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1 Introduction

Increasing the variety and scope of theoretical tools that can be used to analyse strongly
coupled Quantum Field Theories (QFTs) reliably remains an important scientific challenge.
Hamiltonian Truncation is one such tool. To apply it, the Hamiltonian of the full QFT
(which is infinite-dimensional) is approximated by a finite dimensional Hamiltonian which
acts only on the lowest energy states of the theory. This finite dimensional Hamiltonian
can then be diagonalised numerically, enabling the low-energy spectrum to be estimated.
Hamiltonian Truncation was first applied in the context of QFT in ref. [1], and
subsequently it was successfully employed in refs. [2, 3] to non-perturbatively determine



renormalisation group flows between CFTs with d = 1 4+ 1 on the cylinder. Since then, the
method has been generalised to QFTs with arbitrary d in [4] and applied to QFTs quantised
on the lightcone, beginning with [5]. In recent years, there has been a resurgence of interest
in Hamiltonian Truncation within high energy physics. See for example refs. [6-25], as well
as the reviews [26, 27]. A particularly important focus for research in this area has been
on the development of effective Hamiltonians for improving the accuracy of Hamiltonian
Truncation estimates [4, 28-34].

However, the absence of a systematic understanding of how Hamiltonian Truncation
should be applied to QFTs with UV divergences (which require renormalisation) has been
a significant obstacle, preventing wider usage of the method. When the Hamiltonian is
truncated, removing high energy states from the QFT, this acts as a UV regulator. In
ref. [20], we showed that the Hamiltonian Truncation UV regulator gives results that
are inconsistent with those derived using a local regularisation (such as a short distance
cutoff), implying that non-local counterterms are needed to implement renormalisation in
Hamiltonian Truncation.

In this work, we present three main results: first in section 2 we derive a novel
representation of an effective Hamiltonian that is finite dimensional, but constructed to
have the exact same spectrum of lowest energy states as the full QFT. We then compare it
with alternative types of effective Hamiltonian from the literature.

Second, we show in section 3 how an effective Hamiltonian can be used to compute
the spectrum of QFTs which have UV divergences. This is done by employing a local
regularisation and introducing the corresponding local counterterms to remove all UV
divergences before building an effective Hamiltonian for the renormalised QFT, which can
be diagonalised numerically. We provide explicit formulae for this Effective Hamiltonian
in section 4.

Our third result is presented in section 5. Here we perform a check using perturbation
theory that the effective Hamiltonian constructed following the procedure outlined in
section 3 contains the extra interactions required to cancel the UV divergences found in
ref. [20] which were inconsistent with local regularisation.

2 Effective Hamiltonians

In this section, we first summarise how effective Hamiltonians can be used to improve the

accuracy of Hamiltonian Truncation calculations [4, 28-34]. We then present a novel repre-

sentation for a particular effective Hamiltonian, which makes its useful properties manifest.

The start point for any Hamiltonian Truncation calculation is reached by first expressing

the Hamiltonian in a well chosen basis and dividing it into a solvable part Hy and a
deformation V,

H=Hy+V. (2.1)

The solvable part has the spectrum Hpli) = E;|i). We are interested in finding the low
energy spectrum of the interacting theory,

HIE) = £1€), (2.2)



where & is the interacting energy of a low energy state. We emphasise that the Hilbert
space the Hamiltonian above acts upon is infinite dimensional.

Next, we proceed by separating the Hilbert space into a low (1) and high (h) energy
sector H = H; ® Hp. The low energy Hilbert space H; is finite dimensional and spanned by
the states > . < .. [)(i]; while the high energy Hilbert space H, is infinite dimensional and
contains the rest of the states Y_p g |i)(i]. The constant Er is called the Hamiltonian
Truncation cutoff.

The calculation proceeds by replacing the infinite dimensional eigenvalue problem
in (2.2) with an equivalent finite dimensional eigenvalue problem

Hepl&) = &1&) (2.3)

where |&;) € H;. The Effective Hamiltonian operator Heg acts in the low energy Hilbert
space only. If the truncation cutoff is much larger than the energy of the interacting states
that we are interested in so that Er > &, then

<i|Heff’j> ~ <7“H‘]> ’ (2'4)

where 1), |j) are Hp eigenstates in the subspace H;. This approximation is often called raw
Hamiltonian Truncation. So long as the eigenvalues of H are all finite, in the limit of large
Hamiltonian Truncation cutoff, we would recover the spectrum of the interacting theory
exactly. Even for QFT Hamiltonians which are unbounded from above, the approximation
in (2.4) can also determine the lowest energy eigenvalues, if the QFT has no UV divergences.

However it is often hard to use sufficiently large values for the cutoff Er in practical
calculations, because the dimension of the low energy Hilbert space H; grows exponentially
with Ep. It is thus desirable to find better approximations to Heg than (2.4), without
increasing Erp.

In perturbation theory, the effective Hamiltonian is expressed as a series

o0
Heg=Ho+V + > Hefin, (2.5)
n=2
where Hegn, = O(V™).! The effective Hamiltonian is not unique, and different effective
Hamiltonians are related to one another by similarity transformations. Therefore several
methods are possible to determine (2.5). In the next section we will employ the effective
Hamiltonian Heg introduced in ref. [34], which we shall refer to as the CFHL effective
Hamiltonian. In appendix A we comment on alternative H.g constructions. The first few
terms of the series (2.5) for the CFHL effective Hamiltonian are given by

ViV

(Heft2) p; = Epn (2.6)

where we have introduced the notation X, = (a| X |b) for any operator X, and Ey, =
E, — Ey. The states |f), |i) are Hp eigenstates in the subspace H;, and the repeated index

"We remark that the approximation introduced by truncating this series to fixed order in V breaks down
at strong coupling, but that it is possible to find alternative rigorous approximations to Heg that are valid
at strong coupling and agree with (2.5) at weak coupling [32, 33].



h indicates summation over all Hy eigenstates with energies above the HT cutoff EFp. The
third order expression was found to be

_ th1 Vh1h2 thi szVEthi
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For future reference, we also provide the CFHL H.g at fourth order in perturbation theory,

Vi Vaino Viohs Visi Virg Vit Ving Vagi
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2.1 Alternative representation of the Effective Hamiltonian

We now present an alternative formula for the CFHL effective Hamiltonian [34] in terms
of the diagonal Hamiltonian Hy and deformation V. We then show that the effective
Hamiltonian has the same spectrum as the full Hamiltonian for states with energies beneath
the HT cutoff.

Our alternative formula depends on the time evolution operator in the interaction
picture. For the theory with Hamiltonian given by (2.1), this operator is

tf . .
Urp(ts,ti) = Texp{—z’ / dt le(t)} , Vip(t) = etflotyg=ntg—ithot (2.9)
t;

Here n is a parameter that controls the adiabatic switching off of V' at large positive times.
The symbol ¥ denotes the large time limit of this operator

%= lim Unp(ty,0). (2.10)

We employ the notation X; to refer to the truncation of an operator X to include only its
matrix elements between states in the subspace H;. Finally, our alternative formula for the
effective Hamiltonian is

He = (20) " [S(Ho + V)= 3, (2.11)

which is the main result in this section. The equation above fully determines the effective
Hamiltonian in terms of Hy and V.

The product of operators ¥ (Hy + V) X1 in (2.11) acts particularly simply on eigenstates
of Hy — see figure 1 for a pictorial representation. The time evolution operator X1 takes
these eigenstates at time ¢y — oo (which are also eigenstates of the full Hamiltonian due to
the e™" factor shown in (2.9) that switches off the deformation at large times) and evolves
them back to states at zero time. During this evolution, the full Hamiltonian of the theory
will change from Hy to Hg + V. This evolution will be adiabatic if the parameter 7 is
sufficiently small.? Using the adiabatic theorem, we conclude that Xt evolves eigenstates
of the full Hamiltonian at infinite time H( to eigenstates of the full Hamiltonian at zero
time Ho + V.

