,a

2
1 +∂a1

1δa
2
1,a

1
2−2∂a2

1δa
1
1,a

1
2
) ∂cHca2

2
0

d−2 +
(
∂a

2
2δa

1
1,a

2
1 +∂a2

1δa
1
1,a

2
2−2∂a1

1δa
2
1,a

2
2
) ∂cHca1

2
0

d−2

−
(
∂a

2
2δa

2
1,a

1
2 +∂a2

1δa
1
2,a

2
2−2∂a1

2δa
2
1,a

2
2
) ∂cHca1

1
0

d−2 −
(
∂a

1
2δa

1
1,a

2
2 +∂a1

1δa
1
2,a

2
2−2∂a2

2δa
1
1,a

1
2
) ∂cHca2

1
0

d−2

+2
(
δa

1
1,a

2
2δa

2
1,a

1
2−2δa1

1,a
1
2δa

2
1,a

2
2 +δa1

1,a
2
1δa

1
2,a

2
2
) ∂b∂cH

bc
0

(d−2)(d−1)

}
.

24Again this type of operator was considered in equations (3.35) of [76] but there the full symmetrization
of the indices was not performed.
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I1

I2

I[ d2 ]

II[ d2 ]

II2

II1

(a)

I1

I[ d2 ]

P

II[ d2 ]

II1

(b)

Figure 3. Shadow transform relating primary operators (indicated by the same color) in celestial
necklaces in even dimensions (a) and odd dimensions (b). In our examples, the relation between the
soft operators (type I2) and their shadows (type II1) is depicted by the curved arrow.

This operator is exactly zero in correlation functions and thus does not yield non-trivial
charges. As in the previous cases, this primary descendant operator exactly vanishes
in correlation functions. This operator exists in d ≥ 4, while in d = 3 it should be
replaced by (4.31).

4.5 CCFTd>2 shadow Ward identities

In the previous section we showed that the conformally soft operators that arise from
recasting soft theorems in a boost eigenbasis are operators of type I2. These have shortening
conditions which do not give rise to contact terms and thus we cannot build non-trivial
charges from them. Moreover type I2 operators cannot define CFTd currents or stress tensors
which are of type II1. The latter however can be obtained from the shadow transformed
Ward identities. Indeed the quantum labels of type I2 operators is related to the ones of
type II1 by shadow transform (see figure 3).

To show that confromally soft operators can be shadowed to obtain type II1 operators
is rather subtle because the shadow integrals naively annihilate type I operators. The
shadow is thus obtained by a regularization of the integral, which gives a finite result. In
the following we will show that, very surprisingly, in even dimensions this regularization
procedure gives rise to analytically continued type S operators (this relation generalizes to
all values of ` and k of the conformally soft operators (2.30)). Alternatively, we can directly
compute the shadow transform of the soft factors in any dimensions which we detail in
appendix E. We will then use these results to compute the Ward identities for the shadow
transform of the leading soft photon and the leading and subleading soft graviton operators.
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4.5.1 Shadows and type S operators

The shadow transform of a symmetric and traceless operator O∆,` corresponds to the
following integral transform

S[O∆,`](x, e) = N∆,`

`!(d2 − 1)`

∫
ddx′

I(x′ − x, e, De′)`
[(x′ − x)2]d−∆ O∆,`(x′, e′) , (4.60)

where I(x, y, z) ≡ y ·z−2(y ·x)(z ·x)/x2 is the inversion tensor. The choice of normalization
of the shadow transform

N∆,` = π−
d
2 Γ(d−∆ + `)Γ(∆− 1)

Γ(∆− 1 + `)Γ
(
∆− d

2

) (4.61)

yields S[S[O∆,`]] = O∆,`. In appendix E we compute a regulated version of (4.60) which we
apply to the universal soft theorems.

We now want to take a different route. Indeed in [21] it was shown that in even
dimensions the shadow transform can be written in terms of local differential operators
when acting on conformally soft operators. Here we want to generalize this result to any soft
operator Ok,` with dimensions k = 1, 0,−1, . . . and spin `. At the same time we will show
that the local differential operators are actually written in terms of an analytic continuation
of the type S operator.

To show the relation between the type S operator and the shadow transform, it is
convenient to use an alternative definition (see [28]) for the differential operator DS,n given
in (4.25),

DS,n ≡ �n−`D̂S,n , D̂S,n ≡
∑̀
j=0

aj,n�
`−j(e · ∂x)j(De · ∂x)j , (4.62)

where the coefficients aj,n are written as

aj,n = (−2)j`!n!
j!(`− j)!(n− j)!(−`)j(−d

2 − `+ 2)j(d2 − j + `+ n− 1)j
. (4.63)

Since DS,n contains �n−`, this operator makes sense only for n ≥ `.25 On the other hand,
this representation is convenient since D̂S,n can be analytically continued to complex values
of n.

For n = d
2 −∆ we can thus use D̂S,n to rewrite the shadow kernel in (4.60) as follows

I(x, e, v)`
(x2)d−∆ = c∆,`D̂S, d2−∆

(e · v)`
(x2)d−∆−` , (4.64)

for vectors v in CFTd with the property v2 = 0 and where

c∆,` = − 1
22`(−∆ + d+ `− 1)(−d

2 + ∆)`(−d+ ∆ + 2)`−1
. (4.65)

25It is possible to extend the definition of DS,n to n < ` by replacing �n−`�`−j → �n−j and replacing
the upper limit of the sum `→ n. The resulting formula is written in (173) of [28]. Formula (4.62) however
will be more convenient for our purposes.

– 40 –



J
H
E
P
0
7
(
2
0
2
3
)
0
7
6

So far we have not restricted the conformal dimension of the operator. In the following
we are interested in the conformally soft values ∆ ∈ 1 − Z≥0. Performing the shadow
integral (4.60) is subtle and to make the result finite we introduce an infinitesimal regulator ε.

In the rest of this section we set ∆ = k + ε where k = 1, 0,−1, . . . and we take ε→ 0
at the end. To proceed we specify to even dimensions d where we use the following identity

1
(x2)d−k−ε−` = dεk,`�

d
2−`−k

1
(x2) d2−ε

(4.66)

for d
2 − `− k ∈ Z≥0 where

dεk,` = (−1)`+k+14−
d
2 +`+k

(
−d

2 + ε+ 1
)
`+k−1

(1− ε)d−k−`−1
. (4.67)

Using these relations we first study what happens to the integral (4.60) for ε = 0 exactly. In-
tegrating by parts in (4.60) using (4.64) with v = De′ such that 1

`!( d2−1)`
(e·De′)`O∆,`(x, e′) =

O∆,`(x, e) and the identity (4.66) gives

S[Ok,`](x, e)] = Nk,`ck,`d
ε=0
k,`

∫
ddx′

1
|x′ − x|d

DS, d2−k
Ok,`(x′, e) . (4.68)

Now one can argue that D̂S, d2−k
Ok,` is exactly zero (notice also that the integral∫

ddx′|x− x′|−d by itself is divergent). The rough idea is that D̂S, d2−k
in even dimen-

sions acts like a type I differential operator which annihilates the primary, for more details
see the discussion in appendix F. This is also checked directly for the examples in sec-
tions 4.5.2–4.5.4 by explicitly acting with DS, d2−k

on the soft factors associated to the
insertion of Ok,`.

In [21, 22] the shadow of soft modes is then regulated by keeping ε infinitesimal and
taking the limit ε→ 0 at the end. This gives

S[Ok+ε,`](x, e) = Nk+ε,`ck+ε,`d
ε
k,`

∫
ddx′

1
|x′ − x|d−2ε�

d
2−`−kD̂S, d2−k−ε

Ok+ε,`(x′, e) . (4.69)

We expand the action of the differential operator to the first non-vanishing order in ε,

D̂S, d2−k−ε
Ok,`(x, e) = ε

(
∂εD̂S, d2−k−ε

)
ε=0

Ok,`(x, e) +O(ε2) . (4.70)

We further discard the order ε term in Ok+ε,` because the soft operators are actually defined
by taking the residue of the operator O∆,` for ∆ = k, and if we shift k by ε, the residue
vanishes. We then notice that the remaining integral kernel in (4.69) is proportional to

lim
ε→0

ε

|x′ − x|d−2ε = Sd
2 δ(d)(x′ − x) , (4.71)

where Sd ≡ 2πd/2
Γ( d2 ) . The integral in x′ can now be trivially performed giving the result

S[Ok,`](x, e) = nk,`�
d
2−`−k

(
∂εD̂S, d2−k−ε

)
ε=0

Ok,`(x, e) (4.72)
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where nk,` ≡ Sd
2 limε→0Nk+ε,`ck+ε,`d

ε
k,`. Formula (4.72) is very explicit since the derivative

of D̂ is obtained in a closed form by acting on the coefficients aj,n in (4.63), namely

(∂εaj, d2−k−ε)ε=0 = −
`!
(
d
2 − j − k + 1

)
j

(
H d

2−k
−H d

2−k−j
−Hd−k+`−2 +Hd−k+`−2−j

)
(−2)−jj!(`− j)!(−`)j

(
−d

2 − `+ 2
)
j

(d− j − k + `− 1)j
,

(4.73)
where Hk are harmonic numbers. Formula (4.72) not only gives a nice interpretation of
the differential operators in [21], but also extends those results to all k = 1, 0,−1, . . . and `
(with the only constraint that d/2− `− k ≥ 0), furnishing a very efficient tool to compute
the shadow transform of bosonic soft operators.

