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components of conserved currents, or derivative interactions, where such a prescription is,
in fact, essential. To this end, we first undertake a careful analysis of the linearized wave
equations in AdS black hole backgrounds and identify the branch points of the solutions
as a function of (complexified) frequency and momentum. All the equations we study are
Fuchsian with only regular singular points that for the most part are associated with the
geometric features of the background. Special features, e.g., the appearance of apparent
singular points at the horizon, whence outgoing solutions end up being analytic, arise at
higher codimension loci in parameter space. Using the grSK geometry, we demonstrate
that these apparent singularities do not correspond to any interesting physical features
in higher-point functions. We also argue that the Schwinger-Keldysh collapse and KMS
conditions, implemented by the grSK geometry, continue to hold even in the presence
of such singularities. For charged black holes above a critical charge, we furthermore
demonstrate that the energy density operator does not possess an exponentially growing
mode, associated with ‘pole-skipping’, from one such apparent singularity. Our analysis
suggests that the connection between the scrambling physics of black holes and energy
transport has, at best, a limited domain of validity.

Keywords: AdS-CFT Correspondence, Field Theory Hydrodynamics, Thermal Field
Theory

ArXiv ePrint: 2212.13940

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP07(2023)008

mailto:nayagam@icts.res.in
mailto:mukund@physics.ucdavis.edu
mailto:jvirrueta@ucdavis.edu
https://arxiv.org/abs/2212.13940
https://doi.org/10.1007/JHEP07(2023)008


J
H
E
P
0
7
(
2
0
2
3
)
0
0
8

Contents

1 Introduction 1

2 Preliminaries 5
2.1 The grSK geometry 6
2.2 General properties of ODEs 7
2.3 Bulk interactions 9

3 Green’s functions on black hole backgrounds 11
3.1 Schwarzschild-AdS black hole 11
3.2 Reissner-Nordström-AdS black hole 13

4 Bulk interactions and the grSK contour 15
4.1 Interaction terms with horizon poles 16
4.2 Coupling to energy density 18
4.3 Apparent singularities at the horizon 20
4.4 Three-point correlator with horizon pole contribution 22

5 Discussion 24

A A compilation of wave equations 26
A.1 Perturbations of Schwarzschild-AdSd+1 26
A.2 Perturbations of Reissner-Nordström-AdSd+1 27

B Scalar metric and gauge field perturbations of the charged black hole 29

C Analysis of black hole wave equations 30
C.1 Terminology for singular points 31
C.2 Schwarzschild-AdS black hole wave equations 32

C.2.1 Designer scalar ODEs 32
C.2.2 The energy density operator ODE 34

C.3 Reissner-Nordström-AdS black hole wave equations 36
C.3.1 Designer scalar ODEs 37
C.3.2 Momentum diffusion ODE 39
C.3.3 Energy density and charge diffusion ODEs 40

D Form factors in the FPF correlator 46

E Local analysis for apparent singularities 47

– i –



J
H
E
P
0
7
(
2
0
2
3
)
0
0
8

1 Introduction

The study of linearized perturbations of black holes, initiated in [1, 2], is relevant for a broad
class of physical questions. These range from astrophysical signals of black hole horizon
ring-down, to mathematical relativity questions of black hole stability, and holography [3].
The linear wave equations have therefore been analyzed by many authors over the years.1
Our interest is in the context of holography, especially in the analytic structure of the
solutions, and how this informs boundary correlation functions, in particular higher-point
functions.

The context for our analysis is the computation of real-time thermal correlators in a
strongly coupled holographic field theory. We will focus on Schwinger-Keldysh correlators,
which have been argued to be computed on a particular complexified spacetime in [7] (we
refer to the resulting geometry as the grSK spacetime). As it stands, their prescription
can be viewed as a particular contour choice for the computation of bulk Witten diagrams,
as elaborated in [8–10]. The virtue of having a contour prescription is that one can fold
in the information about the nature of local behaviour into the contour integral. This
turns out to be especially important when considering correlation functions of conserved
currents where, as we shall see, the bulk vertices involve functions with singularities which
potentially interfere with the contour of integration. In turn, these new singularities could,
in principle, break the general arguments advanced in the above references that correlators
computed in the grSK spacetime satisfy the general properties required of Schwinger-
Keldysh thermal correlators.

To be clear, the analysis of real-time correlation functions in the holographic context
has a long and rich history. The original prescription for computing two-point functions
was given in [11] and justified in [12]. The logic here was to argue that the retarded corre-
lators, by virtue of boundary causality, should involve infalling boundary conditions on the
future horizon and suitable boundary sources controlled by non-normalizable modes at the
AdS asymptopia.2 The boundary two-point function was obtained as the ratio of the nor-
malizable mode to the non-normalizable mode for such solutions. Much of the subsequent
literature in applications of AdS/CFT to compute thermal real-time observables, spectral
functions, fluid-gravity correspondence etc., has relied on this prescription.

While the prescription of [11] captures correctly the retarded observables, owing to
the presence of a single boundary condition on the asymptopia, it does not naturally lend
itself to computing fluctuations (one could, however, get these by demanding that the
fluctuation-dissipation theorems hold at the Gaussian order). A more natural prescription
therefore was the proposal of [13, 14] who argued that one should take the boundary
Schwinger-Keldysh contour seriously. In particular, they posited that the bulk spacetime
dual to such contours should be constructed by piecewise gluing Lorentzian and Euclidean
geometries across codimension-1 bulk surfaces. Within this framework, [15] demonstrated

1In addition to the classic reviews of the subject [4, 5], a recent review [6] might prove helpful in the
context of our discussion.

2Equivalently, the infalling modes are naturally the analytic solutions for the perturbation equations in
a suitable basis.
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the naturalness of the infalling prescription of [11]. Taking this into account, one can indeed
compute (higher-point) correlators with general Schwinger-Keldysh time-ordering, as was
done already a decade ago in [16, 17]. More recent efforts in this direction include [18, 19]
for non-thermal excited states, and [20] who computed thermal 3-point functions.

One might thus ask, what does the prescription of [7] buy us, apart from perhaps the
elegance associated with writing the result in terms of a contour integral? For instance,
using this prescription it was demonstrated that a general correlation function of a class
of boundary operators could be written as an integral over a single copy of the black hole
exterior, of an integrand that is a (multiple) discontinuity [9, 10] (see also [21]). However,
certain assumptions3 were made in the process of deriving these statements. It transpires
that for a class of operators, the bulk vertices for the corresponding holographic fields
involves non-analytic vertices. Having a contour prescription allows one to disambiguate
these situations, and allows one to argue in its favour.

A simple example which explains the issue is a cubic interaction of two bulk-fields
(say φ and χ) involving derivatives, e.g., χ∇Aφ∇Aφ. In this case, the interaction vertex
written in a basis adapted to the analytic infalling modes has a pole at the location of
the horizon. If we were to say that the prescription involves gluing together two copies of
the black hole exterior along the codimension-1 null hypersurface (the horizon) we have
a jump discontinuity in the (null) extrinsic curvature, which requires regulating. The
contour integral provides a natural regulator, giving a clean prescription for the boundary
correlator.

Another situation where one encounters something interesting corresponds to the com-
putation of correlation functions of the boundary energy density operator. Now the inte-
grands involve a function Λk of geometric data and spatial momenta k, (2.17), whose zeros
rk potentially pinch the integration contour for certain values of k ∈ C.4 This behaviour
turns out to be related to explorations in the literature regarding the contribution of the en-
ergy density operator to the out-of-time-order correlator capturing chaotic and scrambling
dynamics [22] (see also [23] for an analysis in 2d CFTs). From a gravitational perspective
the phenomenon of interest dubbed ‘pole-skipping’ in the aforementioned work, refers to
loci in the complex frequency ω and momentum k space where the naive expectation of
the correlator having a pole turns out to be unfounded. As observed originally in [24] and
elaborated upon in [25], in the holographic context for neutral black holes, the phenomenon
occurs at a codimension-2 locus in the (ω, k) space, at (ω?, k?) = 2πi T (1,

√
2 (d−1)

d ). The
real space profile of the solution is that of an exponentially growing mode at the rate set
by the maximal Lyapunov exponent λL = 2πi T , damping out spatially with a rate set by
the butterfly velocity vB =

√
d

2 (d−1) [26].
The phrase apparent quasinormal modes captures the physical aspects of this behaviour

better [10], for, as first noticed in [25] and analyzed in various other contexts in [27–29],
3In [10] it was assumed that the bulk vertex functions do not introduce any additional singularities; all

singularities in the integrand can be traced back to the linearized solutions of the wave equation.
4The function has d−2 complex zeros on a circle of radius rk. One of these lies between the horizon and

the boundary, at a real value of the radial coordinate, for |k| ∈ [k?,∞) and arg k2 = π. The lower bound
k? is the special momentum when the root is at the horizon.
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at these loci the two-point correlator is ambiguous. From a mathematical perspective, at
these particular values of the parameters the differential equations governing linearized
fluctuations no longer have a regular singular point at the horizon. Rather the horizon
becomes an apparent singularity. Physically, this means that the outgoing mode, which
is generically non-analytic,5 stops being so. Consequently, there is no branch cut in the
grSK geometry and thus the retarded two-point function becomes ill-defined. Per se, this
is not a problem, happening as it does in a set of measure zero. However, given that this
happens when the function Λk has a zero at the horizon (which a-priori could have led to
an irregular singular point), one might ask if there are other regions where the poles of this
function can interfere with the grSK contour.

We address this question and show that apart from the horizon, which is relevant
for correlators of generic primaries, global currents, and the transverse tensor and vector
polarizations of the stress tensor [30], the only other point where the function changes
the character of the solution corresponds to the asymptotic boundary, which owes to the
presence of soft modes (as was understood in [31]). In summary, we establish that for
all bosonic wave equations of interest in the Schwarzschild-AdSd+1 background, the only
singular points of the linearized equations are at the asymptopia, black hole singularity,
and at the horizon (and other roots of the metric function f).

While it is useful to establish that the solution to the wave equation corresponding to
physical (gauge-invariant) gravitational fluctuations is well-behaved at other radial posi-
tions, it is not quite sufficient for the analysis of correlation functions. First note that the
energy density operator couples to all the operators of the CFT; in the bulk this translates
to the statement that the scalar graviton polarizations have a non-trivial vertex with all
primaries (and contributes to 〈Tµν OO〉). The corresponding bulk degree of freedom, Z,
a scalar graviton polarization, satisfies an autonomous differential equation with only an
apparent singular point at the roots of the function Λk, and is therefore regular there.
The metric functions themselves are determined not only in terms of Z and its derivatives,
but crucially have a Λk dependence that diverges as r − rk (the transformation between
the metric perturbations and Z has a simple pole). Should the residue at this pole be
non-vanishing for k lying along the ray described in footnote 4, we would have a problem
satisfying the Schwinger-Keldysh collapse rules and the KMS condition.

Since this issue only arises upon complexification of momenta, a skeptical reader might
ask whether this has any bearing on the physical correlation functions. While we are
sympathetic to this view, it seems a bit bizarre that the real-time correlation functions
given by the grSK prescription could fail to respect basic consistency conditions along a
real codimension-1 surface in the complex (ω, k) space. Moreover, the universality of the
energy density coupling, suggests that the resolution should be sufficiently general. Indeed,
we verify by direct computation that not only is Z analytic at the zeros rk of Λk, but so are
the metric functions. Therefore, there are no subtleties even in the higher-point correlation
functions computed using complexified grSK geometry. In other words, the analysis of these
equations, provides a non-trivial consistency check of the grSK contour prescription.

5Recall that we choose to make the ingoing mode manifestly analytic by working in infalling coordinates.
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We not only analyze the situation in the Schwarzschild-AdSd+1 black hole, which has
been examined in part in the literature, but also undertake an analogous analysis for the
Reissner-Nordström-AdSd+1 black hole. Now one has to contend with additional singular
points arising from the charge dependence through the Ohmic radius introduced in [32].
These are benign lying as they do inside the horizon, and thus do not affect the grSK
contour. For this charged plasma, however, the longitudinal scalar polarization of stress
tensor couples to the longitudinal mode of the charge current. They can be decoupled at
the linearized order, leading to an identification of the energy density and charge diffusion
operators [33] (the corresponding two bulk fields are Z and V, respectively).

The decoupling again introduces an analogous function Λk (still given by (2.17)). Since
the metric function is different, the set of zeroes of Λk is correspondingly distinct — it has
two sets of zeros on two circles of radii rk1 and rk2, with phases determined by k. Moreover,
|rk1| > r+ for small charges, |rk2| > r+ for large charges, with the swap happening well
away from extremality.6 The mapping from Z and V to the physical metric and gauge
field perturbations has poles at the zeros of Λk. The energy density field Z has apparent
singularities at both sets of roots, but the charge diffusion field V, while having an apparent
singularity at the rk1 set, instead has a simple pole at the roots in the rk2 set. For either
set of roots we can tune the momentum so that we have a potential pole along the grSK
contour. However, once again, if we evaluate the metric functions in the vicinity of the Λk
zeros (either set), the metric and gauge field perturbations are manifestly analytic, ensuring
that the correlation functions are well-behaved, and respect the Schwinger-Keldysh collapse
rules and KMS conditions.

When we further fine-tune the momentum so that one of the roots from the rk1 set
lies on the horizon, we find a behaviour analogous to the Schwarzschild-AdSd+1 case.
The horizon can be made an apparent singular point at codimension-2 locus (ω?, k?) =
2πi T (1,

√
(d−1) r+

2π T ).7 Translating to position domain we again have an exponentially grow-
ing mode in time, and damped in space, mimicking the scrambling mode for localized
perturbations [34] (see the general expression given in [35]).

Above this critical charge, the aforementioned behaviour shifts to the charge diffusion
mode. This however occurs at a different value of frequency, specifically at (ω?, k?) =
2πi T (−1,

√
(d−1) r+

2πT ). Now one no longer has an exponentially growing mode, even at an
apparent singular point of the differential equation. Furthermore, the energy density field
does not show any special features; its outgoing mode is non-analytic at the horizon as
usual.

This is perhaps unexpected from the viewpoint of [22], who argued for a general con-
nection between quantum chaotic dynamics encoded in the exponential growth of the out-

6The parameterization for Reissner-Nordström-AdSd+1 we use has a charge parameter Q ∈ (0,
√

d
d−2 ]

with the upper limit corresponding to extremality. The critical charge where the two sets of roots exchange
dominance is lower; it is at Q∗ =

√
d

3d−4 .
7We work in units where `AdS = 1, and thus the radial coordinate has units of energy. T/r+ is dimen-

sionless, and we prefer to emphasize the dependence on the physical temperature measured in horizon size
units.
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of-time ordered 4-point function to the energy density 2-point function. This connection
fails to hold for charged black holes above a critical charge. While [36, 37] have earlier
analyzed the fluctuations of Reissner-Nordström-AdS4 for connection between conserved
current correlators and chaos they appear to have missed this fact. We return to what this
could imply for maximally chaotic systems in section 5.

The outline of the paper is as follows: in section 2 we review the grSK geometry and
the contour prescription for evaluating real-time thermal correlators. We also take the
opportunity to give a synopsis of the features of second order linear differential equations
that we are interested in, reminding the reader of some the standard terminology. This
allows us to identify issues that arise in computation of real-time correlation functions
using the grSK geometry. In particular, we highlight several potential failure points of the
prescription, which we systematically explore in the sequel.

In section 3 we summarize the upshot of our analysis of wave equations for the Green’s
functions necessary for the grSK contour. Throughout this work, we assume that our back-
ground geometry has time and spatial translational symmetries along the boundary (i.e.,
CFT) directions, which allows us to work in Fourier domain; our parameters also comprise
then the frequencies and momenta. We discuss both the Schwarzschild-AdSd+1 black hole
and the Reissner-Nordström-AdSd+1 black hole. Special focus will be on the fields dual
to conserved currents, which have an intricate behaviour. Having established the analytic
structure of the solutions of the perturbations, we then turn in section 4 to the computation
of Witten diagrams using the grSK geometry. Here we discuss several scenarios: interaction
terms where vertex functions have poles at the horizon, the apparent singularities in the
energy density operator, and finally comment on the observations regarding ‘pole-skipping’
behaviour in Schwinger-Keldysh correlation functions. Some of these features are explic-
itly exemplified by a computation of a three-point function in a simple setting (derivative
interaction of two scalar fields in the BTZ geometry).

