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1 Introduction

The Standard Model (SM) has a unique way of incorporating CP violation (CPV) and sup-
pressing flavour changing neutral currents (FCNCs) in the quark sector. In particular, the
lightness of the first two generations and the suppressed mixing with the third generation
severely suppress FCNC transitions involving only the first two generation quarks. This
is manifest in particular in processes which are characterized by so called hard GIM, such
as those involving CPV. In fact, no significant deviations from the SM predictions related
to strangeness (S) and charm (C) flavour violation have been observed in experiments to
date, placing stringent limits on possible beyond the SM (BSM) effects in these sectors.
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On the other hand, observed hints of deviations from SM predictions in semileptonic
∆B = 1 processes (both in b → sµµ FCNCs and in particular in b → cτν charged current
(CC) mediated semileptonic b-hadron decays), still await experimental clarification, and
have triggered many studies throughout the last decade (see e.g. refs. [1, 2]). Intriguingly,
the most straightforward and successful BSM proposals addressing the ∆B = 1 FCNC and
CC observables introduce new interactions of left-handed quarks (and leptons) [3–10], which
imply novel flavour breaking sources (besides SM Yukawas) of the U(3)Q flavour symmetry,
respected by the SM gauge interactions. This already motivated a reconsideration of BSM
effects in (rare) (semi)leptonic decays of kaons [11, 12], D-mesons [13–17], B-mesons [18]
and also top quarks [19].

Experimentally, there has been recent progress in the search for rare ∆C = 1 leptonic
D0 → µ+µ− [20] decay as well as the analysis of non-resonant regions of the differential rate
for D+ → π+µ+µ− [21] by the LHCb collaboration. BESIII collaboration has also recently
reported results from a first dedicated search for D0 → π0νν̄ decay [22]. Similarly, new
results have been recently reported on semileptonic ∆S = 1 transitions in both charged [23,
24] and neutral [25] kaon decays by the NA62 and KOTO collaborations, respectively.
Further significant improvements in these measurements and searches are expected from
these and the next generation of flavour experiments [26].

Motivated by these developments, we investigate the interplay of possible NP effects
in semileptonic CC and FCNC transitions involving purely left-handed first- and second-
generation quarks. In particular, it has been shown previously [27] that the peculiar struc-
ture of U(3)Q breaking in the SM implies that possible BSM sources of CPV in this sector
affect rare charm and kaon decays in a universal way (see also ref. [28]). We demonstrate
how and when existing bounds on CPV in rare semileptonic K meson decays severely
constrain the possible size of the corresponding effects in charm decays, and vice-versa.
Employing the covariant parametrization of flavour conversion developed in refs. [28–30]
we constrain the unique new CPV parameter whose effect cannot be tuned by adjusting
the alignment angle of BSM flavour breaking to down-quark or up-quark basis. Further-
more, we derive robust model-independent bounds on BSM affecting either charm or kaon
semileptonic decays, and discuss the interplay between CC and FCNC transitions. Fi-
nally, we study the increasingly important constraints posed by the experimental studies
of high-pT semileptonic processes at the LHC pp → ℓν(ℓ+ℓ−) [31–33].

The remainder of the paper is structured as follows: in section 2 we review the basic el-
ements of the SM effective theory (SMEFT) of flavour conversion including CPV within the
first two generations of left-handed quarks. We apply this framework to (rare) semileptonic
K and D meson decays in section 3. Sections 4 and 5 contain the detailed discussion of the
relevant observables connecting and constraining the semileptonic ∆C = 1 and ∆S = 1
FCNC processes s → dνν̄ and c → uℓ+ℓ−, and s → dℓ+ℓ− and c → uνν̄, respectively.
We explain the interplay between the two sectors in high-pT collider experiments in sec-
tion 6 and discuss the additional correlations introduced by the inclusion of CC processes
in section 7. Section 8 contains our main results and projections, while we present our
conclusions and prospects for future experiments in section 9.
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2 Framework

We are interested in BSM effects in semileptonic transitions involving exclusively left-
handed quarks of first two generations. Working within the SM effective field theory
(SMEFT) [34] valid below a heavy new physics (NP) threshold scale Λ, we thus supplement
the SM Lagrangian by local semileptonic effective operators with left-chiral quarks1

LSMEFT ⊃
X

(3,ℓ)
ij

Λ2 (Q̄iγµσaQj)(L̄ℓγ
µσaLℓ) +

X
(1,ℓ)
ij

Λ2 (Q̄iγµQj)(L̄ℓγ
µLℓ) . (2.1)

Here Qi is the i-th generation left-handed quark doublet, which we write in the down-
quark mass basis as Qi = (u′

Li, dLi)T . The up-quark fields in this basis are related to their
mass eigenstates via the CKM matrix V as u′

i = V ∗
jiuj . For leptons we choose the charged

lepton mass basis: Li = (U∗
jiνLj , ℓLi)T , where U is the PMNS matrix. Pauli matrices

σa, a = 1, 2, 3, act in the SU(2)L space. We assume in eq. (2.1) that lepton flavour
is conserved, whereas the BSM quark flavour conversion is parametrized by Hermitian
matrices X(1,ℓ), X(3,ℓ). The resulting Lagrangian containing FCNCs reads

LFCNC = 1
Λ2 X

(+)
ij

[
(ū′

iγ
µPLu′

j)(ν̄γµPLν) + (d̄iγ
µPLdj)(ℓ̄γµPLℓ)

]
+ 1

Λ2 X
(−)
ij

[
(ū′

iγ
µPLu′

j)(ℓ̄γµPLℓ) + (d̄iγ
µPLdj)(ν̄γµPLν)

]
,

(2.2)

where PR,L = (1 ± γ5)/2. Above, we have introduced the matrices X(±) = X(1) ± X(3)

and suppressed explicit lepton flavour index for clarity. On the other hand, the charged
currents stemming from eq. (2.1) are only due to the X(3)

LCC = 1
Λ2 2X

(3)
ij (ū′

iγ
µPLdj)(ℓ̄γµPLν) + h.c. . (2.3)

Next we focus exclusively on the first two generations and use the fact that any two-
dimensional hermitian matrix can be decomposed in terms of the identity and Pauli ma-
trices. Note that in isolating the first two generations in the following we are neglecting
possible additional BSM effects due to mixing with the third quark generation. However,
the resulting modifications of our results are in general severely suppressed due the hier-
archical structure of the SM quark Yukawas. See ref. [27] for in depth discussion on this
point. We can write

X
(±)
ij = λ(±)δij + c(±)

a (σa)ij , (2.4)

where λ and ca are real. It is only the traceless part (ca) that plays a role in FCNC
processes. In contrast, λ’s contribute to flavour-diagonal neutral currents as well as to
charged current processes via X(3):

2X
(3)
ij = (λ(+) − λ(−))δij + (c(+)

a − c(−)
a )(σa)ij . (2.5)

