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1 Introduction

One of the most pressing questions in string phenomenology is to exhibit cosmological
solutions that share many features of our universe. As an example, as our universe appears
to be well approximated by quasi de Sitter solution, it is extremely important to understand
if string theory can populate meta-stable de Sitter vacua with small cosmological constant
and large decay time.

We face an imminent challenge. The more realistic we want our solutions to be, the
fewer theoretical tools are at our disposal to help us handle string theory directly, even
perturbatively. This is mainly because more realistic solutions are expected to have no
supersymmetry and the worldsheet theory in such cases is not expected to be weakly coupled.
Because of our incomplete understanding of strongly coupled worldsheet theory and the
non-perturbative formulation of string theory, it is very difficult to envision a scenario in
which one finds a set of isolated cosmological solutions of string theory by the means of
finding appropriate worldsheet CFTs.
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However, one shouldn’t be completely discouraged by our lack of understanding of
the nonperturbative and strongly coupled phase of string theory. Because finding vacuum
solutions of string theory is inherently a low-energy problem, one might still hope to
make progress by understanding the low-energy effective theory of string compactifications.
Progress along this line of work will involve judiciously deriving the low-energy effective
action of string compactifications and finding isolated vacua thereof.

Nevertheless, one could reasonably complain that the usage of the low-energy effective
theory does not seem to circumvent the problem by much. The nature of the problem
is that to have a non-trivial vacuum solution, many terms in the effective potential shall
compete, which indicates that the underlying string theory is presumably strongly coupled.
In light of the fact that it is extremely difficult to compute anything beyond string tree
level, naively, it may seem practically impossible to derive the low-energy action with an
arbitrary precision to find isolated vacua of string theory. This problem is so-called the
Dine-Seiberg problem [1].

In 2003, by Kachru, Kallosh, Linde, and Trivedi (KKLT), a three-step recipe to overcome
the Dine-Seiberg problem to find de Sitter vacua of string theory is proposed [2].1 The
KKLT scenario proceeds in type IIB compactifications on O3/O7 orientifolds of Calabi-Yau
threefolds, that yields 4d N = 1 supersymmetric theory at low energy, as follows. First,
stabilize complex structure moduli and the axio-dilaton by the Gukov-Vafa-Witten (GVW)
flux superpotential [4, 5]

WGVW =
∫
G ∧ Ω , (1.1)

at a point in the moduli space such that vacuum expectation value W0 := 〈WGVW〉 is
exponentially small.2 Second, stabilize Kähler moduli by balancing the non-perturbative
superpotential Ae−aT [14] against W0. At this step, exponentially small value of W0
guarantees that T is stabilized at large Einstein-frame volume. As a result of the first two
steps, one arrives at 4d N = 1 supersymmetric vacua with exponential scale separation.
As the last step, one can break supersymmetry by placing anti-D3-branes at the tip of the
Klebanov-Strassler throat to engineer low-energy supersymmetry breaking and attain de
Sitter solutions [15, 16].3

One can ask, how does the KKLT proposal tame the Dine-Seiberg problem? The crucial
insight is that one can in principle compute the superpotential with arbitrary precisions, and
by doing so one can stabilize moduli at weak coupling and large Einstein-frame volume even
if our knowledge on the Kähler potential is limited.4 Because in type IIB compactifications
on O3/O7 orientifolds, the good holomorphic coordinate for Kähler moduli is Einstein-frame
divisor volume, even if string-frame cycle volumes are order O(1), as long as string coupling
is small, overall Calabi-Yau volume is large, worldsheet instanton corrections to the Kähler
potential are suppressed, and Einstein-frame divisor volume is large, one can expect that

1For a very closely related proposal, see [3].
2For recent progress on engineering exponentially small flux superpotential, see [6–13].
3For recent studies on stability issues of strongly warped regions and anti-D3-brane supersymmetry

breaking, see for example [17–24].
4For recent progress on explicit constructions of KKLT like 4d N = 1 vacua, see [25].
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the string loop correction to the Kähler potential is suppressed by the order of

O
(
g2
s

V

)
, (1.2)

where V is string-frame Calabi-Yau volume.5 But, there can be an unexpectedly large
one-loop correction to the Kähler potential due to a numerical coincidence. To put our
understanding of vacuum solutions of string theory on more solid footing, we should therefore
actually compute the one-loop correction to the Kähler potential.

In the literature, results on the loop corrections to the Kähler potential in N = 1
compactifications are scarce [26–33]. One of the main reasons why it has been difficult
to compute the loop corrections to the Kähler potential, unlike the computation of the
superpotential, is because the Kähler potential isn’t a holomorphic object. Due to the lack
of holomorphicity, it is not clear whether dualities or supersymmetry will help us compute
the Kähler potential in a rather simple manner. Therefore, it is extremely important to
develop tools to explicitly and directly compute the loop corrections to the Kähler potential.

We would like to highlight the heroic computations carried out initially by Berg,
Haack, and Kors (BHK) [26], and the subsequent follow up papers by Berg, Haack, and
their collaborators [27, 29–32]. In these papers, to determine string one-loop corrected
Kähler metric in Einstein-frame, very impressive computations were carried out in toroidal
orientifold compactifications to determine: the string one-loop correction to the Einstein-
Hilbert (EH) term in string-frame, the string one-loop correction to the moduli kinetic
terms in string-frame, and the string one-loop correction to the definition of holomorphic
coordinates. It is intuitive to see why the string one-loop corrections to the moduli kinetic
terms and the definition of holomorphic coordinates need to be computed. The necessity
of the knowledge on the string one-loop corrected Einstein-Hilbert term is due to the fact
that changing from string-frame to Einstein-frame will force the one-loop corrected Kähler
potential to depend on the string one-loop corrected EH term.

In this note, we will take a first step at generalizing the works done by [26, 27, 29–32]
to genuine type II compactifications on orientifolds of Calabi-Yau threefolds. To do so, we
will compute the two graviton scattering amplitudes with several restrictions we impose to
simplify the analysis. In this work, we shall perturb around the Calabi-Yau background by
placing spacetime filling D-branes and O-planes on the Calabi-Yau background. Additionally,
we shall assume that the backreaction from the spacetime filling D-branes and O-planes
is negligible. Phrased differently, we shall take the worldsheet CFT to be a direct sum
of the free field CFT for the non-compact directions and the Calabi-Yau CFT for the
compact directions. D-branes and O-planes shall be described as boundary states of the
aforementioned CFT. This approximation is well warranted for weak warping, where the
coupling between the non-compact directions and the compact directions is negligible.
Furthermore, we shall cancel the Ramond-Ramond tadpole by spacetime filling D-branes.
This will allow us to use the RNS formalism for the worldsheet theory.

5For a more detailed analysis of the order estimate of the loop corrections to the Kähler potential, see
section 4 of [25].
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One immediate concern follows. It is a well-known lore in string theory that every
two-point amplitude of massless fields vanishes once the momentum conservation condition
and the transversality condition are imposed. The graviton two-point functions, that we
compute in this draft, are no exceptions from this well-known statement. This phenomenon
is not unique to string theory. Even in quantum field theory, to compute the wave function
renormalization of a field, one oftentimes relaxes the momentum conservation condition
for two-point functions. Therefore, to extract the correction to the EH action from the
graviton two point amplitudes, we have to invoke a prescription for relaxing the momentum
conservation condition. Prescriptions that are reasonable for quantum field theories have no
right to be reasonable for string scattering amplitudes. Nonetheless, inspired by quantum
field theory, and encouraged by successes in simpler settings [31, 34], we will make use
of the prescription of relaxing the momentum conservation condition, that we explain
in section 3, to extract the string one-loop correction to the Einstein-Hilbert action. It
would be extremely important to cross-check the results obtained by using the prescription
via unambiguous string amplitudes, such as four graviton scattering amplitudes. As a
non-trivial cross-check of the prescription, we will find the perfect match between the torus
amplitude we compute in section 3.2 with by now a very well-established result in the
literature [34–43].

In this work, by explicit computations, we will claim that the string one-loop correction
to the EH action δE is determined by the new supersymmetric index new supersymmetric
index studied by Cecotti, Fendley, Intriligator, and Vafa [44]

TrR
(
(−1)F−

3
2FqL0− 3

8
)
, (1.3)

and the Witten index of the internal CFT. For example, we will find that the annulus
contribution reads

δEA = 1
28π2

∫ ∞
0

dt

2t2
[
TrR

(
(−1)F−

3
2FqL0− 3

8
)open

int
+ 3

2
(
n+
A − n

−
A

)]
, (1.4)

where we parametrize the one-loop corrections to the EH term as

1
2κ2

4

∫
d4x
√
−g δE R . (1.5)

It is important to note that despite the name, the new supersymmetric index is not a
number but a complicated function of moduli. But, the new supersymmetric index is special
because it only depends on the F-term of the internal theory, it might be possible to compute
it in excruciating detail in explicit models. Note that the trace is taken over the internal
CFT. This claim is surprising because the new supersymmetric index is expected to show
up in protected quantities, whereas the EH action are not protected in the supergravity. In
section 5, we will provide heuristic explanations on this unexpected result.

The rest of the paper is organized as follows. In section 2, we review how to translate
the string one-loop corrected effective action in string-frame to the string one-loop corrected
effective action in Einstein-frame. We will study in the same section that the one-loop
corrected Kähler potential depends on the string one-loop correction to the EH action. In
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section 3, we compute graviton-graviton scattering at string one-loop to compute the string
one-loop correction to the EH action. In section 4, we apply our results to estimate the
one-loop correction to the EH action and the Kahler potential when one is approaching a
conifold singularity, which is a finite distance singularity. In section 5, we conclude and
discuss possible future directions. In section A, we summarize useful identities involving
the Jacobi theta functions. In section B, we review the extended N = 2 superconformal
algebra and its representation theory. In section C, we summarize useful identities involving
Green’s functions. In section D, we compute various two-point functions.

2 One-loop corrections to the Kähler potential

To translate string scattering amplitudes into supergravity actions, one must compare
scattering amplitudes of string theory with scattering amplitudes computed from super-
gravity action at low energy. Quite naturally, this comparison is the most straightforward
in string-frame, as the name speaks for itself. On the other hand, in the supergravity
description, varying the Planck constant is very unnatural, and therefore one oftentimes
works in Einstein frame, in which the Planck scale is set to a constant. This difference in
the use of frame results in a non-trivial dictionary between string scattering amplitudes at
one-loop and the string-loop corrections to the supergravity action in Einstein frame. In
this section, following [30], we shall review how one-loop amplitudes of string theory can be
repackaged in terms of the one-loop correction to the Kähler potential of moduli fields in
Einstein-frame. To simplify the discussion, we will focus on one modulus φ.