To keep the main text simple, we have relegated various facts, and some of the detailed
derivations to appendices. For completeness, we collate all the differential equations we
analyze in appendix A and some formulae relevant for the energy density field in Reissner-
Nordström-AdSd+1 in appendix B. A detailed analysis of singularity structure of the dif-
ferential equations, which feeds into our summary in section 3 can be found in appendix C.
For clarity, here we ascribe names to various singular points that occur, delineating features
that are generic from those that aren’t (the latter occur at higher codimension in param-
eter space). appendix D contains some details relating to the evaluation of three-point
functions in section 4.4. Finally, appendix E gives a quick and simple-minded discussion
of deducing when a particular singular point of a second order ODE is apparent by a local
Frobenius analysis (the general discussion dates back to [38]).

2 Preliminaries

Consider a general static, translational symmetric black hole geometry with the line element
in ingoing coordinates given as

ds2 = 2 dv dr − r2 f(r) dv2 + r2 dx2 . (2.1)

– 5 –
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We restrict attention to non-degenerate horizons with f(r) having a simple zero. The
largest real root f(r) is taken to be r = r+ (the outer horizon) and one defines the Hawking
temperature as

T = r2
+ f
′(r+)

4π . (2.2)

2.1 The grSK geometry

The grSK geometry (also referred to as the grSK contour) introduced in [7] is a particular
complexification of the black hole spacetime (2.1), which is conjectured to be dual to
the Schwinger-Keldysh contour of a thermal holographic CFT. In thermal field theory,
one computes real-time observables by complexifying the time coordinate, to include the
forward and backward evolution of the thermal density matrix ρβ 7→ U(JR) ρβ U †(JL).
Holographically, this is achieved by complexifying the radial direction in the ingoing chart
specified above.

Given the boundary Schwinger-Keldysh contour, we have a spacetime with two asymp-
totic boundaries, labeled L and R, above. We will work in the modified advanced retarded
(FP) basis introduced in [39], where the sources JF and JP are the following linear combi-
nations of the L and R Schwinger-Keldysh sources (likewise for operators)

JF = − ((1 + nB ) JR − nB JL) , JP = −nB (JR − JL) . (2.3)

Here nB is the Bose-Einstein factor nB = 1
eβω−1 , which we note has poles at Matsubara

frequencies w = im, m ∈ Z. The advantage of this basis is that the Schwinger-Keldysh,
and KMS conditions are cleanly implemented as the statement of vanishing of all correlators
with purely F or P insertions. Any prescription for the bulk dual, therefore, must respect
these constraints. Our goal here is to argue that the grSK geometry indeed achieves this
in a self-consistent manner.

To describe the geometry, consider the mock tortoise coordinate defined as

dζ
dr = 2

iβ

1
r2f

. (2.4)

This coordinate ζ(r) has a logarithmic branch cut emanating from the zeros of f . We
will be interested in the cut running from the outer horizon, which we ruin along the ray
(r+,∞). The normalization has been chosen so that ζ has unit monodromy across the cut.
We take Re(ζ) = 0 on the top leg of the grSK contour and Re(ζ) = 1 on the bottom leg,
as indicated in figure 1.

The basic data one needs to compute boundary Schwinger-Keldysh observables, is
the boundary-bulk Green’s function for the field dual to the QFT operator. Of primary
interest is the one regular at the future horizon, the ingoing Green’s function Gin(ζ, v,x).
For planar black holes we exploit the Killing symmetries to work in Fourier domain (ω,k),
with wavefunctions e−i ω v+ik·x and let k = |k|. We also work with a basis of the tangent
space adapted to the ingoing coordinates [30]. In particular, the derivation

D+ = r2f ∂r + ∂v . (2.5)

– 6 –
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r+
rc

rc+iε
Re(ζ)=0 (L)

Re(ζ)=1 (R)
rc−iε

Im(r)

Re(r)

Figure 1. The complex r plane with the locations of the two regulated boundaries (with cut-off
rc) and the outer horizon at r+ marked. The grSK contour is a codimension-1 surface in this plane
(drawn at fixed v). The direction of the contour is taken to be counter-clockwise, encircling the
branch point at the outer horizon. The cut is chosen to run out towards the boundary. Depending
on the system we study, there will be other branch points, cuts, and singularities in the complex
radial plane. We will discuss these in the sequel, in a case-by-case basis.

is useful to analyze time-reversal properties.8 Depending on the circumstance, it will also
be useful to consider the frequencies measured in Matsubara units, so we introduce

w = ω

r+
, q = k

r+
, w ≡ β ω

2π . (2.6)

The ingoing Green’s function Gin(ζ, ω,k) satisfies suitable non-normalizable bound-
ary conditions at the spacetime boundary, and is regular at the horizon. This is the
analytic solution. From it one can recover the outgoing boundary-bulk Green’s function
by using the time-reversal property of the background [9]; specifically, Gout(ζ, ω,k) =
e−βωζ Gin(ζ,−ω,k). Furthermore, the bulk-bulk Green’s function may also be directly
obtained from the knowledge of Gin [10].

The computation of a thermal correlation function of the boundary field theory, there-
fore, involves convolving these boundary-bulk and bulk-bulk Green’s functions, and carry-
ing out the radial integrals. The main difference from the usual Witten diagram computa-
tion in Euclidean-AdS is that now the radial integral is carried out over the grSK geometry,
using the contour depicted in figure 1. While the ingoing boundary-bulk Green’s function
being regular is insensitive to the branch cut, the outgoing boundary-bulk and bulk-bulk
Green’s functions pick up monodromies from the cut. The contour integral can, in the
absence of any other singularities, be evaluated as an ordinary radial integral restricted
to the domain [r+,∞), with the integrand being given as a discontinuity of the convolved
Green’s functions, vertex factors, and radial Boltzmann weights (the e−βωζ factors) [10].

2.2 General properties of ODEs

As reviewed above, the essential ingredient in the computation of thermal real-time corre-
lators is the ingoing boundary-bulk Green’s function. These Green’s functions in Fourier
domain satisfy second order ordinary differential equations. The class of equations we are
interested in are of the following form:

Dϕ + V (r)ϕ = 0 , D ≡ − 1√
−g eχ

∂A
(
eχ
√
−g gAB ∂B

)
. (2.7)

8All the equations we analyze are time-reversal invariant, even though the fields themselves can have
intrinsic time-reversal parity. This is important for the grSK prescription to respect the Schwinger-Keldysh
and KMS conditions [9].
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The ‘dilaton’ factor eχ is a function of the radial coordinate. In certain cases it also depends
on the spatial geometry, which will prove to be the ones of interest for us. The potential
functions V (r) can be complicated, but these will be mostly irrelevant for our local analysis.
We have compiled the various equations of interest in appendix A.

Our aim is to analyze the singularity structure of the differential equations (2.7), which
are second order, linear ODEs (SOLDE), in Fourier domain. These can be canonically be
put in the form:

ϕ′′(r) + p(r)ϕ′(r) + q(r)ϕ(r) = 0 . (2.8)

We let r ∈ P1 and wish to classify the branch points of the solutions ϕ(r) of (2.8). The
interplay of this branch structure with the contour prescription of [7] described in section 2.1
will be important for purposes of understanding higher-point thermal correlation functions.
It may be possible to reduce the number of such branch points, by projecting down from the
P1 parameterized by r, say with the variable r2 for even boundary dimensions. However,
since we wish to work with the grSK geometry, which complexifies r, we will directly
analyze the ODEs in this radial variable with no redefinitions.

We recall some elementary facts. A point r = r0 (including the point at infinity) is
an ordinary point if p(r) and q(r) are analytic in an open region containing r0. If not, it
can be a regular singular point if (r − r0) p(r) and (r − r0)2 q(r) are analytic in an open
domain of r0, or an irregular singular point otherwise. A SOLDE is Fuchsian if all of its
singular points (abbreviated SPs) are regular (modulo a monodromy condition, which will
describe below). For reasons that are not a-priori clear, all the wave equations we study
for perturbations of non-extremal planar AdSd+1 black holes are Fuchsian with regular
singular points. For equations of massive scalars in such backgrounds this was already
noted in [40].

In the neighbourhood of a regular SP x = x0, the local behaviour of the solution can
be understood by the Frobenius expansion. Laurent expanding the functions p(r) and q(r)
about r0, and letting {pn, qn} be the coefficient of (r − r0)n, we learn that characteristic
exponents α± are solutions to the indicial equation,

α(α− 1) + αp−1 + q−2 = 0 . (2.9)

These tell us that the solution ϕ(r) has a branch point at r0 and can be used to set up
a Frobenius expansion for ϕ(r) in an open neighbourhood. This local solution picks up a
monodromy upon encircling r0, r 7→ r0e

2πi, rotating by(
e2πi α− 0

0 e2πi α+

)
for α+ − α− /∈ Z or e2πi α−

(
1 2πi γ
0 1

)
for α+ − α− ∈ Z .

(2.10)

In the former case the two local Frobenius solutions ϕ± are linearly independent, while in
the latter case there is a logarithmic branch.9 There is however one exceptional case: for
α± ∈ Z and α+ 6= α−, it may be possible for there to be no monodromy — the logarithmic

9Assuming α+ > α−, the linearly independent solutions are ϕ+ and ϕ− + γ ϕ+ log(r − r0).

– 8 –



J
H
E
P
0
7
(
2
0
2
3
)
0
0
8

branch is absent. Furthermore, if both exponents are non-negative then the solution admits
a regular Taylor expansion. In such a situation the putative SP r = r0 is said to be an
apparent singular point (abbreviated ASP), for it secretly is simply an ordinary point of
the equation. An analysis of such ASPs, including a general criterion for their existence,
can be found in [38], where they are referred to as pseudo-singular points in translation.

For a Fuchsian SOLDE, the so-called Fuchs condition, requires that sum of the char-
acteristic exponents from all the SPs, regular and apparent, (including infinity, whose
exponents counted as usual with an opposite sign) is fixed in terms of the number of SP:
if we have an equation with m SPs, then ∑m

i=1 αi+ + αi− = m− 2. A classic reference on
this material is [41]; for modern perspective on Fuchsian ODEs see [42].

The singularity analysis of equations compiled in appendix A, which are of the form (2.7),
is straightforward. Our interest will be in ascertaining how the singular points morph as
we change the parameters in the equation. Before we do so, however, let us take stock
of why this is relevant for the interaction vertices. Following this, we will summarize the
basic features of the equations relevant for computing conserved current correlators in
appendix C.

2.3 Bulk interactions

We will focus on two types of bulk interactions, which require attention for checking the
consistency of the grSK contour prescription. The first of these, involves interactions
comprising of derivatives of fields. For simplicity, consider the following cubic interaction
of two scalar fields φ and χ

S3 =
∫
dd+1x

√
−g ∇A φ∇Aφχ . (2.11)

While it looks innocuous, recall that the choice made for the grSK contour requires the
ingoing solution to be analytic, putting all the monodromies into the outgoing solution.
Adapting to the ingoing tangent basis, the vertex can be written as10

S3 =
∫
k

∮
dr rd−1

[
(D+ − iω1)φ(kµ1 ) (D+ + iω2)φ(kµ2 )

r2f
+ k1 · k2

r2 φ(kµ1 ) φ(kµ2 )
]
χ(kµ3 ) ,

(2.12)
where we introduced D± = r2f ∂v ± iω, and have restricted attention to translationally
invariant backgrounds. The radial kinetic term here has now a simple pole at the horizon,
which needs to be dealt with. This behaviour is generic: for derivative interactions one
always encounters a pole at the horizon, the order being related to the number of derivatives
involved. This phenomenon was in fact noticed before in the analysis of fluctuations of a
probe Nambu-Goto string [8], where the quartic coupling of the transverse string modes
have a double pole at the horizon.

10The integral with subscript k is a shorthand for the momentum space integrals with the usual momentum
conserving δ-functions. The d-vector kµ has components kµ = (ω,k), with k ≡ |k|. The plane wave basis
in Rd−1,1 is taken to be e−iωv+ik·x. We have also made clear that the radial integral is to be evaluated on
the grSK contour figure 1.
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The second vertex of interest is the interaction between a primary O of dimension ∆,
and the energy density operator. The cubic vertex arises already from the kinetic terms
for the scalar field

SEOO = −
∫
dd+1x

√
−g

[1
2 g

AB∇Aϕ∇Bϕ+ ∆(∆− d)
2 ϕ2

]
. (2.13)

For the scalar graviton polarizations, which capture the dual of the energy density operator,
we can express the metric perturbation in a suitable gauge as [31]:

ds2 = ds2
0 + ΦE − r fΦW

rd−3 dv2 + 2 (ΦO − ΦE + r f ΦW)
rd−1f

dvdr

− 2(ΦO − ΦE) + (d− 1) rf ΦW

rd−1f2 dr2 + r2 ΦW

rd−2 dx2 ,

(2.14)

From here it is straightforward to read off the couplings

SEOO =
∫
dd+1xLEOO

LEOO = − ΦE

2 r2f2

[
(∂vφ)2 + (D+φ)2

]
+ ΦO

r2f2 ∂vφD+φ
ΦW

2 rf
[
(d− 1) (D+φ)2 +m2 r2f φ2

]
.

(2.15)

The complication lies in the translation to the fields which satisfy simple ODEs since,
owing to the background gauge invariance, the fields ΦE ,ΦO ,ΦW are not independent de-
grees of freedom. As explained in [31, 33], the information about the perturbation can be
repackaged into gauge invariant variables (following the original analysis of [43, 44]). For
a planar Schwarzschild-AdSd+1 black hole, we have a single energy density operator, dual
to a field Z, which determines the metric functions as [31]:

ΦE = D+

(
r

Λk

[
D+ −

r2f ′

2

]
Z

)
,

ΦO = ∂

∂v

(
r

Λk

[
D+ −

r2f ′

2

]
Z

)
,

ΦW = 1
Λk

[
D+ + k2

d− 1

]
Z .

(2.16)

The function Λk which will play an important role below is defined as

Λk = k2 + d− 1
2 r3 f ′ . (2.17)

The corresponding expressions for the planar Reissner-Nordström-AdSd+1 black hole are
given in appendix B, since in this case we have to also deal with the mixing between the
energy density and charge diffusion modes. Despite the additional complications, one finds
the translation to the gauge invariant variables to involve the function Λk as in (2.17), with
the only change being in the metric function f(r).
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For the neutral black hole, we can therefore write the vertex as

LEOO = 1
2 r2 f2

[
−D+

(
r

Λk

[
D+ −

r2f ′

2

]
Z

)
+ (d− 1) rf

Λk

[
D+ + k2

d− 1

]
Z

]
(D+φ)2

− 1
2 r2f2D+

(
r

Λk

[
D+ −

r2f ′

2

]
Z

)
(∂vφ)2 + 1

r2f2
∂

∂v

(
r

Λk

[
D+ −

r2f ′

2

]
Z

)
∂vφD+φ ,

(2.18)

where now the fields φ and Z satisfy equations of the form (2.7). The former obeys (A.2)
with M = d− 1, while the latter obeys (A.3).

The point to notice here is the presence of the function Λk in the denominator, which
potentially can give rise to singular contributions. We are interested in ascertaining whether
its zeros are relevant, and if so whether one also has to account for the monodromy of the
field Z about these singularities. This requires us to undertake a careful analysis of the
differential equations, thus motivating the study in this paper. We note here that the
factors of Λk in the vertex are due to the redefinition of the metric variables in terms of Z
in (2.16). Independent of applications to real-time correlators, one would also like to know
if metric perturbations are regular themselves. On physical grounds we expect them to be
so for real frequencies and momenta, but the complete analysis, as it will transpire, should
also allow for complexified spatial momenta.

