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1 Introduction

Since its discovery almost four decades ago [1], two-dimensional Liouville conformal field
theory (CFT) has become a cornerstone for diverse studies in field theory and string the-
ory [2–4]. A higher-dimensional non-unitary CFT generalization of this theory emerged in
the study of inertial range incompressible fluid turbulence as the field theory of a Nambu-
Goldstone dilaton mode [5–8]. This higher-dimensional theory and its supersymmetric
extentions in even number of dimensions have been studied in [9–11].

The aim of this work is to study Liouville CFTs in odd number of dimensions, which
in contrast to the even-dimensional case, are nonlocal field theories. While these theories
are of interest by themselves, we note that the three-dimensional Liouville CFT appears
as part of the field theory of turbulence in three spatial dimensions proposed in [5, 8].

The action that defines Liouville CFT on a d-dimensional spaceMd, equipped with a
metric gab, is formally the same in even and odd number of dimensions and reads:

SL = d

2Ωd(d− 1)!

∫
Md

√
gddx [φPgφ+ 2QQgφ] + µ

∫
Md

√
gddxedbφ , (1.1)
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where φ is the Liouville field and the dimensionless parameters are the background charge
Q, the cosmological parameters µ and b. Ωd = 2π

d+1
2

Γ[ d+1
2 ] is the surface volume of the d-

dimensional sphere. We will refer to the case µ = 0 as the Coulomb gas theory SCG =
SL(µ = 0), and to the case µ = Q = 0 as the Gaussian theory, SG = SL(µ = 0, Q = 0).

In contrast to the even-dimensional case, the odd-dimensional action (1.1) is nonlocal.
The conformally covariant GJMS operator Pg [12] is a linear self-adjoint pesudo-differential
operator, whose principal part is (−∆)d/2:

Pg = (−∆)d/2 + lower order terms , (1.2)

where ∆ = gab∇a∇b is the Laplacian and ∇a is the covariant derivative, a = 1, . . . , d.
On Rd (or the unit ball Bd) it is a fractional power of the Laplacian (−∆)d/2 and on Sd

it can be constructed via fractional powers of the conformal Laplacian. The Q-curvature
Qg [13, 14] formally reads:

Qg = 1
2(d− 1)(−∆)d/2−1R+ lower order terms , (1.3)

where R is the scalar curvature, and we expect it to be nonlocal in general. Its integral
over the manifold is an invariant of the conformal structure.

The stress-energy tensor Tab derived from (1.1) is nonlocal, hence there are no local field
theory charges generating the conformal symmetry. As we will argue later in the article,
we can formally express the A-type conformal anomaly on conformally flat spaces as:1

〈T aa 〉 = adQg , (1.4)

where ad is the A-type conformal anomaly coefficient. In general, on the l.h.s. of (1.4) the
stress-energy is nonlocal in the Liouville field and couples nonlocally to the background
geometry, while on the r.h.s. the Qg-curvature is nonlocal in the geometry variables.

We consider in this work Liouville CFTs in d = 2n + 1, n ≥ 1 dimensions. The one-
dimensional case d = 1 is special since the conformal transformations are equivalent to
general coordinate transformations and it will be discussed separately. The outline of the
paper is as follows. In section II we study classical aspects of the Liouville CFT, including
the Weyl symmetry, the classical field equations, the nonlocal GJMS operators and the Qg-
curvature. In section III we analyse the quantum properties of the theory. We calculate
the boundary conformal anomaly, the entanglement entropy and the correlation functions
of vertex operators and derive an analogue of the DOZZ formula [15, 16]. The details of
the calculations are given in the appendices.

1In three dimensions a necessary and sufficient condition for a manifold to be conformally flat is the
vanishing of the Cotton tensor. In dimensions higher than three a necessary and sufficient condition is
the vanishing of the Weyl tensor. Any simply connected compact conformally flat manifold is conformally
equivalent to the round sphere.
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2 Classical nonlocal Liouville CFT

2.1 Weyl symmetry

Consider the Liouville CFT defined by the action (1.1). As in the even-dimensional case,
in the odd-dimensional counterpart under a Weyl transformation of the metric:

gab → e2σgab , (2.1)

the Liouville field φ transforms affinely as:

φ→ φ−Qσ , (2.2)

while the conformal operator Pg transforms homogeneously as:

Pe2σg = e−dσPg , (2.3)

and the Q-curvature as:
Qe2σg = e−dσ (Qg + Pgσ) . (2.4)

The action (1.1) is then Weyl invariant:

SL(φ−Qσ, e2σg) = SL(φ, g)− SCG(Qσ, g) , (2.5)

for the specific classical value of the background charge Q = 1
b .

Equation (2.4) can be written as:

Pgσ +Qg = Qe2σge
dσ . (2.6)

If we take Qe2σg to be a real constant Q then solutions σ to equation (2.6) are such that
under a Weyl transformation gab → e2σgab we get a conformally equivalent manifold with
a constant Q-curvature.

From equation (2.4) follows that the integral of theQ-curvature on a closed Riemannian
manifoldMd is an invariant of the conformal structure:∫

Md

ddx
√
gQg = 1

2Ωd(d− 1)!Q(Md) . (2.7)

When Md is an even-dimensional conformally flat manifold, the Q-curvature is propor-
tional to the Euler density and its integral is the Euler characteristic topological invariant,
i.e.Q(Md) = χ(Md). This is not the case in odd number of dimensions. For instance, while
the Euler characteristic of odd-dimensional compact manifolds vanishes, the Q-curvature
does not. Specifically, we will see that Q(Sd) = 2.

Keeping the normalization convention of (2.7), we get that shifting the field by a
constant affects the Coulomb gas action as:

SCG [φ+ φ0] = SCG[φ] + Q(Md)
2 dQφ0 . (2.8)

– 3 –
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2.2 Classical field equations

By calculating the variation of the action (1.1) with respect to the Liouville field, we find
the classical equations of motion:

Pgφ+QQg = −Ωd(d− 1)!µbedbφ. (2.9)

For the classical value of the background charge as required by classical Weyl invariance,
Q = 1

b , this equation has a geometric interpretation as noted above. Equation (2.2) shows
that we can think of the classical field φc = bφ as a Weyl factor. Using the transformation
law of the Q-curvature (2.6), we see that the EOM for φc is the equation defining a Weyl
transformation from a metric gab to a metric e2φcgab that has a constant negative Q-
curvature:

Qe2φcg = −Ωd(d− 1)!µb2. (2.10)

2.3 Spectral decomposition

2.3.1 The nonlocal GJMS operator

The spectral decomposition is a useful tool for studying nonlocal field theories. A natural
basis in the Liouville case is the span of the eigenfunctions of Pg. For simplicity we consider
only spaces where Pg can be written as a function of the Laplacian, i.e. Pg = f(−∆) where
f is a monotonic function on the set of positive real numbers. Two canonical examples for
spaces for which this property holds are the sphere Sd and the ball Bd. Using the [27] we
have:

Pg(Bd)(−∆) = (−∆)
d
2 , Pg(Sd)(−∆) =

d−1∏
k=0

(
−∆ + k(d− k − 1)

R2
S

)1/2

, (2.11)

where RS is the radius of the sphere. Denote by V ν
p (xa) the eigenfunctions of the Laplacian

∆ with eigenvalue −p2 and degeneracy index ν, then

PgV ν
p (xa) = fPg(p2)V ν

p (xa) . (2.12)