Let us start with string tree-level supergravity action in string-frame with most two-
derivatives

S
(0)
st ⊃

1
κ2

4

∫
d4x
√
−ge−2Φ4

[1
2R−G

(0)
ϕϕ∂µϕ

(0)∂µϕ(0)
]
, (2.1)

where ϕ, we denote a saxion field which is the imaginary part of the chiral field φ. If we are
in a geometric phase, in large volume limit, we have a relation

e−2Φ4 := e−2Φ10V , (2.2)

where V is the volume of the compactification manifold in string unit, and Φ10 is the
10-dimensional dilaton which is identified with string coupling as gc = eΦ10 . This tree-
level action can be computed by comparing the low-energy expansion of string scattering
amplitudes at the sphere level to scattering amplitudes of supergravity fields. Let us now
transform the supergravity action in string-frame (2.1) into the supergravity action in
Einstein-frame by rescaling the metric

g = e2Φ4 g̃ . (2.3)

Then, we have √
−g = e4Φ4

√
−g̃ , (2.4)

and
R = e−2Φ4R̃− 6e−2Φ4∇Φ4 − 6e−2Φ4∂µΦ4∂

µΦ4 . (2.5)
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As a result, we find

S
(0)
E ⊃

1
κ2

4

∫
d4x

√
−g̃

[1
2R̃−G

(0)
ϕϕ∂µϕ

(0)∂µϕ(0) − 3∂µΦ4∂
µΦ4

]
. (2.6)

Therefore the kinetic term of the modulus in Einstein-frame reads

− 1
κ2

4

∫
d4x

√
−g̃

(
G

(0)
ϕϕ̄ + 3(∂ϕΦ4)2

)
∂µϕ

(0)∂µϕ(0) . (2.7)

As the metric of the modulus must be Kähler, we conclude that the tree-level Kähler metric
of φ is given as

K
(0)
φφ̄

:= G(0)
ϕϕ + 3(∂ϕΦ4)2 . (2.8)

Let us now suppose that one computed string scattering amplitudes at string one-loop
to obtain supergravity action at string one-loop in string-frame

S
(0)
st +S(1)

st ⊃
1
κ2

4

∫
d4x
√
−g
[1

2
(
e−2Φ4 +δE

)
R+(e−2Φ4G(0)

ϕϕ+G(1)
ϕϕ)∂µϕ(0)∂µϕ(0)

]
. (2.9)

Note that the definition of moduli fields also gets corrected at one-loop [30, 32]

φ = φ(0) + φ(1) . (2.10)

We shall now find the effective action in Einstein frame. Let us define

e−2Φ̃4 := e−2Φ4 + δE . (2.11)

Let us rescale the metric
g = e2Φ̃4 g̃ , (2.12)

to find

S
(0)
E + S

(1)
E ⊃

1
κ2

4

∫
d4x

√
−g̃
[1

2R̃−
(
(1− δEe2Φ4)G(0)

ϕϕ + e2Φ4G(1)
ϕϕ

)
∂µϕ

(0)∂µϕ(0)

− 3
(
(1− 2δEe2Φ4)∂µΦ4∂

µΦ4 − e2Φ4∂µΦ4∂
µ(δE)

)]
. (2.13)

By matching the above action to the one-loop corrected kinetic term of the modulus φ

− 1
κ2

4

∫
d4x

√
−g̃

(
K

(0)
φφ̄

+ e2Φ4K
(1)
φφ̄

)
∂µφ∂

µφ̄ , (2.14)

we find

K
(1)
φφ̄

= G(1)
ϕϕ − 6

(
∂Φ4
∂φ(0)

)2
δE − 3 ∂Φ4

∂φ(0)
∂(δE)
∂φ(0) −G

(0)
ϕϕδE + 1

2φ3φ
(1) − 1

2φ2
∂φ(1)

∂φ
. (2.15)

Therefore, we conclude that to completely determine the one-loop corrected Kähler potential
for moduli fields in Einstein frame, computing the one-loop correction to the Einstein-Hilbert
action is necessary.

– 6 –
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3 Two graviton scattering at one-loop

In this section, we will determine the string one-loop corrections to the Einstein-Hilbert
action by computing the two-graviton scattering amplitudes at string one-loop in type II
string theory compactified on an orientifold of a Calabi-Yau threefold.

3.1 Strategy

In this section, we shall explain the strategy to compute the string one-loop corrections to
the Einstein-Hilbert action.

A prerequisite to the computation of string scattering amplitudes at the string one-
loop, is to first construct a consistent worldsheet CFT at string tree level. In type II
compactifications on Calabi-Yau manifolds, it is well known that the exact worldsheet CFT
is given as a direct sum of the free field CFT, that describes the non-compact directions,
and the Calabi-Yau CFT. But, in orientifold compactifications, such an exact description of
the worldsheet CFT is not known. The main complication is that spacetime filling D-branes
and O-planes backreact on the target space, and as a result a non-trivial Ramond-Ramond
profile and a non-trivial mixing between the non-compact directions and the compact
directions are generated.

Even if the Ramond-Ramond tadpole is canceled by spacetime filling D-branes, such
a backreaction can be significant unless the Ramond-Ramond charge is canceled locally,
meaning 2p−5 Dp-branes lie on top of an Op-plane. But, it should be noted that in
generic Calabi-Yau orientifold compactifications, the Dp-brane tadpole can come from not
only spacetime filling Op-planes, but also from the curvature correction terms to higher
dimensional spacetime filling D-branes and O-planes. For example, it is well known that
the curvature correction to a D7-brane wrapped on a divisor D can induce the following
D3-brane tadpole [45]

χ(D)
24 . (3.1)

In light of this difficult problem, we shall invoke an approximation scheme. Suppose
that there is a net charge NDp of a wrapped Dp-brane and the Einstein-frame transverse
volume to such a Dp-brane is V⊥. Then, we shall require that

NDp

V⊥
� 1 , (3.2)

such that the backreaction from the spacetime filling D-branes and O-planes is negligible.
For example, in type IIB compactifications on O3/O7 orientifolds of Calabi-Yau threefolds,
we shall require that given the number of spacetime filling D3-branes, ND3, and the
Einstein-frame volume of the Calabi-Yau manifold, V, the following inequality holds

ND3
V
� 1 , (3.3)

and the D7-brane charge is locally canceled. We will call this approximation the small
warping approximation or the small warping limit.

– 7 –
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In the small warping approximation, we can now treat the worldsheet CFT as a direct
sum of the free field CFT and the Calabi-Yau CFT, as in the Calabi-Yau compactifications.
Spacetime filling D-branes and O-planes will then be described as the boundary states of
the aforementioned CFT even at string one-loop. With this understanding, we shall finally
spell out the details of the worldsheet CFT.

The worldsheet theory contains the b, c, β, γ ghost system, the fields ξ, η, φ, obtained
by bosonizing the β, γ system, the matter superconformal field theory. The matter part
of the CFT is decomposed into (1, 1) supersymmetric free field CFT with central charge
(c, c̄) = (6, 6) that describes the four non-compact space-time, and a strongly interacting
(2, 2) supersymmetric SCFT with central charge (c, c̄) = (9, 9) describing the Calabi-Yau
manifold. By Xµ and ψµ, we denote the matter fields and their superpartner that correspond
to coordinates and the tangent bundle of the non-compact spacetime, respectively. To obtain
N = 1 effective theory in target spacetime, we need to reduce the amount of supersymmetry
by half. To reduce the target space supersymmetry by half, we will perform an orientifolding
Ω and project out degrees of freedom. To simplify the computation, we will assume that
the RR tadpole is canceled by spacetime filling D-branes.

To specify the orientifolding, we will have to study the orientifold action on worldsheet
fields and coordinates. As the name stands, the orientifold action Ω reverses the orientation
of the worldsheet by mapping the worldsheet coordinate z to −z̄.6 We note that the fields
in the free CFT transform under the orientifolding as follows

∂Xµ(z) 7→−∂Xµ(−z̄) , c(z) 7→−c̄(−z̄) , b(z) 7→ b̄(−z̄) , e−φψµ(z) 7→−e−φ̄ψ̄µ(−z̄) ,

∂ξ(z) 7→−∂̄ξ̄(−z̄) , η(z) 7→−η̄(−z̄) , e−2φ(z) 7→ e−2φ̄(−z̄) . (3.4)

As the details of the orientifold action on the internal CFT are not very important for
our discussion, we will omit such details. For the detail of the orientifold action, see for
example [46].

Let us study the orientifold action on the graviton vertex operators. We write the
graviton vertex operators as

V (0,0)
g (z, z̄) = −2gc

α′
εµν

(
i∂Xµ + α′

2 p · ψψ
µ
)(

i∂̄Xν + α′

2 p · ψ̄ψ̄
ν
)
eip·X , (3.5)

V (0,−1)
g = igc

√
2
α′
εµν

(
i∂Xµ + α′

2 p · ψψ
µ
)
e−φ̄ψ̄νeip·X , (3.6)

V (−1,0)
g = igc

√
2
α′
εµνe

−φψµ
(
i∂̄Xν + α′

2 p · ψ̄ψ̄
ν
)
eip·X , (3.7)

V (−1,−1)
g (z, z̄) = gcεµνe

−φψµe−φ̄ψ̄νeip·X , (3.8)

where εµν is the polarization tensor with εµνεµν = 1. Note that the graviton vertex operators
are constructed purely from the matter fields of the free part of the CFT. We find that the
orientifold action Ω maps the graviton vertex operator with a picture number (p, q) to itself

Ω : V (p,q)
g 7→ V (p,q)

g . (3.9)
6For the action of the orientifold on genus-1 surfaces, see section D.
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One very important remark is in order. One might be tempted to conclude that sign of the
orientifold action on the SL(2,C) invariant vacuum |0〉 must be chosen to be even to keep
the graviton in the spectrum. But, this conclusion is too quick. It should be noted that
when a vertex operator is inserted and its position is fixed by the SL(2,C) invariance, one
must also insert an appropriate number of c, c̄ ghosts, cc̄ for the graviton vertex operator.
On the other hand, if the position of a vertex operator is not fixed, one must integrate over
the possible positions of the vertex operator by including the measure factor

∫
d2z, where z

is the position of the vertex operator. Because cc̄ and
∫
d2z are odd under the orientifold

action Ω, the graviton state prepared by inserting the graviton vertex operator at the origin
is therefore also odd, concerning the orientifold action on |0〉, under the orientifold action.
This fixes the sign of the orientifold action of the SL(2,C) invariant vacuum to be odd.

We shall now study how to make a comparison between the one-loop scattering amplitude
and the string one-loop correction to the Einstein-Hilbert action. Let us start by writing
the one-loop correction to the Einstein-Hilbert action

S
(1)
st ⊃

1
2κ2

4

∫
d4x
√
−g δE R , (3.10)

where δE, in general, depends on moduli. Let us now expand

gµν = ηµν + hµν , (3.11)

where ηµν is the Minkowski metric, then we obtain

S
(1)
st ⊃

1
4κ2

4

∫
d4xδE

[
(∂µhµν)(∂νh)− (∂µhρσ)(∂ρhµσ) + 1

2η
µν(∂µhρσ)(∂νhρσ)

−1
2η

µν(∂µh)(∂νh)
]

+O(h3) . (3.12)

We aim to match this action by comparing it to the one-loop scattering amplitudes.
Let us consider the graviton two-point function computed on the genus 1 Riemann surfaces
with or without boundaries

Z =
∑
R

〈〈Vg(p1, ε1)Vg(p2, ε2)〉〉R , (3.13)

where R runs over the torus, annuli, Möbius strip, and the Klein bottle, pi are graviton
momentum, and εi is the polarization tensors for the gravitons. Formally, the two-point
function (3.13) vanishes once the on-shell conditions and the momentum conservation
condition

p2
1 = p2

2 = p1 + p2 = p1 · p2 = p1µε
µν
1 = p2µε

µν
2 = ηµνε

µν
1 = ηµνε

µν
2 = 0 (3.14)

are imposed.
This phenomenon is not unique to string theory. In fact, we are very well aware that the

same phenomenon occurs in quantum field theory. The S-matrix of one incoming particle
state and one outgoing particle state vanishes after imposing the on-shell conditions and
the momentum conservation condition, despite the fact that the Green’s function of two
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particles does not vanish. To extract the one-loop renormalization of the kinetic term of
fields, one must therefore compute the amputated scattering amplitude by factoring out
the polarization tensor and the kinetic term of the field in question, for example, p2 +m2

for a scalar field with mass m.
To extract the one-loop renormalization of the graviton field, we shall relax the mo-

mentum conservation condition and factor out the kinematic factor and the polarization
tensor from (3.13). For now, for illustrative purposes, let us pretend to relax the on-shell
conditions completely. If we expand (3.13) in p2, without imposing the on-shell conditions
and the momentum conservation condition, we expect to find the form

Z = −AV4g
2
cK(p1, p2, ε1, ε2) +O(p4) , (3.15)

where we define

K(p1, p2, ε1, ε2) :=
(
p1µp2νηρσ − p1ρp2µηνσ + 1

2p1 · p2ηµρηνσ −
1
2p1 · p2ηµνηρσ

)
εµν1 ερσ2 .