3 Green’s functions on black hole backgrounds

We turn to an analysis of the wave equations encountered in the study of black hole
perturbations. We will focus on the set of equations that captures holographically the
dynamics of spinless operators of arbitrary conformal dimension and conserved currents,
for the most part. For systems with multiple conserved currents (as in the case of finite
density), diagonalize the kinetic terms for the corresponding bulk fields. In all cases of
interest,the dynamics of conserved currents can be repackaged into equations for designer
scalars with non-minimal couplings. The details of the analysis (which is pretty standard)
are compiled in appendix C. We simply summarize below the features which play a role in
the computation of Witten diagrams using the grSK contour prescription.

3.1 Schwarzschild-AdS black hole

Let us begin with a class of equations that encompasses minimally coupled massive scalar
fields dual to CFT primaries, probe gauge fields dual to a global current operator, and
tensor and vector polarizations of gravitons. As demonstrated in [30] all these cases are
described by the dynamics of a designer scalar field (2.7) with a simple power law behaviour
of the auxiliary dilaton, eχ ∼ rM−d+1. The equation of interest (A.2) translates to

ϕ′′(r) +
[
M + 2
r

+ f ′

f
− 2iω
r2f

]
ϕ′ −

[
k2 +m2 r2 + iMω r

r4 f

]
ϕ = 0 . (3.1)

This system has SPs at the asymptotic boundary, at the black hole curvature singu-
larity (the origin), and at the zeros of f for generic values of ω, k. We have depicted this
generic behaviour in figure 2 (for d = 4).

– 11 –



J
H
E
P
0
7
(
2
0
2
3
)
0
0
8

0
−r+ r+

ir+

−ir+

∞

Figure 2. Singular points of Schwarzschild-AdS5 designer scalar equation in the complex r. We
have drawn a circle of radius r+ that separates the interior of the black hole from the exterior. The
cut depicted is the one running from the horizon to the AdS5 boundary for the outgoing Hawking
mode (we make the choice that the ingoing mode is analytic). The grSK contour encircles this cut
counter-clockwise as shown. The cuts from other singular points are not indicated, but can run in
any directions so long as they do not cross the grSK contour.

The behaviour at infinity dictates the familiar asymptotic fall-offs. The only other SP
relevant for the grSK contour, is that originating from the outer horizon r = r+, where
the characteristic exponents are 0 and iβω2π , corresponding to the ingoing and outgoing
solution, respectively. Using the freedom to orient cuts from the other SPs away from the
grSK contour, we see that there is no ambiguity in the prescription. Thus, in this case we
only need to deal with issues arising from bulk vertices, which as noted in section 2.3 may
themselves contribute singularities.

There are additional features at special values of frequency and momenta. At Mat-
subara frequencies w = i n with n ∈ Z≥0 the outgoing solution can be made regular at
the horizon by fine-tuning the momentum. For this choice the horizon is an ASP. While
we explore these in appendix C.2, in the context of grSK contour, their presence simply
implies that the correlators are analytic at these special points.

There is one equation (A.3), that for the bulk mode Z(r) dual to the energy density
operator, which has to analyzed independently. Naively, it appears that in addition to the
asymptotic, curvature, and horizon SP, we have an additional d− 2 SPs from the roots of
Λk = 0. For Schwarzschild-AdSd+1 are located on circle of size 1/k at

rk = r+

(
− 2
d (d− 1)

1
q2

) 1
d−2

$d−2 , (3.2)

where $n denotes the nth roots of unity. For arg(q2) = π we even potentially have one
of the roots located between the horizon and the asymptotic boundary. However, a closer
analysis reveals that for generic q2 the points rk are apparent SPs (ASPs) of (A.3).

At special values of parameters, we find new behaviour. The roots of Λk can be made to
coalesce with other SPs of the system, by tuning the momentum. This leaves the Fuchsian
nature of the equation unchanged, but modifies the characteristic exponents. There are
two cases of interest: rk →∞ and rk → r+.
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When k = 0, the roots of Λk are at infinity. However, this leaves the point at infinity
a regular SP, albeit with changed exponents. As was understood in [31] the change in
behaviour owes to enhanced diffeomorphism symmetry in the zero momentum limit (a fact
already appreciated in [43] and explained in part in [45]).11

By choosing

k = ±i
√

2π (d− 1) T
r+

, (3.3)

we can achieve rk = r+. For generic ω, the only change is that the characteristic exponents
are shifted by unity: the ingoing mode has exponent +1, and the outgoing mode has
exponent 1 + iβω2π . At a particular fine-tuned values of (ω, k), setting ω = 2πi T the energy
horizon coalescence renders the horizon to be an ASP. At this point profile of Z along the
boundary directions takes the form:

exp
(

2π T
(
v − |x|

vB

))
, vB =

√
d

2 (d− 1) . (3.4)

The result is suggestive of an exponentially growing mode in time at a rate set by the
maximal Lyapunov exponent λL = 2πT with the spatial dependence being damped at a rate
given by the butterfly velocity. These are in fact, the values computed for Schwarzschild-
AdSd+1 black holes using the shockwave approximation [26] (see also [34]). As noted earlier,
this phenomenon was first noticed in [24] and explained carefully in [25]. In the SYK model
it is the presence of such an exponentially growing mode that leads to the growth of the
out-of-time-order correlation functions [46]. Inspired by this, an effective theory of maximal
chaos was proposed in [22], arguing for there to be a growing mode in the energy density
correlator.

We have simply verified these earlier observations (trivially extending them for all
d ≥ 3). At this particular value of parameters, as with the Matsubara ASP, there is an
ambiguity in the definition of the boundary retarded Green’s function. In the present case
this is just as well, since an exponentially growing mode would have signaled an instability
(the quasinormal spectrum is required to be supported in the lower half-plane with retarded
Green’s functions analytic above the real frequency axis). We are also wary of referring
to this phenomenon as ‘pole-skipping’ for similar reasons, and prefer the term, apparent
anti-quasinormal mode.

In summary, the singularity structure for all the ODEs of interest in Schwarzschild-
AdSd+1 is captured by the designer scalar equation (3.1), as depicted in figure 2 for d = 4.
The regular SPs are only at the roots of f , the boundary and at r = 0. The nature of these
regular singular points changes due to coalescence as we tune k to some special values, but
apart from that there is no other singularity to deal with.

3.2 Reissner-Nordström-AdS black hole

For the Reissner-Nordström-AdSd+1 black hole, the analysis of the differential equations
is quite similar. The main differences are that depending on the equation we study there

11In fact, there are additional zero modes not visible to the bulk equation of motion, as they are purely
localized on the boundary [31].
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0
−r+ r+

−r− r−

iri

−iri

r
Q−r

Q

rk2

r̄k2

∞

Figure 3. Singular points encountered on complex radial plane for the various differential equations
of interest in the Reissner-Nordström-AdS5 background. The singular points {±r+,±r−,±i ri are
the roots of f(r), which along with the point at infinity are SPs of all the equations of interest.
The black hole singularity is not a SP in all cases, but is for some of the equations. Additionally,
we have some equations (transverse vector perturbations of the gauge field) for which the roots of
f ′(r) located at ±r

Q
are also singular. Finally, rk2 and r̄k2 are the roots of Λk which are regular

SPs of the field dual to the charge diffusion operator.

are, in addition to the SPs at infinity, the curvature singularity, and the roots of f(r),
additional features at specific radial positions. One of these corresponds to the roots of
f ′(r), denoted rQ , defined by

rd−2
Q

= d− 1
d

2Q2

1 +Q2 r
d−2
+ , SQ ≡

rd−2
Q

rd−2
+

. (3.5)

The dimensionless parameter SQ is serves as a proxy for the charge, with SQ = 0 in the
neutral case, and SQ = 1 for the extremal black hole. The other is the roots of the function
Λk, which are distributed in two sets on circles of radii rk1 and rk2, respectively. Of these
rk1 is analogous to the locus rk for the Schwarzschild-AdSd+1 black hole; it is an apparent
singular point. The locus rk2, however, is a genuine SP for the charge diffusion mode.
There are of course some special points in the parameter space where the nature of the SPs
changes (eg., at Matsubara frequencies for fine-tuned momenta at the horizon SP). Details
of these can be found in appendix C.3, but the general picture is summarized in figure 3.

There is one particular situation of fine-tuning that we wish to emphasize here, involv-
ing the roots of Λk lying at the horizon, and leading to apparent SPs. The perturbations
involved are the field Z dual to the energy density operator, and V dual to the charge dif-
fusion operator, which are analyzed in appendix C.3.3. These two satisfy decoupled wave
equations with the function Λk controlling both their kinetic terms. The roots of Λk satisfy
rk2 < r+ < rk1 for SQ ∈ [0, 1

2), but are ordered as rk1 < r+ < rk2 for SQ ∈ [1
2 , 1).

When the dimensionless ratio SQ < 1
2 , and k chosen so that rk1 = r+, we find that

the horizon is an apparent singularity for the energy density field Z, at a specific frequency
ω = 2πi T . However, there is no choice of frequencies for which the field V is analytic, and
so the horizon remains a regular SP for this field.
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At this value of parameters, the profile of Z is as in (3.4), viz., an exponentially growing
mode. We recover from this profile the Lyapunov exponent for a neutral probe.12 Further-
more, from the value of the momentum at which the outgoing mode remains analytic, we
recover the butterfly velocity. We conclude that by fine-tuning parameters, the energy den-
sity field can have a putative exponential growing mode, which is analytic at the horizon,
with the wavefunction in the boundary directions behaving as

exp
(

2πT
(
v − |x|

vB

))
, vB =

√
d− (d− 2)Q2

2 (d− 1) , 0 < SQ <
1
2 . (3.6)

This is indeed the expected value of the butterfly velocity for an AdS black hole [35]. For
this range the charge density field has a non-analytic outgoing mode at the horizon.

For SQ > 1
2 , however, something very different occurs. For this range of charges we

can tune rk2 = r+ by choosing the momentum appropriately. We find that energy density
mode Z is always non-analytic at the horizon, for there is no choice of frequency that makes
the outgoing mode regular. However, the horizon can be made into an apparent singularity
for the charge diffusion mode, albeit at a different frequency, ω = −2πi T . This frequency
leads to an exponentially damped mode, that cannot be identified as having to do with
any kind of Lyapunov behaviour (and thus with the chaotic behaviour of the OTOC).

This change in behaviour of the fields the horizon occurs for SQ = 1
2 , which translates

to a Reissner-Nordström-AdSd+1 black hole having a charge parameter

Q∗ =
√

d

3 d− 4 . (3.7)

The parameterization of the metric in (C.13) with 0 ≤ Q ≤
√

d
d−2 , the upper limit corre-

sponding to the extremal solution. When the charge of the black hole is small Q < Q∗, the
behaviour we find for the energy density mode Z is analogous to that for a neutral black
hole, by continuity. However, there is a transition at a critical charge Q∗ ( because there is
a secondary branch of zeros). For large charges there is no exponentially growing analytic
mode, in either the charge density, or in the energy density operators. While in neither case
is one actually computing the OTOC directly, the essential point is that in the absence
of a temporally growing mode. Therefore, there can be no meaningful association with
chaos for large enough charge. As far as we can tell this point has been missed in earlier
analyses [36, 37]. We will examine what these features mean in the Schwinger-Keldysh
correlator, in due course.

4 Bulk interactions and the grSK contour

Having ascertained the behaviour of solutions to the wave equations, we can now turn to
the analysis of boundary correlation functions. As described in section 2.3, our primary

12While it has been argued that in the presence of global conservation laws the bound on the Lyapunov
exponent is modified to 2πT

1−
∣∣ µ
µc

∣∣ , [47], our probes are the conserved currents which are uncharged under the

symmetry.
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concern is with bulk vertices that potentially have singularities that interfere or pinch the
grSK contour. The locations of the SPs along with the grSK contour for the equations of
interest are given in figures 2 and 3 (for specific equations in the charged case, see figures 4
to 6 ).

4.1 Interaction terms with horizon poles

Let us being with the cubic interaction of derivative coupled scalars (2.12) where the vertex
function naively has a simple pole at the horizon. To process this vertex we will need to
understand which correlation function is affected by the presence of the pole. In particular,
we first need to check that the SK and KMS conditions are not spoiled by the presence of the
horizon pole in the vertex. Furthermore, we need to determine which of the non-vanishing
correlators get a contribution from it and estimate them.

To proceed, we then recall some useful facts about the D± derivatives that was used
to relate the outgoing boundary-bulk Green’s function to the ingoing one [9]. In terms of
the ingoing adapted derivatives satisfy a conjugation property

D± = r2f ∂r ± ∂v , eβωζ D+e
−βωζ = D− . (4.1)

Using this we can argue that, given an ingoing boundary-bulk Green’s function Gin(ζ, kµ),
the outgoing Green’s function is given by

Gout(ζ, kµ) = e−βωζ Gin(ζ, k̄µ)
(D+ ∓ iω)Gout(ζ, kµ) = e−βωζ (D− ∓ iω)Gin(ζ, k̄µ) .

(4.2)

Here k̄µ is the frequency reversed d-momentum; if kµ = (ω,k), then k̄µ = (−ω,k). In
terms of this data the solution to the free wave equation for a field φ on the grSK geometry
with sources JR and JL on the R and L boundaries is given in the FP basis by (cf., [9])

φ(ζ, ω,k) = −Gφin(ζ, ω,k) JF +Gφout(ζ, ω,k) eβω JP . (4.3)

Next, we note that suitable combinations of the D+ derivative and temporal derivative
lead to factors of f , viz.,

(D+ + iω)Gin(ζ, kµ) = r2f
∂

∂r
Gin(ζ, kµ) ,

(D+ − iω)Gout(ζ, kµ) = r2f e−βωζ
∂

∂r
Gin(ζ, k̄µ) .

(4.4)

Hence, the only case of concern is one where there is a non-trivial term without a factor
of f , which occurs when we have a contribution of the form

(D+ + iω)Gout(ζ, kµ) . (4.5)

With this information, we now go over the various 3-point functions and check what
the presence of this pole does. For the vertex arising from (2.12) we will use Gφin(ζ, kµ)
and Gχin(ζ, kµ) to denote the Green’s functions for the two fields. We also order the fields
with momentum labels kµ1 and kµ2 assigned to the two φ fields, and kµ3 assigned to χ. The
arguments below are a specialization of those given in [9] (see also [10]) so we will be brief
in our exposition.
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• The horizon pole is benign for the FFF correlator which vanishes as desired. Here
factor (D++iω)Gφin(ζ, k2) gives a factor of r2f which cancels the pole. The vanishing of
the correlator follows along the lines then described in the aforementioned references.
A similar argument applies to the FFP correlator.

• Using a similar property of (D+ − iω)Gφout(ζ, k2) as noted above,we can check that
PPP, PPF and PFF correlators (nb: last label is for χ) are unaffected. In particular,
PPP correlator vanishes, and the other two are computed as the integral of the
discontinuity across the cut.

• This leaves us with FPF and FPP, which are both non-trivial since there is no factor
of f from the derivatives acting on the Green’s function for φ. The FPF correlator
turns out to be computed by the integral

IFPF =
∫
k

∮
dr rd−1 e−βω2ζGχin(ζ, kµ3 )

[
(D+ − iω1)Gφin(ζ, kµ1 ) (D− + iω2)Gφin(ζ, k̄µ2 )

r2f

+ k1 · k2
r2 Gφin(ζ, kµ1 )Gφin(ζ, k̄µ2 )

]
,

(4.6)

where we have made use of the relations deduced above. Now we have an explicit
horizon pole in the integrand. A similar story pertains for FPP, which requires us to
look at the following integral:

IFPP =
∫
k

∮
drrd−1e−β(ω2+ωµ3 )ζGχin(ζ, k̄3)

[
(D+ − iω1)Gφin(ζ, k̄1)(D− + iω2)Gφin(ζ, k̄2)

r2f

+k1 · k2
r2 Gφin(ζ, kµ1 )Gφin(ζ, k̄µ2 )

]
.