Let us give the explicit expressions of (4.72) for ` = 1 with k = 1 and ` = 2 with
k = 1, 0, which correspond to the shadow transforms of respectively the leading soft photon
and the leading and subleading soft graviton,

S[O1,1] = n1,1
2� d

2−2

(d− 2)2 (e · ∂x)(De · ∂x)O1,1(x, e) , (4.74)

S[O1,2] = n1,2
2� d

2−3

(d− 1)2

(
�(e · ∂x)(De · ∂x)− 2d− 5

(d− 2)2 (e · ∂x)2 (De · ∂x) 2
)
O1,2(x, e) ,

(4.75)

S[O0,2] = n0,2
2� d

2−2

d2

(
�(e · ∂x)(De · ∂x)− (2d2 − 3d+ 2)

(d− 2)(d− 1)2 (e · ∂x)2 (De · ∂x) 2
)
O0,2(x, e) .

(4.76)

These results match the ones of [21] and slightly generalize them since in [21] it is only
described how to get ∂aS[O0,2]ab and ∂aS[O1,2]ab as local operators.

To conclude let us mention that the relation (4.72) can also be expressed in a more
compact but less transparent26 fashion as,

S[Ok,`](x, e) = nk,` lim
ε→0

1
ε
DS, d2−k−ε

Ok+ε,`(x, e) . (4.77)

Here we did not assume that Ok+ε,` can be replaced by Ok,` so (4.77) works not only for soft
operators but also for generic primaries. This formula shows that the shadow transform
of primary Ok,` corresponds to the action of an analytically continued type S operator
on the analytically continued primary Ok+ε,`. To be precise, we find a type S operator
at level n = d

2 − k − ε but since n is not integer for non-vanishing ε (and likewise the
dimension ∆ = k + ε of the operator), it is not a priori clear if this descendant is also a
primary. Notice that if the shadow (4.77) were a (non-primary) descendant it would be
extremely problematic, firstly because the shadow of a primary should be a primary, and
secondly because in the following we want to argue that these shadowed operators define

26Notice that (4.77) contains a seemingly problematic term where � is elevated to the non-integer power
d
2 − ` − k − ε. However the order O(ε) contribution coming from expanding this term vanishes because,
as we argued above, D̂S, d

2−k
Ok,` = 0. So for any practical purposes one can (and should) use �

d
2−`−k as

in (4.72), which is well defined.
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the stress tensor and currents in celestial CFT, which must be primaries. Fortunately we
find that (4.77) defines a primary in the following sense

lim
ε→0

1
ε

[Ka, DS, d2−k−ε
Ok+ε,`(0, e)] = 0 , (4.78)

where Ka is the generator of special conformal transformations (and we consider the remark
of footnote 26). To show that this vanishes we take the ε → 0 limit after computing
the commutator and we further need to mod out by the module defined by the primary
descendant of Ok,`. Namely we have to require that the shortening conditions for the
operator Ok,` (derived in section 4.2) are satisfied. We checked this explicitly in several
cases for various values of d, `, k corresponding to the leading soft photon and leading and
subleading soft graviton operators. In all cases the result of computing (4.78) is proportional
to a shortening condition for a type I2 operator, which we set to zero by modding out by
the module defined by this primary descendant. In the simplest example of ` = 1 and k = 1
in d = 4 we have D̂S,1−εO1+ε,1(x, e) ∝ eb(δbc� −

2(ε−1)
ε−2 ∂b∂c)Oc1+ε,1(x) and thus it is very

easy to perform the commutation by simply replacing the derivative with the generator of
translations and using the conformal algebra,

lim
ε→0

1
ε

[
Ka,

(
δbc�−

2(ε− 1)
ε− 2 ∂b∂c

)
Oc1+ε,1(0)

]
∝ ∂aOb1,1(0)− ∂bOa1,1(0) = 0 . (4.79)

The result is zero since it is proportional to the type I2, n = 1 shortening condition which
the operator Oa1,1 satisfies. Let us stress that (4.77) is not a canonical type of primary
descendant and for this reason it escapes the conventional classification. Indeed the limiting
prescription in (4.77) extracts the order O(ε) term which appears by either expanding
the differential operator or the primary operator: DS, d2−k−ε

Ok,` + DS, d2−k
Ok+ε,`. These

two terms however define descendants of two different primaries. Thus by opportunely
summing descendants of two different conformal multiplets (with arbitrarily close conformal
dimensions) it is possible to define a new primary operator given by (4.77). This mechanism
is very different from the one in standard CFTs in which the primary descendant arises
because a single multiplet becomes degenerate. Moreover, the result of the commutator
only vanishes when the shortening conditions are implemented, which is another feature
that does not arise for usual primary descendants, where the result of the commutator is
instead exactly zero.

4.5.2 Leading soft photon theorem

The divergence of the conformally soft photon operator Ra1(x) inside a correlation func-
tion (4.49) does not give a standard CFTd>2 Ward identity. Besides the fact that Ra1(x)
is not divergenceless, it does not have the correct conformal dimension to be a current.
Indeed a current should have dimensions d − 1, while Ra1(x) has dimension 1. It is thus
natural to consider its shadow R̃ad−1(x) which instead has the correct conformal dimension.
Shadowing the soft factor we obtain

S̃(0)(x, e) = −2e
[
Γ
(
d
2

)]2 N∑
i=1

Qi
1
ω

(xi − x) · e
(xi − x)d . (4.80)

This computation can be performed either using (4.72) (which in principle requires even d)
or by the method detailed in appendix E (which works in any d).

– 43 –



J
H
E
P
0
7
(
2
0
2
3
)
0
7
6

To determine the divergence of R̃ad−1(x) in a correlation function we act with ∂e · ∂x
on (4.80) and Mellin transform. The result is

〈∂aR̃ad−1(x)O∆1,`1 . . .O∆N ,`N 〉= 4eπ
d
2 Γ
(
d
2

) N∑
i=1

Qiδ
(d)(xi−x)〈O∆1,`1 . . .O∆N ,`N 〉 , (4.81)

where the appearance of the delta function follows from appendix C. Clearly, R̃ad−1(x) ≡
Ja(x) is a conserved U(1) current, i.e. it satisfies ∂aJa(x) = 0 away from contact points.
Its primary descendant ∂aR̃ad−1(x) at level n = 1 is the simplest example of a spin ` = 1
operator of type II1. The associated Noether current (4.35) can be expressed as

Jε a(x) = R̃ad−1(x)ε(x), (4.82)

whose conservation equation ∂aJεa = 0 implies that the associated symmetry parameter

ε(x) = c (4.83)

must be a constant in d > 2. Thus, following (4.39), we obtain a single charge QεΣ = cQ

defined as
Q = 1

4eπ d2 Γ
(
d
2

) ∫
R
ddx ∂aR̃

a
d−1(x) , (4.84)

for a region R in Rd with boundary given by Σ. From the identity (4.81), we can deduce
the charge action on an operator O∆,`(x)[

Q,O∆,`(x)
]

= QO∆,`(x) . (4.85)

For a non-abelian symmetry the current transforms in the adjoint representation of the
symmetry group and so it has more components to each of which one can associate a
conserved charge.

4.5.3 Leading soft graviton theorem

The conformally soft graviton operator Hab
1 (x) is likewise not conserved in correlation

functions (4.54) in d > 2 and we consider instead its shadow H̃ab
d−1(x) which has the correct

dimension of a type II1 operator at level n = 2, according to equation (4.20). The shadow
of the soft graviton factor is given by

S̃(0)(x, e) = −κ2d
[
Γ
(
d
2

)]2 N∑
i=1

ηi
ωi
ω

[(xi − x) · e]2
(xi − x)d . (4.86)

Computing the divergence of H̃ab
d−1(x) in correlation functions using appendix C yields

〈∂a∂bH̃ab
d−1(x)O∆1,`1 . . .O∆N ,`N 〉 =

−2κπ
d
2 (d− 1)Γ

(
d
2

) N∑
i=1

ηiδ
(d)(xi − x)〈O∆1,`1 . . .O∆i+1,`i . . .O∆N ,`N 〉 .