2For simplicity we assume that Ho has no degeneracies so that the adiabatic theorem can be straightfor-
wardly applied, but it is possible to relax this assumption and generalise our derivation.
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Figure 1. Cartoon describing the action of the product of operators ¥ (Hy + V) £ on an eigenstate
of Hy denoted |i). First, 37 evolves |i) back from future infinity to an eigenstate of Hy + V at zero
time. Then, by acting on that eigenstate with Hy + V we bring down a factor of &;. Finally X
evolves the state forward in time, undoing the action of 3.

If we act with operator Hyg + V at t = 0, the energy eigenstate will be multiplied by &;,
its corresponding energy eigenvalue. Finally if we act with ¥, we then adiabatically time
evolve back to infinite future time to yield a state proportional to the Hj eigenstate we
started with. In summary, we expect

lim X (Ho 4+ V) 2T ~ diag (&, &1,...) , (2.12)
n—0

when the operator on the left hand side is expressed in the eigenbasis of Hy. Unfortunately,
this expectation is not always met because 3 can become singular in the n — 0 limit.
Nonetheless we conclude that ¥ plays a special role: when it is free of divergences, it
diagonalises the Hamiltonian Hy+ V. Once the full Hamiltonian is diagonalised as in (2.12),
its matrix elements between states outside the subspace H; can be thrown away without
losing information about the low energy eigenstates and eigenvalues of the full Hamiltonian.

To obtain a heuristic derivation of (2.11), we start from an effective Hamiltonian
Hog = Hy + Veg acting on H;, and out of Heg we construct an analogous time evolution
operator Yeg:

ty . .

Sor= lim Texp{~i [T dtVir(®}) . Vaww(t) = Vg M (2.13)
ty—o0 0

This Effective Hamiltonian is also diagonalised by its time evolution operator Y.g. Next,

following CFHL [34], we demand that the matrix elements of the time evolution operators

between the full (2.1) and the effective field theory should be matched

Yeff = X - (2.14)

Assuming that the spectra of the full and effective Hamiltonians are also matched by match-
ing time evolution operators, we are led to the following equation for an effective Hamiltonian

SiHe(S) ! = [S(Ho+ V)21 (2.15)

which is equivalent to (2.11). Since ¥; is non-unitary as a result of its projection, we note
that H.g is non-hermitian.

We now comment further on the origin of singularities in 3 and provide a more rigorous
proof that the CFHL Hamiltonian is given by (2.11). Physically, these singularities arise if



eigenstates of Hy + V pick up large phases exp{i(AFE)/n} in the n — 0 limit under time
evolution by Y. Interaction picture energy eigenstates acquire phases during time evolution
when there is a difference between the energy eigenvalues of the free and interacting theories,
so that AE ~ &, — E;.

In scattering problems, at infinite volume, the time evolution operator ¥ is commonly
referred to as a Mgller operator [35]. In this context, energy eigenstates of the interacting
theory are states of many particles which are distantly separated from one another at time
ty — oo and have vanishing mutual interactions in this limit. As a result, the energy
eigenvalues of the interacting theory match those of a theory of free particles and AE = 0.
The scattering states of the interacting theory may be constructed from free particle states
using the Lippmann-Schwinger equation, thus yielding a well defined .3

In the context of a general quantum theory in finite volume, the Hy + V eigenvalues
will not match those of Hy. However, in this case eigenstates of Hy 4+ V may still be
constructed from time evolution operators without introducing a singular phase using the
first Gell-Mann-Low formula [36], which is

) =ty L1202 010

1 U o0, 0) 1) (319)

where [1);) is an eigenstate of Hy + V and [i) is an Hj eigenstate. The time evolution
operators Urp depend on the switching parameter 7. Both the numerator and denominator
are proportional to the phase factor exp{i(AFE)/n}, but the ratio has a well defined limit.
Similarly, we have

. (7| Urp(o0,0)
(il = 717—)0 (i|Urp(00,0) |i) -

(2.17)

By replacing Urp with ¥ in expressions (2.16) and (2.17), the interacting theory
Hamiltonian may be diagonalised to yield

; <f‘E(H0+V)ZT‘i>_6 ) €,
0 (SISO ST S0 {[S ) (=T i)

(2.18)

where &; are the energy eigenvalues of the interacting theory. The individual factors in the
denominators all contain phases that diverge in the n — 0 limit, but the ratios on both
sides of the equation have a well defined limit.

If we restrict attention to states |i),|f) € H;, i.e. in the low energy Hilbert space,
we find

] [2Ho + vz [i) £,

lim T = 0p; lim — RRpTR I (2.19)
=0 (I35 ) LS 1) 10 (a] Xy Jd) (i) 2y 1)

where & ; refer to the energy eigenvalues of states connected to H; through (2.16). The & ;
are also given by the Rayleigh-Schrodinger (RS) perturbative series. Therefore, we could

3The Mgller operator in (2.9) determines the S-matrix S = Urp (+oo0, O)UIJ(P(—OO7 0). This operator may
suffer from IR divergences in gauge theories however.



generate the RS series by expanding (2.19) perturbatively. We comment further on the
connection with RS perturbation theory in appendix A.2.

The Hamiltonian of the low energy effective theory may also be diagonalised using
egs. (2.16) and (2.17)

(f| ZeaHerZ |i) | Eotti

im ———1 = = Oy lim — T -
=0 (f| Zegr | f) (1| Zegt 19) 10 (i| Begr |2) (il S 12)

(2.20)

The E.q; refer to the energy eigenvalues of the effective theory. Note also that Egﬁ} #+ Zlﬂ

in the effective theory. For this reason, we replace Ujp (00,0) with X7 when using (2.16).
Energy eigenvalues are also determined by time evolution operators, through the second

Gell-Mann-Low formula [36], which may be rewritten using our notation as:

. .0 e
£ — By = lim —ing - log ({1 i)} (2.21)

where g is a coupling strength proportional to the interaction V « g, and & — E; represents
the shift in energy between the full and solvable Hy theory.

In the case of the CFHL effective Hamiltonian, matrix elements of the time evolution
operator are matched ¥; = Y. Since the energy eigenvalues are totally determined by the
time evolution operator through (2.21), it follows that the energy eigenvalues of the CFHL
Hamiltonian will match exactly those of the full theory which are connected to states in H;,
so that s = &1 4.

We may therefore combine egs. (2.19) and (2.20) to obtain (2.15), after canceling
common factors of ¥; = Y. and taking the n — 0 limit to get finite expressions on
both sides. The result can be rearranged to yield (2.11). We emphasise that the energy
eigenvalues of Hog are guaranteed to match (a subset of) those of Hy + V. This follows
from the matching condition ¥ = ¥; and the second Gell-Mann-Low equation (2.21).
Expanding (2.11) perturbatively in V' yields (2.6)—(2.8).

Further difficulties may be encountered when computing matrix elements of a Hermitian
observable A, other than the Hamiltonian H + V', in the low-energy Hilbert space. The
Effective Hamiltonian in (2.11) is not Hermitian H, eTff %+ H.g, thus its eigenvectors are not
expected to be orthogonal. Therefore these states are not convenient to compute the matrix
elements of the operator A in the low energy effective Hilbert space. To compute matrix
elements we should use the time-evolution operator,

Ao = (3) 7 [EAETL ), (2.22)

with matrix elements defined only in the low energy Hilbert space H;. The first few orders
are given by (Aeg) i = Agi + %’?” + % +0(V?).

We observe that (2.11) is constructed as a similarity transformation of the full Hamil-
tonian which diagonalises it, followed by a truncation to the low energy subspace, followed
by another similarity transformation. In appendix A, we exhibit another effective Hamilto-
nians that are also constructed as similarity transformations which (partially) diagonalise

followed by a truncation. We expect all such effective Hamiltonians to have this general



structure, and differ from each other only through similarity transformations. In particular,
the Schrieffer-Wolff Effective Hamiltonian that we review in appendix. A is hermitian by
construction, which will make the computation of time-evolution processes conceptually
clearer than would be the case for a non-hermitian effective Hamiltonian.

