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1 Introduction

Studies of rare exclusive B-meson decays are an essential tool to test the flavor sector of
the Standard Model. In order to match the accuracy of the experiments, there is a growing
need for precise theoretical predictions of the relevant decay rates. The QCD factorization
approach allows one to perform model-independent calculations of exclusive (quasi) two-
body decay amplitudes of B mesons in the heavy-quark limit [1–4]. The non-perturbative
input required for such calculations are meson decay constants, B-meson transition form
factors, and light-cone distribution amplitudes (LCDAs) of the B meson and the light
final-state mesons in the decay process. While decay constants and transition form factors
can, at least in principle, be extracted using experimental data, the LCDAs describe the
inner structure of the mesons involved and can at best be constrained using experimental
information. Theoretical information on LCDAs can be obtained using (light-cone) QCD
sum rules [5–7]. Alternatively, significant progress has recently been made based on lattice
QCD and the formalism of parton pseudo-distribution to study LCDAs [8, 9]. While
LCDAs are genuinely non-perturbative quantities, their scale dependence is calculable in
perturbation theory, just like in the case of parton distribution functions.

The radiative leptonic decay B− → γ `− ν̄ is of particular interest. On the one hand,
this process is a background to the semileptonic decay B− → `− ν̄, which can be used to
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determine the CKM matrix element |Vub| [10]. A precise control of the background is a
prerequisite to a reliable extraction of |Vub|. On the other hand, because of its simplicity
and the fact that no hadron is contained in the final state, in the limit of large photon
energy the decay B− → γ `− ν̄ can be used to extract valuable information about moments
of the leading-order LCDA φB+(ω, µ) of the B meson [11–13]. When the energy of the
photon is large, close to its kinematic endpoint near mB/2, the highly energetic photon
probes the light-cone structure of the B meson. At leading order (LO) in ΛQCD/mb, the
corresponding QCD factorization theorem reads

M(B− → γ `− ν̄) ∝ mB fBH(mb, Eγ , µ)
∫ ∞

0

dω

ω
J(−2Eγω, µ)φB+(ω, µ) +O

(ΛQCD
mb

)
,

(1.1)
where Eγ . mB/2 denotes the photon energy as measured in the rest frame of the B meson.
The hard function H and the radiative jet function J are calculable in perturbation theory.
In particular, the jet function depends only logarithmically on the convolution variable ω.
This introduces a sensitivity of the decay process to the logarithmic moments of the B-
meson LCDA, defined in relation (1.5) below. The factorization formula is illustrated in
figure 1. The LCDA appears due to the interactions of the high-energy (collinear) photon
with the soft spectator quark inside the B meson.

In contrast to the LCDAs of light mesons, not much is known on general grounds
about the properties of the B-meson LCDA. In particular, the function φB+(ω, µ) does not
approach a simple asymptotic form in the formal limit µ→∞. It has been shown, however,
that for sufficiently large values of µ the LCDA scales like ω for ω → 0 and falls off slower
than 1/ω for ω →∞ [14]. Several models for φB+(ω, µ) have been proposed in the literature,
which are either based on the above-mentioned QCD sum-rule estimates [5–7] or invoke ad
hoc modeling [15–18]. Most of these models rest on some unjustified assumptions, which
imply important biases and lead to uncontrolled systematic uncertainties:

1. The LCDA is often assumed to be positive definite, even though it is an amplitude
that does not admit a probabilistic interpretation. In fact, it has been argued that
φB+(ω, µ) must change sign for some value of ω � ΛQCD [7, 15].

2. Many models suppose that at a low renormalization scale µs the LCDA exhibits an
exponential fall-off for large ω � ΛQCD, even though this is in conflict with RG
evolution. At best, this assumption could be true at one particular value of µs, but
RG evolution to a scale µ > µs inevitably leads to a fall-off slower than 1/ω [14].

3. It is sometimes assumed that the integral over φB+(ω, µs) is normalized to unity, even
though this integral is, in fact, known to be divergent [5].