1Additional SMEFT operators modifying W and Z couplings can also modify semileptonic processes
and are constrained by precision measurements of on-shell massive weak vector bosons at LEP [35–37]. For
analysis of NP in W/Z couplings to fermions see [38–41].
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Notice that a unique parameter, c
(±)
2 , encodes CP violation, while the remaining three

couplings are real. The traceless part of the coupling matrix offers an intuitive geometrical
interpretation [30] since it spans a 3-dimensional space. Each traceless hermitian matrix A

is equivalent to a real 3-dimensional vector a via the mapping A = a · σ. Scalar and cross
product between vectors a, b (corresponding to matrices A = a · σ, B = b · σ) are defined
via matrix operations as

a · b ≡ 1
2Tr[AB], a × b ≡ −i

2 [A, B], (2.6)

and allow for interpretation in terms of lengths, angles and volumes.
Our analysis is based on the SM flavour group for the first two quark generations

F = U(2)Q×U(2)U ×U(2)D where Q, U and D stand for quarks doublets, up-type singlets
and down-type singlets, respectively [28, 30]. The group F is broken within the SM only
by the Yukawa interactions. To better understand the resulting pattern of flavour and CP
violation in and beyond the SM, we promote Yu and Yd to spurions that transform under F
as (2, 2, 1) and (2, 1, 2), respectively. In order to construct F -invariant terms we furthermore
define the spurions YuY †

u and YdY †
d . They belong to the (3 ⊕ 1, 1, 1) representation of F .

Since the traces of these matrices do not affect flavour-changing processes, it is useful to
remove them and work with traceless parts:

Au,d = (Yu,dY †
u,d)/tr , where M/tr ≡ M − 1

2I trM . (2.7)

Both Au,d belong to the adjoint representation of U(2)Q. Without loss of generality, we can
choose to work in a basis with diagonal down-quark Yukawa couplings, Yd = diag(yd, ys),
whereas Yu = VCKMdiag(yu, yc). There is no CP violation in the SM with two generations,
leading to VCKM being just a rotation matrix with the Cabibbo angle θc. Inserting Yu and
Yd, we get:

Ad = y2
d − y2

s

2 σ3, (2.8)

Au = V

(
yu 0
0 yc

)2

V T = y2
c − y2

u

2
(
− cos(2θc)σ3 + sin(2θc)σ1

)
. (2.9)

For later convenience, we introduce normalised vectors

Âd = −σ3 , (2.10)
Âu = − cos(2θc)σ3 + sin(2θc)σ1 , (2.11)

which are shown in figure 1. These two basis vectors present two special directions in
the coupling space of X, since alignment of X along one of them, X ∝ Au,d, implies no
FCNCs in up-type or down-type quarks, respectively. However, BSM couplings can also
span the orthogonal direction along σ2. The most general form of X that includes this
CPV direction can thus be written as X/tr = αÂu + βÂd + iγ[Âu, Âd]. In the remainder
of this paper, we shall use cylindrical coordinates cR, cI , and θd, which are related to the

– 4 –
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cartesian ones as c1 = cR sin θd, c3 = −cR cos θd and c2 = cI . The most general form of X

then reads

X = λI+ cR sin θd σ1 + cI σ2 − cR cos θd σ3 . (2.12)

We conclude this section by commenting on the approximations taken in the two generation
limit of the SM. Within the full three-generation SM (as well as in minimally flavour
violating (MFV) NP scenarios [42]) CPV effects in flavour changing processes among the
first two generations are not strictly vanishing, but are nonetheless severely suppressed
by small CKM mixing with the third generation. Within our framework, such suppressed
effects would lead to Au,d acquiring small components in the σ2 direction in flavour space.
The NP flavour alignment limit with either up- or down-type quark mass basis would then
imply alignment of NP and SM CPV phases as well. In our analysis we are neglecting
these subleading, suppressed CPV effects of NP and are thus effectively probing (CPV)
NP effects beyond MFV.

3 Aligning BSM flavour structures with ∆S = 1 and ∆C = 1 constraints

We first focus on the allowed size of the CP-even cR and CP-odd cI couplings depending
on the alignment angle θd. At low energies, the X(±) matrices map onto parameters of the
effective Lagrangian

L(±)
eff =

z
(−)
∆S=1
Λ2 (d̄LγµsL)(ν̄LγµνL) +

z
(−)
∆C=1
Λ2 (ūLγµcL)(ℓ̄LγµℓL)+ (3.1)

+
z

(+)
∆S=1
Λ2 (d̄LγµsL)(ℓ̄LγµℓL) +

z
(+)
∆C=1
Λ2 (ūLγµcL)(ν̄LγµνL) + h.c. ,

written in the fermion mass basis. The magnitudes |z(±)
∆S=1|, |z

(±)
∆C=1| can be geometrically

expressed in a manifestly basis-independent form:

|z(±)
∆S=1| = |X(±) × Âd| =

√(
c

(±)
R sin θ

(±)
d

)2
+ (c(±)

I )2 , (3.2)

|z(±)
∆C=1| = |X(±) × Âu| =

√(
c

(±)
R sin(2θc − θ

(±)
d )

)2
+ (c(±)

I )2 . (3.3)

For |z(±)
∆S=1|, the above form can be understood in the down-quark basis where Âd is propor-

tional to σ3. Then, z
(±)
∆S=1 corresponds to X

(±)
12 , whose size is given by

√
(cR sin θd)2 + c2

I

∣∣
(±).

This is exactly the length of the orthogonal component of X(±) to Âd obtained by the
cross-product [30]. The analogous argument holds for |z(±)

∆C=1| when we analyse it in the
up-quark mass basis. On the other hand, the CP-violating imaginary part is universal since
it is normal to the Âd − Âu plane and thus insensitive to rotations in the 1− 3 plane:

ℑ(z(±)
∆S=1) = ℑ(z(±)

∆C=1) = ℑ
(

X(±) · Âd × Âu

|Âd × Âu|

)
= c

(±)
I . (3.4)

– 5 –
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−σ3

σ1

Âu

Âd

θd

2θc

|z∆C=1|

|z∆S=1|

X

cR

cIσ2 ∼ Âd × Âu

Figure 1. Schematic of possible NP contributions to ∆S = 1 and ∆C = 1 FCNC semilep-
tonic processes in the two-generation limit of SM. CP conserving magnitudes of NP contributions
(|z∆C=1|, |z∆S=1|) depend on the alignment angle θd. CPV NP contributions (cI) are independent
of θd. See text for details.