(4.7)

In both cases the first lines of the expressions have a pole at the branch point, which
needs evaluation.

To get a sense of how to tackle these integrals with a pole on the branch point, let us
consider the following toy integral (here CH is the keyhole or Hankel contour as in figure 2)

I =
∮
CH

dz

z
zα e−z =

[∫ ε+i0

∞+i0
+
∫ ∞−i0
ε−i0

]
dx

x
xα e−x +

∫ ε−i0

ε+i0

dz

z
zα e−z ,

= (e2πi α − 1)
[∫ ∞
ε

dx

x
xα e−x + εα

α

]
.

(4.8)

The instinct is to realize that brackets in the last line involve two divergent pieces, which
should cancel amongst themselves. The result is then

I = (e2πi α − 1) Γ(α) , (4.9)

which is manifestly analytic as a function of α.
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The integral we want with the horizon pole is something more involved. Moreover, the
Green’s functions do not have exponential damping but only power-law behaviour in the
radial direction. However, we can use the above example to inspire a simple prescription
for the computation. Let us therefore consider the following integral which captures both
correlators of interest (with x ∈ {F,P}):

IFPx =
∮

dr

r2f
e−βω ζ X(ω, ζ) . (4.10)

We have isolated the dependence on the frequency that enters the monodromy and sup-
pressed dependence on all other parameters. The function in the integrand, X, is obtained
from the various boundary-bulk propagators, measures etc. The only information we need
from it, is that it is analytic at r = r+. By the above logic

IFPx = (e−βω − 1)
∫ ∞
r++ε

dr

r2f
e−βω ζ X(ω, ζ) + β

4π X(r+) ε
iβω
2π 2πe

−βω − 1
iβω

= (e−βω − 1)
[∫ ∞

r++ε

dr

r2f
e−βω ζ X(ω, ζ) + X(r+)

2iω ε
iβω
2π

]
.

(4.11)

The final result involves a localized contribution from the horizon the serves to cancel
the IR divergent term in the radial integral, giving thereby a sensible result for the boundary
correlation function. In [8], such a localized contribution was extracted by working in a
small frequency gradient expansion.

From our perspective, the contour integral prescription of [7] has the advantage of
making clear how to deal with these horizon poles. In the earlier prescriptions of [14],
as for example recently employed in [20], the piecewise integrals will each have IR diver-
gences, which will need regulating. The contour prescription provides one such, and has
the added benefit of being geometric. We will employ this to compute an explicit correlator
in section 4.4 below.

4.2 Coupling to energy density

The other coupling of interest is the coupling to the energy density operator. We have
explicitly written out the cubic coupling of a primary of dimension ∆ to the energy density
operator (2.18). There are several terms in SEOO , but all have a common factor of Λ−1

k .
There are additionally potential horizon poles. We expect something similar for cubic self-
coupling of the scalar graviton polarization with itself. For instance, there will be a Z3

vertex (with some complicated action of derivatives), which will contain an overall Λ−3
k .

While computing the contributions to the 〈TµνOO〉 three-point function, naively, one
will have to evaluate integrals like∮

dr

r2f Λk
e−βω2 ζ X(ω1, ζ) . (4.12)

The horizon pole contributions can be understood as in section 4.1 (later we will argue that
some factors present in (2.18) are spurious). Let us therefore focus on the Λk contribution
for now.
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If the zero of Λk, r = rk lies outside the contour of integration, then we do not need
to concern ourselves, and the calculation proceeds as usual. The key issue is when the
grSK contour is pinched by the pole at rk, which, as we have seen, can occur for complex
momenta. For instance, restricting attention to the Schwarzschild-AdSd+1 case, taking
arg(q2) = π will achieve this.13 It is also worth emphasizing that if we focus on small k
and analyze the problem in a boundary gradient expansion, as has been done in earlier
works [31, 33], then the zeros of Λk do not show up.

The ingoing Green’s functions for the fields dual to the energy density operator (or
charge diffusion) do not have a branch cut at this point from the SOLDE analysis. However,
the explicit pole in the integrand (4.12) cannot be avoided. This is a serious problem for
the grSK contour, unless there is a mitigating effect from the rest of the integrand. This
is because, should the function X(ω1, ζ) have a constant limit at rk, then we will pick up
this value, as a localized residue contribution at the pole. Such a contribution will violate
the SK and KMS conditions, rendering the grSK prescription suspect. The easiest way
to see this is to note that one can end with a non-vanishing answer for the correlator for
all F-type operators with energy density insertion. While the usual Schwinger-Keldysh
rules will imply vanishing in the boundary, X(ω1, ζ) will be a product of ingoing Green’s
function, which are analytic, and may have a non-vanishing residue (setting ω2 = 0 for
simplicity). The only way to avoid this would be for the residue to vanish.

In other words, consistency with the Schwinger-Keldysh rules, requires that the all
interactions with the energy density operator, have suitable zeros in the numerator to
cancel the inverse powers of Λk. The origin of the Λ−1

k factors in the integrand is from
the field redefinitions (2.16) between the metric fields {ΦE ,ΦO ,ΦW} and Z. Explicitly,
carrying out a local Frobenius expansion of Z in the neighbourhood of rk, we can that the
integrand has no poles for any interaction involving the energy-momentum tensor’s scalar
polarization.

As such, one would find it strange for the metric functions to diverge in the physical
region between the horizon and the boundary for complex momenta. Lest the reader
imagine that this would be guaranteed, we should clarify that the intuition which holds for
real momenta could have failed for complex momenta. That this does not happen involves
non-trivial cancellations as can be checked algebraically. Once this is established, one can
directly use (2.15) to deduce that the correlation functions remain well-defined even for
arg(q2) = π in the Schwarzschild-AdSd+1 geometry.

In fact, a similar reasoning can be applied to the potential horizon poles in (2.18).
Reverting to the metric perturbation itself, say (2.14), which has explicit factor of f in the
denominator, we recall, that the natural cotangent basis in ingoing coordinates involves
the one-form dr

r2f . One can see that all the factors of 1/f are part of such a one-form, which
secretly guarantees regularity of the metric perturbation at the horizon. However, in the
kinetic term of the field φ dual to the primary O the factors of 1/f are physical, and do
contribute as in (4.11).

13For Reissner-Nordström-AdSd+1 we can attain this by requiring arg(p2
s) = π SQ < 1

2 or arg(p2
s) = 0

when SQ > 1
2 , respectively (cf., appendix C.3.3).
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For Reissner-Nordström-AdSd+1 we have to deal with an additional complication. The
field V actually diverges at r = rk2. This seems more serious; (B.3) and (B.4) suggest that
there might be double-poles in the metric and gauge field perturbations. However, once
again, the physical metric and gauge field perturbations are regular at the zeros of Λk.
This can be directly checked using the local Frobenius solution of {Z,V}.

The upshot of our analysis is that the zero loci of the function Λk, which was intro-
duced to find autonomous SOLDEs for the perturbations, are irrelevant for the purposes
of computing any physical observable. These zeros are for the most part ASPs of the dif-
ferential equation (the exception being the one set of zeros in the charged black hole for
V), and not only are the decoupled fields regular there, but the physical metric and gauge
field functions are themselves regular. The skeptical reader might inquire whether this
was all a red herring from the beginning. Could one have dispensed with fields like Z in
the Schwarzschild-AdS (or Z and V in the Reissner-Nordström-AdS case) and worked with
the metric functions directly? The function Λk was originally presented in [43, 44], and a
(technical) rationale was its origin was offered in [31, 33]. What we can assert with some
confidence is that none of the metric functions themselves satisfy an autonomous SOLDE;
one just has a coupled system of first and second order equations (see the latter works for
a thorough analysis of the dynamics). While there is some satisfaction in noting that there
are no special loci in the geometry determined for a subset of momenta, we do not have
at present more physical picture to paint for the existence of Λk and its irrelevance in the
final answers.

4.3 Apparent singularities at the horizon

The preceding analysis focused on having additional poles in the integrand either at the
horizon, which generically is a regular SP, or at rk which is always an ASP of the SOL-
DEs. Let us now turn to the case where the horizon itself becomes an ASP, at special
codimension-2 loci in the complexified frequency domain. There are two situations we
should consider here: the Matsubara ASP, which pertains for all the equations analyzed
herein, and the case where the energy ASP at r = rk merges with the horizon leading to
energy horizon coalescence described in appendix C.2.2 and appendix C.3.3. In these cases,
particular values of frequency and momenta render the horizon an ASP of the correspond-
ing equation. Even in the exceptional case of charge diffusion mode V, at the coalescence
of a root from the set rk2 with r+, we encounter an ASP along a codimension-2 locus.

Consider first the Matsubara ASP, where for ω = −2πimT , with m ∈ Z+ and fine-
tuned values of q ensuring that both the ingoing and outgoing modes of some field are
analytic. Let us first compute a 2-point correlation function. Such a correlator is computed
by a pure boundary quantity, and as noted earlier has a one-parameter ambiguity. The
fine-tuning involved to make the horizon an ASP is codimension-2 in the (ω, k) space. Gen-
erally, the 2-point correlators are meromorphic with simple poles along the codimension-1
quasinormal spectral curve ω = ωQN(k,m) labeled by a discrete parameter m. To deter-
mine the behaviour of the boundary Green’s function at isolated points associated with our
fine-tuning, we need to specify a direction of approach, which gives us our one-parameter
ambiguity. Curiously, at these apparent quasinormal modes, examining the 2-point func-
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tion, one might conclude that the black hole does not Hawking radiate and appears to lose
its thermal character.

Now consider a higher-point function arising from a bulk contact interaction without
a horizon pole. Generically, the integrands have a branch-cut, coming from the outgoing
Green’s function, the coefficient of the advanced sources JP . So the integrand for an n-
point of the form F . . .FP . . .P with (n− l) F and l P fields, can be arranged to not have
a branch cut if all the P fields are at a Matsubara ASP point in parameter space. Note
that with sufficient retarded (F) fields we do not have a constraint from momentum or
frequency conservation. Owing to the absence of a cut in the integrand, such correlation
functions vanish. This is not surprising per se; as already noted in [9] and explored further
in [10], even in the generic case correlation functions can vanish at Matsubara frequencies.
What is special here is that this happens only when the momenta are also fine-tuned. The
one exception is when the vertex has a horizon pole as in (2.12). Then the contour picks
up the residue at the pole.

Thus, unlike the 2-point functions, we have just argued that the effect of the Matsubara
ASPs on higher-point functions is more benign. At most the correlation function with some
advanced operators tuned to special points in the parameter space vanish.

We can argue likewise for the energy horizon ASP. Now the energy density operator,
say Z in a neutral plasma, is analytic for a particular frequency ω? = 2πiT and momentum
k?. So correlation functions with a number of advanced operators dual to Z will have
no branch cut at (ω?, k?). Correlators of such operators along with some other advanced
operators tuned to the Matsubara ASP, and potentially any number of retarded operators,
will produce an integrand with no branch cut emanating from the horizon. Such correlators
will vanish, unless there is a horizon pole, which allows one to pick up a localized residue
contribution. Note that argument does not affect the retarded field. Moreover, it also
doesn’t guarantee an extended domain of analyticity for the corresponding advanced field,
since we only control the behaviour at an isolated point. The advanced correlator of
Z(ω?, k?) continues to be analytic in the lower-half plane, and potentially free of singularities
at this codimension-2 locus.

The fact that the correlation function of advanced energy density operators at (ω?, k?)
gets only a localized contribution is reminiscent of the argument of [48]. They argued
for localized contributions for the out-of-time-ordered correlator at the horizon due to
high relative boost (in the shockwave approximation). While we are only computing the
Schwinger-Keldysh ordered correlators, the assertion is that exactly at the particular locus
where the spatio-temporal dependence of the advanced field takes the form of an exponen-
tially growing mode, we pick up a contribution from the horizon. As noted before, this
motivated a proposal for an effective field theory for computing out-of-time-order corre-
lators in maximally chaotic systems presented by [22]. They however required that the
growing mode was part of the retarded field, but as we have seen, there is nothing special
for the retarded field at (ω?, k?). The special aspects of this locus pertain to the advanced
operator, but all they do is force the correlator to vanish for isolated points. Our analysis,
however, does not indicate whether, there is a direct feature associated with these special
points in parameter space for out-of-time-order correlators.
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4.4 Three-point correlator with horizon pole contribution

To illustrate the general considerations of the preceding discussion, we will examine a three-
point correlator arising from derivative interactions in the bulk. Our aim is to explicitly
capture the contributions from the horizon pole of the vertex function, as described in
section 4.1. To keep things simple, we will evaluate IFPF for the interaction (2.11) in
the BTZ geometry. This is a simple setting, where 3-point functions for non-derivative
interactions can be obtained analytically [9] (four-point functions were computed in [10]).

Let us start with the simplified expression for the FPF correlator (4.6). Expanding
out the derivatives D± in (4.6), we have

IFPF = eβω2

∮
r dr e−βω2ζ

[
r2f

dGφin(k1)
dr

dGφin(k̄2)
dr − 2i

(
ω1G

φ
in(k1) dGφin(k̄2)

dr − (1↔ 2)
)

+k1 · k2
r2 Gφin(k1)Gφin(k̄2) + 4ω1ω2

Gφin(k1)Gφin(k̄2)
r2f

]
Gχin(k3) .

(4.13)

The last term in the above expression has an explicit pole at the horizon, while all other
terms are manifestly regular (since the ingoing propagators are analytic). Naively, one
might expect this to lead to an IR divergence, but as we have argued, based on a local
analysis, this is not the case. To evaluate the integral we employ a simple change of
variables, r = r+/z, and rewrite the above as

IregFPF =−
(
1−e2πw2

)∫ 1

0

dz

z
e−2πw2ζ

[
f

dGφin(k1)
dz

dGφin(k̄2)
dz +2i

(
w1G

φ
in(k1)dGφin(k̄2)

ddz −(1↔ 2)
)

+q1 ·q2G
φ
in(k1)Gφin(k̄2)

]
Gχin(k3) ,

I locFPF = 4w1w2 e
2πw2

∮
dz

zf
e−2πw2ζGφin(k1)Gφin(k̄2)Gχin(k3) .

(4.14)

The regular piece, IregFPF , has been reduced to an integral over a single sheet, by picking up
the discontinuity across the horizon branch cut. This term is evaluated exactly as in [9].

The ingoing bulk-to-boundary propagators have analytic expressions in the BTZ ge-
ometry. For a minimally coupled scalar primary of conformal dimension ∆, one has

G∆
in (z, k) =

Γ
(
p+ + ∆

2

)
Γ
(
p− + ∆

2

)
Γ (∆− 1) z∆(1 + z)−iw 2F1

(
p+ + ∆

2 p− + ∆
2

1− iw ; 1− z2
)
, (4.15)

where 2F1

(
a b
c ; z

)
is the regularized hypergeometric function, and

p± = i

2 (−w± q) , z = r+
r
. (4.16)

Furthermore, in the present case, we have

e−2πwζ =
(1− z

1 + z

)iw
, (4.17)
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To evaluate the integrals, we let ∆1 = ∆2 = ∆φ and ∆3 = ∆χ, for simplicity, Further
introducing, as in [10], the function

G(k,∆) ≡ Γ
(
p+ + ∆

2

)
Γ
(
p− + ∆

2

)
Γ (1−∆) , (4.18)

in terms of which, the boundary retarded Green’s function of a primary with dimension ∆
is given by

K∆(k) = 2 (∆− 1) G(k,∆)
G(k, 2−∆) . (4.19)

The rest of the evaluation proceeds by employing the Mellin-Barnes representation of the
hypergeometric function.