The eigenfunctions and eigenvalues of the Laplacian on the sphere Sd read:

V ν
l (~r) = Yl,ν (θ1 . . . θd) , p2

l = 1
R2
S

l(l + d− 1) , (2.13)

where Yl,ν are the higher-dimensional spherical harmonics (see e.g. [25]). These satisfy
l ≥ 0, and 0 ≤ ν < Kd,l, where Kd,l is the degeneracy:

Kd,l = 2l + d− 1
l

(
l + d− 2
l − 1

)
. (2.14)

The eigenfunctions of the Laplacian on the ball Bd take the form [30]:

V J,ν1,ν2
p (~r) =

N J
ν1(pRB)
RB

r1−d/2J d
2 +ν1−1(pr)Yν1,ν2 (θ1 . . . θd−1) ,

V Y,ν1,ν2
p (~r) =

N Y
ν1(pRB)
RB

r1−d/2Y d
2 +ν1−1(pr)Yν1,ν2 (θ1 . . . θd−1) ,

(2.15)
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where RB is the radius of the ball and Jν , Yν are the Bessel functions of the first and
second kind, respectively. In addition, we’ve defined the normalization constants:

N f
ν (x) =

((
f d

2 +ν−1(x)
)2
− f d

2 +ν(x)f d
2 +ν−2(x)

)−1/2
, (2.16)

where f = Y, J , which gives the normilzation constants for the first and second kind Bessel
functions respectively. The momenta are discretized, pν,n = uν,n

RB
, where uν,n are the roots

of the appropriate Bessel functions or their derivatives for Dirichlet or Neumann boundary
conditions, respectively. As a way to regularize the calculation in flat space Rd, we preform
calculations on the ball Bd and take the limit of infinite radius, where equation (2.15)
remains valid, but with a different normalization as the momenta become continuous in
the limit pν,n → p.

We will use the hemisphere HSd (given by θ1 ∈ [0, π/2]) to calculate the boundary con-
formal anomaly. The Laplacian eigenfunctions for the hemisphere are obtained from (2.13)
by taking the linear combinations Yl,ν (θ1 . . . θd) → 1

2(Yl,ν (θ1 . . . θd) ± Yl,ν (π − θ1 . . . θd))
with − and + corresponding to Dirichlet and Neumann boundary conditions, respectively.
The corresponding eigenvalues and their degeneracies read:

p2
l = l(l + d− 1)

R2
S

, Kd,l,Dirichlet =
(
l + d− 2
d− 1

)
, Kd,l,Neumann =

(
l + d− 1
d− 1

)
.

(2.17)

2.3.2 The Q-curvature of the sphere

One can calculate the Q-curvature of conformally flat spaces gab = e2σδab [27] by using the
field equation:

Qe2σδ = e−dσ(Pδσ +Qδ) = e−dσPδσ . (2.18)

By explicitly calculating the decomposition to Pg eigenfunctions, we can show that the
stereographic projection,

σ = log
( 2Rρ
ρ2 + r2

)
, (2.19)

results in a space with a non-trivial constant Q-curvature value, with ρ,R being constant
parameters with a dimension of length. We use the decomposition in terms of the flat
space eigenfunctions (2.15), and σ being rotationally invariant and smooth implies that the
relevant eigenfunctions are just V J,0,0

p (~r) = r1−d/2√
Ωd−1

√
pJ d

2−1(pr). We get that the coefficients
for this decomposition are given by:

σJ,0,0p ≡
∫
ddrV J,0,0

p (~r)σ =
√

Ωd−1

∫ ∞
0

rd−1dr r1−d/2√pJ d
2−1(pr) log

( 2Rρ
ρ2 + r2

)
= 2ρd/2p−1/2

√
Ωd−1K d

2
(ρp) , (2.20)

where we used the identity
∫∞

0 drrd/2J d
2−1(pr)(ρ2 + r2)−α = 21−αp−1ρd/2−α

Γ(α) K d
2−α

(ρp), in
the limit where α→ 0 [28], and Kν(x) is the modified Bessel function of the second kind.
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Therefore, when computing Pδσ we get:

Pδσ =
∫ ∞

0
pd dp σJ,0,0p V J,0,0

p (r)

= 2ρ
d
2 r1− d2

∫ ∞
0

dp pdK d
2
(ρp)J d

2−1(rp) = (d− 1)! 2dρd

(ρ2 + r2)d ,
(2.21)

and we used
∫∞

0 dp pν+µ+1Jν (py)Kµ (pa) = 2ν+µΓ(ν+µ+1)yνaµ
(a2+y2)ν+µ+1 .

To compute the Q-curvature of the unit sphere Sd, we note that the unit radius
stereographic projection is exactly defined by the scale factor σ(R = 1) = log

(
2ρ

ρ2+r2

)
.

From equation (2.6) we finally get the Q-curvature,

Qg
Sd

= Qe2σδ = e−dσ(Pδσ +Qδ) = (d− 1)! . (2.22)

Inserting this result into equation (2.7) gives us the integrated Q-curvature of the sphere,

Q
(
Sd
)

= 2
Ωd(d− 1)!

∫
Sd
ddx
√
gQg

Sd
= 2 . (2.23)

The odd-dimensional conformal invariant has the same value as the Euler characteristic of
the even-dimensional spheres.

3 Quantum nonlocal Liouville CFT

In this section we study the quantum aspects of the odd-dimensional nonlocal Liouville
CFT. We study the A-type conformal anomaly, find the finite part of the free energy in odd
dimensions (entanglement entropy) and construct the correlation functions and structure
constants of the theory.

3.1 Conformal anomaly

We begin by studying the conformal anomaly of the free Coulomb gas theory SCG. As for
local CFTs, there is only a boundary quantum anomaly and no quantum bulk one. The
bulk contribution to the trace anomaly is the classical contribution from the background
charge. The calculation of the anomaly follows [22, 23].

Preforming the Gaussian integration of (1.1) for µ = 0, the quantum Coulomb gas
action reads [9]:

W = − log(Z) = 1
2 log

(
det

(
d

Ωd(d− 1)!
√
gPg

))
− 1

2

(
d

Ωd(d− 1)!

)2
Q2QgDQg , (3.1)

where D is the propagator of the free theory:

(√gPg)xD(x, y) = Ωd(d− 1)!
d

δd(x, y) , (3.2)

and we use the notation:

QgDQg ≡
∫
ddxddy (√gQg)xD(x, y) (√gQg)y . (3.3)

– 6 –
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The second term in equation (3.1) is a completely geometric quantity which is basically
a classical contribution to the effective action. It originates from completing the square
in the Gaussian integration, and may be compared to the Weyl transformation law of the
action (2.5). This equation shows that at the classical level the action shifts by a geometric
quantity under Weyl transformation. The classical term in (3.1) is exactly responsible for
maintaining this shift at the quantum level, i.e. the lack of Weyl invariance of this term
has a classical origin.