3 Application to UV divergent QFTs

Effective Hamiltonians have another use besides improving the estimates of the Hamiltonian
Truncation spectrum. In this section, we show how effective Hamiltonians enable the
systematic study of a wide variety of QFTs which have UV divergences using Hamiltonian
Truncation. We start by first reviewing the Hamiltonian Truncation set up that we shall
use as well as the problem of UV divergences in this context.

3.1 Review of TCSA

Hamiltonian Truncation is a generalisation of the Rayleigh-Ritz method, often used in
quantum mechanics, to Quantum Field Theory. Several variations of this idea exist, which
differ by placing the theory on different manifolds or truncating the Hilbert space in different
quantisation schemes. For example, see [16], the reviews [26, 27| and references within.
In the main body of this work, we focus on the Truncated Conformal Space Approach
(TCSA) [2] and its higher dimensional generalisation [4].

In the rest of this work, we analyse Hamiltonian Truncation in QFTs with d > 2 that
are defined as relevant deformations away from an ultraviolet CFT. To regulate infrared
divergences the CFT is placed on the “cylinder” R x S}j{l where R is the radius of the
d — 1 dimensional sphere. The Hamiltonian is given by

H=Hcrr+V, where V= gRA*d/d ) dd*1x¢A(0,ij’) , (3.1)
i

R

where ¢ is a dimensionless coupling. For simplicity we will perturb Hopr using a single
relevant primary operator, but generalisation to the case of multiple perturbing operators
is possible. Thanks to the operator-state correspondence, the Hamiltonian on the cylinder
is related to the dilatation operator, and thus the eigenvalues are given by the scaling
dimensions of local operators

<Oj|HCFT‘Oi> = Ei 5ij 5 where Ei = AZ/R . (32)

Next we truncate the Hamiltonian H to the low energy sector spanned by the states
{]O;)} with scaling dimension less that the TCSA cutoff A; < Arp, leading to the finite
dimensional matrix

Hij = Nidij + Vij A <A, (3.3)

where we have defined Vj; = R(O;|V|0;). Finally, we are required to take the continuum
field theory limit by diagonalising a sequence of matrices H;; with increasingly large values
of Ar and then extrapolating the spectrum towards the limit Ay — oo. This method of
computing the spectrum is non-perturbative and valid at strong coupling g 2 1.



It is often useful to compare the non-perturbative spectrum of Hamiltonian Truncation,
at weak coupling g < 1, with the spectrum computed with the Rayleigh-Schrodinger (RS)
perturbation theory

1 1 1 1
ER=Di+ Vi + Vi Vi + Viey—Viw Vi = Vi Vi o Vi + O(V?Y), - (34
R + + kAikk+ KA ek A Vh kAZ?kk+ V5, 34
N
ew e? £®

where A;; = A; — A; and a sum over intermediate states k # ¢ is implicit. For future
reference we recall that each order of perturbation theory can be computed in position
space. For instance the n-th order correction to the ground state, or Casimir energy, is
given by the integrated connected n-point function of the perturbing operator

n—1
£ = _(_g)nsd—l/n!/m T d%ailail® = (pa(z1) - da(n-1)da(l))e, (3.5)
i=1

where Sy_1 = 2t /T'(d/2) and the spacetime coordinate denoted as 1 represents a unit
vector in R%. In (3.5) we have set R = 1, in the rest of the paper we measure all dimensionful
quantities in units of R. Similar expressions can be derived for the excited states. Further
details can be found in [20].

In obtaining (3.5) a Weyl transformation from the “cylinder” R x S%_l into the plane
R? has been used. From here on we use x; and ¢a (x;) to denote coordinates and fields on
R?. We distinguish fields on the cylinder ¢a (7, Z;) by using (7, Z;) coordinates, where Z; is
a vector in S%! and 7; is the cylinder time coordinate.

A beautiful aspect of Hamiltonian Truncation is its potential as a universal method for
computing strongly coupled renormalisation group flows away from any UV CFT. Neverthe-
less there are important challenges to overcome before this potential may be fully realised.
In particular, it is not understood in all cases how renormalisation is to be implemented
within TCSA, when the underlying QFT has UV divergences. When the deforming operator
has dimension A > d/2, the spectrum of the truncated Hamiltonian (3.3) does not converge
as A — 0o. The reason for this can be understood by employing RS perturbation theory.
The 2nd order correction to the Casimir energy, 50(2) x [ra A%z {pa(2)pa (1)), diverges for
2A > d because at  — 0 the two-point function (¢ (z)pa(0)) = |z| 722 is singular and the
measure has dimensions of (length)?. Similarly, the integral of the connected three-point
function is divergent for 3A > 2d, but finite otherwise, and the integral of the connected four-
point function is divergent only for 4A > 3d. The main point is simple: as the dimension of
¢a is increased further we encounter UV divergences in higher order correlation-functions;
until we reach marginality A = d where all n-point connected correlation functions are
UV divergent.

The presence of UV divergences is a common phenomena in QFT, and the way to deal
with it is to carefully define the theory with appropriate counterterms and renormalisation
conditions. In the context of Hamiltonian Truncation, it does not work in the same way
and the renormalisation procedure requires a few extra steps that we explain next.



3.2 How to determine counterterms in Hamiltonian Truncation?

The Hamiltonian Truncation cutoff provides a natural regulator that removes UV divergences.
The truncated theory is free of UV divergences because the maximal energy of the free-theory
states is F; < Ap/R. This cutoff however is non-local because all n-particle states are
bounded by the total energy Ar/R irrespective of the distance between the constituent
particles. In this sense, Hamiltonian Truncation is very different from traditional local
regulators, such as the short distance regulators (which cut out regions of position space
where one or more operators get close), or the momentum cutoff regulator (which cuts the
maximal momenta flowing in loop diagrams).

As a consequence of the breaking of locality that arises from the use of the Ar regulator,
non-local counter-terms are needed for renormalisation in order to recover a local theory
in the limit Ap — oo. This was demonstrated in refs. [15, 17| where state-dependent
counterterms (that were therefore non-local) were employed to renormalise the ¢* theory
in d = 2+ 1 dimensions. Furthermore, the use of the Ap-cutoff to regularise the theory
introduces UV divergences at higher orders than would have been present had a local
regulator been used: in ref. [20] it was shown that for A € [d/2 + 1/4, 3d/4), the fourth
order correction to the Casimir energy is finite if a local regulator is employed but diverges
if the Ar cutoff is used.

In this work we do not use Ar as a regulator of UV divergences. We instead implement
renormalisation in a QFT with relevant but UV divergent deformations through the use of
Effective Hamiltonians. In the rest of the section, we set out the general logical steps that
we follow in our approach to renormalisation, before moving on to detailed computations.

1) In order to define a local QFT with finite energy levels, we first renormalise all
integrated local n-point functions of the perturbing operator by employing a local
regulator

n

(Palz1)da(@2) - dalzn)) — (J] dalzr)dalza) - dalzn)) [] 0z — 25 —€),
i=1 i<j
(3.6)
so that the integral [ []7" d%a;|z;|*~¢ of the last equation is finite. We then introduce

all the necessary local counter-terms

V(ie)=V + Hey(e) = gRA_d / %1y oA (0, )
SE=t

£ Y @RS [ a1 0,0.8), @)

2<n<M

d—1
J Sk

where M is some finite integer because the perturbation ¢a is relevant, A < d. As
usual the addition of counterterms guarantees that the perturbative calculation of the
spectrum is finite in the ¢ — 0 for any order in perturbation theory. We are left with
the following renormalised Hamiltonian

H(e)ij = Didij + V(€)ij , (3.8)

which we represent as an infinite dimensional matrix.

~10 -



2) Next, we compute the effective Hamiltonian with finite dimensionality that matches
the low energy spectrum of (3.8). This matrix can be computed using perturbation
theory to some fixed order in g. Schematically, it takes the form

Hegr(€)ij = H(e)ij + Y Hegrn(€)ij , A; < Ar, (3.9)

n=2

where Heg p(€) is O(g™).