For the part of the integrand which is regular on the horizon, we find

IregFPF = −1
2
(
1− e2πw2

)
Γ (1 + iw2) K∆φ

(k1)K∆φ
(k̄2)K∆χ

(k3) Jreg . (4.20)

We have written the expression by factoring out the boundary two-point function for the
fields, which makes manifest, as in [9, 10] the analytic structure of the correlators, for the
form factor Jreg is an analytic function in the Fourier domain. Since the expression for this
function is a bit cumbersome, it is relegated to appendix D.

The localized contribution, which is new, instead gives upon using the Mellin-Barnes
representation, the following:

I locFPF =−2w1
(
1−e2πw2

)
K∆φ

(k1)K∆φ
(k̄2)K∆χ

(k3)( 3∏
i=1

∫
Ci

dsi
2πi Γ(si)

Γ(1−∆i+si)
Γ(1−∆i+2si)

)
G(k1,∆φ−2s1)

G(k1,∆φ)
G(k̄2,∆φ−2s2)

G(k̄2,∆φ)
G(k3,∆χ−2s3)

G(k3,∆χ)

×
[
2w2

∫ 1−ε

0
dz (1−z2)iw2−1 z

∑3
i=1(∆i−2si)−1−2iw2εiw2

]
.

(4.21)

The key point to note is that the IR divergence from the radial integral, precisely cancels
against the localized contribution (the last term in the final line). This is indeed in accord
from the local analysis of section 4.1. Evaluating the integral, we find at the end of the
day,

I locFPF = 2iw1
(
1− e2πw2

)
Γ(1 + iw2)K∆φ

(k1)K∆φ
(k̄2)K∆χ

(k3) Jloc (4.22)

The form factor Jloc , which is also given in appendix D, is manifestly regular. Thus, all the
singularities of the three-point function are isolated in the pre-factors, which are products
of two-point functions. Combing the two pieces, we find

IFPF = −1
2
(
1− e2πw2

)
Γ (1 + iw2) K∆φ

(k1)K∆φ
(k̄2)K∆χ

(k3) J . (4.23)

The form factor J can be found in (D.6).
This result is similar to that obtained in [9, 10], where there were no vertices with poles

at the horizon. In particular, the analytic structure of the three-point function is unchanged
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from the term containing the horizon pole. There are quasinormal modes for the two F
operators in the lower half of the ω1 and ω3 plane, and anti-quasinormal modes in the
upper half ω3 plane. This piece has been isolated in the first line (which can be rewritten
in terms of the product of the two-point function of the three fields). There are some zeros
of the correlator at Matsubara frequencies, from the Boltzmann factor

(
1− e2πw2

)
(though

half of these cancel the poles of Γ(1 + iw2)). The reader can also verify that there are no
features due to the apparent singularities at the horizon, as argued in section 4.3.

While this example illustrates how the grSK contour deals with singularities at the
horizon, writing down an example with the Λk terms in the vertex is a bit more involved.
We have however identified a situation, involving the Chern-Simons coupling of a U(1)
gauge field in Einstein-Maxwell-Chern-Simons theory, where the computation of anomaly
induced terms in the thermal correlator requires understanding both the horizon poles,
discussed herein, and the potential singularities at the zeros of Λk. This analysis will
appear in a separate publication.

5 Discussion

Our goal in this paper was to provide further evidence that real-time thermal correlation
functions in holographic field theories are sensibly computed on the grSK geometry in-
troduced in [7]. While it has been clear from earlier works [8–10] that the prescription
determines the correlators consistent with Schwinger-Keldysh and KMS conditions, there
were some specific features associated with conserved currents that had not been addressed
hitherto. Most of the features we discussed are not always directly visible in a low-energy
gradient expansion, which owing to the absence of closed form solutions, we generically
have to resort to for analytic expressions.

A related motivation for us was to close the gaps in our recent discussion regarding the
analytic structure of holographic thermal correlators [10]. There we had assumed that the
bulk vertices did not have any singularities which interfered with the grSK contour. As we
have seen here, there are indeed such vertices, either when the bulk fields have derivative
interactions, or when we consider the gauge invariant combination that corresponds to the
energy density field (and charge diffusion field at finite density).

One could have argued that such singularities, especially the latter, might have orig-
inated from our poor choice of variables. However, for reasons described in [30] (and
amplified in [31–33] for charged plasmas) the bulk fields we have worked with are nat-
ural. They correspond to gauge invariant data, have good time-reversal transformation
properties, all of which allows for determination of bulk Green’s functions without ambi-
guities. The price one pays is the relative complexity of the differential equation obeyed
by the fields. Therefore, the first task we undertook here was to clarify the nature of the
differential equations involved and elucidating their general structure.

We find it curious that all the differential equations of import in static, translationally
invariant AdS black hole backgrounds analyzed here are Fuchsian. This has been known
for the massive scalar wave equations [40] (and in fact known already in [3] for massless
scalars), and we verify it to be so even for conserved currents. While we don’t a-priori
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see a rationale for this structure, as argued in the preceding reference one could relate
the connection problem for finding quasinormal modes to instanton partition functions in
supersymmetric field theory. This has indeed been successfully used to extract thermal
correlators of scalar primary operators of arbitrary dimension in [49] in 4 dimensional
holographic CFTs (and generalized to include charge and rotation in [50]). These analyses
work with a different variable z(r2) that reduces the number of regular singular points
to four, allowing for use of known data for Heun equations. Since we wished to use the
grSK contour in the radial variable, we have refrained here from adopting such a change of
variables in our analysis. It is clear that these techniques can be adapted to deduce current
correlators as well.

One corollary of our analysis was a refined understanding of the purported connection
between energy transport and maximal scrambling behaviour of black holes. The effective
field theory description of maximally chaotic systems studied in [22, 23] has been justified in
holographic context by invoking the phenomena of ‘pole-skipping’. As has been argued by
others, this phenomenon is not just restricted to the energy density operator, but acquires
special import in this case, since the wave function in the boundary direction resembles
a scrambling mode: a temporally growing mode, which is damped out spatially at a rate
fixed by the butterfly velocity. We prefer to view this phenomenon in terms of apparent
quasinormal modes (for reasons already explained in [10]). In particular, the mode in
question arises when the zeros of a particular function Λk, that naturally appears in the
bulk ODE, coincides with the location of the horizon.

While for a neutral black hole the apparent quasinormal mode behaves like a scrambling
mode, it fails to do so for a charged black hole past a critical value of charge. The specific
value of charge does not appear to be singled out from the geometry in any way apart
from being well away from extremality. Past this critical charge there is no mode that has
exponential growth in time in the energy-momentum tensor components. This suggests
to us that the link between such apparent quasinormal modes of the energy density and
chaotic dynamics is perhaps coincidental.

Finally, our analysis also revealed one further surprise for charged black holes. While
the black hole singularity is a regular singular point for all the fields analyzed herein
in a neutral black hole background, it generically isn’t for the charged black hole. Per
se, this is not surprising, since the causal structure of the two spacetimes are different.
However, it is curious that the momentum diffusion and the transverse photon fields around
a Reissner-Nordström-AdS black hole actually are sensitive to the black hole singularity.
This deserves further investigation, to understand whether such operators can be used to
extract information about the spacetime in the vicinity of the singularity along the lines
investigated in [51–53].
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A A compilation of wave equations

We compile here the set of equations that have been analyzed hitherto in the context of
scalar, Maxwell, and graviton perturbations in AdSd+1 black hole backgrounds. Broadly
speaking the equations of interest reduce to those of a massless scalar equation with non-
trivial kinetic terms, and a radially varying potential, schematically of the form given
in (2.7). We will present the equations as they were introduced in the analysis of thermal
correlators in [30, 31] for the Schwarzschild-AdSd+1 perturbations, and in [32, 33] for the
Reissner-Nordström-AdSd+1 case. We will write them in a time-reversal invariant form,
using the ingoing adapted radial derivative

D+ ≡ r2f
d
dr − i ω . (A.1)

A.1 Perturbations of Schwarzschild-AdSd+1

The class of equations we need to analyze for the perturbations of planar Schwarzschild-
AdSd+1 with the geometric data given in (C.1) are as follows:

Designer scalar equation: massive designer scalar with index M, which is captured by
the ODE

1
rM

D+
(
rMD+ϕM

)
+
(
ω2 − k2f −m2 r2f

)
ϕ = 0 . (A.2)

The interesting cases here are M = d−1 and m2 6= 0 for a regular massive scalar, dual to a
conformal primary of weight ∆ of the boundary CFT. A special case is the massless scalar,
which is also the equation for transverse tensor gravitons (which comprises of 1

2 d (d − 3)
polarizations. In addition, M = 1 − d gives the non-Markovian modes of momentum
diffusion (with d− 2 polarizations), arising from vector perturbations of the metric. Probe
Maxwell fields have modes with M = d − 3 for vector polarizations and M = 3 − d for
scalar polarizations [30].

Scalar graviton perturbations: the one other equation of interest is the scalar graviton
polarization, which characterizes the dynamics of the energy density field, and takes the
form [31]

rd−3 Λk(r)2 D+

( 1
rd−3 Λk(r)2 D+Z

)
+
(
ω2 − k2f

[
1− d (d− 2) rd+

rd−2 Λk(r)

])
Z = 0 , (A.3)
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with Λk given in (2.17), reproduced here for convenience

Λk(r) = k2 + d− 1
2 r3 f ′(r) . (A.4)

These equations have been analyzed in appendix C.2.1 and appendix C.2.2, respec-
tively.

A.2 Perturbations of Reissner-Nordström-AdSd+1

The class of equations we analyze for the perturbations of planar Reissner-Nordström-
AdSd+1 with line element (C.13) are the following:

Designer scalars: the perturbations in the tensor sector, or generic massive perturba-
tions of the black hole are captured by (A.2) with the replacement of f(r) to (C.13) [32].

Vector polarizations of gravitons and gauge field: the vector perturbations of met-
ric and gauge field (parity preserving) are captured by equations for two fields, one dual to
the momentum current, and the other dual to transverse photons, denoted X and Y, respec-
tively.14 These fields have a non-trivial dilatonic modulation of their kinetic terms, and a
potential which depends on the spatial momenta. The equations as re-derived in [32] are

1
rd−3 (1− h)2D+

(
(1− h)2 rd−3 D+X

)
+ r2

+

(
w2 − q2f + C2 (1− h) p2

v f
)
X = 0 ,

1
rd−3 h2D+

(
h2 rd−3 D+Y

)
+ r2

+

(
w2 − q2f − C2 (1− h) p2

v f
)
Y = 0 .

(A.5)

The parameter C is defined as
C ≡ (d− 2)µ

r+ SQ

, (A.6)

which in turns defines a deformed spatial momentum variable pv

p2
v =

√
1 + 2 q

2

C2 − 1 = q2

C2

(
1− 1

2
q2

C2 + · · ·
)
. (A.7)

Note that we have added a v subscript to this momentum variable (relative to [32]) to
distinguish it from the deformation that appears in the scalar sector.

Scalar polarizations of gravitons and gauge field: the scalar sector equations are
a bit more complicated. They are given in terms of two fields V and Z which correspond
to the charge diffusion and energy density mode, respectively. These two fields obey the
following decoupled equations as re-derived in [33]

rd−3 h2 D+

( 1
rd−3 h2 D+V

)
+
(
ω2 − k2f + VV

)
V = 0 ,

rd−3 Λ2
k

h2 D+

(
h2

rd−3 Λ2
k

D+Z
)

+
(
ω2 −

(
1− (d− 2)

2
2 + p2

s

1 + p2
s

r3f ′

hΛk

)
k2f + VZ

)
Z = 0 .

(A.8)
14Each of these fields carries a polarization label α = 1, 2, . . . , d− 2 which we do not indicate here.
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In this case we define the deformed momentum parameter ps (note the subscript) as

p2
s =

√
1 + 2 d νs

q2

C2 − 1 , νs = 2(d− 2)
d(d− 1) .

(A.9)

Note that the function Λk continues to be given by the expression (2.17).

The potentials are complicated expressions involving various combinations of back-
ground functions and the deformed momentum. For the field V we find the following
expression for the potential VV:

VV = (d− 2) k2 f

(1 + p2
s) Λ2

k

(1− h) V(1)
V + (d− 2) r3f ′f

4 (1 + p2
s)h2 Λ2

k

p2
s V

(2)
V ,

V
(1)
V = − 4

d− 1 Λ2
k + (d− 2) (d− 1) r5f ′f

(1− 2h
h

)2
− p2

s

(
2f(h− (d− 2)) + rf ′ h

) r2 Λk
h2

+ 2
[
(d− 2− (1 + 2(d− 3)h)h) f + (2h− 1) rf ′ h

] r2 Λk
h2 ,

V
(2)
V = 2 (2h− 1)hΛ2

k + 2(d− 1)
[
2 (d− 2) f − (5d− 9) fh+

(
4 (d− 2) f − rf ′

)
h2
]
r2 Λk

− (d− 2) (d− 1)2 (2h− 1)2 r5f ′f .

(A.10)

On the other hand the potential for Z takes the form

VZ = d− 2
(1 + p2

s) Λ2
k

k2 (1− h)f V
(1)
Z −

(d− 1) (d− 2) r5f ′

2 (1 + p2
s) Λ2

k h
2 p2

sf V
(2)
Z ,

V
(1)
Z = 4

d− 1 Λ2
k + 2

[
2
(
(d− 3) f − rf ′

)
h− (d− 3) (1 + p2

s)f
] r2 Λk

h

+ (d− 1) (d− 2) r5ff ′

h2

(
1 + p2

s − 2h
)

(2h− 1) ,

V
(2)
Z =

(
(d− 3) f − 1

2rf
′
)
hΛk −

1
2 (d− 1) (d− 2) r3ff ′ (2h− 1) ,

(A.11)

As noted earlier, these expressions were derived in [44], but our presentation and rewriting
of them should make the structure more transparent. It is important that the modulation
function Λk only appears in the potential terms in the dynamics of V.
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We can rewrite these equations in the standard form (2.8). The coefficient functions
for the SOLDE for V are given to be

pV(r) = 5− d
r

+ r2f ′ − 2i ω
r2 f

− 2 h
′

h

qV(r) = (d− 1) (d− 2)2 r (1− 2h) f ′
4 (1 + p2

s)h2 Λ2
k

[
4 k2 (h− 1) + (d− 1) p2

s r
3 f ′

]
− 1

Λk f
(d− 2) f ′

2 (1 + p2
s) r h

[
2 k2 (2 + p2

s − 4h) (1− h) + (d− 1) p2
s r

3 h f ′
]

+ d− 2
2 (1 + p2

s) r2 h2Λk

[
4 k2 (1− h)

(
(p2
s + 1) (d− 2− h)− 2 (d− 3)h2

)
+(d− 1) p2

s r
3 h f ′

(
2 (d− 2)(2h2 + 1) + h (9− 5 d)

)]
+ 1
r3f h

[2 k2 h
(
9− 5 d− (d− 1) p2

s + 4 (d− 2)h
)

+ (d− 1) (d− 2) (2h− 1) p2
s r

3 f ′

2 (d− 1) (p2
s + 1) r

+ iω
(
(d− 3)h+ 2 r h′

) ]
.

(A.12)

For the field Z we instead find the coefficient functions

pZ(r) = 5−d
r

+ r2f ′−2iω
r2 f

+2 h
′

h
−2 Λ′k

Λk
,

qZ(r) = (d−1)(d−2)2 r (2h−1)f ′
4p2

s h
2 Λ2

k

[
4k2

(
1+p2

s−(3+p2
s)h+2h2

)
+(d−1)p2

s r
3 f ′
]

+ 1
Λk f

[2Λ′k
r2 iω+ (d−2)f ′

4(1+p2
s)h

[
2k2

(
2+p2

s+8h(1−h)
)

+(d−1)p2
s r

3 f ′
]]

− (d−2)(d−3)
2(1+p2

s)r2hΛk

[
4k2

(
1+p2

s−(3+p2
s)h+2h2

)
+(d−1)p2

s r
3 f ′
]

+ 1
r4 f

[
−2iω r

2h′

h
+ (d−1)(d−3)(1+p2

s)r iω−k2 (7−3d+(d−1)p2
s+4(d−2)h)

(d−1)(1+p2
s)

]
.