If we rely only on the CP-even experimental upper bounds, namely if we know only
upper bounds |zexp

∆S=1| and |zexp
∆C=1|, we can minimise the effect in rare kaon decays when θd

is small since X, in this case, is aligned towards the down-quark mass basis. Conversely, we
get a minimal effect in D meson decays at an angle θd = 2θc. At small θd (down-alignment)
we thus expect ∆C = 1 constraints to dominate, whereas for θd ≈ 2θc (up-alignment) the
∆S = 1 processes become more important. In between the two regimes lies an optimal
value of angle θ∗d at which the constraints on |X| stemming from |zexp

∆S=1| and |zexp
∆C=1|

coincide numerically, i.e. when |z∆S=1/z∆C=1| = |zexp
∆S=1|/|z

exp
∆C=1| ≡ rexp. Assuming that

the alignment angle is in the range 0 ≤ θd ≤ 2θc, we find

tan θ∗d =
c2

Rr2
exp sin(4θc)/

√
2−

√
−2c2

I(c2
I + c2

R)
(
r2

exp − 1
)2

+ 2r2
expc4

R sin2 2θc

√
2
[
c2

I

(
r2

exp − 1
)
+ c2

Rr2
exp cos2(2θc)− c2

R

] . (3.5)

In the regime of large CPV, |cI | ≫ cR, there is no solution for θ∗d, since the effect of θd

is rendered unimportant. The optimal alignment in the CP-conserving limit with cI = 0
reads

tan θ∗d
∣∣
cI=0 = rexp sin 2θc

1 + rexp cos 2θc
. (3.6)

3.1 Matching to weak effective theory

At low energies, we rely on the weak effective theory (WET) and use standard conventions
for the Hamiltonian governing ∆C = 1 transitions

H∆C=1
eff = −4GF√

2
αem
4π

( ∑
i=9,10

C∆C=1
i,ℓ O∆C=1

i,ℓ + C∆C=1
L,νℓ

O∆C=1
L,νℓ

)
+ h.c. , (3.7)

– 6 –
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where the SMEFT NP effects are imprinted upon the following set of dimension-6 operators:

O∆C=1
9,ℓ = (ūγµPLc)(ℓ̄γµℓ) , O∆C=1

L,νℓ
= (ūγµPLc)(ν̄ℓγµPLνℓ) , (3.8)

O∆C=1
10,ℓ = (ūγµPLc)(ℓ̄γµγ5ℓ) . (3.9)

For ∆S = 1 transitions, we conversely employ

H∆S=1
eff = −4GF√

2
αem
4π

( ∑
i=9,10

C∆S=1
i,ℓ O∆S=1

i,ℓ + C∆S=1
L,ℓ O∆S=1

L,νℓ

)
+ h.c. . (3.10)

The operators for the down-quark sector have the same structure as those for the up-quark
sector; they differ in a simple replacements of u → d and c → s. Here, ℓ = e, µ or τ . We
will separate the contribution of SM and NP to the Wilson coefficients:

Ci = CSM
i + CNP

i . (3.11)

The left-handed SMEFT operator structure that we consider in eq. (2.2) results in the rela-
tion CNP

9 = −CNP
10 for charged-lepton operators. After matching X(−) SMEFT coefficients

onto the WET Wilson coefficients, we find

s → dνν̄ : C∆S=1, NP
L,ν = 2π

αem

v2

Λ2

{
c

(−)
R sin θ

(−)
d − ic

(−)
I

}
, (3.12)

c → uℓ+ℓ− : C∆C=1,NP
9 = −C∆C=1,NP

10 = π

αem

v2

Λ2

{
c

(−)
R sin(θ(−)

d − 2θc)− ic
(−)
I

}
,

(3.13)

whereas the low-energy coefficients from X(+) are

s → dℓ+ℓ− : C∆S=1,NP
9 = −C∆S=1,NP

10 = π

αem

v2

Λ2

{
c

(+)
R sin θ

(+)
d − ic

(+)
I

}
, (3.14)

c → uνν̄ : C∆C=1,NP
L,ν = 2π

αem

v2

Λ2

{
c

(+)
R sin(θ(+)

d − 2θc)− ic
(+)
I

}
. (3.15)

The presented Wilson coefficients indicate how the CP conserving NP contributions to
charm and kaon physics are related via the Cabibbo rotation and its interplay with the
alignment angle. In the remainder of the paper we study current constraints on X(+)

and X(−), as parameterised by c
(±)
R , θ

(±)
d and c

(±)
I . The presence of c

(±)
I without any θd

dependence implies the flavour universal character of the CPV parameters.
In our numerical studies we set the scale to Λ = 1TeV, thus all the presented bounds

on cR,I should be understood as bounds on (TeV/Λ)2cR,I(Λ).2

4 s → dνν̄ and c → uℓ+ℓ−

The elements of the X(−) matrix, parametrised by c
(−)
R , θ

(−)
d , c

(−)
I enter in the amplitudes

for s → dνν̄ and c → uℓ+ℓ− processes. The branching ratio for K → πνν̄ is rather well de-
termined and probing the SM short-distance contribution. However, in rare charm meson

2The renormalization group running effects of the left-handed semileptonic operators are negligible [43].

– 7 –
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Observable Exp. constraint Reference
B(K+ → π+νν̄)

(
1.14+0.40

−0.33

)
× 10−10 [37] ([23, 44])

B(D0 → e+e−) < 7.9× 10−8 [45]
B(D+ → π+e+e−) < 1.1× 10−6 [21]
B(D0 → µ+µ−) < 3.1× 10−9 [20]
B(D+ → π+µ+µ−) < 6.7× 10−8 [46]
pp → e+e− HighPT [47]
pp → µ+µ− HighPT [47]
pp → τ+τ− HighPT [47]

Table 1. Experimental constraints employed as contraints on X(−) couplings. Upper bounds are
given at 90% CL.

decays proceeding via c → uℓ+ℓ− transition, the sensitivity to short distance SM contri-
butions is reduced due to effective GIM mechanism. In addition, the larger phase space
available in D meson decays leads to large long-distance contributions due intermediate
kaon and pion rescattering effects. The ensuing bounds on z

(−)
∆C=1 are thus comparably not

as constraining as the ones on z
(−)
∆S=1 from s → dνν̄. The optimal alignment angle θ

(−)∗
d is

expected to be small. In table 1 we list the relevant experimental inputs for X(−).

4.1 K+ → π+νν̄ and KL → π0νν̄

The differential branching ratio for K± → π±νν̄ can be written as

dB
dq2 (K

± → π±νν̄) = (1 +∆EM) G2
F α2

em
3072π5m3

KΓK±
λ3/2(m2

π, m2
∆S=1, q2) f2

+,K→π(q2)|C∆S=1
L,ν |2 ,

(4.1)
where the Wilson coefficient CL,νℓ

contains the SM short-distance contribution as well as
the contribution of X(−)

C∆S=1
L,ν = C∆S=1,SM

L,ν + C∆S=1,NP
L,νℓ

= 2(λcX
ℓ
c + λtXt)

sin2 θw
+ 2πv2

αemΛ2

(
c

(−)
R sin θ

(−)
d − ic

(−)
I

)
.