(3.16)
We shall identify the relation between A and δE using the known one-loop correction to
the Einstein-Hilbert action from the torus diagram. This S-matrix can be reproduced by
considering the scattering amplitudes between two gravitons whose kinetic term is∫

d4x
A

32π2

[
(∂µhµν)(∂νh)− (∂µhρσ)(∂ρhµσ) + 1

2η
µν(∂µhρσ)(∂νhρσ)− 1

2η
µν(∂µh)(∂νh)

]
.

(3.17)

By using the identification [47]

hµν = −4πgcεµν
∫

d4p

(2π)4 e
ip·X , (3.18)

we find that the action (3.17) reproduces the graviton two-point function

−Ag2
cV4

(
p1µp2νηρσ − p1ρp2µηνσ + 1

2p1 · p2ηµρηνσ −
1
2p1 · p2ηµνηρσ

)
εµν1 ερσ2 (3.19)

As a result, we find the identification

δE = κ2
4
A

8π2 = α′

8πA . (3.20)

To compute the full kinematic factor K(p1, p2, ε1, ε2) by evaluating the two-point
function Z, we will have to perform a very cumbersome computation. Furthermore,
relaxing the on-shell conditions completely may lead to unexpected problems. Therefore, as
mentioned before, to compute Z, we shall only relax the momentum conservation condition
by setting

p1 + p2 = ξ , (3.21)

and
ξ2 = 0 , (3.22)

– 10 –
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while imposing the on-shell conditions

p2
1 = p2

2 = p1 · p2 = p1µε
µν
1 = p2µε

µν
2 = ηµνε

µν
1 = ηµνε

µν
2 = 0 , (3.23)

to reduce the full kinematic factor K(p1, p2, ε1, ε2) to

−K(p1, p2, ε1, ε2) := ηµρp1σp2νε
µν
1 ερσ2 . (3.24)

With the understanding that we are relaxing the momentum conservation condition, by
reading off the form

Z = AV4g
2
cp1ρp2µηνσε

µν
1 ερσ2 (3.25)

we can therefore compute the one-loop correction to the Einstein-Hilbert action

1
8π2

∫
d4x
√
−gAR . (3.26)

Note that the same prescription was used in earlier works in the literature [31, 34, 48].
It is extremely important to stress that the hack of relaxing the momentum conservation

condition to read off δE at this point is a prescription. Therefore, it is necessary to cross-
check the results of this draft by different means of computations that do not vanish
even with the momentum conservation, i.e. graviton four-point functions. One line of
concern one can have is that even in the small warping limit, relaxing the momentum
conservation condition can potentially excite the degrees of freedom propagating along the
internal directions, which if present can potentially spoil the direct sum structure, due to an
unexpected mixing between the external and internal states, that plays an important role in
the computations performed in this draft.7 The momentum non-conservation is measured
by ξ, which we took to be a four-vector that does not have a non-trivial component along
the internal direction. Therefore, it is not clear that the prescription we used may cause
a deep inelastic scattering where the missing momentum excites the compact degrees of
freedom. Furthermore, from the low energy point of view, at the two-derivative level such
a coupling between a graviton and an internal degree of freedom, say a modulus, cannot
appear. But, naïve intuition can fail, and therefore it would be extremely important to
confirm this expectation via explicit computations.

7It is important to note that the direct sum structure does not imply that states in the external directions
don’t interact with the states in the internal directions. What is meant by the direct sum structure is that
the states that describe the fluctuations along the external directions are constructed from the free field
CFT, and the states that describe the fluctuations along the internal directions are constructed from the
Calabi-Yau CFT. In fact, it is very well known that even in Calabi-Yau compactifications at the sphere
level scattering amplitudes involving two gravitons and two moduli fields don’t vanish despite the fact that
the worldsheet CFT for the Calabi-Yau compactification indeed enjoys the direct sum structure! Similarly,
it is expected that the string one-loop corrections to the Einstein-Hilbert action will non-trivially depend on
moduli, which shall be measured by the moduli dependence of the new supersymmetric index. This implies
that if one computes scattering amplitudes involving two gravitons and two moduli for example, one will
find a highly non-trivial result that is related to the derivative of the new supersymmetric index with respect
to moduli vevs.
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To perform a consistency check that the direct product structure of the worldsheet
CFT in the weak warping limit is not spoiled when using the momentum relaxation
prescription, one can, for example, consider a deep inelastic scattering of an external
graviton and an internal graviton, which propagates through the internal dimension.8 This
type of deep inelastic scattering amplitude can be computed for a stack of D-branes in flat
spacetime, but it is rather challenging to extend this computation to Calabi-Yau orientifold
compactifications because computing scattering amplitudes involving a state propagating
through the internal dimension is not very easy. It would be very important to confirm
from such a scattering amplitude computation that the internal degrees of freedom are not
excited in the graviton scattering amplitudes, and we are actively investigating this issue.
We hope to come back to this issue with more concrete computation in the near future.

As the computations performed in this draft are new, there is no known direct cross-
check of the prescription. But, in simpler settings, one can perform some cross-checks. In
type I compactifications on K3× T 2, the same prescription was used in [34] to compute
the graviton two-point function at the string one-loop. The results of [34] were reproduced
by the graviton three-point function in section 3 of [37]. As an extra cross-check of the
prescription in a simpler setting, in section 3.2 we will compute the graviton two-point
function on the worldsheet torus and obtain the result that is in perfect agreement with
the well-known result in the literature [34–43].

Finally, we shall now clarify what we mean by computing the string one-loop corrections
to the EH action in this draft. Even though the graviton correlation function can be evaluated
using the rules of the free field CFT, within the regime of the validity of our approximation
scheme, the graviton two-point functions still depend on the spectrum of the internal CFT
which is beyond reach in general. And to evaluate the moduli dependence of the string
one-loop corrections to the EH action, it is crucial to have some access to the spectrum of
the internal CFT.

So, naïvely, one might conclude that we reached a hard wall even after invoking several
approximations and the prescription to make progress because our answer depends on the
spectrum of the internal CFT. Furthermore, because the Einstein-Hilbert action cannot be
written as an F-term in the effective supergravity, it seems hard to imagine a possibility
that the EH action is related to a computable protected quantity.

Despite this expectation, quite surprisingly, in the subsequent sections we will show that
the string one-loop corrections to the Einstein-Hilbert action are determined in terms of the
new supersymmetric index and the Witten index of various one-loop diagrams. Therefore,
despite the naïve expectation, the one-loop diagrams only depend on more computable
crude details of the string spectrum. In section 5, we shall explain why this structure is
at some level expected by comparing the graviton two point function to topological string
theory amplitudes at one-loop.

In the subsequent sections, we will evaluate contributions to δE from Riemann surfaces
of genus one with and without boundaries.

8We thank the referee for suggesting this computation.
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3.2 Torus diagram

In this section, we shall review the well-known corrections to the Einstein-Hilbert action
from the torus diagram. Relevant papers include [34–43]. For the torus diagram, there are
two spin structures for left and right-moving fermions. We need to sum over those two spin
structures accordingly. Because the Einstein-Hilbert term is CP even, one needs to sum
over (even,even) and (odd,odd) spin structures.

As in the heterotic compactifications, the sum over (even,even) spin structures yields
zero [34, 35]. This can be also understood as a corollary of (D.9). The only non-vanishing
contribution, therefore, comes from the (odd,odd) spin structure which yields [36]

δET = ± 1
25 · 3 · πTrR,R

(
(−1)FL+FRqL0− 3

8 q̄L̄0− 3
8
)closed

int
, (3.27)

where + corresponds to type IIB and − correponds to type IIA. This result was obtained
by evaluating the graviton three-point function on the worldsheet torus [36]. Note that

TrR,R
(
(−1)FL+FRqL0− 3

8 q̄L̄0− 3
8
)closed

int
(3.28)

is the Witten index [49] of the compactification manifold. In a geometric phase, we have

δET = ± 1
25 · 3 · πχ , (3.29)

where χ is the Euler characteristic of the Calabi-Yau threefold.
This result can be compared to the O(α′3R4) terms obtained in 10d type II string

theory [38–41]. Dimensional reduction of the O(α′3R4) terms yield the corrections to the
Einstein-Hilbert action in the 4d effective supergravity. This result can be extracted by
ζ(3) with g2

sπ
2/3, for example, in eq. (A.21) in [42], or by extracting the string one-loop

correction from the eq. (D.20) in [43]. For convenience let us take type IIB string theory.
We write (D.20) in [43] here

− 1
27π7α′4

∫
d4x

[
1536α(2π)3χf0

]
R , (3.30)

where we define α := (α′)3/(3 · 212), and f0 the non-holomorphic Eisenstein series of weight
3/2 whose expansion is given as f0 = 2ζ(3)e−3φ/2 + 2π2

3 eφ/2 + . . . . By expanding the
numerical factors, we get

− 1
26π4α′

∫
d4x(ζ(3)e−3φ/2 + eφ/2π2/3 + . . . )χR . (3.31)

As a result, we can extract the torus contribution

δET = − χκ2
4

3 · 25 · π2α′
= − χ

3 · 25 · π
, (3.32)

which agrees with (3.27).
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In order to crosscheck the momentum non-conservation prescription, we will directly
compute the (odd,odd) spin structure amplitude. In the (odd,odd) spin structure, due
to the presence of the non-trivial superconformal Killing vectors, we must fix θ and θ̄ of
some vertex operators to zero. This forces some of the vertex operators to have non-trivial
picture numbers. Furthermore, we shall include the PCOs. There are in total four different
ways to distribute the picture numbers

〈V (−1,−1)
g (z1, p1, ε1)V (0,0)

g (z2, p2, ε2)〉 , 〈V (0,0)
g (z1, p1, ε1)V (−1,−1)

g (z2, p2, ε2)〉 , (3.33)
〈V (−1,0)
g (z1, p1, ε1)V (0,−1)

g (z2, p2, ε2)〉 , 〈V (0,−1)
g (z1, p1, ε1)V (−1,0)

g (z2, p2, ε2)〉 . (3.34)

Because gravitons are massless (3.33) vanish.
We shall distribute the picture numbers as the first in (3.34)

K(o)
σ (p1, p2) := 〈V (−1,0)

g (z1, p1)V (0,−1)
g (z2, p2)eφTF (z0)eφ̄T̄F (z̄0)〉 , (3.35)

where eφTF (z0) and eφ̄T̄F (z̄0) are due to the insertion of PCOs which we normalize as

X = {QB, ξ(z)} = eφTF + . . . , (3.36)

and we normalize TF = i(2/α′)1/2ψ · ∂X + . . . .9 Because we are in the (odd,odd) spin
structure, there are four fermionic zero modes both from left and right moving sectors of
the non-compact part of the worldsheet CFT. Therefore, we should soak up the fermionic
zero modes to have a non-vanishing result by pairing the zero-mode integral with fermion
insertions. We shall carefully demonstrate this procedure as follows. The component form
of the correlator is

K(o) :=− 22g2
c

α′2
(2π)2ε1µνε

2
ρσ

〈
e−φψµ1

(
i∂̄Xν

1 + α′

2 p1 · ψ̄1ψ̄
ν
1

)(
i∂Xρ

2 + α′

2 p2 · ψ2ψ
ρ
2

)
e−φ̄ψ̄σ

×
(
eφψ · ∂X

)
(z0)

(
eφ̄ψ̄ · ∂̄X

)
(z̄0)

〉
. (3.37)

First, we compute
〈ψµ1 p2 · ψ2ψ

ρ
2ψ

δ〉 = p2αη(τ)4εµαρδ . (3.38)

Similarly, we compute
〈p1 · ψ̄1ψ̄

ν
1 ψ̄

σψ̄ε〉 = p1β(η(τ)4)∗εβνσε . (3.39)

From the b, c ghost system we obtain |η(τ)|4, and we have an additional factor (2π)2 in
the vacuum amplitude10 and from the β, γ ghost system we obtain |η(τ)|−4. The boson

9Note that we used the standard normalization of ghost fields following [47], which resulted in a difference
of the overall normalization by 2 from [50, 51].