In this step, we work out as many terms in the expansion of Heg as we need to produce
a matrix where all of its elements are finite in the limit ¢ — 0, for fixed cutoff Ap.
Since there are only divergences as € — 0 up to a finite order M in perturbation theory,
which are absorbed into a finite number of counterterms, it will only be necessary to
calculate the first M orders of (3.9).

3) Finally, we take the limit ¢ — 0 analytically. For future convenience we define the
operator K that arises in this limit

Hg=Hy+V +K. (3.10)

Once O(gM) terms are dropped from (3.9) in step 2), the effective Hamiltonian no longer
has exactly the same low-energy spectrum as the original renormalised QFT. However, the
(finite) neglected terms in Heg all have to vanish as Ay — oo to ensure that H.g matches
the original renormalised Hamiltonian (3.8) in this limit. As a result, estimates of the
spectrum made using the three steps will ultimately tend towards the exact spectrum as A
is increased. The vanishing of the higher order terms can also be seen explicitly in (2.11);
as Ap — oo, ¥y — Y and Heg — Ho + V.

Another virtue of this construction is that it makes transparent the renormalisation
scheme, which is fully specified in step 1). It can also be generalised by using alternative
local regulators or Effective Hamiltonians, and can also be applied to different Hamiltonian
Truncation approaches such as the massive Fock-space approaches [29, 32] or lightcone
conformal truncation [16]. For instance, in the massive Fock space approach, one could use
a momentum cutoff regulator.

Previously, refs. [4, 28-34] used Effective Hamiltonians to improve the convergence of
the Hamiltonian Truncation spectrum as a function of the truncation cutoff. Most of these
works studied the ¢*-theory in d < 3 spacetime dimensions, which is an ultraviolet finite
theory.* Effective Hamiltonians are also helpful to organise the Hamiltonian Truncation
computations for perturbations that are UV divergent. In particular in the next section we
show how to carry out Hamiltonian Truncation renormalisation at Leading Order (LO) and
Next-to-leading order (NLO). We will also show in detail how the non-local UV divergences
found in ref. [20] are treated in this approach.

“The only exception is ref. [28], which studied RG flows of theories with UV divergencies using an Effective
Hamiltonian. However, due to the value of the scaling dimension of the relevant deformation studied there,
a second order Hamiltonian Truncation counterterm was enough to render the theory finite [20].

- 11 -



4 Determining the Effective Hamiltonian

4.1 Leading order

We begin with a calculation of an effective Hamiltonian at second order in perturbation
theory. For simplicity, we choose our effective Hamiltonian to be the hermitian conjugate of
the CFHL Hamiltonian, shown in (2.6). This Heg o can be recast into the following integral
over half the cylinder

0
(Hara) o= =S | _dr 3 @20 [ il (f 95 (0.7) I0) (k] 62 (0.3 i)

o heH),

(4.1)

where the notation ¢a(0,7) indicates that the operator acts at zero cylinder time but at
an arbitrary spatial coordinate in S;_1. Since the sum is only over states in Hj; above
the HT cutoff, the quantity Ay — A; is always positive and the integral converges in the
region 7 — —o0. By using the time evolution equation ¢ (7, Z) = e 0pA (0, F)e~7Ho, and
by Weyl transforming the integral from the cylinder R x S;_; to the plane R?, eq. (4.1)
can be rewritten as

(Hao)pi = =051 [ dalal® (1 0a(D)iga(a) i) (+2)

0<|zl<1

where the vertical dashed line indicates the insertion of a partial resolution of the identity

= 3 In) Al (4.3)
heHp,
which depends on Ap through the definition of Hj,.

To evaluate the matrix element in (4.2), we first calculate it ignoring the partial insertion
of the identity, then expand the result in powers of |z|, and then only retain terms in
which the power of || exceeds the state dependent threshold A%, = Ap — A; — A. The
expansion is just the Weyl transformation of the expansion in powérs of €7 shown in (4.1).
The expansion converges for 0 < |z| < 1 when the matrix element, given by the correlation
function below

{(floaM)pa(@)[i) = (Of(0)pa(1)da(x)0i(0)) (4.4)

is finite. Here, we have used the notation O(co) = lim,_ .o |5/?2©O(s). This procedure for
calculating correlation functions containing partial resolutions of the identity has been used
in ref. [31], see also the review [27]. Within the region |1 — 2| < 1, the correlation function
in (4.4) can be decomposed using

(04(00)da(1)pa(2)0i(0)) = D (Of(00)O(1)0i(0)) (O(00)pa(1)pa(x)) , (4.5)

(@]

where the sum runs over all scalar operators (primaries and descendants) in the CFT. This
formula can also be obtained using the operator product expansion (OPE) for ¢ (z)¢pa(1)
inside the correlator. In appendix B, the notation and derivation of (4.5) is explained in
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greater detail along with generalisations of this formula which are useful for calculating
effective Hamiltonians at higher orders in perturbation theory.

The integral in (4.2) will be convergent in the region  — 0 since (4.1) converges in
the region 7 — —oo, due to the partial resolution of the identity. However, (4.2) may
diverge in the region where & — 1, if the three-point functions in the decomposition (4.5)
have a singularity there that is not integrable. This can be interpreted as an ultraviolet
divergence in the underlying QFT to be regulated. In this case, we define the regulated
effective Hamiltonian

(Hetr2(€))p; = —9°Sa-1 / dx|z|A (| $a(1)1a (@) |i) (4.6)
0<|z|<1
[1—x|>€
where an e-ball has been cut out from the domain of integration at the site of the singularity,
which acts as an ultraviolet regulator making the integral finite.
We now split the integral in (4.6) into two integrals over complementary regions, and
use (4.5) to decompose the matrix element in the region where |1 — x| < 1, as shown below

(e 2() gy = ~9*Sa (0100 ) [ dlalalA~(0()oa (D 6 (@)
@)

0<|z|<1
1>|1—z|>e
~gSea [ dalal T (f6aiva@)]i) (17)
0<|z|<1
[1—z|>1

Since all the dependence on z in each term of the sum over operators (4.5) is contained
within one of the three-point functions, the integral over x and partial resolution of the
identity should only be applied to those three-point functions, as indicated above. We have
represented this partial resolution using the new symbol

= Y Il (4.8)

Ah>AT—Ai

to emphasise that the restriction on which states are included in the sum retains dependence
on the state |i), which it inherits from (4.6). See also figure 2 for an illustration of the
regions of integration.

The second integral in (4.7) over the region |1 — x| > 1 is finite and has no dependence
on the UV regulator scale e. It must therefore have a finite limit as Ap — co. Although it
contains Ap dependent terms, it will not play a role in the renormalisation of UV divergences
of Heg. By contrast, the first term diverges in the € — 0 limit and requires renormalisation.
For the rest of this section our focus will be on the first term.

In the sum over operators, in the first term of (4.7), the most divergent terms in the
limit € — 0 will be terms in which O(o0) is a scalar primary. For simplicity from here on
we assume that in the sum (4.7) only primary operators O give divergent contributions,
but the derivation can be generalised to include divergent contributions from non-primary
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x| < 1 I1—x| <1 |

0,(0) Pa(1) >@f(°°)

Figure 2. Regions of integration in (4.7).

operators. In this case, the three-point function is constrained by conformal invariance to
take the following series expansion

(O()0a(0s(0)) = TR 1s = fosa 3 [ol" G50 (cost). (49
n=0

where the C&(cosf) denote Gegenbauer polynomials. After accounting for the partial
resolution of the identity by using the series expansion in |z| and dropping terms with low
powers we find that

(ur2(€) s =~ S (11O 0) foas [ dlala 3> Jaf" €230 (cos )
@)

0<|z|<1 n>A/T,7;
[1—x|>€

+ finite as € — 0, (4.10)

where the domain of integration has been extended to include the region |1 — x| > 1, which
only introduces an € independent correction and A’Tﬂ. = A7 — A; — A. Using the fact that
the integrals over Gegenbauer polynomials vanish for odd n in the limit ¢ — 0, and by
introducing the notation

U = 2(2n + A) / |z AACE (cosh) (4.11)

0<z|<1
[1—x|>€

we simplify (4.10) to read

(Her2(€)) 5y = —=——— > _(fIO) i) foan Y, —5——— +finite... (4.12)
2 5 o, 2ntA
T i

The sum over primaries is finite for nonzero €, but can become divergent in the ¢ — 0 limit
if 2A — Ap > d. We note that the individual coefficients uﬁ —Ro/2e are always finite in this
limit; however the infinite sum may still diverge.