(A.13)

B Scalar metric and gauge field perturbations of the charged black hole

We had promised in the main text to relate these fields to the physical metric and gauge
field perturbations. Writing the metric and gauge field for the Einstein-Maxwell theory as

ds2 = ds2
(0) + ds2

(1) , A = −a dv + AA dx
A , (B.1)

with the subscript ‘(0)’ referring to the background solution. The metric perturbations
are parameterized by fields {ΦE ,ΦO ,ΦW} as in (2.14), while the gauge field perturbation
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is captured by another field V

ds2
(1) = ΦE − rf ΦW

rd−3 dv2 + 2
rd−1f

(ΦO − ΦE + rf ΦW) dv dr + r2 ΦW

rd−2 dx2

− 1
rd+1f2 [2(ΦO − ΦE) + rf (d− 1) ΦW ] dr2 ,

AA dx
A = 1

rd−3

(
dvD+ − dr

d
dr

)
V .

(B.2)

These four functions are given in terms of V and Z through the following relations (we have
chosen not to solve for the fields directly). First we redefine the metric functions using a
field similar to Z encountered in the Schwarzschild-AdSd+1 example, taking into account
the mixing between the gauge field and graviton perturbations:

ΦO = −iωw , ΦE = D+w− 2 a′ r2f V ,

w = r

Λk

[
D+ −

r2 f ′

2

]
Z + 2 (d− 1) r3f a′

Λk
V ,

ΦW = 1
Λk

[
rD+ + k2

d− 1

]
Z + 2 (d− 1) r3f a′

Λk
V .

(B.3)

The fields V and Z themselves are finally given in terms of V and Z by a functional basis
change in a set of coupled ODEs

Z = Λk
Ch

V + hZ ,

V =
(
d− 2
C

a− r+
p2
s + 2

2

)
V

2h +
(

(d− 2)a+ r+
2 C p2

s

)
h

2 Λk
Z .

(B.4)

From our analysis in appendix C.3.3 we noticed that while Z is regular at either set of
roots rk1 and rk2 of Λk, the function V was only regular at the former, but had a simple
pole at the latter. From here we conclude that Z is regular, but V potentially has a simple
pole.

However, upon using the local Frobenius solution for Z and V, we find however that
both Z and V are regular at all the roots of Λk. Furthermore, the fields {ΦE ,ΦO ,ΦW}
themselves are regular with the residue at the poles coming from the Λk factors canceling
out. Apart from noting that this is indeed physically sensible — metric functions and gauge
fields should not have divergences — we do not have an explanation for the conspiracy in
the coefficients which achieves this. The best we can offer is to note that we could have
anticipated on physical grounds that the function V has to be singular like Λ−1

k . The fact
that it is only singular at the rk2 set of roots has to do with the relative coefficients in the
linear combination (recall that the roots are controlled by p2

s and p2
s + 2).

C Analysis of black hole wave equations

As we undertake our analysis we will have the need to refer to various singular points
(abbreviated SP). Some of them will occur for generic values of parameters corresponding
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to the background geometry and the linearized field, while some appear upon some fine-
tuning. We will distinguish the two cases for convenience, isolating also the features that
are specific to certain probes.

C.1 Terminology for singular points

The SPs of interest that appear at generic values of the parameters occur for the most part
at geometric loci. The obvious locations are the AdS boundary, the black hole singularity,
and zeros of the function f (including the horizon). We find it convenient to refer to these
using the following terminology:

• Asymptotic SP, refers to the point at the AdS boundary r →∞.

• Curvature SP, associated with the black hole singularity.

• Horizon SP, located at the horizon for a non-degenerate black hole, and other roots
of the metric function f .

In addition, there are some singular points that are specific to equations governing
conserved currents, after repackaging the information into gauge invariant variables (as
described above). We encounter

• Energy density ASP: this is the potential SP from the zero of the function Λk, (2.17)
encountered in the analysis of scalar polarizations of gravitons (gauge fields).

• Ohmic SPs: these are specific to the Reissner-Nordström-AdSd+1 solution, and are
determined by the Ohmic radius rQ introduced in [32] (related to zeros of f ′) typically
lying inside the black hole horizon.

The SPs listed above exist for generic parameter choices, viz., for generic values of black
hole parameters and at generic frequencies and momenta of probes. However, additional
features arise as we vary parameters, either in the form of confluence, where two regular
SPs merge and become irregular, or coalescence, where the merger remains a regular SP.15
Moreover, either for the geometric SPs or at confluence/coalescence, we may be able to
convert the SP to be an ASP by a further fine-tuning of the parameters. For these, our
terminology will be the following, defined in decreasing order of genericity:

• Extremal confluence: the extremal limit where the horizon SPs become irregular.16

• Matsubara ASP: these refer to special fine-tuned values of frequencies, specifically
ω = −2πi nT with n ∈ Z+, where the horizon SP has some special features. At
this locus the ingoing and outgoing solution both become analytic (at certain specific
values of the momenta), resulting in the horizon becoming an ASP. This was noticed
in [25, 27] and explored in some generality in [28].

15The adjective confluence is used traditionally in the theory of differential equations to characterize
mergers of singular points which lead to essential singularities in the solution (hence irregular SP). When
the merger does not change the nature of the SP we choose to refer to it as a coalescence (even when it
changes the characteristic exponents).

16This may also involve a merger with the Ohmic singular point.
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• Energy asymptotic coalescence: the equation of the scalar graviton polarization has
additional features for translational homogeneous modes (k = 0) owing to the pres-
ence of soft gravitons [31]. Here the asymptotic characteristic exponents change,
whilst however retaining the regular singular nature of the SOLDE.

• Energy horizon coalescence: refers to the situation when the horizon SP merges with
the energy density ASP. This occurs at a codimension-2 locus, at fixed ω, k, and has
been analyzed hitherto in the context of chaotic dynamics of black holes [25].

C.2 Schwarzschild-AdS black hole wave equations

As remarked above, some of the general features we explore below have been uncovered
in the literature. There are a few situations primarily involving the charged Reissner-
Nordström-AdSd+1 black hole where there is a qualitatively new behaviour. For complete-
ness, however, we will describe the neutral case first, phrasing the results in a manner
which resonates with our understanding of the physics. The background solution is the
planar Schwarzschild-AdSd+1 black hole whose metric takes the form (2.1) with

f(r) = 1− rd+
rd
, T = d r+

4π . (C.1)

C.2.1 Designer scalar ODEs

We begin with the simplest equation (3.1) capturing the dynamics of a designer scalar field.
It has the geometric singular points at r =∞, r = 0, and at f(r) = 0. This comprises d+2
singular points for a probe of Schwarzschild-AdSd+1, rendering it as a Fuchsian equation
with the given number of regular singular points [40]. The local behaviour of the differential
equation in the neighbourhood of the singular points can be summarized as follows:

• Asymptotic SP17

pϕ = M + 2
r

+O
(
r−2

)
, qϕ = −m

2

r2 +O
(
r−1

)
. (C.2)

• Curvature SP

pϕ = M + 2− d
r

+O
(
r0
)
, qϕ = q2 r

d−4

rd−2
+

+O
(
rd−3

)
. (C.3)

• Horizon SP18

pϕ =
1− 2

d iw

r − r+
+ · · · , qϕ = − 1

d r+

q2 +m2 + iMw

r − r+
+ · · · . (C.4)

17We have directly expanded the coefficient functions to determine the behaviour at the asymptotic SP.
A more natural way to deduce this would have employed a fractional linear map % = r+

r
to bring the point

to the origin.
18When we write the local behaviour at the horizon SP, we are going to do so only for the largest positive

real root of f . If we wish to examine the behavior at a different zero of f , say r = r+$d, for some dth

root of unity, then the expression (C.4) holds provided we also rotate our dimensionless frequencies and
momenta appropriately, viz., replace r+ → $d r+ whilst also defining (ω, k) = $d r+ (w, q).
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We have written the result in dimensionless frequency and momenta, w and q, natural
from a bulk perspective.19

The singular points are depicted in the complex radial plane in figure 2.
At the asymptotic SP, the characteristic exponents are determined by

α(α− 1) + α(M + 2)−m2 = 0 =⇒ α(α+ M + 1)−∆(M + 1−∆) = 0 . (C.5)

where, by parameterizing the mass appropriately in terms of a ‘dimension’ ∆, we have
identified the behaviour with that of a scalar field in a AdS spacetime of effective dimension
deff = M + 1. This system has been analyzed in [10].

At the curvature SP, the indicial equation implies that the characteristic exponents
are 0 and d − 1 − M. Minimally coupled scalar with M = d − 1 always has a branch
cut at the singularity (since both exponents are equal). For d > 3, designer scalars with
d − 1 −M ∈ Z+ naively could find the origin to be an apparent singularity. Examples of
such fields are scalar and vector polarizations of a probe Maxwell field in the background,
which have M = 3−d and M = d−3, respectively, and vector graviton polarizations which
have M = 1− d. However, one can check that despite the exponents being integral, there
is always a logarithmic branch cut, and thus the black hole singularity is a regular SP of
the SOLDE.

Finally, the horizon SP, are at the zeros of f , which depends on the geometry in
question. For the planar Schwarzschild-AdSd+1 black hole one has d-roots at r = r+$d,
where $d are the dth roots of unity.20 At the horizon SP, the characteristic exponents
are 0 and iw. The former is the analytic ingoing mode, while the latter is the outgoing
mode. While this suffices for the local solution around the horizon SP, if we were to pick
some closed form function representation for the solution (e.g., the hypergeometric function
usually employed in the BTZ geometry), one should ensure that any branch cuts inherent
there should be run in a direction away from the ray [r+,∞). From these results, it follows
that (3.1) is indeed a Fuchsian SOLDE with d+ 2 regular SP. We recall here the Fuchsian
sum rule, which demands that the sum of the characteristic exponents at all the SPs equal
two less the number of SPs.

Matsubara ASP: if we consider the horizon SP, for iw = n with n ∈ Z≥0, then the
second mode function, viz., the outgoing mode, can also be made regular at the horizon (this
was noticed a long time ago in [54, 55]). With this choice we make the two characteristic
exponents non-negative integers, but a further fine-tuning is required to ensure the absence
of any monodromy. This was explored in [28], and can be understood as follows. The
Frobenius expansion for the outgoing mode despite starting out with an integral power,
will generically include a logarithmic branch, rendering the mode non-analytic. This can be
avoided, since we can tune the momentum q. Assuming one of the characteristic exponents
to be zero (which can be done by factoring out a power), and the difference n ≥ 1, we will
need to Laurent expand pϕ and qϕ to order n − 2. The coefficient γ of the logarithmic

19For the Schwarzschild-AdSd+1 solution the two dimensionless frequencies are simply related as w = 2
d
w.

20We use $n to denote the set of nth roots of unity, $n = {e2πim
n ,m = 0, 1, . . . , n − 1}. Often we will

simply report the behaviour for m = 0 as noted in footnote 18.
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mode can be determined in terms of these Laurent coefficients, see appendix E for details.
Thus, setting a particular combination of the coefficients to vanish will suffice to ensure
that we have an ASP.

For the horizon SP we have, for given n, a polynomial of degree 2n in q determining
the non-trivial monodromy. Choosing q to be a root of this polynomial will ensure that
we have a horizon ASP. Once this is done, there are no quasinormal modes, as there is no
quantization condition to solve for (we have fixed both w and q); imposing normalizability
at the boundary is ineffective since any linear combination of the modes on the horizon
is acceptable. This is the reason why we have apparent quasinormal modes. Likewise,
attempting to find the boundary Green’s function leads to an ambiguity. This has been
explained in [25, 27–29], so we will not elaborate further. The reader may find wave
equations on the BTZ background studied recently [10] helpful to see how the ambiguity
arises (since analytic expressions are available in this case).

C.2.2 The energy density operator ODE

Let us now look at (A.3) for the planar Schwarzschild-AdSd+1 black hole. This has been
examined in d = 4 in appendix B of [25] for some particular aspects, but we will highlight
some additional features, which will be of relevance to our discussion. The differential
equation is for a variable Z(r), with coefficient functions

pZ(r) = 5− d
r

+ r2 f ′ − 2iω
r2 f

− 2 Λ′k
Λk

,

qZ(r) = d (d− 2) r2 k2 + rd(−k2 + iω (d− 3)r) Λk + 2iω rd+2 Λ′k
rd+4 f Λk

.

(C.6)

The local behaviour of the differential equation in the neighbourhood of the geometric
singular points can be summarized as follows:

• Asymptotic SP
pZ = 5− d

r
+O

(
r−2

)
, qZ = O

(
r−3

)
. (C.7)

• Curvature SP
pZ = 1

r
+O

(
r0
)
, qZ = 1

r
+O

(
r0
)
. (C.8)

• Horizon SP

pZ =
1− 2

d iw

r − r+
+ · · · , qZ = qZ,−1

r − r+
+ · · · . (C.9)

The residue of qZ at the horizon is

qZ,−1 = 1
dΛk(r+)rd−1

+

(
d(d−2)q2−rd−2

+ q2Λk(r+)− iw2 rd+

[
d(d−1)2−2(d−3)q2

])
.

(C.10)
While this particular value is not relevant for the purposes of computing the charac-
teristic exponents, it will be useful when we consider fine-tuned values of parameters.
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From the asymptotic SP the characteristic exponents for Z for generic (ω, k) are 0 and
d − 4, respectively, which was used in [31] to argue for its non-Markovian character. At
the curvature SP, we have a degenerate pair of exponents (both zero), which implies that
there is a logarithmic branch in the solution for Z near the black hole singularity. The
behaviour at the horizon is characterized by an ingoing mode that is analytic (exponent 0)
and an outgoing mode which is not — due to the exponent being iw — as is the case for
any non-extremal black hole at generic values of frequency and momenta.

Energy density ASP: the zeros of Λk are potential SPs of the equation for Z(r). They
are located at rk, given in eq. (3.2), and turn out to be ASPs.

To see this we note that the characteristic exponents are 0 and 3, determined by the
fact that pZ ∼ − 2

r−rk , while qZ starts off with a simple pole. Working out the coefficients to
O(r − rk) we find that the relation obtained in (E.3) always holds. Hence, as advertised in
appendix C.1 it is appropriate to refer to the roots of Λk as energy density ASP. Thus, the
singular points of (A.3) are d+ 2 in number, coinciding for generic (ω, k) with the picture
we had for the designer scalar wave equations figure 2. Taking the energy density ASPs
into account, we find the sum of the characteristic exponents to be 4−d+3 (d−2) = 2 d−2,
which is indeed what is demanded by the Fuchsian condition for an equation with d + 2
regular SPs and (d− 2) ASPs.

There are additional features at fine-tuned values of the parameters. We again have a
discretuum set of Matsubara ASPs. Here we still tune w = −i n with n ∈ Z≥0. The tuning
of k involves also the function Λk leading to a more complicated condition than before,
but one can ascertain that suitable choices of k can be made. Their physical interpretation
follows along the lines described in appendix C.2.1, so we will not elaborate further. Fine-
tuning k to particular values, however, leads to some new features that are unique to the
energy density ODE. We will describe two aspects of coalescence that are interesting below.

Energy asymptotic coalescence: while modes with k2 6= 0 have the asymptotic SP
determined by (C.7), translationally invariant modes, with k2 = 0, have a very different
behaviour. This has to do with the function Λk(r) which has non-trivial momentum depen-
dence. The explicit k2 dependence in the potential does not affect this argument just as the
momentum dependence does not enter the asymptotic fall-offs of fields in AdS spacetimes.
In any event, setting k2 = 0 we find the locus r = ∞ is still a regular SP, albeit with a
modified set of characteristic exponents, r0 and r−d, respectively. This behaviour is akin
to that of a minimally coupled, massless scalar field in the geometry. The Fuchsian nature
of the equation at this locus is more obvious, reducing as it does to the earlier analysis of
designer scalar equation.