10Note that this factor was introduced to take into account that the vertex position convention used
in this paper is different from the vertex position convention of [47]. In this note, we normalized z such
that z ∼ z + 1 ∼ z + τ . If we used the convention of [47], we wouldn’t have the additional (2π)2 in
the vacuum amplitude. Instead, the vertex position integral will give ((2π)2τ2)2, instead of τ2

2 , and the
contraction between bosons in the PCOs will generate −α′/(8πτ2), instead of −πα′/2τ2, which in total yield
the same answer.
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partition function generates |η(τ)|−8 factor. Integral over the closed string momentum
along the non-compact directions generates∫

d4k

(2π)4 e
−πτ2α′k2 = 1

24π4α′2τ2
2
. (3.40)

The contraction between the bosonic components in the PCOs generate −πα′

2τ2
. The internal

part of the CFT produces

χ := Tr(int)
R,R

(
(−1)F+F̄ qL0− 3

8 q̄L̄0− 3
8
)
. (3.41)

Integral over the vertex moduli generates 4τ2
2 . Finally, we need to include the volume factor

V4. Combining all these, we obtain

K(o) = ±V4g
2
c

2πα′
∫
d2τ

2τ2
2
ε1µνε

2
ρσp1αp2βε

µαρεβνσχ , (3.42)

where the overall sign + is for type IIA and − is for type IIB. Using the identity∫
d2τ

τ2
2

= π

3 , (3.43)

we obtain
K(o) = ±1

3
V4g

2
c

22α′
ε1µνε

2
ρσp1αp2βε

µαρεβνσχ . (3.44)

After rewriting the Levi-Civita symbols, we obtain

K(o) = ∓1
3
V4g

2
c

22α′
ε1µνε

2
ρσp

σ
1p

µ
2η

νρχ . (3.45)

Here we now obtain
A = ±1

3
1

22α′
χ , (3.46)

which corresponds to
δET = ± 1

25 · 3 · πχ . (3.47)

As a result, we find the perfect agreement with the known result.

3.3 Annulus

In this section, we compute the contribution from annuli diagrams ZA to Z. We have

ZA = V4
28π4α′2

∑
α,β even

∫ ∞
0

dt

t3

∫
A
d2z1

∫
A
d2z2

[
〈V (0,0)
g (z1, p1, ε1)V (0,0)

g (z2, p2, ε2)〉sA

× (−1)α+β ϑα,β(τ)
η(τ)3 Trα

(
(−1)βF qL0− 3

8
)open

int

]
, (3.48)

where the factor 1/(26π4t2) was induced due to the integral over the momentum of the
open string ∫

d4k

(2π)4 e
−2πtα′k2 = 1

26π4α′2t2
, (3.49)
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and the factor (−1)α+βϑα,β(τ)/η(τ)3 comes from the non-compact directions and the ghost
system, and we included an additional factor 1/2 due to the GSO projection. Unlike
in the case of toroidal amplitude, we don’t include an additional factor of (2π)2 which
was introduced to take into account the fact that the ambient torus has the periodicity
z ∼ z + 1 ∼ z + τ . The reason why we don’t have to do so here is because the fermion
correlator contains the explicit factor of (2π)2, to automatically take this convention into
account.11 Note that we included the multiplicities due to the Chan-Paton factors in
the trace for the internal CFT. The sum runs over even spin structures because the
Einstein-Hilbert term is CP-even. Using (C.12), we find

〈V (0,0)
g (z1, p1, ε1)V (0,0)

g (z2, p2, ε2)〉sA = −g2
cηµρp1σp2νε

µν
1 ερσ2

[
〈∂X1∂X2〉A(〈ψ̄2ψ̄1〉sA)2

+ 〈∂X1∂̄X2〉A(〈ψ2ψ̄1〉sA)2 + c.c

]
, (3.50)

where we used the shorthand notation for the spin structure s = (α, β). For example, a
trace in the spin structure s is written as

Trα
(
(−1)βF qL0− 3

8
)
, (3.51)

where α = 0 stands for the NS sector, and α = 1 stands for the R sector. It is important
to note that the bosonic two-point functions do not depend on the spin structure, but the
fermionic two-point functions do as we have for the spin structure s = (α, β) (D.22)

(〈ψ̄2(0)ψ̄1(z)〉sA)2 =
(
ϑα,β(z|τ)ϑ′1,1(0|τ)
ϑα,β(0|τ)ϑ1,1(z|τ)

)2

. (3.52)

To evaluate the integral over the vertex positions, we will use the identities [46]

∑
α,β even

(−1)α+βϑα,β(0|τ)Trα
(
(−1)βF qL0− 3

8
)

int
= 0 , (3.53)

and (A.16) (
ϑα,β(z|τ)ϑ′1,1(0|τ)
ϑα,β(0|τ)ϑ1,1(z|τ)

)2

=
ϑ′′α,β(0|τ)
ϑα,β(0|τ) − ∂

2
z log ϑ1,1(z|τ) . (3.54)

Because the term ∂2
z log ϑ1,1(z|τ) does not depend on the spin structure, after summing

over the spin structures (α, β) the contribution from ∂2
z log ϑ1,1(z|τ) cancels out. Therefore,

11Said differently, in the toroidal amplitude computation, we had two integral over the vertex operator
positions, and the two-point correlators of the vertex operators only produced 1/vol factor, instead of 1/vol2.
This is because the fermion terms in the vertex operators were used to soak up fermion zero modes. When
changing the convention from that of [47] to our convention, one has to correctly change the normalization
of the fermion zero modes.
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we can rewrite the integral as

δEA := α′ZA
23πV4g2

cηµρp1σp2νε
µν
1 ερσ2

, (3.55)

= − 1
211π5α′

∑
α,β even

∫ ∞
0

dt

t3

∫
A
d2z1

∫
A
d2z2

[(
〈∂X1∂X2〉A − 〈∂X1∂̄X2〉A + c.c

)

× (−1)α+β ϑ
′′
α,β(0|τ)
η(τ)3 Trα

(
(−1)βF qL0− 3

8
)open

int

]
, (3.56)

= − 1
211π4

∑
α,β even

∫ ∞
0

dt

t2
(−1)α+β ϑ

′′
α,β(0|τ)
η(τ)3 Trα

(
(−1)βF qL0− 3

8
)open

int
, (3.57)

where we have used the identity (D.18) to perform the integral over the vertex positions.
Now that we reduced the integral, we will use the identities (3.53) and (3.54) again to

rewrite ϑ′′α,β(0|τ) in a more useful form. In principle, one can leave z in (3.54) arbitrary as
long as ϑ1,1(z|τ) 6= 0. But, we will fix z = τ

2 to rewrite ϑ′′α,β(0|τ) as

ϑ′′α,β(0|τ) = ϑα,β(0|τ)∂2
z log ϑ1,1(z|τ)|z=τ/2 + 4π2 ϑα,β( τ2 |τ)2η(τ)6

ϑα,β(0|τ)ϑ1,1( τ2 |τ)2 , (3.58)

and rewrite δEA as

δEA =− 1
28π2

∑
α,β even

∫ ∞
0

dt

2t2 (−1)α+β ϑα,β( τ2 |τ)2η(τ)3

ϑα,β(0|τ)ϑ1,1( τ2 |τ)2Trα
(
(−1)βF qL0− 3

8
)open

int
. (3.59)

Because of the term ϑα,β( τ2 |τ) in the numerator, contribution from the spin structure
(α, β) = (0, 1) vanishes. Therefore, we only need to study the spin structures

(α, β) = (0, 0) , (1, 0) . (3.60)

Let us study a contribution from a massive state with (h,Q). Using the identity

ϑα,0( τ2 |τ)2

ϑ1,1( τ2 |τ)2 = −ϑα+1,0(τ)2

ϑ0,1(τ)2 , (3.61)

we reorganize the integrand as

Z
(h,Q)
A :=

∑
α,β even

(−1)α+β ϑα+1,β(0|τ)2η(τ)3

ϑα,β(0|τ)ϑ0,1(0|τ)2Tr
(h,Q)
α

(
(−1)βF qL0− 3

8
)open

int
, (3.62)

= 1
ϑ0,1(τ)2 q

h− 1+Q
4
(
ϑQ,0(2τ)ϑ1,0(τ)2 − ϑ1−Q,0(2τ)ϑ0,0(τ)2

)
. (3.63)

Let us use the addition rules (A.17), (A.19), and (A.20) to rewrite Z
(h,Q)
A as

Z
(h,Q)
A = qh−

1+Q
4

2ϑQ,0(2τ)ϑ0,0(2τ)ϑ1,0(2τ)− ϑ1−Q,0(2τ)(ϑ0,0(2τ)2 + ϑ1,0(2τ)2)
ϑ0,0(2τ)2 − ϑ1,0(2τ)2 , (3.64)

= (−1)Qqh−
1+Q

4 ϑ1−Q,0(2τ) . (3.65)
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Finally, by using the identity (B.19), we conclude

Z
(h,Q)
A = Tr(h,Q)

R

(
(−1)F−

3
2FqL0− 3

8
)open

int
. (3.66)

Let us now study contributions from the massless states. We shall start with the
vacuum state. As the character for the vacuum state can be written as

Tr(vac)α

(
(−1)βF qL0− 3

8
)open

int
= Tr(0,0)

α

(
(−1)βF qL0− 3

8
)open

int
− Tr(

1
2 ,1)
α

(
(−1)βF qL0− 3

8
)open

int
,

(3.67)

we conclude that the vacuum contribution is

Z
(vac)
A :=

∑
α,β even

(−1)α+β ϑα+1,β(0|τ)2η(τ)3

ϑα,β(0|τ)ϑ0,1(0|τ)2Tr
(vac)
α

(
(−1)βF qL0− 3

8
)open

int
, (3.68)

= Tr(vac)R

(
(−1)F−

3
2FqL0− 3

8
)open

int
. (3.69)

Let us finally study the (±) states. By using the identity (B.21), we find

Tr(±)
α

(
(−1)βF qL0− 3

8
)open

int
= 1

2Tr
( 1

2 ,1)
α

(
(−1)βF qL0− 3

8
)open

int
, (3.70)

for the even spin structures (s1, s2), and

Tr(±)
R

(
(−1)F−

3
2FqL0− 3

8
)open

int
= 1

2Tr
( 1

2 ,1)
R

(
(−1)F−

3
2FqL0− 3

8
)open

int
∓ 3

2 . (3.71)

As a result, we conclude

Z
(±)
A :=

∑
α,β even

(−1)α+β ϑα+1,β(0|τ)2η(τ)3

ϑα,β(0|τ)ϑ0,1(0|τ)2Tr
(±)
α

(
(−1)βF qL0− 3

8
)open

int
, (3.72)

= Tr(±)
R

(
(−1)F−

3
2FqL0− 3

8
)open

int
± 3

2 . (3.73)

Note that we used (B.24).
Combining (3.66), (3.69), and (3.73), we arrive at one of the main results of this paper

δEA = 1
28π2

∫ ∞
0

dt

2t2
[
TrR

(
(−1)F−

3
2FqL0− 3

8
)open

int
+ 3

2
(
n+
A − n

−
A

)]
, (3.74)

where n(±)
A is a number of the (±) state. Note that one can use the following identity

TrR
(
(−1)F−

3
2 qL0− 3

8
)open

int
= n+

A − n
−
A , (3.75)

to rewrite (3.74) as

δEA = 1
28π2

∫ ∞
0

dt

2t2TrR
[
(−1)F−

3
2

(
F + 3

2

)
qL0− 3

8

]open

int
. (3.76)
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3.4 Möbius strip and Klein bottle

In this section, we study the contributions from the Möbius strip and the Klein bottle.
Most of the computation goes through the same as before.