(4.87)
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This higher-derivative Ward identity is associated to the level n = 2 primary descendant
operator of type II1 defined by ∂a∂bH̃ab

d−1(x). The Noether current (4.35) can be written as

Jε a(x) = H̃ab
d−1(x)∂bε(x)− ∂bH̃ab

d−1(x) ε(x) , (4.88)

and the conservation of Jεa requires the parameter to take the form (4.37), namely

ε(x) = cµq
µ(x) , (4.89)

where qµ is defined in (2.27) and cµ is a constant vector cµ = (c0, ca, cd+1). Using (4.39)
the charge takes the form

QεΣ = − 1
2κ

1
π
d
2 (d− 1)Γ

(
d
2

) ∫
R
ddx ε(x)∂a∂bH̃ab

d−1(x) , (4.90)

where ∂R = Σ. This can be thus written as a sum of d+ 2 independent charges QεΣ = cµQ
µ.

From the Ward identity (4.87), we can deduce the charge action on an operator O∆,`(x),[
Qµ,O∆,`(x)

]
= ηqµ(x)O∆+1,`(x) , (4.91)

where the shift in the conformal dimension and the multiplication by ηqµ is exactly what
produces the translations in physical d+ 2-dimensional space.27

4.5.4 Subleading soft graviton theorem

Among the conserved operators of spin ` = 2 we expect the appearance of the stress tensor
which has conformal dimension ∆ = d. Indeed, the shadow transform of the subleading soft
graviton operator Hab

0 , denoted by H̃ab
d (x), has the right conformal dimension to be the

stress tensor. Shadowing the subleading soft graviton factor gives

S̃(1)(x,e) =κ
[
Γ
(
d
2 +1

)]2 N∑
i=1

(x−xi)·e
[(x−xi)2] d2 +1

[1
2(x−xi)·e(−2ωi∂ωi+(d−2)(x−xi)·∂xi)

+(x−xi)2e·∂xi−i(d−1)e·Mi ·(x−xi)
]
.

(4.92)

We again use appendix C to land, after Mellin transforming over the energies, on the
following Ward identity

〈∂aH̃ab
d (x)O∆1,`1 . . .O∆N ,`N 〉=

κ

2π
d
2 (d−1)Γ

(
d
2 +1

) N∑
i=1

[
δ(d)(x−xi)∂bxi

−∆i

d
∂bδ(d)(x−xi)+ i

2M
bc
i ∂cδ

(d)(x−xi)
]
〈O∆1,`1 . . .O∆N ,`N 〉 .

(4.93)
27Given a momentum state |pµ〉 with pµ = ηωqµ and its Mellin transform |∆, ηqµ〉, bulk translations Pν

act as
P
ν |pµ〉 = pν |pµ〉 → P

ν |∆, ηqµ〉 = ηqν |∆ + 1, ηqµ〉 .
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The first of the three terms in the square brackets corresponds to the usual Ward identity for a
d-dimensional stress tensor T ab which is conserved, traceless and symmetric away from other
operator insertions. Instead our primary operator H̃ab

d (x) ≡ −T {ab} = −T ab+T [ab] + 1
dδ
abT cc

is exactly traceless and symmetric because we explicitly project it into the traceless and
symmetric representation. This explains the two additional terms in the second line of (4.93).
Here the square brackets denote anti-symmetrization, while the curly brackets make the
indices symmetric and traceless. The primary descendant ∂aH̃ab

d (x) is the prime example of
a spin ` = 2 operator of type II1 at level n = 1. The Noether current (4.35) takes the form

Jε a(x) = H̃ab
d (x)εb(x) (4.94)

for some vector εb(x) such that ∂aJεa = 0. Using the properties of the stress tensor, we find
that εa must satisfy the following equation

∂aεb + ∂bεa
2 − ηab

d
∂cε

c = 0 . (4.95)

This is the conformal Killing equation, which can also be obtained by studying the transfor-
mations that preserve the flat metric up to a conformal factor. In d > 2 this equation has a
finite number of solutions

εa(x) = cPa + cR[a b]x
b + cDxa + cKb (2xaxb − η b

a x
2) , (4.96)

which are the conformal Killing vectors that are parametrized by (d+2)(d+1)
2 coefficients

cPa , c
R
[a b], c

D, cKa with the brackets denoting anti-symmetrization. Notice that the equation
for εa(x) obtained in (4.37), which for the present case reduces to

εa(x) = c[µ ν]q
µ∂aq

ν , (4.97)

is equivalent to (4.96) upon identifying

cD ≡ c[d+1 0] , cPa ≡
1
2(c[0 a] + c[d+1 a]) , cKa ≡

1
2(c[a 0] − c[a d+1]) , cR[a b] ≡ c[a b] .

(4.98)
From (4.39), the charge takes the form

QεΣ = 2
κ

1
π
d
2 (d− 1)Γ

(
d
2 + 1

) ∫
R
ddx εa(x)∂bH̃ab

d (x) , (4.99)

where ∂R = Σ. Using εa as defined in (4.96) and (4.97) we shall expand the charge in terms
of the independent constant coefficients as QεΣ ≡ c[µν]Q

µν ≡ cDQ
D + cPaQ

P a + cKa Q
K a +

cR[ab]Q
Rab. The action of the charges Qµν on a primary operator O∆,`(x) can then be

computed from (4.93) and takes the following form

[Qµν ,O∆,`(x)] =
[
qµ(∂aqν)∂a + ∆

d
[∂a(qµ∂aqν)]− i

2(∂bqµ)(∂aqν)Mab
]
O∆,`(x) . (4.100)
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This compact expression can then be rewritten — replacing qµ as in (2.27) and using the
definition above for the charges — in terms of the more familiar CFTd charges associated
to translations Pa, rotations Rab, dilations D and special conformal transformations Ka,

[QP a,O∆,`(x)] = ∂aO∆,`(x) ,

[QRab,O∆,`(x)] =
(
(xa∂b − xb∂a) + iMab

)
O∆,`(x) ,

[QD,O∆,`(x)] = (xa∂a + ∆)O∆,`(x) ,

[QK a,O∆,`(x)] =
(
(2xaxb − δabx2)∂b + 2∆xa − 2ixbM ba

)
O∆,`(x) .

(4.101)

We thus recovered the generators of the conformal algebra, which simply correspond to the
Lorentz transformations in the bulk.

5 Conclusions and outlook

In this work we have focused on the universal soft theorems for gauge theory and gravity in
d+2 spacetime dimensions and the classification of soft symmetries in the dual celestial CFTd.

In the conformal basis, the universal soft theorems in d+2 > 4 dimensions take the form
of d dimensional correlation functions with the insertion of a (conformally) soft operator
with special integer dimension ∆ that transforms in a short representation. Soft operators
have primary descendants of type I2 at level n = 2 − ∆ which have the spin label `2
increased by n units and thus do not transform in traceless and symmetric representations.
The conservation equations defined by these primary descendants do not give rise to contact
terms and so the associated charges are trivial. Non-trivial conserved charges can instead
be built from their shadow transforms.

The shadow transform of the soft operators — which in even d acts as an analytic
continuation of the type S differential operator — maps them to operators with type II1
primary descendants whose spin label `1 is decreased by n = ∆ + `1− 1 units. Conformally
soft shadow operators define familiar conserved CFTd operators such as currents and
stress tensor as well as operators satisfying higher-derivative conservation equations such
as those generating translations in d+ 2 spacetime dimensions. For all such operators we
explained how to construct the full set of associated conserved charges. Importantly, these
shadow operators generate the symmetries corresponding to d+ 2 dimensional Poincaré
and global U(1) transformations — which are finite-dimensional groups. This is in contrast
to the infinite local enhancement in d + 2 = 4 spacetime dimensions by BMS and large
gauge transformations for which we have constructed Noether currents and infinite towers
of charges.

Let us conclude with some comments and open questions.

The top of the necklace. In CCFT2 the conformal multiplets containing the universal
soft operators were completed into a diamond by adding a primary at the top: the
universal soft operators in figure 1 are at the left and right corners, with their type II
primary descendant at the bottom corresponding to their conservation equation, and can
themselves be understood as type I primary descendants of a new operator at the top. (For
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degenerate multiplets the soft operator, whose type III primary descendant corresponds to
its conservation equation, already coincides with the top operator of a zero-area diamond and
so no additional operator needs to be added.) This was a useful thing to do as it defines the
Goldstone modes of spontaneously broken asymptotic symmetries which are used to dress
celestial amplitudes to make them infrared finite [77]. The top operators have logarithmic
correlation functions (similar to the ones of a free boson in d = 2 which is the simplest
example of a top operator in a celestial diamond) and should not be considered as part of the
spectrum of the original theory (it may be thought as a primary of a logarithmic extension
of the theory or just as an auxiliary operator); because of the logarithmic behaviour the
arguments of appendix B do not apply to this operator.