Energy horizon coalescence: we have a set horizon SPs arising from the roots of f ,
and a set of energy ASP from Λk. We can ask when two of these coalesce. As with the
energy asymptotic coalescence, it is reasonable to expect that the horizon remains a regular
SP, perhaps with some changed exponents. Focusing specifically on the largest real zero of
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f , we see that Λk will have a root at r+ provided we set

k2 + d− 1
2 r3

+ f
′(r+) = 0 =⇒ q = ±i

√
2π (d− 1) r+ T . (C.11)

With this choice we then notice that the coefficient functions become

pZ(r) = −1− iw
r − r+

+O
(
(r − r+)0

)
,

qZ(r) = 1 + iw
(r − r+)2 + (d− 5) (1 + iw)

2 (r − r+) +O
(
(r − r+)0

)
.

(C.12)

The main change here is the double pole in qZ which arises from the merger of the two
zeros (there is also a shift in the residue of pZ). The indicial equation for the power law
(r− r+)α, near the singular point, now indicates that the characteristic exponents shift to
α+ = 1 and α− = 1 + iw. This is all that happens for generic frequencies.

However, one might imagine that as with the Matsubara ASP, we can tune the fre-
quency to make the α− mode regular at the horizon, say by choosing w = −i (n − 1) for
n ∈ Z≥0. Note however, that the momentum has been fixed already in (C.11), which im-
plies that we don’t have too much fine-tuning freedom. Not only, do we have to make sure
that the characteristic exponent is integral, but we also have to check that the Laurent
coefficients work out to remove the logarithmic branch. This turns out to be possible,
but only at a particular frequency, w = i, i.e., ω = 2πiT . At this point, both modes are
analytic, and the horizon locus is an ASP, as we can already see from (C.12). For any
other choice of n, the solutions have a logarithmic branch cut, and the outgoing solution
picks up a monodromy.

C.3 Reissner-Nordström-AdS black hole wave equations

We now turn to the discussion of wave equations in a charged black hole background
corresponding to a boundary CFT plasma at non-zero chemical potential. The background
line-element is still given by the translationally invariant (2.1), now with

f(r) = 1− (1 +Q2)
(
r+
r

)d
+Q2

(
r+
r

)2(d−1)
. (C.13)

The physical parameters, temperature and chemical potential, are related to r+ and Q

through

T = d− (d− 2)Q2

4π r+ , µ =
√
d− 1
d− 2 Qr+ . (C.14)

We also introduce the Ohmic radius rQ , Ohmic function h, and the dc conductivity pa-
rameter SQ following [32], for they will play an important role in our analysis. These are
given by

rd−2
Q

= d− 1
d

2Q2

1 +Q2 r
d−2
+ , h(r) = 1−

rd−2
Q

rd−2 = 1−SQ

rd−2
+
rd−2 , (C.15)

with

SQ ≡
rd−2
Q

rd−2
+

. (C.16)

The wave equations of interest are collected in appendix A.2.
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C.3.1 Designer scalar ODEs

The designer scalar ODE in the Reissner-Nordström-AdSd+1 black hole background is
similar to the that studied in appendix C.2.1. It is relevant for the study of massive scalar
probes, tensor graviton perturbations of the black hole (which again are massless minimally
coupled scalars), both of which have M = d − 1. We will however analyze the equations
for arbitrary M.

The analysis of the designer ODE (3.1) in the planar Reissner-Nordström-AdSd+1 is
similar to our earlier discussion. The key difference is that the function f(r) has 2(d− 1)
zeros from (C.13). Let us first consider a non-degenerate horizon where the roots of f(r),
and in particular the largest real-root, are non-degenerate. The asymptotic SP is unaffected
by the charge, and the analysis at the horizon SP is similar to the Schwarzschild case
(accounting for the charge dependence of the temperature). Specifically,

• Asymptotic SP

pϕ = M + 2
r

+O
(
r−2

)
, qϕ = −m

2

r2 +O
(
r−1

)
. (C.17)

• Curvature SP21

pϕ = M + 4− 2 d
r

+O
(
r0
)
, qϕ = O

(
r2(d−3)

)
. (C.18)

• Horizon SP

pϕ = 1− iw
r − r+

+ · · · , qϕ = − 1
r − r+

(
β

4π (q2 +m2) + M

2r+
iw
)

+ · · · . (C.19)

In this case using the Matsubara normalized frequency

w = βω

2π , (C.20)

results in cleaner expressions, since T (r+) is more involved.22 The reader can check
that (C.4) and (C.19) are the same accounting for the translation between horizon size
and temperature. Note that we are again focusing on the largest positive root of f to
define the horizon SP behaviour. As indicated in footnote 18 we can carry out an anal-
ogous exercise for the other roots, but we now will have to work with the locally defined
(complex) temperatures if we wish to write the expressions in terms of the dimensionless
variables.

Since the Reissner-Nordström-AdSd+1 black hole has a different causal structure, in
particular a timelike singularity, the behaviour at the curvature SP is different. In par-
ticular, the characteristic exponents are 0 and 2d − 3 −M, respectively. For a minimally

21We are assuming the limit is taken with Q 6= 0. The order of limits is important, as higher terms in
the Laurent expansions have singular behaviour in the limit Q→ 0 (which makes sense since the function
f diverges more rapidly for the charged solution).

22Now w and w are related by a factor which is d−(d−2)Q2

2 , which we prefer to avoid writing, and have
hence chosen to work with both normalizations.
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Figure 4. Singular points of the designer scalar equation in Reissner-Nordström-AdS5 in the com-

plex r plane. The roots of f are ±{r+, r−, i ri}, with the inner horizon at r− = r+

√
− 1

2 +
√

1
4 +Q2,

and ri =
√

1
2 +

√
1
4 +Q2. These are depicted here for Q = 1

4 , as is a circle of radius r− (faint
dotted curve). The conventions are as in figure 2, except that the origin which sometimes is an
ASP is distinguished.

coupled massive scalar, with M = d − 1, not only are both exponents are integral, but
the logarithmic branch can also be checked to be absent. Thus, in this case, we have a
curvature ASP, with the fields not really being sensitive to the black hole singularity —
however, some components of the conserved currents have duals that are cognizant of the
singularity, cf., appendix C.3.2. We believe this should hold for a range of M, but have
not checked in detail whether it does. One can again check that the designer scalar wave
equation in Reissner-Nordström-AdSd+1 background is a Fuchsian SOLDE, with 2d SPs
(we include the curvature SP in this count even when it is an ASP). Essential features of
this equation are summarized in figure 4.

Extremal confluence: there are other additional features of the Reissner-Nordström-
AdSd+1 solution that have to do with degenerate horizons, and mergers of zeros of f(r).
For an extremal black hole when the inner and outer horizon radii are equal23 the horizon
singular point becomes irregular due to a confluence of two regular singular points (say at
r = r+ and r = r−).24 We will not analyze this limit any further.

We next turn to the vector and scalar perturbations of the metric and gauge field in
Einstein-Maxwell theory about a Reissner-Nordström-AdSd+1 background. The equations
have been compiled in appendix A.2.

23Note, however, that the proper distance between the inner and outer horizon remains finite in the limit.
24If we play formal games of working with Q ∈ C then we can find scenarios where the complex roots of

f(r) coalesce. A simple example seems to be d = 4 and Q = i
2 , for which the roots are at ±r+, ±i r+√

2 , each
of the latter two being two-fold degenerate.
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C.3.2 Momentum diffusion ODE

In the vector sector we have two equations, one for the momentum diffusion mode, X and
the other for the transverse photons Y, cf., (A.5). The former is of the form of a designer
scalar with an exponent M = 1 − d but with a more involved dependence on the spatial
momentum through pv defined in (A.7). We denote the coefficient functions appearing in
the standard form of the SOLDE as {pX, qX} and {pY, qY}, respectively.

The generic SPs of these equations have the following behaviour:

• Asymptotic SP: X behaves as a designer field with index M = 1− d, while Y behaves
as one with index d− 3. The potentials do not affect this analysis (but enter in the
determination of counterterms).

• Curvature SP: in the vicinity of r = 0 we find

pX = 5− 3 d
r

+O
(
rd−3

)
, qX = O

(
rd−4

)
,

pY = 5− 3 d
r

+O
(
rd−3

)
, qY = O

(
rd−4

)
.

(C.21)

Since the coefficient functions approach the origin with power laws smaller than the
difference in characteristic exponents (which are 0 and 3d − 4, respectively) there
is potentially logarithmic branch cut, whose presence can be confirmed by direct
computation. Hence, for these fields the black hole singularity is a genuine SP,
unlike the case for the other equations we analyze in the Reissner-Nordström-AdSd+1
background.

• Horizon SP: at the horizon, the functions pX and pY have a simple pole with residue
as in (C.19). The functions qX and qY also have simple poles, though the residue is a
more complicated function of momentum

qX = − β

4π
1

r − r+

((
1−S2

Q
+ 1

2 p2
v

)
C2 p2

v − (d− 1) iw
)

+ · · · ,

qY = − β

4π
1

r − r+

((
1 + S2

Q
+ 1

2 p2
v

)
C2 h(r+) p2

v −
d− 3 + (d− 1)SQ

SQ − 1 iw

)
+ · · · .

(C.22)

• Ohmic SP: for the field Y owing to the dependence on the function h, we have
additional singular points at

r = rQ $d−2 . (C.23)

Since the parameter rQ ∈ [0, r+] with the lower bound attained on the neutral solution
and the upper bound at extremality, these loci are always within the unit circle of
radius r+ where the primary horizon SP is located. The local behaviour in the vicinity
of this SP (making the obvious phase choice $d−2 = 1 for simplicity) is

pY = 2
r − rQ

+O
(
(r − rQ)0

)
, qY = − 2 r+

r2
Q
f(rQ)

iw

r − rQ
+O

(
(r − rQ)0

)
. (C.24)
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Figure 5. Singular points of the transverse photon equation in Reissner-Nordström-AdS5 in the
complex r plane. The conventions are as in figure 4; we have now made clear that the origin is a
regular SP, and indicated the Ohmic SPs for this equation as well. Note that these lie between the
inner and outer horizons [32].

The black hole singularity is a genuine regular SP for both X and Y unlike the designer
scalars examined above. This is despite the characteristic exponents being integral, owing
to the presence of a logarithmic branch. This is, per se, curious, since the behaviour of
these fields dual to linear combination of conserved current operators appears to subvert
the expectations one might have had for timelike singularities. Note that the equations
are indeed Fuchsian since the sum of the characteristic exponents does satisfy the Fuchsian
condition. X has 2 d SPs, while Y as 3 d − 2 SPs. Thus, the equation for X behaves like
the designer scalar system depicted in figure 4 (with the origin being a regular SP), while
Y had additional SPs which are now depicted in figure 5.

Apart from the generic behaviour described above, we have also the possibility of
extremal confluence and Matsubara ASPs. For X, the extremal confluence is similar to that
encountered for generic designer scalars. However, for Y there is the additional complication
since rQ → r+ in this limit. It turns out that the difference is that while qX has a second
order pole in the extremal limit, qY has a third order pole (both pX and pY have a double
pole). The behaviour at the Matsubara ASP is no different from the earlier discussion —
the only change is that the values of momenta where both modes are analytic is determined
by a polynomial equation for p2

v.

C.3.3 Energy density and charge diffusion ODEs

Let us turn to the scalar sector where there are some novel features. The equations of
motion are given in (A.8) and have quite complicated expressions for the potentials. Fur-
thermore, the dependence on the spatial momentum again appears in a surdic form through
a parameter ps defined in (A.9), though in a manner different from that in the case of the
vector perturbations. It turns out to be useful work with ps directly, eliminating q (or k).
To do so, we recall a useful identity from [33]

p2
s (p2

s + 2) = 2 d νs
C2 q2 , (C.25)
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which follows from the definition. This can be used to simplify the function Λk (whose
functional form is identical in terms of the metric function as for the Schwarzschild-AdSd+1
case (2.17)) as follows:

Λk = (d− 1)2Q2

4S2
Q

(
2 + p2

s − 2
rd−2
Q

rd−2

)(
p2
s + 2

rd−2
Q

rd−2

)
. (C.26)

We are now ready to describe the singular points of the SOLDEs for Z and V.

• Asymptotic SP: both V and Z behave as designer fields with index 3− d. The poten-
tials again are irrelevant for this analysis, and these fields behave as non-Markovian
modes with characteristic exponents of 0 and d− 4.

• Curvature ASP: the black hole singularity continues to be a singular point of the Z
and V SOLDE. The coefficient functions at most have simple poles. Specifically,

pZ(r) = −d− 3
r

+O
(
rd−3

)
, qZ(r) = O

(
r2 (d−3)

)
,

pV(r) = −d− 3
r

+O
(
rd−3

)
, qV(r) = O

(
r2 (d−3)

)
.

(C.27)

The characteristic exponents are integral and there is no logarithmic branch cut in
the solutions. Hence, black hole singularity is an ASP of the equations for both Z
and V.

• Horizon SP: the behaviour of pV and pZ is as for any other field in an non-extremal
background; a simple pole with residue 1 − iw. The functions qV and qZ also only
have simple poles, but with a residue that is depends non-trivially on ps and SQ (or
Q).

• Ohmic SP: the fields V and Z have Ohmic SP, since their kinetic terms are modulated
by h. The functions pV and pZ have a simple poles with residue ∓2, respectively,
while qV and qZ start off with a double pole, as can be read-off directly from (A.12)
and (A.13).

Energy density (A)SP: in the Schwarzschild-AdSd+1 analysis, we saw that the roots of
Λk, which naively appear to be SPs of the SOLDEs, are actually not. We will confirm this
to be the case for the Reissner-Nordström-AdSd+1 equations as well, albeit in a slightly
complicated manner. Notice that the vanishing loci of Λk are located at the following
2(d− 2) points of the complex radial plane.

rk1 = rQ

(
−p2

s

2

)− 1
d−2

$d−2 , rk2 = rQ

(
2 + p2

s

2

)− 1
d−2

$d−2 . (C.28)

The first set here is continuously connected to the locations where the corresponding func-
tion for the neutral black hole has roots, while the second set is unique to the charged
black hole.
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To deduce this, we ask which of the two roots can be made to lie on the ray [r+,∞)
along the real axis by choosing an appropriate phase for ps. Since p2

s ∼ q2 for small
momentum it follows that the first set of roots connect to the neutral case. Therefore,
for small q the first set of roots lies outside the circle |r| = r+, while the second set lies
within. At large charge however, the situation is reversed, with the exchange between them
occurring at a critical charge

S∗
Q

= 1
2 , Q2

∗ = d

3 d− 4 . (C.29)

When SQ < 1
2 , we need to ascertain whether the first set of zeros of Λk lies between

the horizon and the boundary, but the question switches over to the second branch for
larger charges, with SQ = 1

2 being a critical point. For the present however, we can simply
analyze the two sets of roots in turn, not worrying about whether they lie within or outside
the circle of radius r+.

Let us start with the particular root rk1 = rQ

(
− p2

s
2

)− 1
d−2 (fixing the phase). For the

field Z we find that the function pZ has a simple pole with residue −2. The function qZ also
has only a simple pole, leading to characteristic exponents 0 and 3, respectively. We then
expand the functions to linear order around this putative SP to check if there is a potential
logarithmic term, and again find that it is absent, rendering the singular point apparent.
The analysis for V is a bit simpler. At this zero of Λk one can check that the functions
{pV, qV} are, in fact, manifestly regular, thus rendering the zero set to be ordinary points
of the SOLDE.