(4.2)

The SM contributions have been carefully analysed by several authors [48–52]. Here,
λq = V ∗

qsVqd, Xt denotes the virtual top-quark contribution, and Xc the charm-quark
contribution. The electromagnetic correction ∆EM ≃ −0.3% was calculated in ref. [53].
The charm contribution has a mild sensitivity to the lepton flavour, and we take the
following values for the Inami-Lim functions

Xt = 1.464(17), Xe
c ≃ Xµ

c = 1.04(3)× 10−3, Xτ
c = 0.70(2)× 10−3 . (4.3)

The uncertainty of Xt has been estimated in refs. [49, 54, 55], whereas the uncertainty
of Xc was recently discussed in ref. [48]. For the K → π form factors, we employ lattice

– 8 –
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Figure 2. Left: constraints in the plane of c
(−)
ℓ,R sin θ

(−)
ℓ,d and c

(−)
ℓ,I due to the measured B(K+ →

π+νν̄). These constraints are valid for any lepton flavour ℓ = e, µ, τ . Right: weakest constraints in
the plane of c

(−)
ℓ,R and sin θ

(−)
ℓ,d , which occur for c

(−)
ℓ,I ≃ 0.4× 10−4.

results [56]. We neglect long-distance contributions since it has been shown that they are
subleading in this decay [57, 58]. Current experimental bound on this process is driven by
the NA62 measurement [23], whereas the world average is B(K+ → π+νν̄) = (1.14+0.40

−0.33)×
10−10 [37].

On the other hand, the amplitude for the KL → π0νν̄ decay is sensitive exclusively to
CP-odd effects, leading to the branching fraction

dB
dq2 (KL → π0νν̄) = G2

F α2
em

1536π5m3
KΓKL

λ3/2(m2
π, m2

K , q2) f2
+,K→π(q2)

[
ℑ(C∆S=1

L,ν )
]2

, (4.4)

where

ℑ(C∆S=1
L,ν ) = 2XtImλt

sin2 θw
− 2πv2

αemΛ2 c
(−)
I,ν . (4.5)

Using the current 90% C.L. experimental bound B(KL → π0νν̄) < 3.0 × 10−9 [59], we
derive the constraint −6.3× 10−4 < c

(−)
ℓ,I < 5.6× 10−4, for all ℓ, which is weaker than the

corresponding bound one obtains from K+ → π+νν̄ (see figure 2)

−2.8× 10−4 < c
(−)
ℓ,I < 3.5× 10−4 . (4.6)

Note that the bounds on c
(−)
τ,I differ minutely due to mτ effects in the loops.

4.2 D0 → ℓ+ℓ− and D+ → π+ℓ+ℓ−

In the SM, the branching ratio for D0 → µ+µ− is dominated by long-distance contributions
of the D0 → γ∗γ∗ intermediate state. However, the relation B(D0 → µ+µ−) ≈ 2.7×10−5×
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B(D0 → γγ) [60] and the upper bound B(D0 → γγ) < 8.5 × 10−7 [61] guarantee that
the SM long-distance branching fraction is ≲ 10−11, far below the current experimental
upper bound, B(D0 → µ+µ−) < 3.1 × 10−9 [20]. Similar conclusion also holds for D0 →
e+e− [60, 62]. The short-distance contribution to the branching ratio is given by [13]

B(D0 → ℓ+ℓ−) = G2
F α2

em
16π3ΓD0

mDm2
ℓf2

D

√
1− 4m2

ℓ/m2
D |C∆C=1

10 |2 , (4.7)

where we can safely neglect SM contributions to C∆C=1
10 . On the other hand, the differential

branching ratio of D → πℓ+ℓ− is sensitive to both vector C∆C=1
9 and axial C∆C=1

10 Wilson
coefficients

dB
dq2 (D

+ → π+ℓ+ℓ−) = G2
F α2

em
1536π5m3

DΓD0
λ1/2(m2

π, m2
D, q2)

√
1− 4m2

ℓ/q2
(
ID

V (q2) + ID
A (q2)

)
,

(4.8)
where axial and vector lepton current contributions are

ID
A (q2) = |C∆C=1

10 |2
(

f2
+(q2)λ(q2, m2

D, m2
π)
(
1− 4m2

ℓ

q2

)
+ 6m2

ℓ

q2 (m2
D − m2

π)2f2
0 (q2)

)
,

ID
V (q2) = |C∆C=1

9 |2f2
+(q2)λ(q2, m2

D, m2
π)
(
1 + 2m2

ℓ

q2

)
+ . . . , (4.9)

and λ(x, y, z) = (x + y + z)2 − 4(xy + yz + zx). Our results coincide with the ones given
in ref. [53]. The expression (4.8) can be employed also for D0 → π0ℓ+ℓ− albeit with an
additional factor 1/2. The limit extraction on short-distance NP for D+ → π+ℓ+ℓ− is
more complicated due to diverse resonant long-distance contributions (indicated by ellipsis
in eq. (4.9)). One solution is to integrate over the high-q2 phase-space portion which is
free of those contributions (if appropriate bounds exist, like e.g. for D+ → π+µ+µ− [46]),
or integrating over the whole kinematic region together with parametrizing the dominant
long-distance contributions in terms of Breit-Wigner resonances [63]. A careful analysis
taking the latter approach was done in ref. [31], from where we take the resulting limits on
|C∆C=1

9,10 |.
We have checked that the limit from D0 → µ+µ− branching fraction is stronger than

the one coming from D+ → π+µ+µ−, whereas the opposite is true for modes with electrons.
Explicitly, in the case of muons, they read∣∣∣c(−)

µ,R sin(θ(−)
µ,d − 2θc)− ic

(−)
µ,I

∣∣∣ < 2.4× 10−2 . (4.10)

Due to the limits coming from the branching ratio for K+ → π+νν̄ that are ∼ 10−4 for
both c

(−)
I and c

(−)
R sin θ

(−)
d , see figure 2, we can simplify eq. (4.10) as

∣∣∣ c(−)
µ,R cos θ

(−)
µ,d

∣∣∣ <
2.4× 10−2

sin 2θc
= 0.055 . (4.11)

Similarly, for electrons we find ∣∣∣ c(−)
e,R cos θ

(−)
e,d

∣∣∣ < 0.43 . (4.12)
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Observable Exp. constraint Reference
B(KL → e+e−)

(
9+6
−4

)
× 10−12 [37] ([64])

B(KL → µ+µ−) (6.84± 0.11)× 10−9 [37] ([65])
B(KL → π0e+e−) < 2.8× 10−10 [37]
B(KL → π0µ+µ−) < 3.8× 10−10 [37] ([66])
B(D0 → π0νν̄) < 2.1× 10−4 [22]
pp → e+e− HighPT [47]
pp → µ+µ− HighPT [47]
pp → τ+τ− HighPT [47]

Table 2. Experimental constraints employed as contraints on X(+) couplings. Upper bounds are
given at 90% CL.