In [28] and the present work, we argue that the information that can be probed in hard ex-
clusive processes such as B− → γ `− ν̄ is entirely and most directly described by the Laplace
transform of the LCDA evaluated near the origin. Describing this function by means of a
simple Taylor series, we thus obtain a model-independent parameterization of the hadronic
effects accessible in such processes, thereby avoiding the hidden biases introduced when a
specific model for the momentum-space (or dual-space) LCDA is invoked.
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Figure 1. Factorization of the B− → γ `− ν̄ decay amplitude in the region where Eγ . mB/2. The
crossed dot represents the hard function H, while the hatched green ellipse denotes the radiative
jet function J with an external photon. The B-meson LCDA is represented by the violet ellipse.
The double line denotes a soft heavy-quark field in HQET.

In position space, the LCDA is defined as [5]

〈0| q̄(z)Sn(z, 0) /nΓhv(0)|B̄(v)〉 = −i F (µ)
2 φ̃B+(τ, µ) Tr

(
/nΓ 1 + /v

2 γ5

)
, (1.2)

where v denotes the 4-velocity of the B meson, hv is the heavy-quark spinor field in heavy-
quark effective theory (HQET) [19, 20], n is a light-like reference vector in the direction
of the photon (with v · n = 1), Γ is a generic Dirac matrix, and τ = v · z − i0. The
quantity Sn(z, 0) denotes a Wilson line connecting the points 0 and z on a straight light-
like segment. Finally, F (µ) is the B-meson decay constant in HQET, which is related to
the decay constant fB in full QCD via [21]

√
mB fB = KF (mb, µ)F (µ) +O

(ΛQCD
mb

)
, (1.3)

with a matching coefficient KF that is known at two-loop order [22, 23]. The B-meson
LCDA in momentum space, which enters in the factorization formula (1.1), is obtained via
Fourier transformation, such that [5, 14]

φB+(ω, µ) = 1
2π

∫
dτ eiωτ φ̃B+(τ, µ) . (1.4)

The one-loop renormalization-group (RG) equation for the leading-order B-meson
LCDA and its analytic solution in momentum-space was derived in [14]. The two-loop
contribution to the evolution kernel was obtained much later, first using conformal symme-
try in the so-called “dual” space [24], in which the one-loop kernel is diagonalized using a
suitable integral transformation [16, 25], and later in momentum space [26]. In the present
work we will employ techniques developed in the context of Higgs physics [26, 27] to con-
struct an analytic solution of the two-loop RG equation in momentum space. In a recent
letter, two of us have shown that both the evolution equation and its solution take on
a much simpler form in Laplace space [28]. We briefly recapitulate the main features of
this solution and then use it to obtain the B-meson LCDA in the “diagonal” space [27],
which generalizes the concept of the dual space to higher orders of perturbation theory.
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In the diagonal space the evolution is local in the momentum variable ω to all orders of
perturbation theory, while in the dual space it is local only at one-loop order.

The solutions of the RG evolution equation for the LCDA play an important role in
the numerical evaluation of the factorization formula (1.1). The reason is that there is
no common choice of the factorization scale µ, for which the three functions H, J and
φB+ are free of large logarithmic corrections. These large logarithms can be resummed to
all orders in perturbation theory by solving the evolution equations for the hard and jet
functions and for the LCDA. It has been emphasized in [28] that a particularly elegant
way of performing this resummation is obtained in Laplace space, where it is possible to
construct a resummed formula that is explicitly independent of the choice of µ. In the
last part of this paper, we give a detailed discussion of this solution, in which all relevant
technical details are presented. At fixed order in perturbation theory, the B− → γ `− ν̄

decay amplitude in the heavy-quark limit can be parameterized in terms of the first inverse
moment λ−1

B of the LCDA and related logarithmic moments σBn , which are defined as [13]
1

λB(µ) =
∫ ∞

0

dω

ω
φB+(ω, µ) ,

σBn (µ) = λB(µ)
∫ ∞

0

dω

ω
lnn
(
ω̄

ω

)
φB+(ω, µ) ; n ≥ 1 .