We can explicitly calculate the geometric quantity QgDQg for the sphere of radius R,
whose metric is given by gab = e2σδab with σ as in equation (2.19). According to (2.22)
this space has Qg = Pgσ = (d− 1)!R−d, and using (3.2) we get:

(DQg)Sd ≡
∫
ddyD(x, y) (√gQg)y =

∫
ddyD(x, y) (√gPgσ)y = Ωd(d− 1)!

d
σ(x). (3.4)

We can now calculate QgDQg for the sphere of radius R,

(QgDQg)Sd = Ωd(d− 1)!
d

∫
ddx
√
gQgσ

= ΩdΩd−1((d− 1)!)2R−d

d

∫ ∞
0

dr rd−1
( 2ρR
ρ2 + r2

)d
log

( 2ρR
ρ2 + r2

)
= (4π)d Γ2(d/2)

d

(
log

(
R

ρ

)
+ log 2 + ψ(0)

(
d

2

)
− ψ(0)(d)

)
,

(3.5)

where ψ(0) is the polygamma function.
The conformal anomaly is given by the variation of the quantum action with respect

to Weyl transformations,
〈T aa 〉 = 1

√
g

δW

δσ
. (3.6)

On a conformally flat manifold, the requirement that the conformal anomaly (3.6) must
be a conformally covariant scalar function of the metric of conformal dimension ∆ = d

is a strict one. Since on these manifolds the metric is completely determined by a single
scalar function, the Weyl factor, the only possibility for the conformal anomaly is to be
proportional to the Q-curvature, following equation (3.6), even in the odd-dimensional case.

The A-type anomaly coefficient (1.4) is a sum of two terms

ad = Ad +BdQ
2 , (3.7)

and from the functional derivative (3.6) one gets

Bd = d

Ωd(d− 1)! . (3.8)

The anomaly part Ad in odd number of dimensions has only a boundary contribution, which
can be calculated as in [22, 23]. Consider the eigenvalues (2.17) of the GJMS operator (2.11)
on the odd-dimensional unit hemisphere HSd:

p2
l =

d−1∏
k=0

√
(l + k) (l + d− 1− k) =

d−1∏
k=0

(
d∑
i=1

mi + a+ k

)
, (3.9)

– 7 –
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where the constant a = 1
2(d± 1) depends on the boundary conditions, and m1, . . . ,md are

non-negative integers that satisfy the constraint l+ d−1
2 =

∑d
i=1mi+a. In this representa-

tion, the degeneracies for the Dirichlet/Neumann boundary conditions (2.17) follow from
the different choices of m1, . . . ,md that satisfy the constraint: ∑∑

i
mi=l+ d−1

2 −a

1


a= d−1

2

=
(
l + d− 1
d− 1

)
,

 ∑∑
i
mi=l+ d−1

2 −a

1


a= d+1

2

=
(
l + d− 2
d− 1

)
.

(3.10)
Using zeta function regularisation, we can write conformal anomaly (logarithmic) term

in the expansion of the partition function (3.1) as:

1
2 lim
s→0

∑
m1,...,md

1[∏d−1
k=0 (

∑
imi + a+ k)

]s ≡ 1
2 lim
s→0

Zd(s, a) , (3.11)

and evaluate it following [22],

Zd(0, a) =
d−1∑
k=0

1
d!ζd (0, a+ k|1d) = 1

d!

d−1∑
k=0

∫ 1

0
dt

d∏
m=1

(a+ k + t−m)

= 1
d!

∫ d

0
dt

d∏
m=1

(
t+ a− d− 1

2 −m
)
,

(3.12)

where ζd is a Barnes zeta function. Simplifying (3.12) we get

Zd(0, aD) = −Zd(0, aN ) = 1
d!

∫ 1

0
dt

d∏
m=1

(t−m) ,

where aD = d−1
2 and aN = d+1

2 refer to Dirichlet and Neumann boundary conditions,
respectively.

Thus, the anomaly coefficient Ad takes the values,

Ad = ± d

2Ωd (d!)2

∫ 1

0
dt

d∏
m=1

(t−m) , (3.13)

where the positive and negative coefficients correspond to Dirichlet and Neumann boundary
conditions, respectively. Note, that summing the two boundary anomalies results in Ad = 0,
which is the bulk sphere result.

3.2 Entanglement entropy

The sphere partition function of a conformal field theory in odd number of dimensions,
d = 2n+ 1, generally has an expansion of the form:

FS2n+1 ≡ − logZS2n+1 = c2n+1(RΛUV )2n+1 + c2n−1(RΛUV )2n−1 + · · ·+ c1(RΛUV ) +F2n+1 ,

(3.14)
where R is the radius of the sphere and ΛUV is the UV cutoff. The coefficients ck are reg-
ularization dependent, however, the universal finite number F2n+1 is a physical observable

– 8 –
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that can be interpreted as the entanglement entropy for a spherical entangling hypersurface.
More precisely, the entanglement entropy is the real part of F2n+1 which is regularization
independent since there are no local counter terms that can contribute to it [31].

In equations (3.1), (3.5) we saw that for the Liouville field theory, the sphere free
energy also includes a logarithmic term in R, which is not accounted for in (3.14). This
term, together with an additional constant term, are proportional to the square of the
background charge Q2, and originate from a classical geometric term in the quantum action.
The constant term proportional to Q2 is ambiguous as a result of the classical logarithmic
term, and its value is dependent on the non-physical re-scaling parameter ρ in (2.19). Thus,
it cannot contribute to the physical observable F2n+1, which is therefore independent of
the background charge. The quantum contribution to F2n+1 which is independent of Q is
well-defined and can be calculated.

In this section we will calculate finite part of the free energy F2n+1 for the odd-
dimensional Liouville conformal field theory. Conformal invariance implies that F2n+1 does
not depend on marginal couplings of a conformal field theory [31]. In the case of nonlocal
Liouville theory that means that F2n+1 does not depend on the cosmological constant µ, and
we can preform the calculation of the sphere partition function using the Gaussian theory.

The sphere partition function of the Gaussian theory is formally given by

F = − log (Z) = 1
2 log det

(
Pg(Sd)

)
= 1

2

∞∑
l′=1

Kd,l′ log Λl′ , (3.15)

where Λl′ are the eigenvalues of Pg on the sphere (2.11), and Kd,l′ are the corresponding
degeneracies (2.14). In odd number of dimensions d = 2n + 1 the eigenvalues can be
expressed as,

Λl′ =
d−1∏
k=0

(l′ + k) = (l′ + n)
n∏
k=1

(
(l′ + n)2 − k2

)
= l

n∏
k=1

(
l2 − k2

)
, (3.16)

where we’ve defined l = l′ + n. The degeneracies Kd,l′ can be recast as,

Kd,l′ = 2l′ + d− 1
l′

(
l′ + d− 2
l′ − 1

)
= 2l(l + n− 1)!

(l − n)!(2n)! = 2
(2n)! l

2
n−1∏
k=1

(
l2 − k2

)
. (3.17)

The free energy is the formal infinite sum,

F = 1
2

∞∑
l′=1

Kd,l′ log Λl′ = 1
(2n)!