5 s → dℓ+ℓ− and c → uνν̄

The elements of the X(+) matrix enter in the amplitudes for s → dℓ+ℓ− and c → uνν̄ pro-
cesses. In the charm sector, there exists a single bound on the branching ratio B(D → πνν̄)
obtained recently by BESIII, which is still well above the GIM suppressed SM prediction.
In contrast there already exist numerous experimental probes of the strange sector — the
branching ratios B(KL/S → ℓ+ℓ−), as well as semileptonic decays i.e. KL → π0ℓ+ℓ−.
The kaon observables with charged leptons however receive sizable long-distance non-
perturbative SM contributions and thus suffer from larger theoretical uncertainties. This
renders the HighPT constraints on the (+) sector to be even more important than in the
case of (−) couplings. We list the relevant experimental inputs for X(+) in table 2.

5.1 KL → π0ℓ+ℓ− and KL → ℓ+ℓ−

The rare semileptonic decay KL → π0ℓ+ℓ− is sensitive to CP-odd short distance effects,
parameterized by c

(+)
I . However, the SM amplitude is dominated by long-distance dy-

namics. One has contributions from indirect CPV (KL → KS transition followed by
KS → π0ℓ+ℓ−), as well as CP-conserving long-distance KL → π0 +2γ∗ → π0ℓ+ℓ− [67–69].
Within our framework, the short-distance contribution of NP to vector and axial-vector
coefficients is of the form [70]:

B(KL → π0µ+µ−) =
(
1.09 (w2

7V + 2.32w2
7A)± 2.63w7V |aS |+ 3.36 |aS |2 + 5.2

)
× 10−12 ,

(5.1)

B(KL → π0e+e−) =
(
4.62 (w2

7V + w2
7A)± 11.3w7V |aS |+ 14.5 |aS |2

)
× 10−12 , (5.2)

with:

w7V = y7V − v2

2αemΛ2 Imλt
c

(+)
I , (5.3)

w7A = y7A + v2

2αemΛ2Imλt
c

(+)
I . (5.4)
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Here y7V = 0.735, y7A = −0.700 [71], |aS | = 1.20 ± 0.20 [72]. Notice the ambiguity due
to the unknown sign of the interference term between w7V and |aS |. Experimental bounds
for both lepton flavours

B(KL → π0µ+µ−) < 3.8× 10−10 [66], B(KL → π0e+e−) < 2.8× 10−10 [37], (5.5)

are given at 90% CL and are an order of magnitude above the SM prediction, as can be
seen when we comparing them to the respective SM predictions:

B(KL → π0µ+µ−)SM =
{
(1.41+0.28

−0.26)× 10−11 ; + sign
(0.95+0.22

−0.21)× 10−11 ; − sign
, (5.6)

B(KL → π0e+e−)SM =
{
(3.54+0.98

−0.85)× 10−11 ; + sign
(1.56+0.62

−0.49)× 10−11 ; − sign
. (5.7)

The + and − signs correspond to the sign chosen in the interference term in eqs. (5.1)
and (5.2). Since the SM prediction is an order of magnitude below the current experimental
limits, we approximate the likelihood by neglecting the SM contributions in the fit. This
enables us to derive directly the constraints3

∣∣Im[c(+)
e,I ]

∣∣ < 2× 10−4,
∣∣Im[c(+)

µ,I ]
∣∣ < 4× 10−4. (5.8)

5.2 KL → ℓ+ℓ−

This decay mode is also dominated by long-distance SM contributions. We explore the
information coming from the KL → µ+µ− and KL → e+e− decays as already consid-
ered in refs. [70, 73] (see also [74] for explicit analytic expressions). In our analysis we
employ the lattice QCD result for the decay constant ⟨0|s̄γµγ5d|K0(p)⟩ = ifKpµ with
fK = 0.1557GeV [75]. The branching ratio is then given by

B(KL → ℓ+ℓ−) = G2
F α2

em
8π3 f2

KmKm2
ℓ

√
1− 4m2

ℓ/m2
K

∣∣∣C∆S=1
10

∣∣∣2 , (5.9)

where

C∆S=1
10 = C∆S=1,SM

10 + C∆S=1,NP
10

= −2π

(
Re(λty7A) + Re(λcyc)−

v2

2αemΛ2 c
(+)
R sin θ

(+)
d

)
+

Aℓ
Lγγ

sin2 θW
.

(5.10)

Notice that this process is sensitive only to CP conserving parameters c
(+)
R and θ

(+)
d . The

factor of 2π comes from the different conventions for the effective Hamiltonian relative
to [70]. Here, the long-distance two-photon intermediate state contribution has a relative
sign ambiguity and is currently estimated as [76, 77]:

|Aµ
Lγγ | = 1.98× 10−4(0.71± 0.15± 1.0− 5.21 i

)
, (5.11)

|Ae
Lγγ | = 1.98× 10−4(31.91± 0.22± 1.0− 21.61 i

)
. (5.12)

3In addition, we have checked explicitly using results of ref. [70], that the limits from KS → ℓ+ℓ− are
weaker compared to KL → πℓℓ.
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The resulting SM predictions for the branching fractions are B(KL → µ+µ−) = (7.64 ±
0.73)×10−9 [73], and B(KL → e+e−) = (9.0±0.5)×10−12 [78]. Both theoretical estimates
are comparable to the experimentally measured values [37]:

B(KL → µ+µ−)exp = (6.84± 0.11)× 10−9 , (5.13)
B(KL → e+e−)exp = 9+6

−4 × 10−12 . (5.14)

5.3 D0 → π0νν̄

The differential branching fraction of this decay mode depends only on the C∆C=1
L,ν coeffi-

cient:

dB
dq2 (D

0 → π0νν̄) = G2
F α2

em
3072π5m3

DΓD0
λ3/2(m2

π, m2
D, q2) f2

+,D→π(q2)
∣∣∣C∆C=1

L,ν

∣∣∣2 . (5.15)

The above expression corresponds to a final state with a specific neutrino flavour in the
final state. Measurable branching fraction is obtained by summing over all three neutrino
flavours [15].4 In our setup exactly one Wilson coefficient Cup

L,ν contains a BSM contribution,
while remaining flavours are purely SM. The form factor f+(q2) in eq. (5.15) is obtained
from the form factor of charged transition D+ → π+, scaling it by 1/

√
2 due to the

isospin wavefunction of the π0 state. We employ the form factor obtained using lattice
QCD [80]. On the experimental side, there is a single upper limit result due to BESIII,
B(D0 → π0νν̄) < 2.1 × 10−4 at 90% CL [22]. This bound currently results in a relatively
weak constraint that cuts away large values of |c(+)

ℓ,R sin(θ(+)
ℓ,d − 2θc)| ≲ 3. It is however not

competitive with the charged current constraints from LHC high-pT tails and measurements
of CKM elements, shown in figure 4.