(1.5)

Here ω̄ is an auxiliary reference scale, which can be chosen at will. A convenient choice is
to adjust this parameter in such a way that, at the scale where the LCDA is given, its first
moment σB1 vanishes.1

The B− → γ `− ν̄ decay amplitude is particularly sensitive to λB [11–13], and an im-
portant goal is to derive information on this parameter (in correlation with some of the log-
arithmic moments) from future data obtained with the Belle II experiment. An important
outcome of this paper is the derivation of a coupled set of RG evolution equations for the
hadronic parameters λB and σBn . The exact solution to these equations is derived in terms
of the Laplace-space LCDA. We also argue that for the relevant region in Laplace space
(close to the origin in the Laplace variable η), a model-independent parameterization of this
function can be obtained in terms of the parameters λB and σBn defined at a low scale µs.

Our analysis in this work is limited to the leading-power contributions to the B− →
γ `− ν̄ decay amplitude. There exist several sources of power-suppressed contributions,
which have been studied in [18, 29, 30]. For phenomenological purposes, such power cor-
rections must be included before any reliable information on λB and the moments σBn can
be derived.

2 Two-loop RG evolution equation

The general form of the RG evolution equation capturing the scale dependence of the
B-meson LCDA is [14]

d

d lnµ φ
B
+(ω, µ) = −

∫ ∞
0
dω′ γ+(ω, ω′;µ)φB+(ω′, µ) , (2.1)

1Alternatively, one could fix ω̄ to some reference scale, such as ω̄ = µs [13] or ω̄ = e−γEλB(µs) [18], and
keep σ1(µs) as an independent parameter.
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Figure 2. Left: the two model functions for the LCDA φB+(ω, µs) at the low scale µs = 1GeV,
obtained with b = 0, ω̄ = 183MeV (red curve) and b = −2.07, ω̄ = 141MeV (blue curve). In both
cases we set ω0 = 482MeV. The parameters are chosen such that λB(µs) = 350MeV and 200MeV,
respectively, whereas σB1 (µs) = 0 in both cases. Right: the two model LCDAs as functions of the
variable ln(ω/ω̄). The area under the curves corresponds to the parameter 1/λB(µs), while in each
case the parameter ω̄ is chosen such that the functions are centered at 0.

with the anomalous dimension

γ+(ω, ω′;µ) =
[
Γcusp(αs) ln µ

ω
+ γ(αs)

]
δ(ω−ω′)−Γcusp(αs)ω Γ(ω, ω′)−γ̂(ω, ω′;αs) . (2.2)

The first term is local in the variables ω and ω′. It contains the so-called “cusp logarithm”,
whose coefficient is given by the light-like cusp anomalous dimension in the fundamental
representation of SU(Nc), given by Γcusp(αs) = CF αs

π + O(α2
s), and known to four-loop

order in perturbation theory [31]. The second term in (2.2), whose coefficient is also given
by the cusp anomalous dimension, is proportional to the symmetric Lange-Neubert kernel

Γ(ω, ω′) =
[
θ(ω − ω′)
ω(ω − ω′) + θ(ω′ − ω)

ω′(ω′ − ω)

]
+
. (2.3)

It is defined such that, if integrated with a function f(ω′), one needs to substitute f(ω′)→
f(ω′) − f(ω) under the integral. The third term, which is also non-local in ω and ω′, is
absent at one-loop order. Its two-loop expression was derived in [24, 26] and reads

γ̂(ω, ω′;αs) = CF

(
αs
2π

)2 ω θ(ω′ − ω)
ω′ (ω′ − ω) h

(
ω

ω′

)
+O(α3

s) , (2.4)

with
h(x) = ln x

[
β0 + 2CF

(
ln x− 1 + x

x
ln(1− x)− 3

2

)]
. (2.5)