In a similar vein, we can complete the celestial necklaces in CCFTd>2 by adding a top
primary operator — this is the one already shown in figure 2. Indeed, all universal soft
operators have type I2 primary descendants and can themselves be understood as type I1
primary descendants of an operator at the top. As in d = 2 this top operator has logarithmic
correlation functions. Its quantum numbers are fixed by representation theory and the form
of its primary descendant follows the classification in section 4.2.1. For the leading soft
photon the top-of-the-necklace operator must be an operator O∆=0,`=0 with type I1, n = 1
primary descendant ∂aO0,0. This is set by the fact that its type I1 primary descendant has
(∆, `) = (1, 1). Similarly for the leading soft graviton the top-of-the-necklace operator is
O∆=−1,`=0 with a primary descendant of type I1, n = 2 that takes the form ∂{a∂b}O∆=−1,`=0.
For the subleading soft graviton we find O∆=−1,`=1 with type I1, n = 1 primary descendant
∂
{a
O
b}
∆=−1,`=1. Note that the equations for the type I1 primary descendants appeared in the

literature (e.g. [22] and [76]). In [76] they were computed (see formulae (3.4), (3.26), (3.38))
as solutions of the type I2 shortening condition thought of as a “classical field equation”.28

For us they descend automatically from the necklace structure.

Subleading soft photon and subsubleading soft graviton. In d+ 2 = 4 dimensions,
the subleading soft photon (∆ = 0) and the subsubleading soft graviton (∆ = −1) theorems
correspond to type III primary descendants in CCFT2. In even d > 2 there are descendants
of type IIIk which become primary for ∆ = k − `k [28]. We thus expect these subleading
soft photon and subsubleading soft graviton theorems in even d + 2 > 4 dimensions to
map to correlation functions of conserved operators with primary descendants of type III1
with `1 = 1 and `1 = 2, respectively, in CCFTd>2. The explicit form of these primary
descendants is not known and we leave their construction for future work. The situation in
odd d is even more tricky. There appears to be no primary descendant whose parent has
the correct conformal dimension to match the conformally soft operators with ∆ = 0 (for
spin one) and ∆ = −1 (for spin two). We leave the resolution of this puzzle for the future.

Towers of ever more subleading soft theorems. Conformally soft operators beyond
the subleading soft theorem in gauge theory and the subsubleading soft theorem in gravity
have type I1 primary descendant operators at level n. Given a spin ` particle they appear
at ∆ = 1− `− n for n = 1, 2, . . . ,∞, while in terms of the power expansion in ω they arise

28In our language the type I1 primary descendants trivially solve the type I2 shortening conditions.
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at ωk for k = `+ n− 1. In appendix B we describe why from such operators we cannot
construct non-trivial charges. However it would be interesting to see if the complete list of
conformally soft operators (or their shadows) in d > 2 forms an interesting algebra.

Fermionic symmetries. While we have focused on bosonic symmetries here, it would
be interesting to extend our d > 2 discussion to fermionic symmetries. Infinite-dimensional
fermionic symmetries were found in [78–80] to be implied by the soft gluino and gravitino
theorems in d + 2 = 4 spacetime dimensions. These fermionic symmetries were shown
to be generated by CCFT2 operators in [41, 56]. In particular, large supersymmetry
transformations are generated by the shadow transformed conformally soft gravitino primary
operator. In higher dimensions we expect a classification of fermionic primary descendants
to yield a ∆ = 3

2 (shadow) operator that generates global supersymmetry transformations.

Generalization to higher spin. As a proof of concept we can see how our technology
can be used to study soft particles with generic spin ` on the same footing. Given a spin `
particle, we obtain a primary operator with dimension ∆ and spin `. Without doing any
computations we expect ` soft theorems associated to type I2 primary descendants at level
n = 1, . . . , ` which appear at dimensions ∆ = 2 − n. The shortening condition of these
operators is of the form

O
a1

1...a
1
` ,a

2
1...a

2
n

I2,n (x) = π(`,n)(a,b)∂b21 . . . ∂b2nOb
1
1...b

1
`

∆,` (x) . (5.1)

The first ` universal conformally soft theorems are exactly annihilated by the differential
operators above and thus do not give rise to non-trivial conserved charges. However
the shadow transform of these I2, n operators gives rise to type II1 operators at level
n′ = `− n+ 1 which instead can be used to build non-trivial charges.

As an example, the leading soft factor, which generalizes the ones of photons (4.46)
and gravitons (4.51) to spin ` particles, is proportional to

N∑
i=1

gi
(ηiωi)`−1

ω

((xi − x) · e)`

(xi − x)2 , (5.2)

for some coefficients gi.29 We associate this contribution to the insertion of a conformally
soft operator O∆=1,`. One can indeed check that (5.2) is annihilated by the differential
operator in (5.1) for n = 1. The resulting Ward identity does not produce contact terms
and cannot be used to build non-trivial charges. The shadow transform of O∆=1,` is the
operator Õ∆=d−1,` which following the classification of section 4.2.2 is of type II1, n = `.
Indeed by taking the shadow of expression (5.2) using formula (4.72), we obtain

S

[
(x · e)`

x2

]
=

2(−1)dΓ
(
d
2

)
Γ
(
d
2 + `− 1

)
(`− 1)!

(e · x)`
|x|d

. (5.3)

It is easy to check that by taking a descendant of type II1, n = `, this equation gives rise to
a contact term (see equation (C.6)),

(De · ∂x)` (e · x)`
|x|d

∝ δ(d)(x) . (5.4)

29When ` = 1, gi = eQi as in equation (4.46). Because of Weinberg’s soft theorem gi must be all equal for
` = 2, giving gi = κ as in (4.51). Finally gi should vanish for ` > 2. Still it is an instructive exercise to show
what the soft operators and charges look like in the celestial basis in a closed form in `.
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The resulting Ward identity for Õ∆=d−1,` can thus be used to define non-trivial charges
using equation (4.38). From formula (4.37), without doing any computations, we can also
predict that the number of such charges is finite and equals the dimension of the SO(d+ 2)
spin `− 1 representation, namely (d+2`−2)Γ(d+`−1)

Γ(d+1)Γ(`) . Finally, using (4.37), (4.39) and (5.4)
it is straightforward to see that the action of the (opportunely normalized) charges on a
primary O∆,` takes the form

[Qµ1...µ`−1 ,O∆,`(x)] = g η`−1q{µ1 . . . qµ`−1}O∆+`−1,`(x) . (5.5)

This can be considered as an example of the power of the classification and techniques that
we introduced in this paper. Because of the structure of primary descendants we know
exactly which computations we should perform and often we can also predict their result.
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A Projectors

In this appendix we exemplify the form of the projectors. We will use the results of [69]
where a number of projectors were computed. These were found in the contracted form
π(`1,`2,`3,0,...,0)(e,f) for generic `1 and for all `2, `3 such that `2 + `3 ≤ 4. Following the
notation of section 4.1.2, the polarization vectors are defined by the sets e = {e1, . . . , e[d/2]},
f= {f1, . . . ,f[d/2]}, however in this appendix we consider these vectors as unconstrained,
dropping the hats to avoid clutter. All projectors π`(e,f) are polynomials in the scalar
products (ei · ej), (ei ·fj), (fi ·fj). The results are in general quite lengthy but they can be
readily used in computations in Mathematica. The easiest example of such projectors is the
symmetric and traceless one defined in (4.5). The next to easiest example is the projector
in the hook representation π(`,1),

π(`,1)(e,f) = (d− 2)2−``!
(`+ 1)(d+ `− 3)

(
d
2 − 1

)
`

|f1| `−2 |e1| `−2× (A.1)

×
{
− (d− 2) |f1| |e1| (e1 ·f2e2 ·f1 − e1 ·f1e2 ·f2)C( d2 )

`−1

(
e1 ·f1
|e1| |f1|

)

+ d

[
f2

1

(
e1 ·e2e1 ·f2 − e2

1e2 ·f2
)

+ e2
1f1 ·f2e2 ·f1 + e2 ·f2 (e1 ·f1)2

− (e1 ·f2e2 ·f1 +f1 ·f2e1 ·e2) e1 ·f1 .

]
C

( d2 +1)
`−2

(
e1 ·f1
|e1| |f1|

)}
.