6 High-pT limits

An important set of limits arise when one confronts the measured cross sections of pp →
ℓ+ℓ− at the LHC against the theoretical predictions in the SM complemented by neutral
current effective interactions in eq. (2.2). Extracting the bounds from high-energy pp →
ℓ+ℓ− processes is more involved due to contributions both from the up- and down-quarks.
Summing over quark flavours found in the proton, we have the following set of interactions
contributing incoherently to the neutral-current cross section:

σhigh−pT
⊃ 2

∫ τmax

τmin
dτ

τ Shad
144π

×[
Luū

(
λ(−)−c

(−)
R cos(2θc−θ

(−)
d )+FSM,uū

)2
+Lcc̄

(
λ(−)+c

(−)
R cos(2θc−θ

(−)
d )+FSM,uū

)2

+Ldd̄

(
λ(+)−c

(+)
R cosθ

(+)
d +FSM,dd̄

)2
+Lss̄

(
λ(+)+c

(+)
R cosθ

(+)
d +FSM,dd̄

)2
(6.1)

+(Luc̄+Lcū)
((

c
(−)
R sin(2θc−θ

(−)
d )

)2+(c(−)
I )2

)
+(Lds̄+Lsd̄)

((
c

(+)
R sinθ

(+)
d

)2+(c(+)
I )2

)]
,

4For constraints stemming from Bc → B+νν̄ see [79].
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together with other interactions which are unaffected by the SMEFT operators. Here,
FSM,qq̄ denote the corresponding SM contributions, which are due to the γ and Z s-channel
processes

FSM,uū (p2) = Que2

p2 +
gZ,uū gZ,ℓℓ̄

p2 − m2
Z + imZΓZ

,

FSM,dd̄ (p
2) = Qde2

p2 +
gZ,dd̄ gZ,ℓℓ̄

p2 − m2
Z + imZΓZ

, (6.2)

where gZ,ff̄ = 2mZ
v (T 3

f −Qf sin2 θW ) are the Z couplings to the fermions [81] and p2 = ŝ =
τ shad, √shad = 13TeV. Finally, Lqq̄ denotes the luminosity function

Lqq̄ ≡ Lqq̄(τ, µF ) =
∫ 1

τ

dx

x
fq(x, µF )fq̄(τ/x, µF ) . (6.3)

Note that we ignore SM contributions to the FCNCs, since they are suppressed by a loop
factor and GIM. The latter is very effective at high energies resulting in negligible SM
effects on the cross section. We employ the HighPT package [32, 47] based on ATLAS [82]
and CMS [83] measurements of pp → ℓℓ, in order to find bounds from high-pT LHC data
on our SMEFT parameter space.

It is evident from eq. (6.1) that the weakest bounds on c
(−)
R , θ

(−)
d will occur if we

set c
(+)
R = c

(+)
I = 0. Furthermore, our bounds are derived by marginalizing over the

trace parameters λ(±). The results of the marginalization procedure can be understood
in advance; λ(+) will pick up a value such that

∫
dτ τ

(
Ldd̄

(
λ(+) + FSM,dd̄

)2 + Lss̄
(
λ(+) +

FSM,dd̄

)2) = 0. On the other hand, λ(−) needs to be λ(−) ∼ c
(−)
R cos 2θc to reduce the

dominant uū contribution, however, the limit will eventually be saturated through the cc̄,
uc̄ and ūc initial states. The same arguments apply if we are interested in the weakest
bounds on c

(+)
R , θ

(+)
d .

The bounds in both sectors are correlated, so setting a non-zero value to c
(−)
R , θ

(−)
d

will shrink the allowed space in the plus region, and vice versa. Indeed the bounds will
be applied separately for the (−) and the (+) sector assuming that couplings (±) are zero
when deriving bounds on (∓).

7 Charged currents at low energies and at high-pT

In the previous sections we have studied c(+) and c(−) separately and independently of
each other. Such approach is strictly valid only if c(+) = c(−) and there is no further
effect in charged currents, see eq. (2.3). The Lagrangian that governs the semileptonic
charged-current contributions at low energies can be written as:

Lcc =
GF√
2

V ℓ
ij(ūiγµ(1− γ5)dj)(ℓ̄γµ(1− γ5)νℓ) + h.c., (7.1)

where V ℓ
ij = Vij + ∆V

(ℓ)
ij represents the NP modified effective CKM coupling. Individual

lepton-specific CKM modifications depend on c
(±)
R,I , θ

(±)
d , θc as well as on the trace param-

eters λ as can be seen in eq. (A.1). These modifications are subject to strong constraints
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from tree-level probes of CKM elements, such as superallowed β decays, and semileptonic
K, D and τ decays. Note that we can completely remove the dependence on the trace
parameter λ(3,ℓ) by considering the following combinations of effective CKM elements:

V ℓ
us + V ℓ

cd = v2

Λ2

[
c

(+)
R sin

(
θc + θ

(+)
d

)
− c

(−)
R sin

(
θc + θ

(−)
d

)]
, (7.2a)

V ℓ
ud − V ℓ

cs = v2

Λ2

[
−c

(+)
R cos

(
θc + θ

(+)
d

)
+ c

(−)
R cos

(
θc + θ

(−)
d

)
+ i

(
c

(+)
I − c

(−)
I

)
sin θc

]
.

(7.2b)

In the following we omit the cI terms since they do not interfere with the SM and their size
is severely constrained by neutral current processes. By squaring and summing eqs. (7.2)
we can even eliminate the dependence on the Cabibbo angle:(

V ℓ
us + V ℓ

cd

)2
+
(
V ℓ

cd − V ℓ
cs

)2
=
(

v

Λ

)4 [(
c

(+)
R

)2
+
(
c

(−)
R

)2
− 2c

(+)
R c

(−)
R cos

(
θ

(+)
d − θ

(−)
d

)]
.

(7.3)
For completeness we also state the remaining two combinations(

V ℓ
us − V ℓ

cd

V ℓ
ud + V ℓ

cs

)
= 2

[
1 + v2

Λ2 λ(ℓ)
](

sin θc

cos θc

)
. (7.4)

These relations are free of neutral current parameters (cR, cI , θd) and can be inverted to
determine the Cabibbo angle and the trace parameter:

tan θc =
V ℓ

us − V ℓ
cd

V ℓ
ud + V ℓ

cs

,
v2

Λ2 λ(3,ℓ) ≈ (V ℓ
us − V ℓ

cd)2 + (V ℓ
ud + V ℓ

cs)2 − 4
8 . (7.5)

Experimental information on V ℓ
ij has to be extracted from lepton specific processes. We

will impose as experimental constraints super-allowed β decay, charged pion, kaon, τ and
charm decays. We detail the experimental inputs of charged-current processes and the
extraction procedure in appendix A.

As for the high-pT constraints, analogous expressions to eq. (6.1) hold for charged
currents processes (pp → ℓν) which bound the parameter space only in the c(3) = (c(−) −
c(+))/2 direction (see figure 5). Since the neutral current constraints allow for larger effects
in c(+) than in c(−) the charged current constraints are relevant only for c(+).

8 Results

Our main results in terms of current experimental constraints on the X(±) components are
summarized in eqs. (4.6) and (5.8) for the flavour universal CPV contributions, as well as
in figures 3 and 4 for the CP conserving effects.