∞∑
l=n+1

l2
n−1∏
k=1

(
l2 − k2

)
log

(
l

n∏
k′=1

(
l2 − k′2

))
. (3.18)

Using the zeta function regularization we can extract the finite part of the sum F2n+1.
Using the regularization procedure detailed in appendix A, we get

F2n+1 =
n+ 1

2
(2n)!

n∑
j=1

(−1)j+1 (2j)!
(2π)2j aj−1,n−1ζ(2j + 1)−

(
n+ 1

2

)
log n

+
n∑
k=0

∫ k

0
dt

 π

(2n)!

n−1∏
j=0

(
t2 − j2

)
cot(πt) + t

n2 − t2

 ,

(3.19)
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where aj,n are defined as the coefficients of the polynomial
∏n
k=1

[
l2 − k2] =

∑n
j=0 aj,nl

2j

(for more details see appendix A).
Several values of F2n+1 are listed in the following table as a function of the dimension:

d = 2n+ 1 F2n+1

3 3
2
ζ(3)

(2π)2 + 1
2 log π

5 −5
2
ζ(5)

(2π)4 + 55
24

ζ(3)
(2π)2 + 1

2 log π
12

7 7
2
ζ(7)

(2π)6 − 77
12

ζ(5)
(2π)4 + 133

45
ζ(3)

(2π)2 + 1
2 log π

360

9 −9
2
ζ(9)

(2π)8 + 111
8

ζ(7)
(2π)6 − 1781

160
ζ(5)

(2π)4 + 11873
3360

ζ(3)
(2π)2 + 1

2 log π
20160

3.3 Multiplicative anomaly

In the previous section we’ve calculated the functional determinant (3.15) of the nonlocal
GJMS operator Pg operator on the sphere. To do so, we’ve written the corresponding zeta
function and calculated its derivative at zero, as detailed in appendix A.

As can be seen in (3.16), the eigenvalues on the sphere can be factored into a product
of simple terms, each linear in the summation variable. If we could distribute the logarithm
of the eigenvalues into a sum of logarithms of linear terms, then the calculation would be
significantly simpler. However, such naive factorization is not always possible, since in
general for two pseudo-differential operators A,B we can have det(AB) 6= det(A) det(B).
This is known as the multiplicative anomaly (for a review see e.g. [33]), and is a result of
regularization.

Nevertheless, as it turns out in our specific case the multiplicative anomaly exactly
vanishes, a fact which is proved in appendix B. This allows us to preform an alterna-
tive computation of the sphere partition function, which results in a different equivalent
mathematical expression for the finite part of the free energy F2n+1.

Knowing that there is no multiplicative anomaly, we can freely reorganize and manip-
ulate the free energy sum,

F = 1
2

∞∑
l′=1

Kd,l′ log
(
d−1∏
k=0

(
l′ + k

))
= 1

2

d−1∑
k=0

∞∑
l′=1

Kd,l′ log
(
l′ + k

)
. (3.20)

This sum can be further simplified by defining l = l′+k and noting that for −d+1 < l′ < 0
the formal expression for the degeneracy (2.14) vanishes, i.e. Kd,l′ = 0, in addition to
Kd,0 = 1. This allows us to extend the sum to l′ ≥ −k + 1 =⇒ l ≥ 1, by subtracting the
additional terms,

F = 1
2

∞∑
l=1

( 2n∑
k=0

Kd,l−k

)
log(l)− 1

2

2n∑
k=1

k∑
l=1

Kd,l−k log(l)

= 1
2

∞∑
l=1

( 2n∑
k=0

Kd,l−k

)
log(l)− 1

2 log ((2n)!) ,
(3.21)
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where again we’ve written the odd dimension as d = 2n+ 1. We’ll define the inner sum as
a function of l, which by explicit calculation using (3.17) is given by:

Kn(l) ≡
2n∑
k=0

Kd,l−k = 2n+ 1 + 2l
2n+ 1

(
2n+ l

2n

)
+ 2n+ 1− 2l

2n+ 1

(
l − 1
2n

)
. (3.22)

The function Kn(l) is even with respect to l so we can expand it as a polynomial with even
powers only, Kn(l) =

∑n
j=0 kj,nl

2j . Using Kn(0) = 2 we get:

F = 1
2

∞∑
l=1

n∑
j=1

kj,nl
2j log(l) +

∞∑
l=1

log(l)− 1
2 log((2n)!) . (3.23)

We can now use zeta regularization, which gives us an alternative expression for F2n+1, the
finite part of the sphere partition function:

F2n+1 = 1
4

n∑
j=1

(−1)j+1 (2j)!
(2π)2j kj,nζ (2j + 1) + 1

2 log 2π
(2n)! . (3.24)

Here we’ve used zeta regularization to calculate the sum in the first line. We have
verified that this new expression numerically agrees with (3.19) for the values presented in
the table, which demonstrates the lack of multiplicative anomaly.

3.4 Correlation functions

We study the theory (1.1) on the sphere, and using the Weyl invariance of the action we
preform a Weyl transformation to flat space. This transformation (2.19) is singular, and
concentrates all of the non-trivial curvature at infinity.

To regularize the action, we introduce an IR cutoff and study the theory on the ball Bd

with radius RB →∞. The non-trivial curvature at infinity is then homogeneously spread
on the boundary sphere ∂Bd. The action is defined as follows:

SL = d

2Ωd(d− 1)!

∫
Bd

ddxφ(−∆)
d
2φ+ dQ

Ωd−1

∫
∂Bd

dd−1Ωφ+ µ

∫
Bd

ddxedbφ . (3.25)

In this setting, the relevant eigenfunctions for the spectral decomposition are therefore
the ball eigenfunctions (2.15). The propagator in the Coulomb gas theory can be obtained
with the help of IR regularization. Using the spectral decomposition for the nonlocal
operator (−∆)

d
2 , we get the following propagator,

〈φ(x)φ(y)〉 = P−1δ(x− y) ≈ 2
d

∫ ∞
π
L∞

cos p|x− y|
p

dp = 2
d

log L∞
|x− y|

+O(1), (3.26)

where L∞ is a the IR cutoff in length dimension.
Just as in the even dimensional theories, the vertex operators are defined as:

Vα(x) = edαφ(x) . (3.27)

These are the primary conformal operators of the theory, with dimension given by:

∆α = dα(Q− α). (3.28)
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Requiring that the potential term in the action edbφ has the correct dimension, ∆b = d,
determines the background charge:

Q = b+ 1
b
, (3.29)

and in the classic limit b→ 0 we go back to the classical value Q→ 1
b . In order to obtain

the correlation functions of the C.G. theory, we use the 2-point function (3.26), for vertex
operators satisfying the condition of charge conservation

∑
i αi = Q:〈∏

i

Vαi (xi)
〉
C.G.

=
∏
i 6=i′
|xi − xi′ |2dαiαi′ . (3.30)

With the help of this result and by using the decomposition of the path integral measure
into a zero mode φ0 and non-zero modes, i.e. Dφ = Dφdφ0δ

(∫
M
√
gddxφ− φ0

)
, we can

calculate a formal expression for the correlation functions in nonlocal Liouville theory,

〈Vα1 (x1) · · ·VαN (xN )〉 ≡
∫
Dφe−S

N∏
i=1

edαiφ(xi)

= Γ(−s)µs

db

〈(∫
ddyedbφ(y)

)s
×

N∏
i=1

edαiφ(xi)
〉
CG

,

(3.31)

where we have defined,
s = Q−

∑
i αi

b
, (3.32)

and 〈. . . 〉CG refers to expectation value in the Coulomb Gas theory without zero-mode.
Thus, we see that the correlation function have poles at s = n for non-negative integer n.
We can write the residues at these poles as integrals over free field correlation functions:

Res
s=n
〈Vα1 (x1) · · ·VαN (xN )〉 = (−µ)n

n!

∫
ddy1 · · · ddyn

〈
n∏
i=1

Vb (yi)
N∏
k=1

Vαk (xk)
〉
CG

= (−µ)n

n!