We first study the Möbius strip contribution. We note that for the Möbius strip τM
is now

τM = 1
2 + it , (3.77)

and the orientifold projection Ω is inserted in the trace. As a result, we obtain

δEM = 1
28π2

∫ ∞
0

dt

2t2
[
TrR

(
(−1)F−

3
2FΩqL0− 3

8
)open

int
+ 3

2
(
n+
M − n

−
M

)]
. (3.78)

To read off the contribution from the Klein bottle, we should first remark on a few
important details. The Klein bottle is obtained by orientifolding closed string, torus. We
set the torus modulus to be

τK = 2it , (3.79)

and
IK(z) = 1− z̄ + τK

2 . (3.80)

To obtain the correction to the Einstein-Hilbert action, we must sum over (even,even)
and (odd,odd) spin structures. Because the left-handed spin structure is identical to
the right-handed spin structure, we can focus only on the left-handed spin structure.
The contribution from the (even,even) spin structure can be read off from the annulus
contribution by replacing τA with τK and inserting the orientifold projection Ω. Note that
the momentum integral now yields 1/(24π2α′2t2) instead of 1/(26π2α′2t2) [47]. Additionally,
we shall include a factor of 2 because Im τK is twice that of the annulus.

δE
(e,e)
K = 1

25π2

∫ ∞
0

dt

2t2
[
TrR,R

(
(−1)FFΩqL0− 3

8 q̄L̄0− 3
8
)closed

int
+ 3

2
(
n+
K − n

−
K

)]
. (3.81)

Similarly, the contribution from the (odd,odd) spin structure can be read off from (3.27) by
inserting the orientifold projection Ω

δE
(o,o)
K = 1

25 · 3 · πTrR,R
(
(−1)FΩqL0− 3

8 q̄L̄0− 3
8
)closed

int
. (3.82)

In a geometric phase, we have [52]

δE
(o,o)
K = 1

25 · 3 · πχf , (3.83)

where we define
χf :=

∑
p,q

(−1)p+q(hp,q+ − h
p,q
− ) , (3.84)

and hp,q± are orientifold even (odd) hodge numbers.
By combining (3.74), (3.78), (3.81), and (3.82), we arrive at the one-loop correction to

the EH term
δE = 1

2 (δET + δEA + δEM + δEK) . (3.85)
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4 The one-loop correction and small cycles

In this section, we shall study the size of the one-loop correction δE and its effect on the
one-loop correction to the Kähler potential.

First, we shall study the contribution from a massive state with (h,Q). Let us define

E(h,Q)
σ := cσ(−1)Q

∫ ∞
1

dt

2t2Tr
(h,Q)
R

(
(−1)F−

3
2FqL0− 3

8
)
, (4.1)

where cT,M = 2−8π−2 and cK = 2−5π−2. A few comments are in order. E
(h,Q)
σ can be

understood as a contribution to δEσ from an irreducible state with (h,Q). To compute
δEσ, one should integrate t between 0 and ∞ as

δEσ = −cσ
∫ ∞

0

dt

2t2TrR,R
(
(−1)FFΩqL0− 3

8 q̄L̄0− 3
8
)
. (4.2)

But, to define E(h,Q), we only integrated t from 1 to ∞. The reason for doing so is to isolate
the open string channel and the most sizable contribution therein, the IR contribution. The
contributions from the UV region when t < 1 won’t be very important for our discussion as
the most important corrections are coming from states with low energy. Note further that
the UV divergence is canceled by requiring the tadpole cancellation.

With this in mind, we shall evaluate the contribution from a massive state with (h,Q).
We use the following expression to numerically evaluate the integral

E(h,Q)
σ = cσ

∫ ∞
1

dt

2t2 q
h− 1+Q

4 ϑ1−Q,0(2τ) . (4.3)

For simplicity, we will only report the case of the annulus and the Möbius strip. For large
h we find

E(h,1) ' 0.139cσ exp(−3.271h) , (4.4)

and
E(h,0) ' 0.385cσ exp(−3.272h) . (4.5)

As expected, we find a very fast decay at large h. We also report values of E(h,Q) at
h = |Q|/2

E(1/2,1) ' 0.509cσ , (4.6)

and
E(0,0) ' 1.000cσ . (4.7)

For the numerical values of E(h,Q) for wide ranges of h, see figure 1 and 2.
On the other hand, one can consider a limit where at least one effective divisor in

the Calabi-Yau orientifold shrinks. In such a case, one expects that infinitely many string
states will become massless thereby inducing divergent correction to the Kähler potential
by inspecting (4.3).12 As a result, one expects a correction to the Kahler potential that
scales as 1

T a
, (4.8)

12We thank Daniel Junghans, Gerben Venken, Arthur Hebecker, and Simon Schreyer for the related
discussion.
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Figure 1. ζ0 := E
(h,0)
σ /cσ for massive states with various values of h. Left: we plot ζ0 for small h.

Right: blue dots represent the numerical value of log(ζ0) at given h. The black line is a linear fit
for log(ζ0).
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Figure 2. ζ1 := E
(h,1)
σ /cσ for massive states with various values of h. Left: we plot ζ1 for small h.

Right: blue dots represent the numerical value of log(ζ1) at given h. The black line is a linear fit
for log(ζ1).

where T is Einstein-frame divisor volume, and a is a positive integer. This is in agreement
with the conjecture proposed by Berg, Haack, and Pajer [27]. For related field theory
analyses, see [28, 33].

4.1 Quintic threefold and conifold transitions

We will now study how a particular class of small P1 cycles can affect the one-loop correction
to the EH term. We will focus on the so-called nilpotent P1 cycle, which we will denote by
C. For a detailed study of such curves, see for example [53]. The important property of
such nilpotent P1 cycles is that one can shrink the volume of nilpotent P1 without shrinking
the volume of any effective divisors. When C shrinks to a point, the Calabi-Yau geometry
develops conifold singularities. Hence, at the level of N = 2 compactification, the point
in the moduli space t∗ where Vol(C) = 0 is a finite distance singularity and only a finite
number of states become massless. We will first study the Quintic threefold and its conifold
transition at the level of N = 2 compactification. Then, we will perform orientifolding of
the Calabi-Yau threefold X3, which is obtained by the conifold transition from the Quintic
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threefold Y3. We will study the one-loop correction to the EH term and its corresponding
correction to the Kähler potential when the nilpotent curve volume is extremely small.

Let us start with the GLSM description of Y3. There are five homogeneous coordinates
xi, for i = 1, . . . , 5, and their GLSM charge matrix is given as

x1 x2 x3 x4 x5
1 1 1 1 1

(4.9)

Hence, the toric ambient variety V4 is four-dimensional projective space P4, and the Quintic
threefold is defined as an anti-canonical hypersurface within P4. The defining equation of
Y3 is a degree 5 polynomial in xi, whose form is

G =
5∑
i=0

g(i)(x4, x5)h(i)(x1, x2, x3) , (4.10)

where g(i) is a degree i polynomial in x4 and x5, and h(i) is a degree 5− i polynomial in x1,
x2, and x3. We define an effective divisor class [D] as a vanishing locus of xi, and define its
dual curve class to be [C]. By definition we have

C ·D = 1 . (4.11)

We compute the Hodge vector of D

h•(D,OD) = (1, 0, 4) . (4.12)

We compute the intersection form J of the Quintic threefold

J = 5
3! t

3 , (4.13)

where t is volume of C. We denote the complexified volume of C by z :=
∫
C(B2 + iJ).The

triple intersection number KDDD is given as

KDDD = ∂3
t J = 5 . (4.14)

We record a few genus-0 Gopakumar-Vafa (GV) invariants [54, 55] of the Quintic threefold13

C 2C 3C 4C 5C
GV 2875 609250 317206375 242467530000 229305888887625

When we are at a generic point in the moduli space, the defining equation G is regular
at every point in the Calabi-Yau. Now, we tune complex structure moduli so that

g(0)(x4, x5)h(0)(x1, x2, x3) = 0 . (4.15)

Then, the defining equation G can be written as

G = x4G1 + x5G2 , (4.16)
13For a detailed study of the Quintic threefold and GV invariants therein, see [56].
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where G1 and G2 are accordingly chosen degree 4 polynomials. We claim that this Quintic
threefold has 16 conifolds singularities. To check this claim, we need to look for solutions to

G = ∂iG = 0 , (4.17)

where ∂iG := ∂G/∂xi. There are solutions to this set of equations

x4 = x5 = G1 = G2 = 0 . (4.18)

Because G1 and G2 are degree four polynomials, we find that there are point-like solutions
where the Calabi-Yau Y3 is singular. To resolve the singularities, we will blow up Y3 such
that x4 = x5 = 0 becomes a subset of the Stanley-Reisner ideal. To do so, we introduce an
exceptional divisor E and its associated homogeneous coordinate e, and rescale x4 and x5 as

x4 7→ ex4 , x5 7→ ex5 . (4.19)

After the introduction of the exceptional divisor, we have

G =
5∑
i=1

eig(i)(x4, x5)h(i)(x1, x2, x3) . (4.20)

Because there is an overall factor of e, we shall mod out this overall factor. As a result,
we find the defining equation of X3 is

G̃ =
5∑
i=1

ei−1g(i)(x4, x5)h(i)(x1, x2, x3) . (4.21)

Note that the corresponding GLSM for X3 is given as

x1 x2 x3 x4 x5 e

1 1 1 0 0 1
0 0 0 1 1 −1

(4.22)

X3 has h1,1(X3) = 2 and h2,1(X3) = 86.
Let us define divisor classes as

[D1] := {x1 = 0} , [D2] := {x4 = 0} , [E] := {e = 0} . (4.23)

We pick a basis of the H2(X3,Z) to be {[D1], [D2]}. We choose a dual basis of curves
{[C1], [C2]} such that

C1 ·D1 = 1 , C1 ·D2 = 0 , C1 · E = 1 , (4.24)

and
C2 ·D1 = 0 , C2 ·D2 = 1 , C2 · E = −1 . (4.25)