After having completed this preliminary calculation we are ready to apply steps
1)-3) described in the previous section. We first renormalise the theory by adding local
counterterms to the Hamiltonian as necessary, so that Heg is finite in the € — 0 limit

Ho+V — Ho+V+ Y )\O/ 412 O(x) (4.13)
IA—Ap>d Sd—1
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where the couplings can be divided into a renormalised part plus a counterterm coupling A\ =
A2+ 29 (¢). A convenient choice of renormalisation scheme is to define the counterterm
coupling in the following way

Q=g [ el UO(x)oa(Déa (@) (4.14)
0g|zl<1
1>[1—x|>e
2 o  A-Ap/2e
9" foan <~ un
= . 4.1
2 nZ::O 2n+ A (4.15)

With this choice, the € — 0 limit becomes well defined at leading order, i.e. O(g?). This
completes the step 1) at leading order. Next we truncate the Hamiltonian, and compute
the leading order Effective Hamiltonian for the renormalised theory in the right hand side
of (4.13) to complete step 2), and finally take the e — 0 limit at the level of matrix elements
to complete step 3). By employing similar manipulations to the ones used to derive (4.12),
we find that the renormalised Heg o in this limit is given by

(HeffZ) _Sd 1 Z ren<f|0( )|>

2A—Ap—d>0
925, 4 <A yA-Bo/2
_ _ Un
I Y I0W ) foan Y Gt (416)
2A—Ap—d=0 n=0
In this expression, the sums over n diverge in the A7 — oo limit. The ... represent other

omitted terms that are finite in this limit. According to the notation introduced in (3.10),
we identify last term above with

g2f(’)AA mEr yhhel?
2 Sd 1 2A-A§O:_d>0 <f’ O( ) |Z> ren 9 nz::o 2n + A + ( 7)

Although the counterterm we introduced in (4.13) was manifestly local, the renormalised
effective Hamiltonian we are left with in (4.16) has non-local interactions. The non-locality
appears through the dependence of the sum over n on A; — the scaling dimension of
the specific initial state |i). Finally, we note that the u4 ¢ coefficients have a convenient
expression in the € — 0 limit that can be derived from (4.11)

ud = lim v € =25, 2/ df (sin 0)4=2 C2 (cos b)) , (4.18)

e—0

:2Sd_2ﬁr(%)r(n+A) r(: dT)
T

L(A)n! (A

4.2 Next-to-leading order

We now turn to determining the dependence of Heg3 on the cutoff Ap. We do this by
representing the effective Hamiltonian as a sum of position space integrals over CF'T
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correlation functions and analysing those integrals’ UV divergences. We take Hegs to be
the hermitian conjugate of the third-order CFHL Hamiltonian shown in (2.7). Using the
definition of V' in terms of a CFT operator in (3.1), (3.3), we rewrite Hegg as

2
(Hut)y=9*Saa [[ [ dn [ o
=177 JSa

[ > et e (] goq [) (W] dogs | ) (Bl do.z |i)

h,h'€Hp,

. Z erzAzi eTlAhz <f| ¢O,ﬁ |h> <h| Qso,fl |l> <l| ¢0,f2 |Z> s (4.20)
leH;, heHy,
where T indicates the time ordered domain of integration —oo < 71 < 72 < 0. We represent
differences in scaling dimension using A;; = A; — A, and we introduce the more compact
notation ¢ z = ¢ (0, 7). Removing the exponential factors using the Heisenberg equation
for the operators ¢ (7, %) = €™ ¢ (0, Z)e~ ™ and converting the integral from the cylinder
to the plane yields the expression

2
(Hes)p; = 9°Sa—1 /R [T d%eila 2~ (] 6a(1)i0a(w2) i6a (1) |3)
i=1

= 3" (floa)ioa@) 1) (U éalzs) i) ] . (4.21)
leH;
Here, R indicates the radially ordered integration domain 0 < |z1| < |z2| < 1 and the dashed
vertical lines indicate the sum over high energy states shown in (4.3). The integrals above
have no divergences from the |x;| — 0 regions (which correspond to infrared divergences
from the 7; — —oo regions on the cylinder) because low energy states have been excluded
from the sums.

The integrals in (4.21) can have UV divergences, coming from the regions x; — 1 and
x1 — 2. As in section 4.1, we regulate them by cutting out e-balls from the integration
domain around these singular points. Furthermore, the local counterterms that we added
to the theory at second order make an extra e dependent contribution to Heg that is O(g%).
Accounting for the local regulator dependence leads to the following expression

2
(Hefr3(€)) ; = 9°Sa / T d%ailas| >~ {(f’ OA(1) 10 (22) 16 (1) |d)
R, |[1—x;|>e€, =1
|z2—z1|>€|x2|

S NUICHENEAIENESIT]

leH,;

oS X A0 [ dlalal2 (1 0Woata) )

Ap<2A—d 0<|z|<1,
|[1—z|>€

T Je[202 (f] $a(1)1O(2) \z‘>] ,
(4.22)
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lx] <1 11—x| <1 |

& $a(D) O(c0)
W >

Figure 3. The region where points are radially ordered so that 0 < |z1| < |z2| < 1 and satisfy
|1 — z;] < 1. In this region, (4.23) may be used to simplify matrix elements.

where A9 (¢) are the counterterms introduced in (4.14). To preserve 7 translation invariance
on the cylinder, the sizes of regions cut out must be independent of the 7 coordinate.
After mapping to the plane, the e-ball widths then have to scale proportional to the radial
coordinate. For this reason, the e-ball regulating the x1 — x2 singularity has a width that
depends on the spatial coordinates like |xy — 1] > €|xa| (recall dsh, = r2ds§y1).

As a result of cancellations between the first term and subtracted terms in (4.22),
the only divergence as € — 0 comes from the region of the first integral where all three
fields are approaching each other (both 1 — 1 and z9 — 1 together). For example, the
subdivergence coming from the region of the first integral where xo — 1 with z; far away
is canceled by the first term proportional to A9 (). This can be seen after inputting the
expression (4.14).

Since the only parts of the expression (4.22) which can potentially diverge in the limit
Ap — oo are also the parts that diverge in the ¢ — 0 limit, we focus our attention on the
region of the integrals where the points are configured as indicated in figure 3 (the region
where the two circles intersect). In this region, we can simplify matrix elements using

(floaD)gal@z)dalzr)]i) =D (f1OQ)]i) (O(00)da(1)da(22)da(21)) (4.23)

(@]

which can be regarded as a generalisation of the OPE to the case where three fields (rather
than two) are approaching one another. More details are provided in appendix B.

The term in (4.23) which gives the strongest singularity when the three ¢ fields come
together is the term with O = 1. It therefore makes the contribution to Heg 3 that is
most UV divergent. For simplicity, we will only explicitly work out this contribution. We
find that

2
(Hest3(€)) p; D 9°Sa—10yi / T @il > {<¢A(1) EONCHIRINED))

R, ‘1—I¢|>€, =1

|xa—x1|>€|za]

= > (0la)igalz) ) (Ul oale2) 0)|,  (4.24)

IAVEVAVIEAV
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where the symbol El represents the insertion of a partial resolution of the identity, where the
cutoff between high and low energy states depends on the scaling dimension of state i, as
in (4.8). Similarly, the cutoff on the sum over low energy states in (4.24) retains dependence
on A;. There are interesting QFTs, including ¢* theory in d = 2 + 1 and minimal models
deformed by the ¢ 3 operator in d = 1 + 1, for which (4.24) is the only contribution to
H.g 3 that diverges in the € — 0 limit.