N∏
k>l=1

|xk − xl|−2dαkαl

×
∫
dndy

n∏
i>j=1

|yi − yj |−2db2
n∏
i=1

N∏
k=1
|yi − xj |−2dbαj .

(3.33)

Note that the requirement s = n can now be translated to a conservation of the background
charge in the Coulomb Gas theory, i.e.

∑
i αi + nb = Q.

Of particular interest in a CFT are the 3-point correlation functions, which by confor-
mal invariance are constrained to have the form,

〈Vα1 (x1)Vα2 (x2)Vα3 (x3)〉 = C(α1, α2, α3)
|x1 − x2|∆1+∆2−∆3 |x2 − x3|∆2+∆3−∆1 |x3 − x1|∆3+∆1−∆2

.

(3.34)
Here the coefficients C(α1, α2, α3) are the structure constants of the theory, and they play
a key role in determining the properties of the CFT.
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In appendix C we detail the calculation of the 3-point residue integrals following [26],
which also preformed the analytic continuation required to get the exact structure con-
stants,

C (α1, α2, α3) =

− πd/2

γ d
2

(
−d

2b
2
)µ
√d

2b

−d(1+b2)


Q−
∑

i
αi

b
√

2
dΥ(d)′

b (0)

Υ(d)
b (

∑
i αi −Q)

×
Υ(d)
b (2α1)Υ(d)

b (2α2)Υ(d)
b (2α3)

Υ(d)
b (α1 + α2 − α3)Υ(d)

b (α2 + α3 − α1)Υ(d)
b (α3 + α1 − α2)

.

(3.35)

As is further detailed in appendix C, the special function Υ(d)
b (x) is a d-dimensional gen-

eralization of the Upsilon function Υb(x), used in 2-dimensional Liouville CFT. To write
its expression, we first define the special function Γw(x) ≡ Γ2(x|w,w−1)

Γ2(w/2+w−1/2|w,w−1) , where
Γ2(x|w1, w2) is the Double Gamma function. We can now define the d-dimensional gener-
alization of the Upsilon function Υb, namely

Υ(d)
b (x) ≡ 1

Γ√ d
2 b

(√
d
2x

)
Γ√ d

2 b

(√
d
2(Q− x)

) . (3.36)

This definition satisfies Υ(d)
b (x) = Υ(d)

b (Q− x), and in the two-dimensional case we return
to the usual Upsilon function, Υ(2)

b (x) = Υb(x).

3.5 Semi-classical approximation

The semi-classical limit of Liouville CFT is given by b → 0. In this limit the background
charge (3.29) approaches its classical value and the path integral defining the correlation
functions (3.31) is dominated by the saddle point of the action. In this limit we can use
the saddle point approximation to calculate the semi-classical value of the correlators. In
order to simplify the calculations, we define the classical Liouville field φc = bφ. The action
on the sphere (3.25) can then be written in this limit as:

SL(φc) = d

2Ωd(d− 1)!b2
∫
Bd
ddxφcPgφc + µ

∫
Bd
edφc + d

Ωd−1b2

∫
∂Bd

dd−1Ωφc +O(b0).

(3.37)
In this section we will calculate the semi-classical limit of correlation functions of

“light” vertex operators (3.27), defined as operators Vαi with αi = O(b). As we have shown
in the even dimensional case [9], in these conditions the corresponding path integral has no
real saddle points. To overcome this, we consider correlation functions with fixed area A,
which is defined as A =

∫
ddxedbφ, by inserting into the path integral the identity element

1 =
∫∞

0 dAδ
(
A−

∫
ddxedbφ

)
. This insertion gives us:

〈Vα1 (x1) · · ·VαN (xN )〉 =
∫
dA

A
e−µA 〈Vα1 (x1) · · ·VαN (xN )〉A

= (µA)sΓ(−s) 〈Vα1 (x1) · · ·VαN (xN )〉A .

(3.38)
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Here 〈Vα1 (x1) · · ·VαN (xN )〉A is the fixed area correlation function, and we have used equa-
tion (3.31). The fixed area path integral for light vertex operators does have real saddle
points, which allows us to calculate the structure constants (3.34) in the semi-classical ap-
proximation. The saddle points are given by solutions to the fixed area equation of motion,
which can be obtained by using a Lagrange multiplier:

(−∆)d/2φc = Ωd(d− 1)!
A

edφc . (3.39)

Thus saddle points correspond to Weyl factors that describe manifolds with positive con-
stant Q-curvature and finite area. As we have shown in equations (2.19), (2.22), one such
solution is the Weyl factor of the sphere with radius A:

φc = − log
(
ρ2 + r2

ρ

)
+ 1
d

log
(

2dA
Ωd

)
. (3.40)

Following the calculation done previously in [9], by the conformal invariance of the the-
ory, all other relevant saddle points are given by conformal transformations of the solu-
tion (3.40). The semi-classical approximation of the correlation functions is then given
by summing over all saddle points, i.e. integrating over the moduli space of saddle points,
which is the conformal group modulo its subgroup that leaves (3.40) invariant. When
changing the path integral into an integral over this moduli space we introduce some b-
dependent Jacobian A(b), which can be shown to satisfy log(A(b)) = O(log b). Finally,
explicitly preforming the integration for the 3-point function of light vertex operators, we
get the semi-classical approximation of the structure constants for αi = O(b):

C(α1,α2,α3)≈ π
d
2

2 A(b)Γ
(∑

iαi−Q
b

)(Ωd

2d µ
)Q−

∑
i
αi

b

e−
Sbulk
b2 Γ

[
d

2b(α1 +α2 +α3)
]

×
Γ
(
d
2b(α2 +α3−α1)

)
Γ
(
d
2b(α3 +α1−α2)

)
Γ
(
d
2b(α1 +α2−α3)

)
Γ
(
d
bα1

)
Γ
(
d
bα2

)
Γ
(
d
bα3

) . (3.41)

Here Sbulk is the value of the bulk action defined by,

Sbulk = d

2Ωd(d− 1)!

∫
Bd
ddrφc(−∆)d/2φc, (3.42)

which is evaluated for the solution (3.40) for the unit sphere, i.e. A = Ωd. Preforming this
calculation gives us the value:

Sbulk = 2d−1d

Ωd

∫
ddr

(
− log(1 + r2)

(1 + r2)d

)
= −d2

(
ψ(0)(d)− ψ(0)

(
d

2

))
. (3.43)

4 Discussion

Liouville conformal field theories provide examples of solvable interacting CFTs in dimen-
sions higher that two. In this work we considered these theories in odd number of dimen-
sions where they are nonlocal. We studied their classical and quantum properties and found
that they exhibit similar structures to that of the local even-dimensional Liouville CFTs.
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There are various directions to follow. We derived the exact DOZZ formula (3.35), and
independently its semi-classical approximation (3.41). Matching the sum over saddle points
calculation and the limit b→ 0 of the exact calculation is an interesting open problem that
requires a generalization of the methods used for the even-dimensional case in [26].

The stress energy tensor of these theories is nonlocal. It will be important to construct
it, understand the structure of the nonlocal generators of the conformal algebra and cal-
culate the charges such as CT of these theories. In fact, a general classification of possible
anomaly terms of these nonlocal field theories is still lacking.