We will the denote volume of Ci as ti. Similarly, we define the complexified volume zi as

zi :=
∫
Ci

(B2 + iJ) . (4.26)
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We find the intersection form
J = 5

6 t
3
1 + 2t21t2 . (4.27)

Note that volumes of divisors [D1], [D2] and [E] are given as

Vol(D1) = 5
2 t

2
1 + 2t1t2 , Vol(D2) = 2t21 , Vol(E) = 1

2 t
2
1 + 4t1t2 . (4.28)

We compute the Hodge vectors

h•(D1,OD1) = (1, 0, 4) , h•(D2,OD2) = (1, 0, 1) , h•(E,OE) = (1, 0, 0) . (4.29)

We compute genus-0 GV invariants of X3,14

0 C1 2C1 3C1 4C1

0 0 640 10032 288384 10979984
C2 16 2144 231888 23953120 2388434784
2C2 0 120 356368 144785584 36512550816
3C3 0 −32 14608 144051072 115675981232
4C3 0 3 −4920 5273880 85456640608

It should be noted that the GV invariants of the Quintic can be obtained by summing over
GV invariants of X3 by

GV (nC) =
∞∑
i=0

GV (nC1 + iC2) , (4.30)

for n 6= 0. The curve class C2 is the nilpotent curve that we are looking for. Upon shirinking
C2, X3 goes back to the singular Y3. We conclude that the Mori coneM(X3) is generated
by [C1] and [C2] over Z>0. Similarly, the effective cone E(X3) is generated by [D1], [D2]
and [E] over Z>0. Note that in the limit where C2 shrinks, the divisor classes [D2] and [E]
recombine to yield

[D1] ≡ [D2] + [E] for t2 = 0 . (4.31)

It is important to stress that in z2 → 0 limit, all effective divisors have finite size and their
volumes scale as O(t21).

As promised, we shall now perform an orientifolding to study N = 1 corrections to
the EH action and the corresponding terms in K(1) when Vol(C2) is small. One very
important remark is in order before we delve into the orientifolding. At the level of
N = 2 compactification, Re zi =

∫
Ci B2 can take any real value mod Z. But, after the

orientifolding,
∫
B2 can only take half-integral values and we shall carefully choose its value.

With this in mind, we will proceed to find an O3/O7 orientifold of X3. We choose an
orientifold action Ω that maps

x5 7→ −x5 . (4.32)

14We used CYtools to compute the GV invariants [57, 58].
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The orientifold X3/Ω has two sets of O-planes: an O7-plane at x5 = 0, and an O3-plane
at x1 = x2 = x3 = 0. We compute equivariant Hodge numbers of X3/Ω using the results
of [59]

h1,1
+ = 3 , h1,1

− = 0 , h2,1
− = 45 , h2,1

+ = 41 . (4.33)

As a result, we compute
χf = 18 . (4.34)

To simplify the discussion, we will cancel the D7-brane tadpole locally by placing four
D7-branes on the O7-plane at x5 = 0. In such a configuration, the D3-brane tadpole is
given as

−Qtadpole
D3 = χf

4 = 4 + 1
2 . (4.35)

To saturate the D3-brane tadpole, we shall place four spacetime filling D3-branes at generic
locations in X3/Ω, and put one D3-brane on top of the O3-plane at x1 = x2 = x3 = 0. We
will set Re z1 = 0 and Re z2 = 1/2. The reason for choosing Re z2 = 1/2 is to cancel the
Freed-Witten anomaly of the seven-brane stack at x5 = 0 [60]. An important comment is in
order. Because of the half-integral B-flux Re z2 = 1/2, one cannot send z2 → 0 limit even if
the volume of C2 is extremely small. Therefore the orientifold X3/Ω is now disconnected
from an orientifold Y3/Ω, where the orientifold action Ω acts as x5 7→ −x5. But, the flop
transition from Im z2 > 0 to Im z2 < 0 is not projected out by the orientifolding. Note that
Y3/Ω has the equivariant Hodge numbers

h1,1
+ (Y3) = 2 , h1,1

− (Y3) = 0 , h2,1
− (Y3) = 63 , h2,1

+ (Y3) = 38 . (4.36)

Now, we will take Im z2 = ε to be very small and at the same time take Im z1 to be
large, so that the overall Calabi-Yau volume

V = 5
6 t

3
1 + 2t21t2 , (4.37)

is also large.
We first study the Klein bottle contribution. Had the Re z2 = 0 been zero, h2,1

− (Y3)−
h2,1
− (X3) many of the frozen complex structure moduli of Y3/Ω would have become massless

and moduli again in z2 → 0 limit. Similarly, in such a limit, h2,1(X3) − h2,1(Y3) many
vector multiplets can be deformed to be massive. That being said, in a small ε limit, O(10)
irreducible states of the closed string theory should become almost massless. Because the
lowest lying modes dominate δE, we can use those almost massless irreducible states to
estimate the size of δEK. We denote the contributions from the almost massless irreducible
states by δEεK , which is estimated to be

δEεK = 2−5π−2 ×O(10) = O(10−2) . (4.38)

Now, let us study the contributions from open strings extended from and to the seven-brane
stack. Carefully counting the change in the number of moduli is outside the scope of this
paper. Instead, we will present a rough estimate as the order of magnitude is what matters
here. The Hodge vector of the divisor would have changed from (1, 0, 1) to (1, 0, 4). So,
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in the upstairs picture, one can see that a single seven-brane wrapped on the divisor D5
would gain three deformation moduli. Note that the Hodge vector of the divisor class [2D5]
changes from (1, 0, 2) to (1, 0, 14). We also compute that the equivariant Hodge vectors
would change from

h•+(2D5,O2D5) = (1, 0, 1) , h•−(2D5,O2D5) = (0, 0, 1) , (4.39)

to
h•+(2D5,O2D5) = (1, 0, 4) , h•−(2D5,O2D5) = (0, 0, 10) . (4.40)

As a single seven-brane in the downstairs picture corresponds to two seven-branes wrapped
on the same divisor, for a single seven-brane in the downstairs picture, we estimate that
there should be O(10) states becoming almost massless in small ε limit. Therefore, we
estimate 1

2
(
δEεA,D7−D7 + δEεM,D7−D7

)
= O(10−3) . (4.41)

Because the small C2 volume does not induce any new zero modes for D3-D7 and D3-D3
strings, we don’t expect a significant contribution. Therefore, we conclude that the change
in δE when shrinking volume of C2 while fixing

∫
C2
B2 = 1/2 is estimated to be

δEε − δEgeneric = O(10−2) . (4.42)

Now, let us finally study its effect on the one-loop corrected Kähler potential K(1)
φφ̄

. The
one-loop correction to the EH action contribution is

e2Φ4
K

(1)
φφ̄,δE

K
(0)
φφ̄

= O
(
e2Φ4δE

)
. (4.43)

Therefore, we find that under the limit Im z2 → 0, we have

δ

e2Φ4
K

(1)
φφ̄,δE

K
(0)
φφ̄

 = O
(

10−2 g
2
s

V

)
. (4.44)

Quite happily, when the overall Calabi-Yau volume is large and string coupling is small,
the one-loop correction to the Kähler potential due to the one-loop correction to the EH
term is very small.

5 Discussion and future directions

In this note, we studied the string one-loop corrections to the Einstein-Hilbert action in
string frame. Because these corrections are required to fully determine the string one-loop
corrected Kähler potential of moduli fields, it is very important to compute the loop
corrections to the EH term.

One surprising result is that the outcome of the computation is that the string one
loop correction is at large determined by the new supersymmetric index [44]

TrR
(
(−1)FFqL0− 3

8
)
, (5.1)
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for example recall the annulus contribution

δEA = 1
28π2

∫ ∞
0

dt

2t2
[
TrR

(
(−1)F−

3
2FqL0− 3

8
)open

int
+ 3

2
(
n+
A − n

−
A

)]
. (5.2)

This is a very nice feature of the one-loop correction for the following reason. As was studied
in [44], the new supersymmetric index is only sensitive to the F-terms of the internal theory
or the chiral rings of the internal CFT. This is a much more favorable situation than a
generic amplitude which may in general depend on D-terms of the internal theory as well,
which are much more difficult to understand.

The claim that the moduli dependence of δE is determined by the new supersymmetric
index seems quite radical because the new supersymmetric index typically shows up in
topological string amplitudes that compute the F-terms of the low energy supergravity of
physical superstring theories [61]. Therefore the computations performed in section 3 may
look very surprising to some cautious readers. In light of this, we shall provide an intuitive
explanation of the origin of the new supersymmetric index. To do so, it is useful to study
the holomorphic gauge coupling of gauge fields living on D-branes in 4d N = 1 effective
supergravity obtained from type II string compactification on Calabi-Yau orientifolds. As
is well known, the kinetic term of a gauge field is given by the F-term∫

d2θfWαWα , (5.3)

where W is the field strength superfield for the vector multiplet, and f is the holomorphic
gauge coupling. In [61] it was conjectured that the threshold correction to the effective
gauge coupling is computed by open topological string theory partition function at one-loop∫

dt

2tTrR
(
(−1)F−

3
2FqL0− 3

8
)

int
, (5.4)

which is shown to satisfy the holomorphic anomaly equation [61–64]. Partial proofs of the
open string version of the BCOV conjecture were given in [65, 66].

An efficient way to compute the threshold correction to the effective gauge coupling
is to use the background field method. One can start by computing the string one-loop
partition function Λ(F), summed over the even spin structure, where the non-trivial gauge
flux F of a D-brane gauge theory is turned on. Then, the threshold correction to the gauge
coupling can be read off by computing [46, 67–69]

∂2

∂F2 Λ(F)|F=0 . (5.5)

Because the non-trivial F corresponds to the twisted boundary conditions for open strings,
taking the double derivatives in F results in the inclusion of the factor [46]

t2
ϑ′′α,β(0|τ)
ϑα,β(0|τ) (5.6)

in the partition function of the open string. Note that (α, β) denotes the spin structure of
the open string worldsheet. Because the one-loop partition function for open strings with
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the spin structure (α, β) in the absence of the worldvolume flux is given by

c

∫
dt

t3
(−1)α+β ϑα,β(0|τ)

η(τ)3 Trα
(
(−1)βF qL0− 3

8
)

int
, (5.7)

where c is a numerical factor and the trace is over the states in the internal CFT, one can
expect that the one-loop amplitude of the form

∑
α,β even

∫
dt

t
(−1)α+β ϑ

′′
α,β(0|τ)
η(τ)3 Trα

(
(−1)βF qL0− 3

8
)

int
(5.8)

must be related to the open topological string theory amplitude at one loop as was shown
in [66].

Now let us compare (5.8) to (3.57)

δEA = − 1
211π4

∑
α,β even

∫ ∞
0

dt

t2
(−1)α+β ϑ

′′
α,β(0|τ)
η(τ)3 Trα

(
(−1)βF qL0− 3

8
)open

int
. (5.9)

The integrand of (5.8) is t times the integrand of (5.9) modulo the numerical factors! Hence,
we can conclude from this comparison that the Einstein-Hilbert action at string one-loop is
indeed determined by the new supersymmetric index and the number of (anti) BPS states.