To evaluate the top line of (4.24), we take the three point function and express it as a
series expansion in powers of |za| and |z1|/|z2| using

faaa
1 = 4.25
$a(l)gator)dalen)) 11— zo|2|z0 — 21|21 — 21|2 ( )
— fAiAA i |$2|n1+n2+A (’;U1|>m+n3+A
|x2|A|x1|A n1,n2,n3=0 ’$2|
X C’Tﬁﬂ(cos 91)0%/2(005 02)07?3/2(cos v), (4.26)

where ~ represents the angle between points 1 and z2. On the cylinder, this corresponds
to writing the three point function as a series expansion in €™ and e™~"2. In (4.20), we
see that in each term of the expansion, €™ and e™ ™" are raised to the power A, — A; for
some Ay > Ap. By comparing (4.26) with (4.20), we find that only terms satisfying the
condition below should be included when evaluating the first line of Heg 3(€)

n1+n2>ATfAfAiEAL[’i,
n1+n3>A/T,i.

To evaluate the second line of (4.24), we instead expand the three point function in
powers of |z1| and |z2|/|x1|. This is because on the cylinder in (4.20), the second line may

7277 In each term, these exponentials are

be expressed as a series expansion in ™ and e
raised to the powers Ay, — A; and A; — A;. The series expansion that we need for the three
point function is also given by (4.26), except with |x;| swapped with |zs]. We find that
only terms satisfying the condition below should be included when evaluating the second

line of Heg 3(€)
ny + ng > A’Tﬂ»,
ni +nz < /T,i‘

When plugging the series expansions for the three point function into (4.24), we

encounter integrals of the form below, which we represent using the function X ..

2
Xfll7n2,n3 H d'z; |$2‘n1+n2+A (|561|

ni+nz+A
(n1 +ng +A) (ny +ns+ A) | ;]9 |x2|>

R, [1—z;|>e€, =1

|xa—z1|>€|z2]

x C2/%(cos 1) CEy(cos 02)Ca/* (cosy) . (4.27)

In the € — 0 limit, the expression above is finite, and can be simplified further
2
s :/S Hdd_lxi CnAlﬂ(cos91)07?2/2(00802)6'7%/2(0087). (4.28)
d=1 =1

X noma = lim X
1,12,13 e—0 n
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In appendix D, we evaluate the integrals above to derive an alternative expression for
Xni,nams, Which can be evaluated numerically more easily. We show that this function is
symmetric in all its n; indices, and vanishes unless the n; are all even, or all odd.

After combining (4.24) with (4.26) and (4.27), and truncating to retain only the terms
we need, we are left with the following expression

o0 XE
Hff . = 3Sd, Se AN n1,n2,n3
(Hetrs(€)) i 2 9°Sa105if mHg;A,T'(n1+n2+A)(n1+n3+A)
n1+n3>A,T:i

n1+n3<AL .

X
3 ni,n2,ng
—9°Sa-10pifann Y . : (4.29)
n1+n2>A'T’i (nl + n9 + A) (ng — ng)

Although the Xj .. . are each finite in the limit € — 0, the infinite sums in (4.29) diverge
when 3A > 2d. In this case, we renormalise the theory by adding a local counterterm

proportional to the identity operator

H0+V—>HO+V+A1/ dlz 1. (4.30)
Sq-1

It is convenient to pick a scheme in which the counterterm is just the full integrated three

point function

2
M@==g" [ T[daleeaDest@oat)), (43D
R, |[1—x;|>e€, =1
|xo—xz1|>€|za]
=9’ fana ) e (4.32)

ni,n2,m3=0 (nl +n2+ A) (nl +n3+ A) .
The matrix K defined in (3.10) is the effective hamiltonian with counterterms subtracted
in the € — 0 limit. Its contribution from (4.29) and (4.32) is given by

n1t+na <AL
n1+n3<AL

X
K3) ;= —g°Sa_10y; Ve
(Ko)js = =9"Sambpifaan D, o O TR

ni,n2,n3=0
n1+n3<AL

X,
3 n1,n2,n3
—9°Sa—10fifann E
n1+n2>A’TYi (nl + n2 + A) (n2 - n3)

+ 2X7117n27713 .
(n1 +n2 4+ A) (n1 +n3 + A)

(4.33)

In the first line, the sums only run over contributions from exchanged states with low
scaling dimension. The second line includes mixed sums, which account for contributions
from states exchanged with scaling dimensions both below and above A7, .. For any fixed
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value of the cutoff, the elements of K3 will all be finite, however in the A7 — oo limit they
can diverge.

When 3A — 2d > 0 a contribution to K3 that we ignored in section 4.1 can become
important. The contribution itself vanishes in the Ar — oo limit, however it makes a
correction to energy eigenvalues at third order through

Vi (0K2)i; (5K2)ilWi)
& R = ( + : (4.34)
ZEZ;“ Ay Ay

which actually is divergent. To get a finite spectrum, this contribution must be included. It
comes from taking O = ¢ in (4.12), and is given by

QQSd—l . > u$/2
(0K2)pi = —=—— (fl¢a(D) |2) fAAA2 ;A:, T (4.35)
n>8r

The shift in energy eigenvalues induced by the above through (4.34) cancels the shift coming
from the second line of K3 in (4.33) in the Ar — oo limit.

5 Locality of the Effective Hamiltonian H.g

The Effective Hamiltonian H.g has two features which make it appear non-local. Firstly,
it contains interactions which cannot be expressed as integrated local operator densities
such as (4.16), and secondly, it acts on a truncated Hilbert space that is spanned by states
with total energy less than Ap/R. This is a non-local modification of the QFT, since the
maximum energy of excitations in one region of space now depends on the energy carried by
fields in distant regions of space. However, Heg is constructed so that its spectrum matches
the local QFT, so these non-local effects cancel one another when calculating observables.

In this section, we perform a check for consistency between H.g and the locally regulated
QFT. Specifically, we check the fourth order perturbative correction to the ground state
energy, which in Rayleigh-Schréodinger perturbation theory is given by

_ VouView Viewr Vi | VorVio Vor Viro

W _
80 r= JAVWANRYAN W Ay A%, ’

(5.1)

where the sums run over CFT states k, &/, k" # 0 and we have used Vyg = 0. In raw TCSA,
these sums should all be cut off so that A, < Ar.

We now demonstrate that 554) is UV finite in Hqg, when it is also finite in the local
theory. We focus on the fourth order, as it is the lowest order in perturbation theory for
which there is a subtraction term, and cancellations between the leading and subtraction
terms may be spoilt by the UV regulator. This quantity was found to diverge in the limit
Ap — oo in raw TCSA [20], even when the corresponding quantity in the locally regulated
theory was finite. Indeed, for large Ap, conformal symmetry constrains (5.1) to grow as [20]

2n1+A<Ar
462 n14+2n2+2A<AT  2no+A<Ar A A
e 3 T ST S oy 2 e R G
0 AR (2n1 + A2 2np+ A
ni,n2=0 ni,n2=0
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where the u4 are given by (4.19). This difference between sums diverges in the limit
Ap — oo for A >d/2+1/4.

When using a local regulator, it is more convenient to use the conformal perturbation
theory expression for the coefficient

£l — 975 ﬁddm\xwﬂ*dw G by 1) (5.3)
o 4'R et v z1 PaoPrzPl)c - .

This expression is finite (in the limit that the local regulator is removed) provided that
A < 3d/4, in contrast with raw TCSA.

So far though, our analysis has not accounted for any extra contributions to Heg. To
remove divergences in Ap at the fourth order in perturbation theory, we should in principle
consider contributions to Heg up to fourth order in the coupling. Nevertheless, we find that
only Heg o provides the contribution to 584) needed to restore consistency with the local
theory.