For this paper it is enough to consider the projector π(`,1) in the cases ` = 1, 2. The case
π(1,1) is trivial and just gives antisymmetrization. In particular the contracted projector
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takes the form
π(1,1)(e,f) = 1

2 (e1 ·f1e2 ·f2 − e1 ·f2e2 ·f1) , (A.2)

and similarly one recovers the indices by taking derivatives of the vectors as follows

π(1,1)(a,b) = ∂
a1

1
e1∂

a2
1

e2∂
b11
f1
∂
b21
f2
π(1,1)(ei,fi) = 1

2
(
δa1

1,b
1
1
δa2

1,b
2
1
− δa1

1,b
2
1
δa2

1,b
1
1

)
. (A.3)

For π(2,1) the situation is more non-trivial. The contracted projector takes the form

π(2,1)(e,f) = 2
3(d− 1)

(
(d− 1)e2 ·f2 (e1 ·f1)2 +f2

1

(
e1 ·e2e1 ·f2 − e2

1e2 ·f2
)

(A.4)

− e1 ·f1
(
(d− 1)e1 ·f2e2 ·f1 +f1 ·f2e1 ·e2

)
+ e2

1f1 ·f2e2 ·f1

)
. (A.5)

The projector with open indices can be easily obtained by taking derivatives of all vectors
ei,fi, namely

π(2,1)(a,b) = 1
4∂

a1
1

e1∂
a1

2
e1∂

a2
1

e2∂
b11
f1
∂
b12
f1
∂
b21
f2
π(2,2)(ei,fi) , (A.6)

where the factor of 1/4 is included because there are two derivatives of the two vectors f1
which produce a factor of 2 in the numerator, and similarly for e1. The result can be easily
obtained in Mathematica and it reads

π(2,1)(a,b) = (A.7)

−1
6(d−1)

[
−2(d−1)δa2

1,b
2
1

(
δa1

1,b
1
2
δa1

2,b
1
1
+δa1

1,b
1
1
δa1

2,b
1
2

)
+δa1

2,b
1
2

(
(d−1)δa1

1,b
2
1
δa2

1,b
1
1
+δa1

1,a
2
1
δb11,b21

)
+δa1

1,b
1
2

(
(d−1)δa2

1,b
1
1
δa1

2,b
2
1
+δa2

1,a
1
2
δb11,b21

)
+δa1

2,b
1
1

(
(d−1)δa1

1,b
2
1
δa2

1,b
1
2
+δa1

1,a
2
1
δb21,b12

)
+δa1

1,b
1
1

(
(d−1)δa2

1,b
1
2
δa1

2,b
2
1
+δa2

1,a
1
2
δb21,b12

)
−2δb11,b12(δa2

1,a
1
2
δa1

1,b
2
1
+δa1

1,a
2
1
δa1

2,b
2
1
)−2δa1

1,a
1
2

(
δb11,b21

δa2
1,b

1
2
−2δb11,b12δa2

1,b
2
1
+δb21,b12δa2

1,b
1
1

)]
.

In this form one can easily check that taking traces over the indices a or over the indices b
gives zero. Also one can check that π(2,1)(a,b)π(2,1)(b, c) = π(2,1)(a, c).

In [69] a result for the projector π(`,2) is also presented, but we do not report it here
since it is too lengthy. For this work we only need the simplest of such projectors, namely
π(2,2), which in its contracted form reads

π(2,2)(e,f) =

(d−1)
3(d−2)(d−1)

[
(e1·f1)2

(
(d−2)(e2·f2)2−f2

2 e
2
2

)
−2(d−1)e1·e2

(
f1·f2e2·f2−f2

2 e2·f1
)
e1·f1+(d−1)(e1·f2)2

(
(d−2)(e2·f1)2−f2

1 e
2
2

)
+2de2

1f1·f2e2·f1e2·f2−df2
1 e

2
1 (e2·f2)2+f2

2

(
−(d−1)e2

1 (e2·f1)2−2f2
1

(
(e1·e2)2−e2

1e
2
2

))
−2(d−1)e1·f2

(
e1·f1

(
(d−2)e2·f1e2·f2−e2

2f1·f2
)

+e1·e2
(
f1·f2e2·f1−f2

1 e2·f2
))

+2(f1·f2)2 (e1·e2)2−2e2
1f1·f2e2·f1e2·f2−2e2

1e
2
2 (f1·f2)2+f2

1 e
2
1 (e2·f2)2

]
. (A.8)
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To define the projector with open indices it again suffices to take derivatives of all the vectors,

π(2,2)(a,b) = 1
16∂

a1
1

e1∂
a1

2
e1∂

a2
1

e2∂
a2

2
e2∂

b11
f1
∂
b12
f1
∂
b21
f2
∂
b22
f2
π(2,2)(ei,fi) . (A.9)

The result can be easily obtained in Mathematica but it is too lengthy to present here.
While for this paper we restricted to `1 ≤ 2 because we are interested in photons and

gravitons, for higher spin particles one would also need the projectors with `1 > 2.

B Type I operators and trivial charges

In this appendix we want to show that type I operators are associated to trivial charges.
Let us first explain what we mean by trivial charges. Let us consider an operator O(x)

with a primary descendant DO(x), where D is some differential operator that creates the
descendant. Now let us assume that

〈(DO(x))O1(x1) . . .ON (xN )〉 = 0 , (B.1)

exactly without any contact term. We call (B.1) trivial Ward identity in contrast with the
usual Ward identity (2.2), where delta functions are present on the right-hand-side. Now
because of the absence of contact terms it is easy to see that no non-trivial charges can be
defined. Indeed the interesting feature of the charges is that their insertion in a correlation
function equals the variation of the operators which is computed through the integral of
the delta functions on the right-hand-side of (2.2). When these are absent, the variations
become trivial and so do the charges themselves. We thus conclud that (B.1) gives rise to
trivial charges.

To clarify the discussion let us present the simplest example of a trivial charge, the
one associated to the identity operator. The identity operator is a primary with a level-one
primary descendant of type I1, i.e. which takes the form ∂a1. We want to show that from
this operator, as expected, it is not possible to build non-trivial conserved charges.

Using our construction of section 4.3.2, one can in principle define a Noether current
Ja(x) = εa(x)1, with ∂aεa(x) = 0, which has a constant solution εa(x) = ca.30 One can
then proceed in defining a set of topological charges QεΣ = caQ

a
Σ with

QaΣ ≡
∫

Σ
dSa1 . (B.2)

It is easy to see that QaΣ = 0 because of rotation invariance (e.g. by choosing Σ to be the
surface of a sphere). In this case the triviality of the charge is obtained by saying that
QaΣ vanishes.

Let us also see how this can be obtained from the Ward identity (B.1). Of course since
1 does not depend on an insertion point,

〈(∂a1)O1(x1) . . .ON (xN )〉 = 0 . (B.3)
30One could also consider the case in which the parameter is not smooth εa(x) ∝ xa|x|−d which satisfies

∂aε
a(x) ∝ δ(d)(x). In this case QaΣ is equal to a constant if Σ contains the origin and vanishes otherwise.

Thus the result is still trivial.
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Now we integrate this Ward identity over the volume of a sphere and we also find that
the insertion of the charge QaΣ (defined by integrating the left hand side) acts like zero (by
integrating the right-hand-side). Thus, as expected, we obtain the same result as above.

In this case it is automatic to know that ∂a1 = 0. Conversely for other operators the
fact that DO(x) = 0 inside a correlation function must be proven. This is what we plan to
do in the rest of the appendix. There are two strategies. For (standard) CFTs we will study
the N -point functions with the insertion of O(x) and prove that they are polynomial in x,
and thus they are annihilated by D (since derivatives of a polynomial cannot give contact
terms). For celestial CFTs we will make use of the wavefunction formalism to define the
operators and show that, since the corresponding wavefunction vanishes, then also DO(x)
must vanish when inserted in a correlation function.

Trivial type I Ward identities in CFTs. In this subsection we show that equation (B.1)
holds in CFTs, by proving that correlation functions with the insertion of type I operators
are polynomial as a function of their insertion point.