In order to illustrate our results in the following sections, we will employ a simple
two-parameter model for the LCDA φB+(ω, µs) at the low scale µs = 1GeV, which satisfies
(most of) the known properties of this function, such as its radiative tail for large values
of ω [7, 15]. The model function reads [28]

φB+(ω, µs) =
(

1− b+ bω

2ω0

)
ω

ω2
0
e−ω/ω0 + 4αs(µs)

3π
ω

ω2 + ω2
0

(1
2 − ln ω

µs

)
. (2.6)
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b ω̄ λB(µs) σB1 (µs) σB2 (µs) σB3 (µs) σB4 (µs)
0 183MeV 350MeV 0 1.17 6.41 −6.88

−2.07 141MeV 200MeV 0 1.04 5.32 −3.90

Table 1. Parameters (left) and moments (right) of the model functions at the scale µs = 1GeV.

It contains two free parameters, b and ω0, which can be varied to obtain different shapes
of the LCDA. The asymptotic behavior is φB+(ω, µs) ∝ ω for ω → 0 and φB+(ω, µs) ∝ 1/ω
for ω → ∞. As mentioned earlier, we find it convenient to adjust the auxiliary scale
parameter ω̄ in (1.5) such that σB1 (µs) = 0. In essence, we thus trade the hadronic
parameter σB1 (µs) for a new parameter ω̄ ∼ ΛQCD. For the model function, setting the
first moment to zero yields

ω̄ = ω0 exp

− 6γE − 3b(1 + γE) + π2αs(µs)
6− 3b+ 2αs(µs)

(
1− 2 ln ω0

µs

)
 . (2.7)

According to (1.5) this defines ω̄ such that the average value of the distribution amplitude
φB+(ω, µs) in the variable ln(ω/ω̄) vanishes. With this choice it is likely that the higher mo-
ments do not take unnaturally large values either. We emphasize that the model function
is used for illustrative purposes only and no claim is made that it provides a valid repre-
sentation of the true LCDA. For the purposes of illustration, we keep ω0 = 482MeV fixed
and consider the two choices b = 0 and b = −2.07 at the reference scale µs = 1GeV, for
which the first integral in (1.5) yields λB(µs) ' 350MeV and 200MeV, respectively. While
a value around 350MeV is often considered as a default choice for λB, in phenomenological
applications of the QCD factorization approach to non-leptonic B decays one typically
prefers a lower value around 200MeV (see e.g. scenarios S2 and S4 in [4]). The two model
functions are depicted in figure 2 vs. ω (left) and ln(ω/ω̄) (right). The numerical values
of the first few moments of these functions are given in table 1. Note that, due to the
negative tail of the LCDA at large values of ω, the fourth moment σB4 (µs) is negative for
the two models, which would be impossible if the LCDA was a positive definite quantity.

For completeness, we note that it is straightforward to convert the logarithmic moments
as defined in this paper to the moment parameters defined in other schemes. From (1.5),
it follows that in a scheme where ω̄ is replaced by another parameter µ0 one obtains

σB1 (µ)
∣∣
µ0

= ln µ0
ω̄
,

σB2 (µ)
∣∣
µ0

= σB2 (µ) + ln2 µ0
ω̄
,

σB3 (µ)
∣∣
µ0

= σB3 (µ) + 3σB2 (µ) ln µ0
ω̄

+ ln3 µ0
ω̄
,

σB4 (µ)
∣∣
µ0

= σB4 (µ) + 4σB3 (µ) ln µ0
ω̄

+ 6σB2 (µ) ln2 µ0
ω̄

+ ln4 µ0
ω̄
,

(2.8)

etc. These results follow from the general relation

σBn (µ) = λB(µ)
∫ ∞

0

dω

ω

(
ln µ0

ω
−
〈

ln µ0
ω

〉)n
φB+(ω, µ) , (2.9)