The reason why we have strikingly similar structures in (5.8) and (5.9) is quite simple.
An equivalent way to compute the threshold correction (5.9) is to insert two vertex operators
for the gauge field. Because the open string vertex operator only contains either holomorphic
or anti-holomorphic fields, each open string vertex operator can at the most contain two free
fermions in (0, 0) picture. Therefore, the only non-vanishing contribution to the threshold
correction is essentially coming from four fermion correlators, after the spin sum. Note
that the very same structure is found in (3.57) for a different reason. In the graviton two
point function computation, we concluded that the four fermion contractions are the only
non-trivial contributions. But, these contractions come with the bosonic contractions as well.
What we found in (3.56) was that, after integrating over the vertex position moduli, the
bosonic contractions drop out and all that remains is essentially the four fermion contraction.
Therefore, we found the similar structure in the graviton two point function.

Although we have not evaluated the one-loop corrected Einstein-Hilbert action in
explicit models, we can still learn general lessons about when the one-loop correction gets
dangerously large. For example, we concluded that the correction to the Einstein-Hilbert
action is divergent if infinitely many states become massless. As an application, in section 4,
we estimated the size of the one-loop correction to the EH action in the limit where
nilpotent curves are small. The soothing conclusion we found is that its effect on the
one-loop corrected Kähler potential is minuscule when the overall Calabi-Yau volume is
large and string coupling is small. We hope that our result can be used to learn more
interesting lessons about type II compactifications on Calabi-Yau orientifolds.
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Let us now discuss possible future directions.

• In the case of a particular moduli integral of the new supersymmetric index

Z =
∫
dt

2tTrR
(
(−1)FFqL0− 3

8
)

int
, (5.10)

one can understand the holomorphic anomalies associated with the moduli derivatives
of Z exactly [61–64]. It might be possible to derive a similar holomorphic anomaly
equation for the one-loop correction to the Einstein-Hilbert term as well.

• Direct computation of the new supersymmetric index for open strings in Calabi-Yau
orientifold compactifications is not very well understood. It is very important to make
progress on the computation of such indices.

• It is a reasonable expectation that the string one-loop correction to the moduli kinetic
term is of the same order as the string one-loop correction to the EH action as
both of them arise from the same diagram, and can be computed by inserting two
vertex operators and reading off the kinematic factors. Although very plausible, it is
nevertheless very crucial to check this claim via explicit computations. Unfortunately,
the string one-loop correction to the moduli kinetic term in string-frame has yet been
computed only in toroidal orientifold compactifications [26, 30]. To sum up, it would
be extremely important to develop tools to compute such a correction in more generic
compactifications.

• In this work, we saturated the D-brane tadpole with spacetime filling D-branes. In
more realistic compactifications, NSNS and RR fluxes are ubiquitous. Therefore,
it is important to develop methods to compute the string loop corrections in flux
backgrounds.
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A Jacobi theta function

In this section, we summarize the convention for Jacobi theta functions and many useful
identities. We will mostly follow the conventions of [46]. For α, β = 0, 1 we define

ϑα,β(z|τ) :=
∑

n∈Z+α
2

eiπnβqn
2/2yn , q = e2πiτ , y = e2πiz . (A.1)
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We also define
ϑα,β(τ) := ϑα,β(0|τ) . (A.2)

We write ϑα,β(z|τ) for (α, β) = (0, 0), (0, 1), (1, 0), (1, 1)

ϑ0,0(z|τ) =
∞∏
n=1

(1− qn)
(
1 + (y + y−1)qn−

1
2 + q2n−1

)
, (A.3)

ϑ0,1(z|τ) =
∞∏
n=1

(1− qn)
(
1− (y + y−1)qn−

1
2 + q2n−1

)
, (A.4)

ϑ1,0(z|τ) = q
1
8 (y

1
2 + y−

1
2 )
∞∏
n=1

(1− qn)
(
1 + (y + y−1)qn + q2n

)
, (A.5)

ϑ1,1(z|τ) = iq
1
8 (y

1
2 − y−

1
2 )
∞∏
n=1

(1− qn)
(
1− (y + y−1)qn + q2n

)
. (A.6)

The Jacobi theta functions enjoy quasi-periodicity,

ϑα,β

(
z + 1

2 |τ
)

= ϑα,β+1(z|τ) , (A.7)

ϑα,β

(
z + τ

2 |τ
)

= e−iπβ/2q−
1
8 y−

1
2ϑα+1,β(z|τ) , (A.8)

ϑα+2,β(z|τ) = ϑα,β(z|τ) , (A.9)
ϑα,β+2(z|τ) = eiαπϑα,β(z|τ) . (A.10)

The Jacobi theta functions satisfy the Jacobi identity

ϑ0,0(τ)4 = ϑ1,0(τ)4 + ϑ0,1(τ)4 . (A.11)

We define the Dedekind eta function as

η(τ) := q
1

24

∞∏
n=1

(1− qn) . (A.12)

We record useful identities involving the Dedekind eta function and the Jacobi theta
functions

∂zϑ1,1(z|τ)|z=0 = −2πη(τ)3 , (A.13)

ϑ0,0(τ) =
η(1

2(τ + 1))
η(τ + 1) = η(τ)5

η(1
2τ)2η(2τ)2 , ϑ0,1 =

η(1
2τ)2

η(τ) ϑ1,0(τ) = 2η(2τ)2

η(τ) , (A.14)

and
ϑ0,0(τ)ϑ1,0(τ)ϑ0,1(τ) = 2η(τ)3 . (A.15)

We write an important identity [48](
ϑs1,s2(z|τ)ϑ′1,1(0|τ)
ϑs1,s2(0|τ)ϑ1,1(z|τ)

)2

=
ϑ′′s1,s2(0|τ)
ϑs1,s2(0|τ) − ∂

2
z log ϑ1,1(z|τ) . (A.16)
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The Jacobi theta functions obey addition rules [70]

ϑ0,0(z1|τ)ϑ0,0(z2|τ) = ϑ0,0(z1 + z2|2τ)ϑ0,0(z1 − z2|2τ) + ϑ1,0(z1 + z2|2τ)ϑ1,0(z1 − z2|2τ) ,
(A.17)

ϑ0,0(z1|τ)ϑ0,1(z2|τ) = ϑ0,1(z1 + z2|2τ)ϑ0,1(z1 − z2|2τ)− ϑ1,1(z1 + z2|2τ)ϑ1,1(z1 − z2|2τ) ,
(A.18)

ϑ0,1(z1|τ)ϑ0,1(z2|τ) = ϑ0,0(z1 + z2|2τ)ϑ0,0(z1 − z2|2τ)− ϑ1,0(z1 + z2|2τ)ϑ1,0(z1 − z2|2τ) ,
(A.19)

ϑ1,0(z1|τ)ϑ1,0(z2|τ) = ϑ1,0(z1 + z2|2τ)ϑ0,0(z1 − z2|2τ) + ϑ0,0(z1 + z2|2τ)ϑ1,0(z1 − z2|2τ) ,
(A.20)

ϑ1,1(z1|τ)ϑ1,1(z2|τ) = ϑ0,0(z1 + z2|2τ)ϑ1,0(z1 − z2|2τ)− ϑ1,0(z1 + z2|2τ)ϑ0,0(z1 − z2|2τ) .
(A.21)

For later use, we define

fk,Q(z, τ) := 1
η(τ)e

iπτQ2/ke2πiQzϑ0,0(kz +Qτ |kτ) . (A.22)

We write useful identities involving fk,Q(z, τ)

f1,0(z, τ) = ϑ0,0(z|τ)
η(τ) , f2,0(z, τ) = ϑ0,0(2z|2τ)

η(τ) , f2,1(z, τ) = ϑ1,0(2z|2τ)
η(τ) , (A.23)

and
f3,1(z, τ)− f3,−1(z, τ) = 0 , (A.24)

for z = 0, 1/2, τ/2, and
q

3
8 (f3,1(z, τ)− f3,−1(z, τ)) = 2 , (A.25)

for z = (1 + τ)/2.

B Extended N =2 superconformal algebra and its representation theory

In this section, we summarize the representation theory of the extended N = 2 superconfor-
mal algebra [71–74].

Let us first collect the OPEs of N = 2 superconformal generators: the energy momentum
tensor T , super currents G and G̃, and the U(1)R current I,

T (z)T (w) = c

2(z − w)4 + 2T (w)
(z − w)2 + ∂T (w)

z − w
+ . . . , (B.1)

I(z)I(w) = c

3(z − w)2 + . . . , (B.2)

I(z)G(w) = 1
z − w

G(w) + . . . , (B.3)

I(z)G̃(w) = − 1
z − w

G̃(w) + . . . , (B.4)

G(z)G̃(w) = 2c
3(z − w)3 + 2I(w)

(z − w)2 + 1
z − w

(∂I(w) + 2T (w)) + . . . , (B.5)
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G(z)G(w) = regular , (B.6)
G̃(z)G̃(w) = regular . (B.7)

The extended N = 2 superconformal algebra is obtained by adding the spectral flow
generators X and X̃, and their superpartners Y and Ỹ .

We shall summarize the character formulas for the extended superconformal algebra.
For an irreducible representation r, we define the character as

ch
(r)
• (z, τ) := Tr•,r

(
qL0− 3

8 yI0
)
, (B.8)

where • can be Neveu-Schwartz (NS) sector or Ramond (R) sector. Similarly, we define the
character formulas with the GSO projection as

ch
(r)
ÑS(z, τ) := TrNS,r

(
(−1)I0qL0− 3

8 yI0
)
, (B.9)

and
ch

(r)
R̃

(z, τ) := TrR,r
(
(−1)I0− 3

2 qL0− 3
8 yI0

)
. (B.10)

Note that for the character ch(r)
R̃

, we included the factor (−1)−3/2, because U(1)R charge of
states in the R sector is fractional and integral concerning the U(1)R charge of the vacuum
state, whose charge is 3/2. The character formulas satisfy the following relations

ch
(r)
ÑS(z, τ) = ch

(r)
NS(z + 1/2, τ) , (B.11)

ch
(r)
R (z, τ) = q

3
8 y

3
2 ch

(r)
NS(z + τ/2, τ) , (B.12)

ch
(r)
R̃

(z, τ) = e−3iπ/2ch
(r)
R (z + 1/2, τ) . (B.13)

Frequently, we will use the following notations

g
(r)
00 := TrNS,r

(
qL0− 3

8
)
, g

(r)
01 := TrNS,r

(
qL0− 3

8 (−1)I0
)
, (B.14)

g
(r)
10 := TrR,r

(
qL0− 3

8
)
, g

(r)
11 := TrR,r

(
qL0− 3

8 (−1)I0− 3
2
)
. (B.15)

Note that following [66, 73, 75–78], we will identify I0 ≡ F , where F is the fermion number
of states/operators on the worldsheet cft.

Let us now summarize the character formulas for irreducible representations. We shall
start with massive representations which satisfy h > |Q|/2. As a state in the R-sector can
be obtained by a half-integral spectral flow from a state in the NS sector, we will label
irreducible states with (h,Q) of the highest weight state of the corresponding irreducible
state in the NS sector. In the NS sector, the U(1)R charge of the highest weight state can
take values from −1, 0, 1. Because the character for −Q is the same as the character for
Q, we shall only consider the character formulas for Q > 0. The character formula for all
sectors takes the form

g
(h,Q)
αβ := q

3α
8 g

(
ατ + β

2 , τ ;h,Q
)
, (B.16)

where we define

g(z, τ ;h,Q) := qh−
1+Q2

4

η(τ) f1,0(z, τ)f2,Q(z, τ) . (B.17)
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We record useful identities

g
(h,Q)
αβ = e−iπαβ/2(−1)βQ q

h− 1+Q
4

η(τ)3 ϑα,β(τ)ϑα+Q,0(2τ) , (B.18)

and
1

2πi∂zch
(h,Q)
R̃

(z, τ)|z=0 = 1
2πi∂zq

3
8 g(z, τ ;h,Q)|z=(1+τ)/2 = (−1)Qqh−

1+Q
4 ϑ1−Q,0(2τ) ,

(B.19)
for h ≥ |Q|/2.