Let us start with the case of d = 2. The idea of the proof is simple. We consider
an N -point function with a type I operator inserted at z, z̄. This function must satisfy
conservation equations in both z and z̄ (type Ia and Ib) which imply that the function
is polynomial in these variables (and thus it cannot give rise to contact terms from the
conservation equations). Let us however give a more concrete argument, by considering the
OPE of type I operators which is fixed by the three-point function and can be explicitly
written down. We consider a generic three-point function in a usual CFT2 where the operator
O has h = 1−k

2 and h̄ = 1−k̄
2 . For simplicity, since the holomorphic and antiholomorphic

behaviours factorize and are of the same form we consider only the holomorphic part (but
we should remember in the end to include the antiholomorphic one). The holomorphic
dependence of the three-point function on the primaries O,O2,O3 is (here we consider usual
three-point functions which are not distributions in zi)

〈O(z1)O2(z2)O3(z3)〉 = c123
1

zh+h2−h3
12 zh+h3−h2

13 zh2+h3−h
23

. (B.4)

Now we consider h = 1−k
2 and we ask for ∂kO = 0 (keeping all the zi distinct, which means

that the result is zero away from contact points). It is easy to see that this shortening
condition implies that h3 − h2 = 1−k

2 + i with i = 0, . . . k − 1. We thus get

〈O(z1)O2(z2)O3(z3)〉 = c123δh3−h2− 1−k
2 −i

zi12z
k−1−i
13 z−2h3+i+1−k

23 . (B.5)

The result is clearly polynomial in z1 for any allowed value of i. We can then expand this
expression e.g. for z1 → z2 using the binomial za13 = (z12 + z23)a = ∑a

b=0
(a
b

)
zb12z

a−b
23 . The

result is

〈O(z1)O2(z2)O3(z3)〉 = c123δh3−h2− 1−k
2 −i

k−1−i∑
j=0

(
k − 1− i

j

)
zi+j12 z−2h3−j

23 . (B.6)

The OPE can thus be recast as

O(z)O2(0) ∼ c123δh3−h2− 1−k
2 −i

k−1−i∑
j=0

(
k − 1− i

j

)
Γ(1− 2h3)

Γ(1− 2h3 − j)
zi+j∂jO3(0) . (B.7)
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This OPE is polynomial in z of order k − 1, thus by applying ∂kz to this expression we find
exactly zero. No contact term can be generated. Notice that this would also happen when
the operators depend on the antiholomorphic coordinates. Starting with O with h = 1−k

2
and h̄ = 1−k̄

2 and conservations ∂kO = 0 = ∂̄k̄O we find

O(z, z̄)O2(0, 0) ∼ c123δh3−h2− 1−k
2 −i

δ
h̄3−h̄2− 1−k̄

2 −ī

k−1−i∑
j=0

k̄−1−ī∑
j̄=0

(
k − 1− i

j

)(
k̄ − 1− ī

j̄

)
×

× Γ(1− 2h3)
Γ(1− 2h3 − j)

Γ(1− 2h̄3)
Γ(1− 2h̄3 − j̄)

zi+j z̄ ī+j̄∂j ∂̄ j̄O3(0, 0) , (B.8)

where ī = 0, . . . k̄ − 1. The crucial observation is that no negative powers of z or z̄ are
present in this OPE thus there is no possible way to get a delta function by applying
derivatives in ∂z and ∂z̄. We therefore conclude that when we insert the operator O(z, z̄) in
any N -point function we still get that the dependence in z and z̄ is polynomial. Therefore

〈(∂kO(z, z̄))O1 . . .ON 〉 = 0 , (B.9)

without contact terms and similarly for ∂̄k̄O(z, z̄).
For this computation we required minimal assumptions like the usual form of the

three-point function which is fixed by symmetry, and the fact that the O is a type I operator
which thus satisfies the type I shortening conditions. Notice that for operators of type II
and type III the same logic does not work because these have shortening conditions which
only involve either ∂z or ∂z̄, but not both of them. To ensure a polynomial behavior it is
instead necessary to have shortening conditions in both variables.

Let us now turn to d > 2. As for d = 2, the idea behind the demonstration is that an
N -point correlation function with a type I operator inserted at a position xa should have a
polynomial dependence in xa because it has to satisfies the type I conservation equation
(one can project the indices of the d > 2 type I conservation equation into a plane, e.g. using
coordinates x1 ± ix2, and use a similar argument as in d = 2). Again we find it useful to
rephrase this argument in terms of three-point functions and OPE, where all computations
can be explicitly performed. To exemplify why the OPE of type I operators is polynomial
let us consider the next to trivial example after the identity. We take a vector operator
with a type I1, n = 1 primary descendant. This operator must have ∆ = −1. The OPE
of such an operator is fixed by its three-point functions with all other two operators. For
simplicity let us consider the example of the three-point function with two scalar operators,

〈Oa∆=−1(x1)O∆2(x2)O∆3(x3)〉 ∝ xa12x
2
13 − xa13x

2
12

|x12|∆2−∆3 |x13|∆3−∆2 |x23|∆2+∆3+2 . (B.10)

We require that ∂{bOa}∆=−1(x1) = 0 away from possible contact terms. It is easy to see
that this requirement implies that the three-point function vanishes unless ∆2 = ∆3, and
therefore that the three-point function is a polynomial in the distances x12 and x13. This
means that the OPE takes the simple form

Oa∆=−1(x)O∆2(0) ∼ δ∆2,∆3

[
xa − 1

2∆2
(2xaxb − x2δab)∂b

]
O∆3(0) , (B.11)
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where the square bracket contains all the possible descendants. We clearly see that the
square bracket is a polynomial in x. Of course if we now take ∂{bOa}∆=−1(x) on the OPE we
get exactly zero and no possible contact terms can be generated. By considering spinning
operators O2 and O3 it is easy to see that similar results are obtained. Therefore we
proved that 〈(

∂
{b
O
a}
∆=−1(x)

)
O1(x1) . . .ON (xN )

〉
= 0 , (B.12)

without any contact term on the right-hand-side.
This demonstration can be repeated for different spins ` of the operator O and different

levels n of the type I shortening condition.

Trivial type I Ward identities from CCFT wavefunctions. In this subsection we
want to show that equation (B.1) can be obtained in CCFTs by studying the wavefunctions
associated to the operators of type I.

To start we quickly review the wavefunction formalism in CCFTs. The CCFT operators
O∆`(x) can be obtained [25] as a convolution of usual QFTd+2 operators O(X) in position
space with so called “primary” wavefunctions f∆,`(X; q) [81],

O∆`(q) = i
(
O(X), f∆,`(X; q)

)
, (B.13)

where the inner product (·, ·) is given by a standard integral in Xµ, e.g. for spin zero this is
related to the Klein Gordon inner product. The wavefunctions f∆,` must satisfy a set of
conditions (e.g. they should transform as d dimensional primary operators in CCFT) which
allows one to classify them. For this appendix we consider the most standard (“radiative”)
wavefunctions f∆,` which are defined when ` is equal to the spin of the bulk primary O(X)
(generalized wavefunctions can also be defined [26, 82], but will not play a role here).

Equation (B.13) generates operators inserted at a point qµ in the embedding space which
can then be projected to any given section, e.g. the Poincaré section qµ → xa (2.27). In this
formulation the only dependence on the CFTd coordinate xa is encoded in the wavefunction.
The idea of [26] is that in order to classify the types of operators one can simply classify the
respective wavefunctions. E.g. for a bulk scalar operator, the correspondent wavefunction
takes the form f∆,`=0(X, q) ∝ (X · q)−∆. It is very easy to classify the shortening conditions
of such wavefunctions. E.g. when ∆ = 0 the wavefunction f∆,`=0 becomes constant and is
annihilated by ∂a. This means that the operator ∂aO∆=0,`=0 inserted in a celestial correlator
is computed by the convolution of a vanishing wavefunction, and thus it is zero.

In [26] it was shown that in d = 2 all wavefunctions of type I, are annihilated by the
differential operators that create the primary descendants. This is in contrast with the
wavefunctions of type II and III where the differential operators give new (generalized)
wavefunctions which are not vanishing. This is in perfect agreement with the fact that
type I operators have trivial Ward identities while type II and III have non-trivial Ward
identities with delta functions on the right-hand-side.

Here we want to show using the same CCFT wavefunction approach that also in d > 2
the Ward identities for type I1, n operators are trivial. To this end we introduce the
massless radiative wavefunctions in d > 2. These take the form of spin ` bulk-to-boundary
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propagators [81, 83],

f∆,`(X,Z; q, ε) ∝ [(X · q)(Z · ε)− (X · ε)(q · Z)]`
(X · q)∆+` , (B.14)

where Z is a polarization vector that contracts the indices of the bulk operator O(X), while
ε is a polarization vector for the CCFT operator in embedding space O∆,`(q, ε).

It is easy to see that, after setting q and ε to the Poincaré section (2.27) and (2.28),
the following relation holds

(e · ∂x)nf∆=1−`−n,`(X,Z; q, ε) = 0 . (B.15)

To prove (B.15) we use the relations (e · ∂x)qµ = εµ and (e · ∂x)εµ = 0 which imply that
(e · ∂x) annihilates the term inside the square parentheses in (B.14). The rest of the proof is
basically that (e · ∂x)n(X · q)n−1 = 0 because we are taking n derivative of a polynomial of
order n− 1. Therefore we conclude that the type Ik=1, n shortening condition annihilates
the wavefunction. This implies that the associated CCFT operators constructed from (B.13)
must satisfy a trivial Ward identity of the form (B.1). For completeness let us also mention
that (B.15) is special to type I and that we checked that for other types (like II or S) the
shortening of the wavefunction gives rise to non vanishing contributions proportional to
(generalized) primary wavefunctions.

Finally let us mention that in section 4.4 we have various examples of type I2 operators
inserted in a correlation function (these are the primary descendants of soft operators) and
we can explicitly see that also these operators have trivial Ward identities. For all such
operators with trivial Ward identities we expect the associated charges to be trivial.