When we pick the root rk2 = rQ

(
1 + p2

s
2

)− 1
d−2 (with phase fixed to unity), we find

that pZ has a simple pole with residue −2, while qZ has a double pole with residue 2. The
characteristic exponents are 1 and 2, respectively. Examining the constant term in pZ we
find that it is negative of the residue of qZ at its simple pole term. This guarantees the
absence of any monodromy around this SP, rendering it also to be an apparent SP. For the
field V however, we find a double pole in qV at this root, with residue −2. This implies that
the characteristic exponents are −1 and 2. We have checked that there is no monodromy
around this point as well. However, the solution for the field V does have a simple pole at
these roots of Λk. Ergo, the set of roots rk2 is a genuine SP of the SOLDE.

The above completes the description of the singularity structure for generic values
of parameters for non-extremal Reissner-Nordström-AdSd+1 black holes. There are again
features specific to fine-tune loci in parameter space. Some of these are as before, viz.,

• Extremal confluence: when we take the extremal limit, demanding that f has a
double zero at r = r+, we convert r = r+ to an irregular SP of the equations.

• Energy asymptotic coalescence: as in the Schwarzschild-AdSd+1 case we have a special
situation when the spatial momentum vanishes for the energy density mode Z. Owing
to the presence of Λk in the kinetic term, at k2 = 0, we find coalescence of the roots of
Λk which are now at the asymptotic boundary. This leaves the asymptotic singular
point regular, but changes the characteristic exponents to 1 and −d, respectively.
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Figure 6. Singular points of the longitudinal scalar mode V, which is dual to the charge diffusion
mode photon in Reissner-Nordström-AdS5 in the complex r plane. The conventions are as in
figure 5. The new elements here are the energy density SPs from the d − 2 roots of Λk in the set
rk2, which we have labeled as {rk2, r̄k2}. For the latter, we have chosen non-zero value for arg(k2)
to aid with the depiction, but note that as we rotate k we can make the SP pinch the grSK contour.

Note that this behaviour is not present for the charge diffusion field V, since its
kinetic term does not have a corresponding factor of Λk.

• Matsubara ASP: as in previous equations we can tune to specific frequencies iw = n

with n ∈ Z≥0. At these values the outgoing mode can be made regular, provided we
remove the monodromy due to the logarithmic branch of the solution in the outgoing
mode. To achieve this we have to tune k2, or equivalently ps, which we have used to
parameterize both the Z and V equations.

Energy horizon coalescence: now that we have understood the behaviour at the hori-
zon, and at the roots of Λk, let us turn to the case where we tune the momenta for the
singular points arising from these two to merge. This will happen whenever we have tuned
the momenta to be such that the root of Λk lies at r = r+. It is easy enough to determine
when this happens, we need either

p2
s =

−2SQ , 0 < SQ <
1
2 ,

2 (SQ − 1) , 1
2 < SQ < 1 ,

(C.30)

based on the two branches of zeros. One can check that this is consistent with fixing the
physical momentum using

k2 = −d− 1
2 r3

+ f
′(r+) . (C.31)

At this point it becomes clear that the jump is due to the fact that there is branch structure
in the momentum dependence, owing to the presence of ps.

Let us start with the energy density equation for Z and examine the two roots in (C.30)
in turn. When p2

s = −2SQ we find the local behaviour of the coefficient functions to be

pZ = −1 + iw
r − r+

+O
(
(r − r+)0

)
,

qZ = 1 + iw
(r − r+)2 +

d− 5 + (17− 4 d)SQ + 6 (d− 3)S2
Q

2 (2SQ − 1) (SQ − 1)
1 + iw
r − r+

+O
(
(r − r+)0

)
.

(C.32)
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On the other hand for the root p2
s = 2 (SQ − 1) we find

pZ = −1 + iw
r − r+

+O
(
(r − r+)0

)
,

qZ = 1 + iw
(r − r+)2

+
3
(
d− 3 + (7− 2d)SQ + 2(d− 3)S2

Q

)
+
(
d− 5 + (17− 4d)SQ + 6(d− 3)S2

Q

)
iw

2(2SQ − 1)(SQ − 1)(r − r+)

+O
(
(r − r+)0

)
.

(C.33)

From both roots we see that the coalescence leaves the horizon locus as a regular SP
with characteristic exponents, 1 and 1 + iw, exactly as in the Schwarzschild-AdSd+1 case
analyzed earlier in appendix C.2.2. However, now we find that only for the root p2

s = −2SQ

does one encounter a value of the frequency, ω = 2πi T , for which the horizon is an apparent
singularity. For the second root this fails to be the case, since the non-vanishing of the
residue of the simple pole at this frequency. In fact, at this frequency we find

Res[qZ]r=r+,w=i = d− 2
2SQ − 1 , (C.34)

making it clear that there is a potential logarithmic piece in the solution, leading to a
non-trivial monodromy.

Let us translate this observation into physical parameters. The question boils down to
the constraint on the charge of the Reissner-Nordström-AdSd+1 black hole which allows for
the merger of the root of Λk with the horizon locus. This occurs for the root p2

s = −2SQ

for small charges, but for the other root, p2
s = 2 (SQ − 1) for larger values of charges. The

separatrix is characterized by the critical charge (C.29).
Thus, for SQ ∈ [0, 1

2), we learn that the horizon coalescence leads to an ASP when
k2 is tuned, for a particular frequency, ω = 2πi T . However, for SQ ∈ (1

2 , 1) the horizon
remains a regular SP, and there is no interesting feature in the equation at this special
value of the frequency. There is something special at SQ = 1

2 , Λk(r) has a double-zero at
the horizon locus,

Λk(r) = d (d− 1)2

3d− 4

(
1− rd−2

+
rd−2

)2

, k2 = −d− 1
2 r3

+ f
′(r+) . (C.35)

While this could have led to the horizon becoming an irregular SP, strangely enough, it
doesn’t and remains a regular singular point. However, at this special point in parameter
space, the residues are again modified,

pZ = −3 + iw
r − r+

+O
(
(r − r+)0

)
,

qZ = 2 2 + iw
(r − r+)2 + 7− 9 d− (3 d− 1) iw

r − r+
+O

(
(r − r+)0

)
.

(C.36)
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The characteristic exponents are α1 = 2 and α2 = 2 + iw. It is easy to check that the
singular point always remains regular, and the outgoing solution, non-analytic.25

One can understand this behaviour physically along the following: we know that for
the Schwarzschild-AdSd+1 black hole the horizon coalescence is an ASP for the smallest
positive Matsubara frequency ω = 2πi T . By continuity, we expect this to be the case for
the Reissner-Nordström-AdSd+1 perturbations for small values of the charge. This can be
easily verified by checking that the Z equation in (A.8) reduces nicely to the Z equation
as Q → 0. Thus, on physical grounds there is an open neighbourhood of Q = 0 where
the Reissner-Nordström-AdSd+1 energy density mode ought to exhibit similar behaviour.
The question then is whether this behaviour ceases at some finite value of the charge, or
extend all the way to the extremal limit Q2 = d

d−2 or SQ = 1. We just learned that the
physical boundary is democratic in the parameter SQ , which measures the Ohmic radius
rQ in units of the horizon size, (C.16).

So what happens above this critical value of the charge? It can’t be that the equations
completely forget about the coalescence, which would only make sense if the roots of the Λk
stopped merging, but that as we see is not the case. In fact, what happens is a transference
of behaviour to the charge density mode!

Let’s therefore examine the equation for V at these roots of Λk when the merge with
the horizon. For the first root set rk1 obtained by setting p2

s = −2SQ which is valid for
SQ ≤ 1

2 we find:

pV = 1− iw
r − r+

+O
(
(r − r+)0

)
,

qV =
[

(d− 1) (1 + 2S2
Q

)− (d+ 1)SQ

2 (SQ − 1) (2SQ − 1) −
d− 3 + (d− 1)SQ

2 (SQ − 1) iw
]

1
r − r+

+O
(
(r − r+)0

)
.

(C.37)

Now the indicial equation leads to characteristic exponents 0 and iw, which may lead to
analytic solutions only for negative Matsubara frequencies. Furthermore, for any choice of
w = −i n with n ∈ N, we see that the residue of the simple pole of qV is non-vanishing.
For example,

Res[qV]r=r+,w=−i = − d− 2
2SQ − 1 . (C.38)

Thus, the horizon remains a regular SP of the V equation when the coalescence happens
with the roots in the rk1 set.

However, at the second set of roots rk2 of Λk, viz., p2
s = 2 (SQ − 1) which merges with

the horizon for SQ >
1
2 we find upon coalescence

pV = 1− iw
r − r+

+O
(
(r − r+)0

)
,

qV =
d− 3 + (d− 1)SQ

2 (SQ − 1)
1− iw
r − r+

+O
(
(r − r+)0

)
.

(C.39)

25The order of limits is important here — we first fix SQ = 1
2 and then tune the zero of Λk by fixing the

momentum.
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Now, for w = −i we see that the residue of the simple pole in qV vanishes, allowing for this
coalescence to turn itself into an apparent singularity.

Finally, at SQ = 1
2 , we simply encounter a regular SP, despite the double-root of Λk(r),

as noted in (C.35). Now we find

pV = 1− iw
r − r+

+O
(
(r − r+)0

)
,

qV = −(3 d− 7) (1− iw)
r − r+

+O
(
(r − r+)0

)
.

(C.40)

For w = −i we again find an apparent singularity — in fact, this behaviour seems to
smoothly connect to the second branch of Λk roots unlike what happened for the Z equation
above.

D Form factors in the FPF correlator

We collect in this appendix the formulae for the functions Jreg and Jloc, which enter into
our analysis of the three-point function evaluated in section 4.4.

Let us start with Jreg entered the regular piece of the three-point function. This
function involves completing the Mellin-Barnes contour integrals, which, we recall, were
introduced to allow one to complete the radial integral over a product of hypergeometric
functions. There are three propagators, and hence, three contour integrals. These are
evaluated by standard residue calculus, and lead to the following infinite sum representation

Jreg = 1
8 (∆φ − 1)2 (∆χ − 1)

∑
δi={∆i,2−∆i}

∞∑
~n=1
J ~δreg(~n) (D.1)

The summations over ~n = {n1, n2, n3} runs over the natural numbers, and arises from
closing the Mellin-Barnes contours. In the process, the residues get contributions from
both the primaries of dimension ∆i, and the shadow dimension 2 − ∆i. We recall that
∆1 = ∆2 = ∆φ, and ∆3 = ∆χ, for brevity. The expression for the summand itself is

J ~δreg(~n) =
( 3∏
i=1

(−1)ni
Γ(1+ni)

Γ(1−δi−ni)
Γ(1−δi−2ni)

)
G(k1, δ1+2n1)
G(k1,∆φ)

G(k̄2, δ2+2n2)
G(k̄2,∆φ)

G(k3, δ3+2n3)
G(k3,∆χ) h~n ,

h~n = q1 ·q2H1,0−(3w1w2+(δ1+2n1)(δ2+2n2))H1,1

−(w1w2+iw2 (δ1+2n1)−iw1 (δ2+2n2)+(δ1+2n1)(δ2+2n2))H0,1

+(iw2 (δ1+2n1)−iw1 (δ2+2n2)+(δ1+2n1)(δ2+2n2))H2,1

+(δ1+2n1)(δ2+2n2)H3,1+2i(w1 (δ2+2n2)−w2 (δ1+2n1))H2,0 ,

Ha,b =Hw2

(∑
i

(δi+2ni)−a,−b
)
.

(D.2)

We have introduced here the function Hw(a, b), which arises from performing the radial
integrals. It is defined to be

Hw(a, b) ≡ 2
Γ (1 + iw)

∫ 1

0
dz
(
1− z2

)iw
za(1 + z)b , (D.3)
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with the prefactor chosen for convenience. The function is well-defined provided that
Re(a) > −1, and we can evaluate it in closed form in terms of regularized hypergeometric
functions. In fact, we only need the cases b = 0 and b = −1, which turn out to have
particularly simple expressions:

Hw(a, 0) =
Γ
(

1+a
2

)
Γ
(
iw + a+3

2

) ,
Hw(a,−1) = Γ

(1 + a

2

)
2F1

( 1, a+1
2

iw + a+3
2

; 1
)
− Γ

(2 + a

2

)
2F1

( 1, a+2
2

iw + a+4
2

; 1
) (D.4)

The evaluation of the localized contribution follows along similar lines, once we note
the absence of IR divergences from the contour integral. At the end of the day, we find
that

J ~δloc(~n) = 1
8 (∆φ − 1)2 (∆χ − 1)

( 3∏
i=1

(−1)ni
Γ(1 + ni)

Γ(1− δi − ni)
Γ (1− δi − 2ni)

)

× G(k1, δ1 + 2n1)
G(k1,∆φ)

G(k̄2, δ2 + 2n2)
G(k̄2,∆φ)

G(k3, δ3 + 2n3)
G(k3,∆χ)

Γ
(

1
2
∑
i(δi + 2ni)

)
Γ
(
iw2 + 1

2
∑
i(δi + 2ni)

) .
(D.5)

Adding up the contributions we find

J = Jloc − 4iw1 Jreg = 1
8 (∆φ − 1)2 (∆χ − 1)

∑
δi={∆i,2−∆i}

∞∑
~n=1
J ~δ(~n)

J ~δ(~n) =
( 3∏
i=1

(−1)ni
Γ(1 + ni)

Γ(1− δi − ni)
Γ (1− δi − 2ni)

)
G(k1, δ1 + 2n1)

G(k1,∆φ)
G(k̄2, δ2 + 2n2)

G(k̄2,∆φ)
G(k3, δ3 + 2n3)

G(k3,∆χ)

×

h~n − 4iw1
Γ
(

1
2
∑
i(δi + 2ni)

)
Γ
(
iw2 + 1

2
∑
i(δi + 2ni)

)
 .

(D.6)

The reader can check that this expression does not lead to any additional singularities of
the FPF correlation function of the operators dual to φ and χ, respectively.

E Local analysis for apparent singularities

Consider a regular singular point, whose characteristic exponents are integer separated. It
is helpful to recast the equation, scaling out the smaller exponent, and write a local form
of the equation. We will focus on a particular form inspired by the equations we want to
study, and w.l.o.g. place the singular point the origin. The equation we study is therefore

d2y

dz2 +
[

1− n
z

+
∞∑
m=0

pm z
m

]
dy
dz +

[
q−1
z

+
∞∑
m=0

qm z
m

]
y(z) = 0 (E.1)
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We have expanded the coefficient functions in a Laurent series, fixing the polar terms based
on the structure we encounter for Fuchsian equations. The characteristic solutions are z0

and zn, and so the general solution is

y(z) = Ayn(z) +B(y0(z) + γ yn(z) log z) . (E.2)

Here yn(z) and y0(z) are the naive Frobenius solutions yn(z) = zn
∑∞
j=0 aj z

j and y0(z) =∑∞
j=0 bj z

j , respectively. We wish to understand the conditions under which the log term
can be made absent, or equivalently how the monodromy matrix set to be the identity
matrix. An early analysis can be found in [38].

One strategy is to truncate the Laurent expansions for the coefficient functions and
attempt to solve the SOLDE; this leads to closed form solutions for n = 1 and n = 2. The
former is reliable, but the latter misses out some admixture from higher order terms in the
coefficient functions. A more straightforward approach is the following: setting a0 = 1, fix
a1 by solving the SOLDE. Then use the data to solve for the second independent function,
and extract the condition for γ = 0, as a constraint on the series coefficients. Carrying out
the exercise we find the following condition for the monodromy γ to vanish:

n = 1 : q−1 = 0 ,
n = 2 : q2

−1 + p0 q−1 + q0 = 0 ,
n = 3 : q3

−1 + 2 p0 q
2
−1 + 2 q−1 (p2

0 + p1 + 2 q0) + 4 (p0 q0 + q1) = 0
(E.3)

The larger the difference in the characteristic exponents, the higher one needs to go in the
series solution. Correspondingly, one is sensitive to more terms in the Laurent expansion
of the coefficient functions about the singular point. This point has been explained in [28]
for some specific cases; they express the result as a vanishing condition for a determinant
of Frobenius series coefficients. The analysis presented here can be adapted to any regular
singular point.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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