In figure 3 we present the combined fit to the most relevant experimental constraints on
the (−) operators with electrons (upper plot), muons (middle plot) and taus (lower plot).
We observe that away from the down-quark mass basis alignment limit (θ(−)

ℓ,d ≃ 0) the con-
straints are completely dominated by the NA62 measurement of B(K+ → π+νν̄) (marked
with black dashed lines). Thus future planned improvements in this measurement [84] are
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expected to have an important effect on all three lepton-specific operators. The nontrivial
behavior of the (green shaded) 68% CL regions of the global fit is also due to the possible
interferences between the SM and NP contributions to this decay. Interestingly, and as
first pointed out in ref. [31], the constraints in the charm sector are currently dominated
by Drell-Yan measurements at the LHC (marked with full black lines), with the exception
of muonic operators, where the current best constraint is given by the LHCb upper bound
on B(D0 → µ+µ−) [20] (marked in black dotted line). In light of this, future improvements
in the search for this rare decay by both LHCb and BelleII [85] are thus highly antici-
pated (projections shown in blue dotted line). For electron operators current bounds from
high-pT and rare D → πe+e− measurements are comparable. Future measurements of the
later decays by LHCb and BelleII, especially away from the long-distance resonance peaks
in the e+e− invariant mass spectrum, could potentially improve this bound considerably.
Finally, since all low energy decay channels for tauonic operators are closed, any future
improvements in this sector will necessarily rely on precise (HL)LHC measurements of the
pp → ττ spectrum. Currently, the high-pT experiments allow us to set a limit on the CP
violating phase for the tau. The weakest derived bound at 95 % CL reads:∣∣Im[c(+)

τ,I ]
∣∣ ≲ 0.15 . (8.1)

In figure 4 we present the combined fit to the most relevant experimental constraints
on the (+) operators with electrons (upper plot), muons (middle plot) and taus (lower
plot). In this case we observe that away from the down-quark mass basis alignment limit
the constraints in the electron and muon sectors are dominated by KL → ℓ+ℓ− decay
rate measurements (marked with dashed black lines). Therefore it is important that in
the future, a combined analysis of K0 → ℓℓ decays [74] could possibly go beyond the
current sensitivity. Again high-pT Drell-Yan production measurements (marked with black
full lines) are most restrictive close to θ

(+)
ℓ,d ≃ 0. In the case of tauonic operators, LHC

constraints dominate over the whole θ
(+)
τ,d range. Interestingly, the almost flat behavior of

these constraints with θ
(+)
ℓ,d is a result of the non-trivial interplay between flavour changing

(s̄d and d̄s) and flavour conserving (d̄d and s̄s) initial state contributions which exhibit
opposite behavior, combined with the marginalization over the trace contributions (λ(+)),
see eq. (6.1).

To be competitive with the high-pT constraints, the current experimental bound on
B(D0 → π0νν̄) (not shown, see section 5.3) would have to be improved by 3 orders of
magnitude. It is also important to note that at present, neutral current constraints are
already stringent enough to make possible effects in charged current transitions negligible.

9 Conclusions

We considered the effects of BSM physics in rare semileptonic ∆C = 1 and ∆S = 1
processes mediated by purely left-handed quark and lepton operators. Restricting the dis-
cussion to the two light quark generations allowed us to parametrize possible BSM effects
in quark flavour space in terms of Hermitian matrices (X) of dimension two, parametrized
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Figure 3. Bounds on the (−) operators. The imaginary part (for all three lepton generations)
was taken to be c

(−)
ℓ,I ≃ 0.4× 10−4, for which the bounds on c

(−)
ℓ,R sin θ

(−)
ℓ,d from K+ → π+νν̄ are the

weakest. The green and yellow shaded regions correspond to 68% CL and 95% CL allowed regions
of the global fit. The HighPT bounds were derived under the assumption that c

(+)
ℓ,R = c

(+)
ℓ,I = 0.
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Figure 4. Constraints on c
(+)
R and θ

(+)
d from various experimental bounds. Here we have set c

(+)
ℓ,I

to zero. The green and yellow shaded regions correspond to 68% CL and 95% CL allowed regions
of the global fit. The HighPT and charged current bounds were derived under the assumption that
c

(−)
ℓ,R = c

(−)
ℓ,I = 0.
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Figure 5. Bounds on the triplet operators from high-pT charged current processes [47]. See text
for details.
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by three real and one imaginary coefficient. In addition, weak isospin singlet and triplet
operator contributions are split into two distinct phenomenological sectors: one is char-
acterized by effective BSM couplings X(−) and contributes to s → dνν̄ and c → uℓ+ℓ−

transitions. On the other hand c → uνν̄ and s → dℓ+ℓ− processes can receive contributions
from effective X(+) couplings. A distinct feature that emerges in such a framework is that
beyond the SM there exists a single universal source of CP violation, parametrized by as
single CP-violating coefficient for each ((−) and (+)) sector.

To determine the allowed parameter space, in the (−) sector we considered exclusive
decays D → πℓ+ℓ−, D → ℓ+ℓ− and K → πνν̄. The KL → π−νν̄ decay amplitude is
CP violating and the existing upper bound on the corresponding decay rate from KOTO
directly constrains CPV in this sector. In practice however, the decay rate K+ → π+νν̄

is currently more sensitive and already constrains the CPV contribution in X(−) to below
∼ 10−4. The same CP-violating coefficient contributes also to charm meson decays. How-
ever, the lack of high-precision measurements in rare charm semileptonic decays currently
precludes any competitive CPV probes in this sector. In the X(+) sector, the decay modes
KL → π0ℓ+ℓ− and KL → ℓ+ℓ− dominate the low energy constraints.

Importantly, low energy data from exclusive K and D decays is complemented by
constraints from high-pT processes pp → ℓ+ℓ− at the LHC. In the case of electrons, these
bounds are currently competitive with the existing data on the rates of D+ → π+e+e− (for
X(−)) and KL → e+e− (for X(+)). They also dominate the constraints in the X(+) sector
for tau leptons. Interestingly, flavour conserving and flavour changing neutral currents
contribute to pp → ℓ+ℓ− in a complementary way, allowing to completely constrain both
X(±) parameter spaces using only high-pT data.

The presence of weak isospin triplet operators in the effective Lagrangian implies that
charged current processes might receive BSM contributions as well. Therefore, our analysis
considered constraints from super-allowed beta decays, from (semi)leptonic kaon decays
used in the extraction of the CKM matrix element Vus, as well as from charged current-
induced (semi)leptonic decays of charmed mesons. We found that these constraints are
more pronounced in the X(+) sector, where they currently supersede the ones coming from
the FCNC process D → πνν. They are however not competitive with high-pT constraints.