C Ward identities and Dirac delta distribution

A more careful treatment of the conservation equations for conformally soft shadow operators
shows that the statements

∂aS̃
(0),a = 0 , ∂a∂bS̃

(0),ab = 0 , ∂aS̃
(1),ab = 0 (C.1)

only hold up to contact terms. Indeed accounting for the Dirac delta distributions is
necessary to obtain standard Ward identities. This is the purpose of this appendix.

The leading soft photon and graviton cases can be treated in one go since ∂aS̃(0),ab and
S̃(0),b have the same behaviour. We need to show that ∂a

(
xa

xd

)
has distributional support.

To do so we define the regulated expression

∂a

(
xa

(x2) d2

)
= lim

ε→0
∂a

(
xa

(x2 + ε2) d2

)
= lim

ε→0
d

ε2

(x2 + ε2) d2 +1
. (C.2)

Integrating (C.2) against a test function f , we obtain∫
Rd
ddx lim

ε→0
d

ε2

(x2 + ε2) d2 +1
f(x) = d

∫
Sd−1

dΩ
∫ ∞

0
dr

rd−1

(r2 + 1) d2 +1
lim
ε→0

f(εx) , (C.3)
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where Ω denotes the solid angle in d dimensions, r is the radial direction and we have
performed the change of variable xa → εxa. Taking the limit ε→ 0, the above integral yields∫

Sd−1
dΩf(0) = 2π d2

Γ
(
d
2

)f(0) . (C.4)

Therefore, we find

∂a

(
xa

(x2) d2

)
= 2π d2

Γ
(
d
2

)δ(d)(x) . (C.5)

Following the same logic we can generalize this formula to any spin as

1
(−1)``!

(
−d

2−`+2
)
`

(∂x ·De)` (e·x)`

(x2) d2
=
πd/2(−1)`(`−1)!(d−2)`

(
d
2

)
`

Γ
(
d
2 +`

)(
−d

2−`+2
)
`

δ(d)(x) . (C.6)

For the subleading soft graviton theorem, the situation is more tricky. Taking a
derivative of the shadow transformed subleading soft graviton factor (4.92) we define

V b(x) ≡ ∂a
[
∂

(a
xix

b)

(x2) d2
+ 1

2(d− 2)x · ∂xi
xaxb

(x2) d2 +1
− 1

2x · ∂xi
δab

(x2) d2

− ωi∂ωi

(
xaxb − δab

d x
2

(x2) d2 +1

)
+ i(d− 1)xcM

c (a
i xb)

(x2) d2 +1

]
,

(C.7)

where we dropped various prefactors which are irrelevant for this calculation and we set
xi = 0 for simplicity. In the above formula the round brackets denote a symmetrization of
the indices. The terms in the second line of (C.7) are proportional to the derivative of the
Dirac distribution. We can see this as follows. For the ωi∂ωi term we have

∂a

(
xaxb − δab

d x
2

(x2) d2 +1

)
= lim

ε→0
∂a

(
xaxb − δab

d x
2

(x2 + ε2) d2 +1

)

= lim
ε→0

(d+ 2)(d− 1)
d

xbε2

(x2 + ε2) d2 +2
.

(C.8)

Noticing that (d + 2) xb

(x2+ε2)
d
2 +2

= −∂b 1
(x2+ε2)

d
2 +1

and integrating against a test function
we obtain

−d−1
d

∫
Rd
ddx lim

ε→0
∂b

ε2

(x2+ε2) d2 +1
f(x) = d−1

d

∫
Rd
ddx

1
(x2+1) d2 +1

lim
ε→0

∂

∂(εxb)
f(εx)

= d−1
d2

2π d2
Γ
(
d
2

) (∂bf)(0) .
(C.9)

Therefore we have the following relation

∂a

(
xaxb − δab

d x
2

xd+2

)
= −d− 1

d2
2π d2

Γ
(
d
2

)∂bδ(d)(x) . (C.10)
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For the Mi term we have

lim
ε→0

∂a
−xcM c(a

i xb)

(x2 + ε2) d2 +1
= 1

2(d+ 2)Mi
bc lim
ε→0

ε2xc

(x2 + ε2) d2 +2

= − 1
2dM

bc
i lim
ε→0

∂c
dε2

(x2 + ε2) d2 +1
.

(C.11)

Then using (C.2), we obtain

lim
ε→0

∂a
−xcM c(a

i xb)

(x2 + ε2) d2 +1
= − π

d
2

dΓ
(
d
2

)M bc
i ∂cδ

(d)(x) . (C.12)

Having shown that the second line of (C.7) gives a derivative of the Dirac delta distribution,
it remains to show that the first line of (C.7) gives a delta distribution (not a derivative
thereof). The first line of (C.7) can be written as

lim
ε→0

1
2

[
dε2

(x2 + ε2) d2 +1
∂bxi + (d2 − 4) ε2xbxc

(x2 + ε2) d2 +2
∂xi c

]
. (C.13)

The first term can be evaluated using (C.2). For the second term, we have that

ε2xbxc

(x2 + ε2) d2 +2
= − 1

d+ 2

[
−1
d
∂b∂c

ε2

(x2 + ε2) d2
− ε2δbc

(x2 + ε2) d2 +1

]
. (C.14)

The second term in the above equation can be clearly evaluated using equation (C.2). The
first term vanishes identically in the limit ε→ 0.

Putting everything together we land on the result

V b(x) = (d− 1) π
d
2

Γ
(
d
2 + 1

) (δ(d)(x)∂bxi −
1
d
ωi∂ωi∂

bδ(d)(x) + i

2M
bc
i ∂cδ

(d)(x)
)
. (C.15)

D Two-point integral in CFTd space

The computations of the shadow transformed soft factors in section 4.5 and appendix E
make use of the following result for two-point integrals in CFTd space

∫
Rd

ddx1
(x2

12)α(x2
13)β =

π
d
2 Γ
(
α+ β − d

2

)
Γ
(
d
2 − α

)
Γ
(
d
2 − β

)
Γ(α)Γ(β)Γ(d− α− β)

1
(x2

23)α+β− d2
, (D.1)

where xa12 ≡ (x1 − x2)a. To obtain this result note that the shift x1 → x1 + x2 in (D.1) is
inconsequential and we may as well compute

I(x2, x3) ≡
∫
Rd

ddx1

(x2
1)α ((x1 + x23)2)β

. (D.2)
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Using the Feynman-Schwinger parametrization and going to spherical coordinates we find

I(x2, x3) = Γ(α+ β)
Γ(α)Γ(β)

∫ 1

0
dt tα−1(1− t)β−1

∫
Rd
ddx1

1[
(x1 + (1− t)x23)2 + t(1− t)x2

23

]α+β

= Γ(α+ β)
Γ(α)Γ(β)

∫ 1

0
dt tα−1(1− t)β−1

∫
dΩd

∫ ∞
0

dr
rd−1[

r2 + t(1− t)x2
23
]α+β

=
π
d
2 Γ(α+ β − d

2)
Γ(α)Γ(β) (x2

23)
d
2−α−β

∫ 1

0
dt t

d
2−β−1(1− t)

d
2−α−1

=
π
d
2 Γ(α+ β − d

2)Γ
(
d
2 − α

)
Γ
(
d
2 − β

)
Γ(α)Γ(β)Γ(d− α− β)

1
(x2

23)α+β− d2
(D.3)

which is the result on the right-hand-side of (D.1).

E Shadow transforms of soft factors

In this appendix we give a complementary derivation of the shadow transformed soft
theorems that applies for any spacetime dimension d — that is for both even and odd.
While in section 4.5 we have worked in the index-free notation, here we give the shadow
transformed soft photon and graviton factors in their alternative form with the indices
made explicit.

Leading soft photon. The shadow transform of the soft photon operator expressed in
index form is

R̃a1(x) = lim
∆→1

N∆,1

∫
Rd
ddy

Iab(x− y)
[(x− y)2]d−∆R1 b(y) , (E.1)

where Iab(x) = δab − 2xaxb
x2 . To obtain the shadow transformed soft photon theorem we

need to compute the shadow of the soft photon factor (4.46) which is given by

S̃(0) a
p (ω, x) = −2e

N∑
i=1

Qi
1
ω

lim
∆→1

N∆,1S
a
∆,1 , (E.2)

where
Sa∆,1 =

∫
Rd
ddy

Iab(x− y)
[(x− y)2]d−∆

(xi − x)b
(xi − x)2 . (E.3)

The shadow kernel can be rewritten as follows

Iab(x− y)
[(x− y)2]d−∆ = D̂ab

S

1
[(x− y)2]d−∆−1 , (E.4)

where we defined the differential operator c∆,1D̂S, d2−∆ in index form

D̂ab
S = 1

2(1 + ∆− d)(d−∆)

(
∂a∂b − 1 + ∆− d

2∆− d δab�
)
. (E.5)
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Then, integrating by parts and using equation (D.1), we obtain

Sa∆,1 =
π
d
2 Γ
(
d
2

)
Γ
(
d
2 −∆ + 1

)
Γ
(
∆− d

2

)
Γ(∆)Γ(d−∆ + 1) (∆− 1) (xi − x)a

[(xi − x)2]
d
2−∆+1

. (E.6)

Plugging this result into (E.2) we obtain in the limit ∆→ 1 the shadow transformed soft
photon factor (4.80).31 Taking the divergence of (E.2) and using equation (C.5), we obtain
the Ward identity (4.81).