– 6 –



J
H
E
P
0
7
(
2
0
2
2
)
1
4
8

b µ0 λB(µs) σB1 (µs) σB2 (µs) σB3 (µs) σB4 (µs)
0 µs 350MeV 1.70 4.05 17.3 65.2

−2.07 µs 200MeV 1.96 4.88 19.0 76.5
0 e−γE λB 350MeV 0.07 1.18 6.66 −5.02

−2.07 e−γE λB 200MeV −0.23 1.09 4.60 −8.42

Table 2. Model parameters (left) and logarithmic moments (right) of the model functions defined
in two different schemes, where the parameter ω̄ in (1.5) is replaced by µ0.

where 〈
ln µ0

ω

〉
≡ λB(µ)

∫ ∞
0

dω

ω
ln µ0

ω
φB+(ω, µ) = ln µ0

ω̄
. (2.10)

This shows that our moments are defined with respect to the mean of the distribution, as
is common practice. In table 2 we quote the moments of our two model functions obtained
in the schemes where µ0 = µs [13] and µ0 = e−γEλB(µs) [18]. In the first scheme, the
moments take values much larger than in our scheme, indicating that our choice is indeed
a better one. In the second scheme, it happens that the value of µ0 lies numerically rather
close to our choice of ω̄, so that the results are quite similar.

2.1 Solution in Laplace space

Solving the integro-differential equation (2.1) is not an easy task. An elegant all-order
solution can be obtained in Laplace space. We define

φ̃B+(η, µ) =
∫ ∞

0

dω

ω

(
ω

ω̄

)−η
φB+(ω, µ) , (2.11)

where ω̄ serves as a fixed reference scale. It has been shown in [28] (see also [27] for an
analogous equation for the soft-quark soft function in Higgs physics) that the RG evolution
equation satisfied by the Laplace-space LCDA reads(

d

d lnµ+Γcusp(αs)
∂

∂η

)
φ̃B+(η,µ) =

[
Γcusp(αs)

(
ln ω̄
µ

+F(η)
)
−γ(αs)+G(η,αs)

]
φ̃B+(η,µ) ,

(2.12)
where αs ≡ αs(µ), and we have defined

F(η) =
∫ ∞

0
dω′

(
ω′

ω

)η
ω Γ(ω, ω′) = −

[
H(η) +H(−η)

]
,

G(η, αs) =
∫ ∞

0
dω′

(
ω′

ω

)η
γ̂(ω, ω′;αs)

= CF

(
αs
2π

)2 d

dη

[
2CFH(−η)H(−η − 1)− (3CF − β0)H(−η)

]
+O(α3

s) ,

(2.13)

where H(η) = ψ(1 + η) + γE is the harmonic-number function. The general solution to
the evolution equation (2.12) can be obtained by noting that any function of η+aΓ(µs, µ),

– 7 –
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where

aΓ(µs, µ) = −
αs(µ)∫

αs(µs)

dα
Γcusp(α)
β(α) , (2.14)

provides a solution to the homogeneous equation, where the right-hand side is set to zero.
One then finds that the general solution to the inhomogeneous equation is [28]

φ̃B+(η, µ) = φ̃B+
(
η + aΓ(µs, µ), µs

)
N(ω̄;µs, µ)

Γ
(
1 + η + aΓ(µs, µ)

)
Γ(1− η)

Γ
(
1− η − aΓ(µs, µ)

)
Γ(1 + η)

e2γE aΓ(µs,µ)

× exp

 αs(µ)∫
αs(µs)

dα

β(α) G
(
η + aΓ(µα, µ), α

) , (2.15)

with µα defined such that αs(µα) = α, and

N(ω̄;µs, µ) =
(
ω̄

µs

)−aΓ(µs,µ)
exp

[
SΓ(µs, µ) + aγ(µs, µ)

]
. (2.16)

The function aγ(µs, µ) is defined in analogy with (2.14) but with Γcusp replaced by γ, and
the Sudakov exponent is given by

SΓ(µs, µ) = −
αs(µ)∫

αs(µs)

dα
Γcusp(α)
β(α)

α∫
αs(µs)

dα′

β(α′) . (2.17)

Note that under a scale transformation the argument of the Laplace-space LCDA is shifted
from η to η + aΓ(µs, µ).