In the future, improved bounds on BSM physics entering D and K rare semileptonic
decays are expected from high precision measurements of both charm decay rates (D+ →
π+ℓ+ℓ−, D → ℓ+ℓ− and D → πνν̄), as well as kaon decay rates (K+ → π+νν̄, KL → π0νν̄

and K0 → µ+µ−). At the same time, future precision measurements of high pT processes
pp → ℓ+ℓ− at (HL)LHC, especially in the tau sector, could further illuminate and constrain
possible BSM physics in strange and charm semileptonic processes.
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A Lepton-specific CKM elements

The lepton-specific modifications of the CKM elements of eq. (7.1) are:

(Λ2/v2)∆V
(ℓ)

ud = +λ(3,ℓ) cos θc −
1
2c

(+)
R cos

(
θc + θ

(+)
d

)
+ 1

2c
(−)
R cos

(
θc + θ

(−)
d

)
+ i

2 sin θc

(
c

(+)
I − c

(−)
I

)
,

(A.1a)

(Λ2/v2)∆V (ℓ)
us = +λ(3,ℓ) sin θc +

1
2c

(+)
R sin

(
θc + θ

(+)
d

)
− 1

2c
(−)
R sin

(
θc + θ

(−)
d

)
− i

2 cos θc

(
c

(+)
I − c

(−)
I

)
,

(A.1b)

(Λ2/v2)∆V
(ℓ)

cd = −λ(3,ℓ) sin θc +
1
2c

(+)
R sin

(
θc + θ

(+)
d

)
− 1

2c
(−)
R sin

(
θc + θ

(−)
d

)
+ i

2 cos θc

(
c

(+)
I − c

(−)
I

)
,

(A.1c)

(Λ2/v2)∆V (ℓ)
cs = +λ(3,ℓ) cos θc +

1
2c

(+)
R cos

(
θc + θ

(+)
d

)
− 1

2c
(−)
R cos

(
θc + θ

(−)
d

)
− i

2 sin θc

(
c

(+)
I − c

(−)
I

)
,

(A.1d)

As we do not assume lepton flavour universality, it is necessary to extract constraints
separately for each lepton flavour.

A.1 V ℓ
ud

For electrons, we use the measured value of the superallowed β decay, which limits the
parameter space in the direction of Ce

ud. Using the results presented in [39, 86], and the
derived matching conditions, we have:

|V e
ud|

2 =
∣∣∣∣∣Vud +

v2

Λ2

(
λ(3,e) cos θc −

1
2c

(+)
R cos

(
θc + θ

(+)
d

)
+ 1

2c
(−)
R cos

(
θc + θ

(−)
d

))∣∣∣∣∣
2

= 2984.432(3)s
Ft(1 + ∆V

R)

(A.2)

where Ft = 3072(2)s and ∆V
R = 0.02426(32) [87].5

In order to limit this CKM element for muons and taus, we use the following LFU
ratio [89]:

Rπ
τ/µ = Γ(τ− → π−ντ )

Γ(π− → µ−νµ)
=
(

V τ
ud

V µ
ud

)2
m3

τ

2mπm2
µ

(
1− m2

π/m2
τ

)2(
1− m2

µ/m2
π

) (1 + δRπ
τ/µ

)
, (A.3)

where δRπ
τ/µ = (0.16 ± 0.14)% is the ratio of radiative corrections [90]. When deriving

limits, we consider only one lepton-specific contribution at a time, while keeping the other
CKM element fixed at the SM value.

The theoretical prediction can be compared to the ratio of measured decays:

R
π(exp)
τ/µ = 0.9962± 0.0027 . (A.4)

5Other measurements for these values exist as well, see e.g. [88]. We choose the ones with larger
uncertainties.
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A.2 V ℓ
us

We employ the precisely determined LFU ratios in kaon decays, namely:

RK
e/µ = Γ(K− → e−ν̄)

Γ(K− → µ−ν̄) , (A.5)

RK
τ/µ = Γ(τ− → K−ν)

Γ(K− → µ−ν̄) , (A.6)

and adapt the same approach as previously. The ratio in eq. (A.5) is used in our fits to limit
V e

us and V µ
us, whereas eq. (A.6) is used to limit V τ

us. In case NP is present only in electrons,
the experimental value in eq. (A.5) can be compared to our theoretical prediction:

R
K (exp)
e/µ

R
K (SM)
e/µ

− 1 ≈ v2

Λ2

[
c

(+)
R sin

(
θ

(+)
d + θc

)
− c

(−)
R sin

(
θ

(−)
d + θc

)
+ 2λ(3,e) sin θc

]/
sin θc,

(A.7)
with similar expressions for the other two lepton generations. Here:

R
K(exp)
e/µ = (2.488± 0.010)× 10−5 , R

K(SM)
e/µ = (2.477± 0.001)× 10−5. (A.8)

A.3 V ℓ
cd and V ℓ

cs

HFLAV [91] gives world-average lepton-specific measurements (bounds) on V µ,τ
cd and V µ,τ

cs

from the branching ratios D+ → ℓ+ν and D+
s → ℓ+ν. As the bounds on electron-specific

coefficients V e
cd, V e

cs are very weak, we use other charm decays instead, in particular D →
π−e+ν and D → K−e+ν, for which the NP-dependent branching ratios read:

dB
dq2 (D

0 → Pe+ν) =

G2
F |V e

cq′ |2

384m3
Dπ3ΓD

(
1− m2

e

q2

)2√
λ

(
f2

+D→P
(q2)

(
2 + m2

e

q2

)
λ + 3f2

0D→P
(q2)m2

e

q2
(
m2

D − m2
P

)2)
.

(A.9)

Here λ ≡ λ(m2
D, m2

P , q2) and P = π− (q′ = d) or K− (q′ = s). The momentum transfer
squared can take values in the range m2

e ≤ q2 ≤ (mD − mP )2. We can compare the
integrated branching ratios with the experimental values:

B(exp)(D0 → π−e+ν) = (2.91± 0.04)× 10−3,

B(exp)(D0 → K−e+ν) = (3.549± 0.026)× 10−2.
(A.10)

A.4 Limits

We summarize our results in the table 3.
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CKM Element Measurement/Experiment Derived value
V e

ud Superallowed β decay 0.9736± 0.0002
e V e

us RK
e/µ (NP in e) 0.2255± 0.0004

V e
cd D0 → π−e+ν −0.235± 0.008

V e
cs D0 → K−e+ν 0.98± 0.04

V µ
ud Rπ

τ/µ (NP in µ) 0.9781± 0.0027
µ V µ

us RK
e/µ (NP in µ) 0.2245± 0.0005

V µ
cd D+ → µ+ν (HFLAV) −0.225± 0.007

V µ
cs D+

s → µ+ν (HFLAV) 0.97± 0.02
V τ

ud Rπ
τ/µ (NP in τ) 0.9707± 0.0026

τ V τ
us RK

τ/µ (NP in τ) 0.222± 0.002
V τ

cd D+ → τ+ν (HFLAV) −0.25± 0.03
V τ

cs D+
s → τ+ν (HFLAV) 0.98± 0.02

Table 3. Experimental input used to limit the lepton-specific CKM contributions.
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