Leading soft graviton. The shadow transform on the leading soft graviton operator is

H̃ab
1 (x) = lim

∆→1
N∆,2

∫
Rd
ddy

Iaa
′(x− y)Ibb′(x− y)
[(x− y)2]d−∆ H1 a′b′(y) . (E.7)

Applying this transform to the leading soft graviton factor (4.51) yields

S̃(0) ab
p (ω, x) = −κ

N∑
i=1

ωi
ω

lim
∆→1

N∆,2S
ab
∆,2 , (E.8)

where
Sab∆,2 =

∫
Rd
ddy

Iaa
′(x− y)Ibb′(x− y)
[(x− y)2]d−∆

((xi − y)a′(xi − y)b′
(xi − y)2 − δa′b′

d

)
. (E.9)

The shadow kernel can be expressed as
Iaa

′(x− y)Ibb′(x− y)
[(x− y)2]d−∆ = D̂aa′bb′

S

1
[(x− y)2]d−∆−2 , (E.10)

where we defined the differential operator c∆,2D̂S, d2−∆ in index form

D̂aa′bb′

S = α1

(
∂a∂a′

∂b∂b′

− α2

(
δa′b′

∂a∂b + δa′b∂a∂b′
+ δab∂a′

∂b′
+ δab′

∂a′
∂b + (∆− d)

(
δaa′

∂b∂b′
+ δbb′

∂a∂a′
))

�

+ α3

(
δa′b′

δab + δa′bδab′
+ [(∆− d)(∆− d+ 1)− 1]δaa′

δbb′
)
�2
)
,

(E.11)
with

α1 = 1
4(∆− d)(∆− d− 1)(1 + ∆− d)(2 + ∆− d) ,

α2 = 1
2 + 2∆− d ,

α3 = 1
(2∆− d)(2 + 2∆− d) .

(E.12)

Using integration by parts, the result (D.1) and taking the limit ∆→ 1, the shadow leading
soft graviton factor becomes equation (4.86). The result is finite with a similar subtlety
mentioned in footnote 31 regarding odd dimensions. Using equation (C.2), we can show
the Ward identity (4.87).

31Notice that in even dimensions both Sa∆,1 and N∆,1 are finite in the limit ∆→ 1. In odd dimensions,
Sa∆,1 goes to zero and N∆,1 diverges as ∆→ 1 but their product is still finite. A similar subtlety occurs for
the shadow transform of the leading and subleading conformally soft graviton.
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Subleading soft graviton. The shadow transformed subleading soft gravtion operator
and the soft graviton factor (4.56) can also be computed in index notation but the expressions
are much more cumbersome to write down. Let us outline the necessary steps starting from
the index-free expression for the shadow transform of the subleading soft graviton factor,
equation (4.56), which is given by

S̃(1)
p (ω, x, e) = lim

∆→0
N∆,2

∫
Rd
ddy

1
[(x− y)2]d−∆−2 D̂

aa′bb′
S S

(1)
p ab(ω, y)ea′eb′ . (E.13)

Note that we used integration by parts to move the differential operator Daa′bb′
S on the soft

factor. This operator was defined in (E.11) and acting with it on the soft factor using (D.1)
to evaluate the integrals and taking the limit ∆ → 0, we obtain the shadow subleading
soft graviton factor (4.92). We obtain a finite result in both even and odd dimensions (see
footnote 31). Using equation (C.15), we can show the Ward identity (4.93).

F Type S operators in even dimensions

There is a puzzle about type S primary descendants. They can be defined in any dimensions
but from representation theory one knows that this type of operator should exist only in odd
d. How is this possible? What happens to these operators in even d? The most plausible
answer is that in even d a type S operator can be written as a composite of other primary
descendants. We now show in a few examples that indeed this is what happens.

In the following we will focus on spin ` primary operators O∆,` with dimensions ∆ = 2−`
with type S primary descendants at level n = d

2 − 2 + `. These primary descendants are
only defined when n is integer, and therefore for even d. First we show that the type S
operators can be written in a very simple form in term of projectors which makes manifest
many of their properties. For the sake of clarity we exemplify the form of DS, d2−2+` for
` = 0, 1, 2 (up to overall normalization factors),

�
d
2−2 , (` = 0) , (F.1)

�
d
2−2[e · ∂x ∂f̂ · ∂x −�(e · ∂

f̂
)] , (` = 1) , (F.2)

�
d
2−2[(d− 2)(e · ∂x)2(∂x · ∂f̂)2 − 2(d− 1)�(e · ∂x)(e · ∂

f̂
)(∂x · ∂f̂)

+ (d− 1)�2(e · ∂
f̂
)2 + �(e · ∂x)2(∂

f̂
· ∂

f̂
)] , (` = 2) .

(F.3)
The differential operators DS, d2−2+` above are defined such that they act on a spin ` primary
O∆,`(x, f̂) whose tensor indices are contracted with unconstrained vectors f̂. The resulting
descendants are spin ` operators with indices contracted with constrained vectors e (such
that e2 = 0). As stated above, they become primaries when ∆ = 2− `. For any even d > 2
these differential operators can be written in terms of projectors as follows32

DS, d2−2+` ∝ π d2−2+`,`

(
∂x ··· ··· ∂x

e ··· e
;
∂x ··· ··· ∂x

∂
f̂ ··· ∂

f̂

)
(F.4)

32In the following we will use a notation in which a vector contracted with an index inside a box is
represented as the vector inside the box, e.g.

a b c ··· e
b ≡ a e c ··· .

– 61 –



J
H
E
P
0
7
(
2
0
2
3
)
0
7
6

∝ �
d
2−2 π`,`

(
∂x ··· ∂x

e ··· e
;
∂x ··· ∂x

∂
f̂ ··· ∂

f̂

)
. (F.5)

From this form it is straightforward to see that the resulting operators are conserved. Indeed,
conservation is obtained by acting with (∂x ·De) on the projector which is ensured by the
symmetry properties of the projector.

One can also show that the operator in (F.5) is related to other types of primary
descendants of O∆=2−`,`. Indeed the projector π`,` can be written as the consecutive action
of two other operators that create primary descendants, namely

π`,`

(
∂x ··· ∂x

e ··· e
;
∂x ··· ∂x

∂
f̂ ··· ∂

f̂

)
∝ DIIk=2,n=`DIk=2,n=` . (F.6)

Therefore we obtain that

DS, d2−2+`O∆=2−`,` ∝ DIIk=2,n=` �
d
2−2 DIk=2,n=`O∆=2−`,` . (F.7)

The type I2 operator at level n = ` is acting on a primary with dimensions ∆ = 2− ` =
∆∗I2,n=`, which thus has the correct dimension to define a primary descendant according to
equation (4.14). When d = 4, the � disappears and the type S operator becomes equal to
the action of type I2 and II2 primary descendants. Moreover the type I2, n = ` primary
descendant has dimension ∆ = 2 which is the correct dimension for a primary with a type
II2, n = ` primary descendant according to (4.20). In d = 4 we can thus prove that the
action of DS, d2−2+` can be decomposed in terms of more basic primary descendants. For
even d > 4 one needs to write the powers of the � in terms of other primary descendants,
but we did not attempt this here. However let us mention that in any even d ≥ 4 the
operator (F.7) always starts with the action DIk=2,n=`O∆=2−`,`. Since DIk=2,n=` is of type
I, we expect it to annihilate the primary without generating contact terms. If this is taken
into account, then the action of the rest of the terms in (F.7) would be trivial.

Finally let us mention that the values ∆∗S,n for which the type S operator becomes a
primary descendant in even dimensions always coincides with the ones of either type Ik
or IIIk, but never of type IIk. We thus expect that the composite primary descendant of
type S,n will start with the action of differential operators of either type Ik or IIIk. For all
type Ik we expect the differential operator to annihilate the primary without generating
contact terms. In these cases we thus conclude that the full action of DS,n should annihilate
the primary.

In summary, in this appendix we exemplified why the type S operator is not considered
a new type in even dimensions, by showing that in explicit cases it can be understood as
the action of more fundamental types such as Ik=2 and IIk=2.
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