The expression for Hego as a sum over operators O is provided in (4.16). For a
deformation with A just above d/2 4+ 1/4, the term in Heg o with O = 1 must always be
retained. Other operators must also be retained if they are sufficiently relevant, but since
their presence is model dependent, they cannot cancel the universal divergence appearing
n (5.2). We therefore consider the contribution to 884) coming from the interaction

g°Sq_1 U
Ko, = Ot E n__ 5.4
(K2 2 N antA (5:4)

Since (5.4) is a diagonal matrix, the only contribution it can make to 584) is given by

(4) Vor (K2) i Viro Vor Viko
= _(Ko).. JOkYKOD '
550 R Ak’Ak’ ( 2)00 Az (5 5)
The last factor in (5.5) is given by
VorVio _ 9%Sd-1 2n+§AT Uy (5.6)
A2 2 = (2n+A)?2 :

We use this result to rewrite both terms in (5.5), finding that the first term equals minus the
first sum in (5.2), and the second term equals minus the second sum in (5.2). We conclude
that (5.5) and (5.2) cancel each other exactly.

We have thus explicitly shown that a non-local interaction in Hego cancels a UV
divergence that arises at higher order in perturbation theory, due to the non-local nature of
the Hamiltonian Truncation cutoff Ar. The finiteness of 554) for A < 3d/4 is necessary for
consistency with the locally regulated theory.

Furthermore, we can see that H.g3g or H.g4 will not make a contribution to the
spectrum that diverges in the A7 — oo limit, unless A > 2d/3 so that a local counterterm
beyond second order is needed to renormalise the theory. By assumption, the infinite

dimensional matrix H(e) = A + V(€) incorporates all the local counterterms required for a
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finite spectrum. If A < 2d/3, then H(e) will have no terms that depend on the coupling as
g% or g*. In the large A limit, it can be seen that H.g coincides with H(¢), for instance
from (2.11). We therefore expect Heg 3 and Heg 4 to vanish in the Ap — oo limit.

In appendix C we show that the finiteness of the spectrum proceeds to O(V®) as
expected, thanks to the addition of the non-local K5. We also comment on the connections
of this calculation with previous studies in ¢* theory.

6 Discussion

In this work, we have described a procedure for applying Hamiltonian Truncation when the
QFT under investigation has UV divergences that require renormalisation. Our procedure
involves extra steps beyond those required for renormalisation in perturbative QFT with
a local regulator, such as dim-reg. This is because Hamiltonian Truncation calculations
involve approximating the original QFT with a quantum theory in a finite dimensional
Hilbert space, which is a non-local modification of the original theory. We believe this is an
important step towards turning Hamiltonian truncation into a universal tool, that can be
applied to any renormalisable QFT.

To implement renormalisation, we first had to define an Effective Hamiltonian that
shared the exact low energy spectrum of the original Hamiltonian but had finite dimen-
sionality. We provided an alternative representation for an effective Hamiltonian, first
defined in [34] in section 2, and proved that the spectra of the UV theory and the Effective
Hamiltonian match.

Our main analysis includes a perturbative calculation of this Effective Hamiltonian,
applicable to QFTs defined as an ultraviolet CFT deformed with a relevant operator. By
first introducing a local regulator and local counterterms for the QFT, and then defining
an effective Hamiltonian for this finite theory that allows the local regulator to be removed
analytically, we demonstrated how ultraviolet divergences can be consistently canceled, and
how renormalisation can be applied in the context of Hamiltonian Truncation.

Our renormalisation procedure makes the choice of scheme transparent, enabling direct
comparison between Hamiltonian Truncation calculations and results derived using other
methods. It also provides explicit expressions for the non-local interactions that must be
included in the renormalised effective Hamiltonian to ensure UV finiteness. As well as
presenting a general argument, valid at all orders in perturbation theory for the consistency
of our approach, we have also provided direct non-trivial checks using perturbation theory
up to O(V®), showing the cancellation of UV divergences.

It is important now to apply this procedure non-perturbatively to numerical Hamiltonian
Truncation calculations in QFTs with UV divergences. For example, these methods are well
suited to studying conjectured renormalisation group flows between two-dimensional CF'Ts,
e.g. [37-39], as well as exploring the rich variety of strongly coupled flows in d =1+ 1 more
generally. It will also be very worthwhile to investigate QFTs in higher dimensions, such as
¢*-theory in d = 2+ 1 (building on an earlier exploratory study [15] using the massive Fock
space approach), and Quantum Electrodynamics in d = 2 + 1.
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A Alternative Effective Hamiltonians

A.1 The Schrieffer-Wolff Effective Hamiltonian

The Schrieffer-Wolff Hamiltonian [40] may be interpreted as an effective Hamiltonian
(see also [41] for a pedagogical introduction). It is defined as the following canonical
transformation and projection of the full theory Hamiltonian:

Hyf" = [¢° (Ho+ gV) e (A1)

!
where g is the coupling parameter, and the subscript [ indicates projection of the operator in

square brackets onto the subspace H;. Then H, eSHW is fully specified if we further require that:

1. S is analytic in the coupling ¢ and vanishes when g = 0 so that

S =gS1+¢*So+ ¢S5+ ... (A.2)

2. S has a block matrix structure. In particular its matrix elements between pairs of

states in H; vanish, and it is anti-unitary:

S — (0 _32l> . (A.3)

Shi 0

3. The canonical transformation induced by e° yields a block diagonalisation of the full
Hamiltonian

HSV 0
¢S (Ho+gV)e S = eff . (A4)
0 Hpp

The definition in (A.1) will automatically produce a Hermitian effective Hamiltonian
as S is anti-unitary. Furthermore, the similarity transformation of the Hamiltonian induced
by e° preserves eigenvalues, and taking only the top left block of a block diagonal matrix
will not affect eigenvalues either. The SW effective Hamiltonian energy eigenvalues will
automatically match their counterparts in the full theory.

By working perturbatively in g, the SW Hamiltonian may be determined explicitly.
The identity for matrix exponentials eABe™ = B + [4, B] 4 ... can be used to obtain

e’ (Ho+gV) e ¥ = Hy + g (V + [S1, Ho))

+¢° (;[Sl, [S1, Hol] + [S1, V] + [SQ,HO]) +.... (A5)
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Working to O(g), the elements of the matrix equation above in the two off-diagonal blocks
can be made to vanish by taking

[Sla HO} = _V;)ff—diag ) (AG)

where Viggiag Tepresents the off-diagonal blocks of V. This yields the following result for

sp; to linear order in g

_ Vi
E,—-E

Plugging this result into (A.5), and taking only the top left matrix block gives the SW

Hamiltonian up to second order in the coupling

2
9 ViV . VinVhi
(Hgffw)ﬂ = 5fiEi +9Vei + B} < fth + %'h + 0(93) , (A.8)

Shl (A.7)

where Ej, = E; — Ej, and we have also used the fact that the top left block of [S2, Ho] is
zero, which follows from block matrix structure of S. A sum over the states of the high
energy subspace Hj, is implied by the repeated index h in the numerators of the O(g?)
terms. If the full theory is a UV regulated and renormalised QFT, the sum over h will yield
a finite result.

The higher order contributions to H5V can be calculated by expanding (A.5) to higher
orders in g, demanding that the off diagonal blocks of e® (Hy + gV) e~ vanish at every
order, and then reading off the top left block. At third order, the result is

Vi VihoVini 1 ViVinVai
fi 2 Ehleth 2 Ethhl

In this instance, all the repeated h; and [ numerator indices are summed over. The h; label
states in Hp, whereas the [ index labels states in H;.
The fourth order result is:
(Hégffmi) _ 1 Vi Viing Viohs Vi n 1 Vi, Viiho Viat, Vini
fi 2 EpigEnsgEnsy 2 EniEny B,
L Vin Vi Vot Vi 1 Vi Vi Vi Visi
2 EniEnyiEng, 2 EniEny B
1 Vi Vit Vishg Vioi N 2 Viny Vit Vishg Vioi n 1 Vi Vit Vishg Vioi
3! EhlethEhlll 3! EhlethEh2l1 3! Eh2fEh1l1Eh2l1
L Vin Vit Viena Vhai 3 Vi Viity Visho Vi

— - = +he. A.10
A Ep,y £ Epyly Engiy AL Epy fEnyiy Enyi (4.10)

Again, repeated indices [; and h; in the numerators indicate sums over all states in the
subspaces H; and Hj, respectively.
A.2 Connection with Rayleigh-Schrodinger Perturbation Theory
Consider the following operator, acting on the low energy subspace of states H;:
(] [0 +v)=1] |5)
. -1
(FIZe]f) il Za ld)

(f|ul i) = (A.11)
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By (2.19), this operator would be a simple diagonal matrix of exact energy eigenvalues. We
may therefore regard (A.11) as an alternative effective Hamiltonian.