The positions of the nearest singularities at positive and negative values of η determine
the asymptotic behavior of the momentum-space LCDA for small and large values of ω [14].
At the low scale µs we denote these values by η+ and −η−, respectively. The corresponding
behavior of the momentum-space LCDA is φB+(ω, µs) ∝ ωη+ for ω → 0 and φB+(ω, µs) ∝
ω−η− for ω → ∞. When the LCDA is evolved to a higher scale µ > µs, the positions
of these singularities shift to η+ + |aΓ(µs, µ)| and −η− + |aΓ(µs, µ)|, taking into account
that aΓ(µs, µ) < 0 for µ > µs. Additional singularities are generated by the Γ-functions
in the numerator of (2.15) and are located at η = n and η = −n + |aΓ(µs, µ)| for all
integers n ∈ N. For sufficiently large values of µ, the nearest positive singularity is the one
at η = 1, corresponding to a linear behavior φB+(ω, µ) ∼ ω near the origin. The nearest
negative singularity is located at η = −min(1, η−) + |aΓ(µs, µ)|, implying that φB+(ω, µ)
falls off slower than 1/ω at large ω.

At leading-order in RG-improved perturbation theory, the term shown in the second
line of (2.15) can be replaced by 1. The function G starts at two-loop order, and using its
definition shown in the second line of (2.13) one obtains [27, 28]

αs(µ)∫
αs(µs)

dα

β(α) G
(
η + aΓ(µα, µ), α

)
= CF αs(µ)

2π

∫ 1

0

dx

1− x
h(x)
β0

x−η
r

1+ 2CF
β0

lnx − 1
1 + 2CF

β0
ln x

+O(α2
s) ,

(2.18)
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Figure 3. Scale evolution of the model functions for the LCDA in Laplace space with ω0 = 482MeV
and b = 0 (left), b = −2.07 (right). The solid lines show the results at µ = µs = 1GeV, the dashed
lines correspond to µ = 1.5GeV, and the dotted lines refer to the scale of the b-quark pole mass,
µ = mb = 4.8GeV.

with r = αs(µs)/αs(µ). The correction term enters first at next-to-leading order (NLO) in
RG-improved perturbation theory. It generates additional singularities located at η = n

and η = n + |aΓ(µs, µ)| with n ∈ N. Note that the nearest singularity for positive η (for
sufficiently large values of µ) remains localized at η = 1.

To illustrate the impact of RG evolution effects in Laplace space, we now consider
the model function for the LCDA defined in (2.6). At the matching scale µs, the Laplace
transform of this function reads

φ̃B+(η, µs) = 1
ω0

(
ω0
ω̄

)−η [(
1− b(1 + η)

2

)
Γ(1− η)

+ αs(µs)
3

(
cos πη2

)−1 (
1− 2 ln ω0

µs
+ π tan πη2

)]
.

(2.19)

The singularities closest to the origin are located at η = η+ and η = −η− with η± = 1.
Using (2.15), the RG-evolved model function at a scale µ > µs can be obtained in a
straightforward way. In figure 3, we show the scale evolution of the two model functions for
the Laplace-space LCDA at NLO in RG-improved perturbation theory. The corresponding
expressions for the RG functions SΓ, aΓ, and aγ are collected in appendix A, while the
expression for the integral over the function G has been given in (2.18). For simplicity, we
work with nf = 4 light quark flavors all the way down to the low scale µ = 1GeV, rather
than matching onto a 3-flavor theory at the scale µc = mc(mc) ≈ 1.275GeV. We have
checked that the effects of such a matching are numerically very small. The lines in the left
(right) panel refer to the case where b = 0 (b = −2.07). In each plot, the solid, dashed and
dotted lines refer to µ = µs = 1GeV, µ = 1.5GeV, and µ = mb = 4.8GeV, respectively.
The lines in lighter color show for comparison the results obtained at LO in RG-improved
perturbation theory. At the low scale µs the model functions have a vanishing derivative
at η = 0 and turn out to be rather flat for values |η| < 0.3, while they exhibit pole-type
singularities at η = ±1. As the functions are evolved to higher scales they develop a
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non-zero slope at the origin, and the singularity at η = −1 is shifted toward larger values.
Away from the singularities, the main effect of RG evolution is to shift the various curves
downwards, corresponding to an increase in the value of λB(µ) for larger µ. The impact of
higher-order contributions to the evolution is most significant close to the singularities.