Renormalization group flow properties of higher-dimensional Liouvllile theories are
largely unexplored. Being non-unitary in dimensions higher than two, it is not clear whether
there are monotonicity theorems corresponding to anomaly and F charges. Finally, adding
boundaries and defects to these theories may shed new light on the structure of these
theories.
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A Zeta regularization of the sphere partition function

In this section we compute the finite part of the formal infinite sum (3.18),

F = 1
2

∞∑
l=l0

Kd,l log
(
l
n∏
k=1

(
l2 − k2

))
, (A.1)

by employing the technique of zeta regularization. We begin by writing the identity,

F = − 1
(2n)!

d

ds

∣∣∣∣
s=0

∞∑
l=n+1

l2
n−1∏
k=1

(
l2 − k2

)(
l

n∏
k′=1

(
l2 − k′2

))−s
. (A.2)

Written this way, we note that for s < 1 the expression we sum over actually vanishes for
l = 0, 1, . . . , n−1. Therefore, we can replace the sum over l ≥ n+ 1 with a sum over l 6= n.

We can then expand the eigenvalues (3.16) and degeneracies (3.17) as a polynomial in
l using,

n∏
k=1

[
l2 − k2

]
=

n∑
j=0

aj,nl
2j , aj,n = (−1)j+n

∑
1≤k1<k2...<kj≤n

[n!]2∏j
i=1 k

2
i

, (A.3)

and use this expression to simplify F . We express each term in the sum over eigenvalues
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as:

Λ−sl = l−s

 n∑
j=0

aj,nl
2j

−s

= l−(2n+1)s
∞∑

M=0

∑
m0+···+mn−1=M

(
−s
M

)(
M

m0, . . . ,mn−1

)
n−1∏
j=0

(
aj,nl

−2(n−j)
)mj

=
∞∑

M=0

∑∑
j
mj=M

(
−s
M

)(
M

m0, . . . ,mn−1

)n−1∏
j=0

a
mj
j,n

 l−(2n+1)s−2
∑

j
(n−j)mj ,

(A.4)

where we used an,n = 1 and the generalized multinomial theorem, with multinomial coef-
ficients defined as: (

M

m0, . . . ,mn−1

)
≡ M !
m0!m1! · · ·mn−1! . (A.5)

Inserting this into the free energy, and denoting m ≡
∑n−1
j=0 (n− j)mj , we get:

F=− 1
(2n)!

d

ds

∣∣∣∣
s=0

∞∑
l=0,l 6=n

n−1∑
i=0

ai,n−1l
2(i+1)Λ−sl (A.6)

=− 1
(2n)!

d

ds

∣∣∣∣
s=0

n−1∑
i=0

∑
M≥0,

∑
j
mj=M

(
−s
M

)(
M

{mj}

)n−1∏
j=0

a
mj
j,n

ai,n−1

∞∑
l=0,l 6=n

l−(2n+1)s−2m+2(i+1).

Using the identity
(−s
M

)
= δM,0 + (−1)M 1

M s + O(s2), we can compute the derivative at
s = 0,

F=−2n+1
(2n)!

n−1∑
i=0

ai,n−1
(
ζ ′(−2(i+1))+n2(i+1)logn

)
+ (A.7)

− 1
(2n)!

n−1∑
i=0

∑
M≥1,

∑
j
mj=M

(−1)M

M

(
M

{mj}

)n−1∏
j=0

a
mj
j,n

ai,n−1
(
ζ(2(m−i−1))−n−2(m−i−1)

)
.

While the second line seems complicated, it can be made significantly simpler by noting
some basic identities. Looking at equation (A.4), one can write,

− d

ds

∣∣∣∣
s=0

Λ−sl = (2n+ 1) log l −
∞∑

M=1

∑∑
j
mj=M

(−1)M

M

(
M

{mj}

)n−1∏
j=0

a
mj
j,n

 l−2m. (A.8)

On the other hand, using log Λl = − d
ds

∣∣∣
s=0

Λ−sl , we have

log Λl = log
(
l
n∏
k=1

(
l2 − k2

))

= (2n+ 1) log l −
n∑
k=1

log
(
1− k2l−2

)
= (2n+ 1) log l −

∞∑
m=1

∑n
k=1 k

2m

m
l−2m.

(A.9)
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Expressions (A.8) and (A.9) are both analytic functions in l−1 (discarding the identical
log term) since in these calculations we kept l arbitrary. Thus, the coefficients of the two
power series must match, and we get

∞∑
M=1

∑∑
j
mj=M

(−1)M

M

(
M

{mj}

)n−1∏
j=0

a
mj
j,n

 =
∑n
k=1 k

2m

m
. (A.10)

Applying this identity to (A.7), we get for the finite part:

F2n+1 = −2n+ 1
(2n)!

n−1∑
i=0

ai,n−1ζ
′(−2(i+ 1))−

(
n+ 1

2

)
log(n)

−
n∑
k=1

∞∑
m=1

k2m

m

(
1

(2n)!

n−1∑
i=0

ai,n−1ζ (2(m− i− 1))− 1
2n
−2m

)
,

(A.11)

where we used
∑n−1
i=0 ai,n−1n

2(i+1) = n2∏n−1
k=1

(
n2 − k2) = 1

2(2n)!.
Equation (A.11) demonstrates that even when using zeta regularization the order of

summation can be rearranged such that:
∞∑
l=l0

Kd,l log
(
l
n∏
k=1

(
l2 − k2

))
=
∞∑
l=l0

Kd,l log(l) +
n∑
k=1

∞∑
l=l0

Kd,l log
(
l2 − k2

)
. (A.12)

As explained in subsection 3.3, this is a highly non-trivial result, which shows the multi-
plicative anomaly vanishes for this decomposition of the eigenvalues into simpler products.
In appendix 3.3 we prove that we can further decompose into liner terms with no multi-
plicative anomaly.

To simplify (A.11), we will use the following values of the derivative of the zeta function,

ζ ′(−2j) = (−1)j (2j)!
2(2π)2j ζ(2j + 1), j ∈ N . (A.13)

Note, that we have the following generating function for the positive even integer values of
the zeta function,

− π

2 t cot(πt) =
∞∑
j=0

ζ(2j)t2j , (A.14)

while for negative even integer we have ζ(−2j) = 0, j ∈ N. We can now write an integral
expression for the infinite sum remaining in F2n+1 for each k,

∞∑
m=1

k2m

m

(
1
2n
−2m − 1

(2n)!

n−1∑
i=0

ai,n−1ζ (2(m− i− 1))
)

=
∫ k

0
dt

( ∞∑
m=1

t2m−1n−2m − 2
2n!

∞∑
m=1

n−1∑
i=0

ai,n−1t
2m−1ζ (2(m− i− 1))

)

=
∫ k

0
dt

(
t

n2 − t2
− 2

(2n)!

n−1∑
i=0

ai,n−1t
2i+1

∞∑
m=0

ζ(2(m− i))t2(m−i)
)

=
∫ k

0
dt

 t

n2 − t2
+ π

(2n)!

n−1∏
j=0

(
t2 − j2

)
cot(πt)

 .

(A.15)

Combing this result with equation (A.11) gives us our final result (3.19).
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We note that the zeta regularization technique employed here agrees with previous
results when applied to simpler operators. Specifically, we have checked that when applying
this exact method to the conformal Laplacian, we get the same results for the finite part
of the free energy as in [32].