In practice, ¥; and (A.11) need to be evaluated using perturbation theory. The diagonal
elements of (A.11) will end up being the Rayleigh-Schrodinger (RS) perturbation theory
expressions for state energies. Each successive order in RS perturbation theory is suppressed
with respect to the last by factors that scale as V;;/E;;. For closely separated energy levels
i and j in ‘H; and a strong interaction V, this factor may be large, in which case truncating
the RS series at any fixed order would introduce a large error. For this reason, (A.11) would
be a poor choice of effective Hamiltonian.

By contrast, elements of the CFHL Hamiltonian in (2.15), or the SW Hamiltonian
in (A.1), have a much more convergent perturbative series. Successive orders are suppressed
by factors that scale as Vi, /(E; — Ey) with | € H; and h € Hj,. At least for the states with
energies far below the cutoff, the denominator will be large |E; — Ej| 2 Ar/R.

B Generalisation of the operator product expansion

In this section, we derive a useful formula for simplifying CFT correlation functions. It can
be applied whenever a subset of operators are close together, so that the distances between
each of them and a chosen point are all smaller than the distance from that point to any
other operator. When only two operators are included in the subset of nearby operators,
using this formula is no different from applying the operator product expansion (OPE).
However, this formula is more general and can be applied when three or more operators are
included in the subset of nearby operators.

Correlation functions in a CFT can be interpreted using radial quantisation (see ref. [42]
for a pedagogical introduction), in which case they act in the order determined by their
distances from a given point y

(O1(21) ... On(0)) = (0] Opioy (@) - - Oty (1) 0) - (B.1)
where  |zp1) =yl < [zp@) — Yl < - Tpm) — Ul (B.2)

and P is the permutation of indices 1...n which ensures (B.2). In general, the ordering of
operators in (B.1) depends on the choice made for y, the radial quantisation origin.

We can also insert a complete set of states between any pair of operators in (B.1) and
leave the correlation function unchanged

(O1(21) - On(22)) = 30| Opiny - - - Opiomy K) (K] Opgnry --- Opy 0),  (B.3)
k

where m is an integer in the range 2 < m < n, and we have suppressed the spatial indices
of the operators for brevity. Using the state operator correspondence, a set of states which
completely spans the CFT Hilbert space can be constructed by acting on the vacuum with
all possible local operators

k) = O(y)10) , (k| = lim |s[*2° (0] O(s) = (0] O(c0), (B.-4)
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so that

(O1(z1) - - Opm)O(¥)0) (0] O(c0)Op(m-1)---Opy|0) , (B.5)

)= (0[Op@)

o

=Y (Op@) - - Opum) OW))O(0)Opm_1y---Op()) - (B.6)
o

The sum runs over all CFT operators, including both primaries and descendants. The
formula above is a general result, valid for any CFT correlation function and any choice of
radial quantisation origin y.

When m = 3, using the formula (B.6) is equivalent to using the OPE. To demonstrate
this explicitly, we take y = x2 and make the identification

Cizj(z12,02)0)(x2) = > O(x2){O(00)O1 (1) Oa(x2)) , (B.7)

desc. of j

where the sum runs over primary operator O; and all of its descendants. Then (B.6) gives

(O1(x1) ... On(xn)) = Z Ch2j(212,02)(0;(22)O3(x3) . .. On(xy)) , (B.8)
J
provided that |z12| < |z23],...|z2n|. We see that we have the same result you would get by
using the OPE for operators O; and Os.
For m = 4 and n = 5, we derive another useful result, which we use to simplify the

computation of the third order effective hamiltonian in section 4.2. If we consider the matrix
element below and radially order it, picking y = 1 as our radial quantisation origin, we find

(floa(M)pa(z2)pa(z1)[i) = (Of(00)Oi(0)da(z2)da(z1)dA(1)) (B.9)

where we have assumed that |1 — z1], |1 — 22| < 1 when radially ordering. Applying (B.6)
then yields

(Fléa()dal(@)da (@) i) = > _(O; 0)O(1))(O(00)a (x2)da(x1)da(1)), (B.10)
(@)

=Y (F10(1) [i) (O(00)da(1)da (w2) b (1)) | (B.11)
(@]

as shown in (4.23).

C Higher order corrections and ¢* theory

In this section we would like to explain how to apply the construction that we have
introduced in the main text to the ¢* perturbation of the free massive scalar theory. The
derivations that we perform next apply more generally and have a structural similarity with
Conformal Perturbation Theory. We elucidate this point at the end of the section.
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C.1 Fourth order corrections

In section 5 we explained how locality is restored to O(V*) in the context of conformal
perturbation theory. Specifically we showed that Ks cancels unphysical UV divergences in
the Casimir energy at O(V*). The purpose of this section is to derive the analogous result
in the context of the ¢* perturbation of free massive theory.

Recall that

@ Voky Vi ko Vieoks Viso ) Vo Viko
& =— — & 5 - (C.1)
By By By L
In ref. [15] it was shown that the following contributions to the first term in (C.1) grow the
fastest in the limit Ep — oo

E1+Es E1+Es
1 1

: : EvtEx<Er /1 1 1 1 1 1 ~ -
= 9 _ / o T( + > dEvdEs, (C.2)
4

m FE\E1+EyEy  E\E+FEy By

where have defined dE; = dE;/(27)®4(E;), and where ®4(E;) is the four-particle phase
space.” In particular, because ®4(x) ~ x in d = 2 + 1 spacetime dimensions, these diagrams
diverge as Ep — oo, for this spacetime dimension. The notation | fnfET = [0 0(x — Ep),
where 6 is the Heaviside step function. The second term in (C.1) is given by

= — — dEdE,. C.3
am BZE (©5)

©) _ VorVko Ero1 1
X

Because in Hamiltonian Truncation the states have energy bounded by Er, in (C.2) we have
indicated by dashed vertical lines cuts through the diagrams indicating the propagating
energy between any to consecutive vertices. These are old fashioned perturbation theory
diagrams, where time flows horizontally, lines denote on-shell particles and the order of the
vertices in the time direction matters.

In ¢* theory in d = 241 dimensions we do not expect any UV divergence in the vacuum
energy at O(V*). However, when truncating the theory Hy + V, with V = [ d?z¢?, (C.2)
and (C.3) do not cancel [15]

(C.2) + (C.3) ~ Ep — 8log(Er/m) + O(EY), (C.4)

because of truncation on the maximal propagating energy. It turns out that this new type
of divergences appear at all orders in perturbation theory.

In this work we have argued that the way to deal with these effects is to perform usual
local-regulator renormalisation, and then computed an Effective Hamiltonian to the same
order as the needed local conterterms. In this way we are able derive an effective truncated
Hamiltonian

Hg=Ho+V+K (C.5)

®We are omitting an inconsequential overall normalisation in (C.2) and (C.3), given by ((gL)?/24)? [15].
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where the dependence on the local regulator has been removed. Carrying out this procedure
for the vacuum two-point divergence, we are left with

E1+E:<Er g E‘2

m E2

where the dots --- denote contributions not proportional to the identity operator.
In order to re-calculate the two-point function contributions to 5(()4), first we note

that (C.6) sets to zero 8(52). Therefore we do not have the contribution in (C.3) in the
(Ho +V)ij + k(E;)d;; theory. Next we need to take into account the diagrams with a single

(Kg)ij = k(El)(SZJ + ... where k‘(El) = A (CG)

insertion of k. The only contribution is given by

! Ei<Er 1 ~
@ / —/@ (Ey) dE, . (C.7)
4m

1*1 1“1

The operator K5 is a non-local interaction and therefore we do not represent as a vertex
in a diagram. It is instead represented by acting on all particles at a given time-slice,
irrespective of 