2.2 Scale evolution of λB and the moments σBn

The behavior of the Laplace-space LCDA φ̃B+(η, µ) near the origin is governed by the
moments defined in (1.5). One finds

φ̃B+(0, µ) = 1
λB(µ) , φ̃

B (n)
+ (0, µ) = σBn (µ)

λB(µ) , (2.20)

where f (n)(0, µ) denotes the nth derivative of the function f(η, µ) evaluated at η = 0. It
follows that in the vicinity of η = 0, i.e. far away from the pole singularities, we can expand
φ̃B+(η, µ) in the Taylor series

φ̃B+(η, µ) |η|�1= 1
λB(µ)

[
1 +

∑
n≥1

ηn

n! σ
B
n (µ)

]
. (2.21)

If at the scale µs the auxiliary parameter ω̄ is chosen such that σB1 (µs) = 0, then the
function φ̃B+(η, µs) has a parabolic shape in the vicinity of the origin, with a curvature
determined by σB2 (µs).

One can expand the evolution equation (2.12) about η = 0 to derive an infinite, coupled
system of RG evolution equations for the parameter λB and the logarithmic moments
σBn [28]. The first few relations are

d lnλB(µ)
d lnµ = Γcusp(αs)

[
ln µ
ω̄

+ σB1 (µ)
]

+ γ(αs)− G(0, αs) ,

dσB1 (µ)
d lnµ = Γcusp(αs)

[(
σB1 (µ)

)2 − σB2 (µ)
]

+ G(1)(0, αs) , (2.22)

dσB2 (µ)
d lnµ = Γcusp(αs)

[
σB1 (µ)σB2 (µ)− σB3 (µ) + 4ζ3

]
+ 2σB1 (µ)G(1)(0, αs) + G(2)(0, αs) .

Note that the RG equation for the moment σBn (µ) involves the next higher moment σBn+1(µ),
and it is therefore impossible to express the solution to these equations in terms of a finite
set of moments. However, given the exact solution (2.15), it is nevertheless possible to write
down the exact solution to the infinite set of couples equations in terms of the Laplace-space
LCDA. We find

1
λB(µ) = N(ω̄;µs, µ) e2γEaΓ

Γ(1 + aΓ)
Γ(1− aΓ) exp

 αs(µ)∫
αs(µs)

dα

β(α) G
(
aΓ(µα, µ), α

) φ̃B+(aΓ, µs) ,

(2.23)
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and

σB1 (µ)=
φ̃
B (1)
+ (aΓ,µs)
φ̃B+(aΓ,µs)

−F(aΓ)+
αs(µ)∫

αs(µs)

dα

β(α)G
(1)(aΓ(µα,µ),α

)
,

σB2 (µ)=
φ̃
B (2)
+ (aΓ,µs)
φ̃B+(aΓ,µs)

−2
φ̃
B (1)
+ (aΓ,µs)
φ̃B+(aΓ,µs)

F(aΓ)−
αs(µ)∫

αs(µs)

dα

β(α)G
(1)(aΓ(µα,µ),α

) (2.24)

+

F(aΓ)−
αs(µ)∫

αs(µs)

dα

β(α)G
(1)(aΓ(µα,µ),α

)
2

−F(1)(aΓ)+
αs(µ)∫

αs(µs)

dα

β(α)G
(2)(aΓ(µα,µ),α

)
,

where aΓ ≡ aΓ(µs, µ) for brevity. Analogous relations can be derived for the higher mo-
ments. We find it useful to define new moments by