B No multiplicative anomaly for the GJMS operator

In this appendix we show that the multiplicative anomaly vanishes when expanding the
logarithm of the eigenvalues in the infinite sum (3.15) into logarithms of linear terms.
During our derivation in appendix A, we have shown that multiplicative anomaly vanishes
for the partial decomposition (A.12). What remains to be shown is that this infinite
sum can be further decomposed by writing the terms inside the logarithm as l2 − k2 =
(l + k)(l − k), with no multiplicative anomaly.

The degeneracy Kd,l is an even polynomial in l, so in fact we can prove a stronger
statement by replacing it with a general even power of l, i.e. l2N for a non-negative integer
N . We define the quantities:

F± =
∞∑

l=k+1
l2N log (l ± k), F0 =

∞∑
l=k+1

l2N log
(
l2 − k2

)
, ∆k = F0 − F+ − F− . (B.1)

To show that the multiplicative anomaly vanishes we need to prove ∆k = 0 and we shall
do that by induction on k. Trivially the base case holds, ∆0 = 0. Shifting the summation
index in F± we get:

F+ + F− =
∞∑
l=1

(l − k)2N log(l) +
∞∑
l=1

(l + k)2N log(l)−
k∑

l=−k+1
l2N log(l + k) =

= −2
N∑
j=0

(
2N
2j

)
k2(N−j)ζ ′(−2j)−

k∑
l=1

l2N log(l + k)−
k−1∑
l=1

l2N log(k − l) ,
(B.2)

where we used
∑∞
l=1 l

α log(l) = − d
ds

∣∣∣
s=0

∑∞
l=1 l

α−s = −ζ ′(−α). Similarly, we can express
F0 as follows,

F0 =
∞∑

l=k+1
l2N log

(
l2
)

+
∞∑

l=k+1
l2N log

(
1− k2l−2

)

= −2ζ ′(−2N)− 2
k∑
l=1

l2N log(l) +
∞∑

l=k+1
l2N log

(
1− k2l−2

)
.

(B.3)

Using a very similar derivation as in (A.15), we can compute the remaining infinite sum,

∞∑
l=k+1

l2N log
(
1− k2l−2

)
=
∫ k

0
dt

(
πt2N cot (πt) +

k∑
l=1

l2N

l − t

)
−

k∑
l=1

l2N log
(
l + k

l

)
.

(B.4)
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Note, that the integrand is finite in the integration interval, as the poles of the two terms
cancel each other. We can simplify the expression by explicitly integrating the second term
and obtain for F0:

F0 = −2ζ ′ (−2N) +
∫ k

0
dt

(
πt2N cot (πt) + k2N

k − t

)
− k2N log 2−

k−1∑
l=1

l2N log
(
k2 − l2

)
.

(B.5)
This integration step introduces poles into the integration interval, so when applicable the
integral should be understood as the Cauchy principal value.

The multiplicative anomaly, ∆k = F0 − F+ − F−, reads

∆k = 2
N−1∑
j=0

(
2N
2j

)
k2(N−j)ζ ′(−2j) +

∫ k

0
dt

(
πt2N cot (πt) + k2N

k − t

)
+ k2N log(k) . (B.6)

In order to prove that ∆k = 0 for any k we assume that it vanishes for a particular
value of k and consider the difference

∆k+1 −∆k = 2
N−1∑
j=0

2N∑
p=2j+1

k2N−p (2N)!
(2j)!(p− 2j)!(2N − p)!ζ

′ (−2j)

+
∫ k+1

k
dt

(
πt2N cot (πt) + (k + 1)2N − k2N

k + 1− t

)
.

(B.7)

Note that since ∆k = 0, by our assumption, we have ∆k+1 −∆k = ∆k+1. The first term
can be recast, using the re-summation

∑N−1
j=0

∑2N
p=2j+1 . . . =

∑2N
p=1

∑b(p−1)/2c
j=0 . . ..

Furthermore, the integral can be simplified by the integration parameter change u =
t− k, which finally gives the result,

∆k+1 =
2N∑
p=1

(
2N
p

)
k2N−p

2
b p−1

2 c∑
j=0

(
p

2j

)
ζ ′ (−2j) +

∫ 1

0
du

(
πup cot (πu) + 1

1− u

) .

(B.8)
The sum of two terms in the parentheses vanishes for each value of p by an integral identity,
leaving us with ∆k = 0 for all non-negative integer k by induction. This completes the
proof that the multiplicative anomaly vanishes for this decomposition.

C Exact correlation functions by relation to a free field

In order to calculate the exact correlation function we first need to calculate it’s residues
using the relation to a free field (3.33). To solve the relevant conformal integrals, we can
use a mathematical integral identity of Liouville CFT. This section is a review of the work
done in [26].

The starting point for solving these integrals is utilising the reflection identity:

VQ−α = R(α)Vα, (C.1)
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where the function R(α) is called the reflection coefficient. We can then look at the
possible residues of the correlation function (3.33) and the same correlation function with
all operators Vα replaced by their reflected operators VQ−α. If a pole exists in both versions
then we can require:

Res
Q−
∑

i
αi=nb

〈Vα1 (x1) · · ·VαN (xN )〉=
N∏
i=1

R(αi)−1 Res
Q−
∑

i
(Q−αi)=mb

〈VQ−α1 (x1) · · ·VQ−αN (xN )〉 ,

(C.2)
for some non-negative integers n,m. This in turn implies the conformal integral identity:

(−µ)n

n!

N∏
k>l=1

|xk − xl|−2dαkαl
∫
dndy

n∏
i>j=1

|yi − yj |−2db2
n∏
i=1

N∏
k=1
|yi − xk|−2dbαk

= (−µ)m

m!

N∏
i=1

R(αi)−1
N∏

k>l=1
|xk − xl|−2d(Q−αk)(Q−αl)

×
∫
dmdy

m∏
i>j=1

|yi − yj |−2db2
m∏
i=1

N∏
k=1
|yi − xk|−2db(Q−αk) . (C.3)

For the two residues to exist, we have the background charge conservation requirements:

Q−
N∑
i=1

αi = nb, Q−
N∑
i=1

(Q− αi) = mb . (C.4)

Summing these two equations we get a relation which determines the number of external
points N in the correlation function:

N = − b

Q
(n+m) + 2. (C.5)

Since n,m can be any non-negative integers, then for N to be a positive integer (−Q/b)
must be a non-negative integer. To fulfil this requirement we are going to analytically
continue the Liouville CFT to a specific imaginary value of b. This procedure will in turn
provide us with a conformal integral identity which can be used for the general b case.

To get an identity for all possible N -point function, i.e. all integer N ≤ 2, we must
choose (−Q/b) = 1, which using Q = 1/b+ b implies:

Q = −b, b2 = −1
2 , N = n+m+ 2. (C.6)

Inserting these specific values into the analtically continued equation (C.3) and taking the
limit xN →∞

(−µ)n

n!

∫
dndy

n∏
i>j=1

|yi−yj |d
n∏
i=1

n+m+1∏
k=1

|yi−xk|−2dbαk= (−µ)m

m!

n+m+1∏
i=1

R(αi)−1R(αN )−1

×
n+m+1∏
k>l=1

|xk−xl|−2d(Q2−2Q(αk+αl))
∫
dmdy

m∏
i>j=1

|yi−yj |d
m∏
i=1

n+m+1∏
k=1

|yi−xk|−2db(Q−αk).