Now, let us study massless representations. There are three different states: the vacuum
state with (h,Q) = 0, and (±) states with (h,Q) = (1/2,±1). The character for the massless
representations are obtained by replacing g(z, τ ;h,Q) with

g(vac)(z, τ) = g(z, τ ; 0, 0)− g
(
z, τ ; 1

2 , 1
)
, (B.20)

g(±)(z, τ) = ±1
2(f3,1(z, τ)− f3,−1(z, τ)) + 1

2g
(
z, τ ; 1

2 , 1
)
. (B.21)

Note that

f3,Q

(
z + 1 + τ

2

∣∣∣∣τ) = − i

η(τ)(−1)Qq
Q2
6 −

3
8 eπi(2Q−3)zϑ1,1(3z +Qτ |3τ) , (B.22)

and ϑ1,1(z|3τ) is an odd function in z. We compute

1
2πiq

3
8∂z (f3,Q(z, τ)) |z=(1+τ)/2 = 2Q− 3

2 q
3
8 f3,Q

( 1 + τ

2

∣∣∣∣ τ)+ 3(−1)Q+1

2πη(τ) q
Q2
6 ϑ′1,1(Qτ |3τ) .

(B.23)
As a result, it follows that

1
2πiq

3
8∂z(f3,1(z, τ)− f3,−1(z, τ))|z=(1+τ)/2 = −3 . (B.24)

C Green’s function manipulations

In this section, we compute

K(p1, p2, ε1, ε2) = 〈V (0,0)
g (z1, p1, ε1)V (0,0)

g (z2, p2, ε2)〉σ (C.1)

for an arbitrary Riemann surface σ of genus 1 with or without boundaries. Let us recall
that the graviton vertex operator in the (0, 0) picture is given as

V (0,0)
g (z, p, ε) = −2gc

α′
εµν

(
i∂Xµ + α′

2 p · ψψ
µ
)(

i∂̄Xν + α′

2 p · ψ̄ψ̄
ν
)
eip·X . (C.2)

We shall impose the incomplete on-shell condition

p2
1 = p2

2 = p1 · p2 = p1µε
µν
1 = p2µε

µν
2 = ηµνε

µν
1 = ηµνε

µν
2 = 0 , (C.3)

to simplify the evaluation of (C.1).
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We write

K =4g2
c ε1µνε2ρσ
α′2

〈
eip1·X1eip2·X2

(
i∂Xµ

1 + α′

2 p1 · ψ1ψ
µ
1

)(
i∂̄Xν

1 + α′

2 p1 · ψ̄1ψ̄
ν
1

)
×
(
i∂Xρ

2 + α′

2 p2 · ψ2ψ
ρ
2

)(
i∂̄Xσ

2 + α′

2 p2 · ψ̄2ψ̄
σ
2

)〉
. (C.4)

A few comments are in order. We are attempting to find terms of order O(p2). Therefore,
we need to contract at least four fermions. One might be worried that we also need to
consider eight fermion contractions because it is possible that there can be a pole when
vertex operators are colliding and when such a pole is present, eight fermion contractions
can in principle contribute to order O(p2) terms. But, it should be noted that such a pole
always comes with p1 · p2 factor we are setting to zero, hence such a pole cannot exist.
With this understanding, we will from now on ignore eip1·X1eip2·X2 factor and focus on four
fermion contractions.

In total, there are four different ways to contract the bosonic part: 〈∂Xµ
1 ∂X

ρ
2 〉,

〈∂Xµ
1 ∂̄X

σ
2 〉, 〈∂̄Xν

1 ∂X
ρ
2 〉, and 〈∂̄Xν

1 ∂̄X
σ
2 〉. We will study the case 〈∂Xµ

1 ∂X
ρ
2 〉 in detail,

and spell out the results for the other cases. After contracting 〈∂Xµ
1 ∂X

ρ
2 〉, we have to

contract the left fermions 〈
α′2

4 p1 · ψ̄1ψ̄
ν
1p2 · ψ̄2ψ̄

σ
2

〉
. (C.5)

As we are imposing the incomplete on-shell condition, which includes the condition p1 ·p2 = 0,
contracting p1 · ψ̄1 and p2 · ψ̄2 will produce zero. Therefore, the only non-zero contribution
is by the following contraction

α′2

4
〈
p1 · ψ̄1ψ̄

σ
2

〉
×
〈
ψ̄ν1p2 · ψ̄2

〉
, (C.6)

which equals to
α′2

4 p1αp2γ〈ψ̄σ2 ψ̄α1 〉〈ψ̄
γ
2 ψ̄

ν
1 〉 . (C.7)

By using the fact that the two-point function of worldsheet fermions has the following
property

〈ψ̄µ2 ψ̄
ν
1 〉 = ηµν〈ψ̄2ψ̄1〉 (C.8)

we finally obtain that the contraction between ∂Xµ
1 ∂X

ρ
2 yields the contribution

K1 = −g2
c ε1µνε2ρσp1αp2γη

µρηασηνγ〈∂X1∂X2〉
(
〈ψ̄2ψ̄1〉

)2
(C.9)

= −g2
cp
σ
1p

ν
2η
µρεµνερσ〈∂X1∂X2〉

(
〈ψ̄2ψ̄1〉

)2
. (C.10)

By renaming indices, we obtain

K1 = −g2
cηµρp1σp2νε

µν
1 ερσ2 〈∂X1∂X2〉

(
〈ψ̄2ψ̄1〉

)2
. (C.11)

One can similarly sum over the other types of contractions. We report the result here

K = −g2
cηµρp1σp2νε

µν
1 ερσ2

[
〈∂X1∂X2〉(ψ̄2ψ̄1〉)2 + 〈∂X1∂̄X2〉(〈ψ2ψ̄1〉)2 + c.c.

]
. (C.12)
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D Doubling trick and two-point functions

In this section, we summarize various two-point functions on the annulus, Möbius, and
Klein bottle obtained by using the doubling trick. Following [30, 34, 47], we define the
annulus A, Möbius stripM, and Klein bottle K by modding out the tori with modulus

τA = it , τM = 1
2 + it , τK = 2it (D.1)

by the involutions

IA(z) = 1− z̄ , IM(z) = 1− z̄ , IK(z) = 1− z̄ + τK
2 . (D.2)

Note that our convention slightly differs from that of [30, 34] as we are adopting the
conventions of [47] for the worldsheet modulus. We will denote a Riemann surface of genus
1 with boundaries by σ, and torus by T .

To compute two-point functions on σ, we will use the image charge method. Let us
first start with bosonic correlators. On a torus, a bosonic correlator is

〈X(z1)X(z2)〉T = GB(z1, z2; τ) , (D.3)

where we define

GB(z1, z2; τ) = −α
′

2 log
∣∣∣∣ϑ1(z1 − z2|τ)

ϑ′1(0|τ)

∣∣∣∣2 + πα′

τ2
(=(z1 − z2))2 . (D.4)

Note that the double derivative of the bosonic Green’s function GB(z1, z2; τ) satisfied the
following identity

∂z1 ∂̄z1GB(z1, z2; τ) = −πα′δ2(z1 − z2) + πα′

2τ2
, (D.5)

where we normalized the Dirac delta function as∫
T
dz2δ2(z) = 1 , (D.6)

and the measure factor as
d2z = 2dxdy . (D.7)

Note that the volume integral is therefore normalized as∫
T
dz2gzz̄ = τ2 . (D.8)

In this normalization, one can easily check∫
T
dz2gzz̄

(
∂z∂̄zGB(z, 0; τ)

)
= 0 . (D.9)

Now let us compute the two-point function of bosons on σ. Using the image charge
method, we find

〈X(z1)X(z2)〉σ = 〈X(z1)X(x2)〉T + 〈X(z1)X(Iσ(z2))〉T . (D.10)
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We compute the double derivatives of the Green’s function

∂z1∂z2〈X(z1)X(z2)〉σ = ∂z1∂z2GB(z1, z2; τ)− πα′δ2(z1 − Iσ(z2)) + πα′

2τ2
, (D.11)

∂z1 ∂̄z2〈X(z1)X(z2)〉σ = ∂z1 ∂̄z2GB(z1, Iσ(z2); τ) + πα′δ2(z1 − z2)− πα′

2τ2
. (D.12)

We note the following identities∫
σ
d2z (f(z) + f(Iσ(z))) =

∫
T
d2zf(z) , (D.13)

and ∫
σ
d2z

(
∂zf(z)− ∂̄zf(I(z))

)
=
∫
T
d2z∂zf(z) . (D.14)

Using the fact that GB(z1, z2; τ) is a symmetric function on torus, we find∫
σ
d2z1

∫
σ
d2z2

(
∂z1∂z2GB(z1, z2; τ)− ∂z1 ∂̄z2GB(z1, Iσ(z2); τ) + c.c

)
= 0 . (D.15)

Similarly, we compute∫
σ
gz1z̄1d

2z1

∫
σ
gz2z̄2d

2z2

[
−πα′δ2(z1 − Iσ(z2)) + πα′

2τ2

]
= πα′

8 τ2 , (D.16)

and ∫
σ
gz1z̄1d

2z1

∫
σ
gz2z̄2d

2z2

[
πα′δ2(z1 − z2)− πα′

2τ2

]
= 0 . (D.17)

As a result, we find∫
σ
gz1z̄1d

2z1

∫
σ
gz2z̄2d

2z2
(
〈∂X1∂X2〉σ − 〈∂X1∂̄X2〉σ + c.c

)
= πα′

4 τ2 . (D.18)

Note that the result we find does not agree with the identity used in [34] by a factor of 2.
The source of the disagreement is the Dirac delta function terms omitted in [34]. If one
ignores the Dirac delta in the computation above, instead of (D.18), one obtains πα′τ2/2
which is the result obtained in [34].

Now, we summarize fermion two-point functions following the conventions of [30]. We
will use a shorthand notation s for the spin structure (α, β). Let us start with the correlation
functions of fermions on the torus

〈ψ(z1)ψ(z2)〉sT = GF (z1, z2; τ, s) , 〈ψ̄(z̄1)ψ̄(z̄2)〉sT = GF (z1, z2; τ, s)∗ , (D.19)
〈ψ(z1)ψ̄(z̄2)〉sT = 0 , 〈ψ̄(z̄1)ψ(z2)〉sT = 0 , (D.20)

where we define
GF (z1, z2; τ, s) :=

ϑα,β(z1 − z2|τ)ϑ′1,1(0|τ)
ϑα,β(0|τ)ϑ1,1(z1 − z2|τ) . (D.21)

As in the case of bosonic correlators, the fermionic two-point functions on σ can be
obtained by the image charge method. We summarize the fermionic two-point functions here

〈ψ(z1)ψ(z2)〉sσ = GF (z1, z2; τ, s) , (D.22)
〈ψ(z1)ψ̄(z̄2)〉sσ = iGF (z1, Iσ(z2); τ, s) , (D.23)
〈ψ̄(z̄1)ψ(z2)〉sσ = iGF (Iσ(z1), z2; τ, s) , (D.24)
〈ψ̄(z̄1)ψ̄(z̄2)〉sσ = −GF (Iσ(z1), Iσ(z2); τ, s) . (D.25)
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