(C.7)
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Finally, lets define Ds(y) ≡
∏s
i>j=1 |yi − yj |, ai ≡ dbαi and r(ai) = R(αi)−1∣∣

b2=−1/2. Using
charge conservation we have αN = Q− nb−

∑N−1
i=1 αi =⇒ aN = d(n+ 1)/2−

∑n+m+1
i=1 ai

, and we can rewrite the integral identity as:

(−µ)n

n!

∫
dndyDd

n(y)
n∏
i=1

n+m+1∏
k=1

|yi−xk|−2ak = (−µ)m

m!

n+m+1∏
i=1

r(ai)r
(
d(n+1)/2−

n+m+1∑
i=1

ai

)

×
n+m+1∏
k<l

|xk−xl|d−2ak−2al
∫
dmdyDd

m(y)
m∏
i=1

n+m+1∏
k=1

|yi−xk|−d+2ak . (C.8)

The only thing left to obtain the full identity is to find the function r(ai), which can be
found by looking at the 3-point function n = 1,m = 0, N = 3:∫

ddy |y − x1|−2a1 |y − x2|−2a2 = (−µ)−1r(a1)r(a2)r (d− a1 − a2) |x1 − x2|d−2a1−2a2

= πd/2
Γ
(
d
2 − a1

)
Γ
(
d
2 − a2

)
Γ
(
a1 + a2 − d

2

)
Γ (a1) Γ (a2) Γ (d− a1 − a2) . (C.9)

Choosing the value µ = −π−d/2 we get the reflection coefficient:

r(ai) =
Γ
(
d
2 − ai

)
Γ(ai)

≡ 1
γ d

2
(ai)

= γ d
2
(d/2− ai). (C.10)

Finally, the full conformal integral identity is:∫
dynD

d
n(y)

n∏
i=1

n+m+1∏
k=1

|yi − xk|−2ak =
n+m+1∏
i=1

1
γ d

2
(ai)

1
γ d

2

(
d(n+ 1)/2−

∑n+m+1
i=1 ai

)
×
n+m+1∏
k<l

|xk − xl|d−2ak−2al
∫
dymD

d
m(y)

m∏
i=1

n+m+1∏
k=1

|yi − xk|−d+2ak , (C.11)

where for simplicity we’ve defined the measure dxn ≡ dndx/
(
πnd/2n!

)
. To return to the

general residue integral (3.33), which includes the factor D−2db2
n (y), we will look at the

identity (C.11) with n→ n− 1,m = 0 and ai = d(1 + b2)/2. We get:

D−2db2
n (y) = Dd

n(y)D−d−2db2
n (y)

= Dd
n(y)

γ d
2

(
−nd2b

2
)

γ d
2

(
−d

2b
2
)n ∫ dun−1D

d
n−1(u)

n−1∏
i=1

n∏
k=1
|yi − uk|−d(1+b2) .

(C.12)

The last identity we need is the result of (C.11) for m = 0, ai = d(1 + b2)/2 for i =
3, . . . , n− 1, which we rewrite as:∫

dynD
d
n(y)

n∏
k=1

n−1∏
i=1
|yi − uk|−d(1+b2) |yi − x1|−2a1 |yi − x2|−2a2 (C.13)

=
γ d

2

(
−d

2b
2
)n−1

D−d−2db2

n−1 (u) |x12|d−2a1−2a2

γ d
2
(a1)γ d

2
(a2)γ d

2

(
d− a1 − a2 − (n− 1)d2b2

) n−1∏
i=1
|ui − x1|−2a1−db2

|ui − x2|−2a1−db2
.
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Going back to the original integral for the 3-point function (3.33), with x3 →∞, we have:

In(a1, a2, a3) ≡
∫
dynD

−2db2
n (y)

n∏
i=1
|yi − x1|−2a1 |yi − x2|−2a2

=
γ d

2

(
−nd2b

2
)

γ d
2

(
−d

2b
2
)n ∫ dun−1D

d
n−1(u)dynDd

n(y)

×
n∏
k=1

n−1∏
i=1
|yi − uk|−d(1+b2) |yi − x1|−2a1 |yi − x2|−2a2

=
γ d

2

(
−nd2b

2
)
|x12|d−2a1−2a2

γ d
2

(
−d

2b
2
)
γ d

2
(a1)γ d

2
(a2)γ d

2

(
a3 + (n− 1)d2b2

)
×
∫
dun−1D

−2db2

n−1 (u)
n−1∏
i=1
|ui − x1|−2a1−db2

|ui − x2|−2a1−db2
(C.14)

=
γ d

2

(
−nd2b

2
)
|x12|d−2a1−2a2

γ d
2

(
−d

2b
2
)
γ d

2
(a1)γ d

2
(a2)γ d

2

(
a3 + (n− 1)d2b2

)In (a1 + d

2b
2, a2 + d

2b
2, a3

)
,

where we’ve applied (C.12) to get from the first equality to the second, and equation (C.13)
to get from the second to the third. We’ve also used the condition a3 = d − (n − 1)db2 −
a1 − a2. This equation translates to a recursion relation on the residues of the structure
constants:

Cn(α1,α2,α3)=
γ d

2

(
−nd2b

2
)

γ d
2

(
−d

2b
2
)
γ d

2
(dbα1)γ d

2
(dbα2)γ d

2

(
dbα3+(n−1)d2b2

)Cn−1

(
α1+ b

2 ,α2+ b

2 ,α3

)

=

 −πd/2µ
γ d

2

(
−d

2b
2
)
nn−1∏

k=0

γ d
2

(
(k−n)d2b

2
)

γ d
2

(
dbα1+k d2b2

)
γ d

2

(
dbα2+k d2b2

)
γ d

2

(
dbα3+k d2b2

) . (C.15)

Given the residues, we can now preform analytic continuation to find the general
expression for the structure constants. To do so, we use the special function Γw(x) ≡

Γ2(x|w,w−1)
Γ2(w/2+w−1/2|w,w−1) , where Γ2(x|w1, w2) is the Double Gamma function. The function
Γw(x) = Γw−1(x) then satisfies

Γw(x+ w)
Γw(x) =

√
2πw

wx− 1
2

Γ(wx) . (C.16)

We can now define the d-dimensional generalization of the Upsilon function Υb, namely

Υ(d)
b (x) ≡ 1

Γ√ d
2 b

(√
d
2x

)
Γ√ d

2 b

(√
d
2(Q− x)

) . (C.17)

Following (C.16), this function then satisfies the relation Υ(d)
b (x) = Υ(d)

b (Q − x) and the
functional relation

Υ(d)
b (x+ b)
Υ(d)
b (x)

=

√d

2b

d/2−dbx γ d
2

(
d

2bx
)
. (C.18)
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We can then write the following products,

n−1∏
k=0

1
γ d

2

(
dbα+ k d2b

2
) =

√d

2b

 d
2nb(Q−4α−nb)

Υ(d)
b (2α)

Υ(d)
b (2α+ nb)

. (C.19)

Using the recursion relation, we can also compute the residues of Υ(d)
b (x)

Res
x=−nb

Υ(d)
b (b)

Υ(d)
b (x)

=

(√
d
2b

)d/2−1

Γ(d/2)

√d

2b

 d
2nb(Q+nb)

n−1∏
k=0

γ d
2

(
(k − n)d2b

2
)
. (C.20)

Finally, preforming the analytic continuation by replacing n with the continuous variable
s = Q−

∑
i
αi

b we get the structure constants (3.35).
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