λBn (µ) = L
(n)
B (0, µ) , with LB(η, µ) = ln φ̃B+(η, µ) , (2.25)

such that close to the origin

φB+(η, µ) |η|�1= 1
λB(µ) exp

[ ∑
n≥1

ηn

n! λ
B
n (µ)

]
. (2.26)

We then obtain the simple all-order relation (for integer n ≥ 1)

λBn (µ) = L
(n)
B (aΓ, µs) + F(n−1)(0)− F(n−1)(aΓ) +

αs(µ)∫
αs(µs)

dα

β(α) G
(n)(aΓ(µα, µ), α

)
, (2.27)

where F(n)(0) = 2n! ζn+1 for even n, and 0 for odd n. In terms of the parameters σBn (µ),
we find that

σB1 (µ) = λB1 (µ) ,

σB2 (µ) = λB2 (µ) +
[
λB1 (µ)

]2
,

σB3 (µ) = λB3 (µ) + 3λB2 (µ)λB1 (µ) +
[
λB1 (µ)

]3
,

σB4 (µ) = λB4 (µ) + 4λB3 (µ)λB1 (µ) + 3
[
λB2 (µ)

]2
+ 6λB2 (µ)

[
λB1 (µ)

]2
+
[
λB1 (µ)

]4
,

(2.28)

and so on.
In figures 4 and 5, we show the scale evolution of λB and of the first four moments σBn

for the two model functions considered in the previous section. We observe that the scale
dependence of these quantities is rather significant. The values of λB increase for larger µ,
because the LCDA broadens as the scale is increased. The relative increase is rather similar
for the two model functions (right panel). The difference between the two colored curves
offers a hint at the model dependence of the results. The first moment σB1 , which vanishes
at the low scale µs = 1GeV by choice of ω̄, becomes negative as µ is raised to larger values.
Comparing the two curves in each panel, we observe that the model dependence increases
for the higher moments (n ≥ 2). The fact that the higher moments (n = 3, 4) are larger in
absolute value as the scale is increased is in line with our argument that setting σB1 (µ) = 0
at a given scale tends to ensure that also the higher moments take reasonably small values.
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Figure 4. Scale evolution of the hadronic parameter λB(µ) for the two model functions with
b = 0 (red curves) and b = −2.07 (blue curves). The small kink at µ = mc(mc) results from the
discontinuity of αs(µ) at the threshold at which the charm quark is integrated out.
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Figure 5. Scale evolution of the first four moments σBn (µ) at NLO in RG-improved perturbation
theory, for the two model functions with b = 0 (red curves) and b = −2.07 (blue curves).
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2.3 Solution in momentum space

Given the exact solution (2.15) of the RG equation in Laplace space, we can obtain the
exact solution in momentum space by performing the inverse Laplace transformation

φB+(ω, µ) = 1
2πi

c+i∞∫
c−i∞

dη

(
ω

ω̄

)η
φ̃B+(η, µ) . (2.29)

After a straightforward calculation, we obtain

φB+(ω, µ) = N(ω;µs, µ) e2γE aΓ(µs,µ)
∫ ∞

0

dω′

ω′
φB+(ω′, µs)

1
2πi

c+i∞∫
c−i∞

dη

(
ω′

ω

)−η
(2.30)

×
Γ(1 + η) Γ

(
1− η + aΓ(µs, µ)

)
Γ(1− η) Γ

(
1 + η − aΓ(µs, µ)

) exp

 αs(µ)∫
αs(µs)

dα

β(α) G
(
η + aΓ(µα, µs), α

) .
Note that the first argument in the quantity N in (2.16) has changed from ω̄ to ω. The
integration contour in the complex η-plane must be chosen to the right of the poles of
Γ(1 + η) and to the left of the poles of Γ

(
1− η + aΓ(µs, µ)

)
, which implies that

− 1 < c < 1 + aΓ(µs, µ) . (2.31)

For µ > µs we have aΓ(µs, µ) < 0, but for all realistic values of µ it is safe to assume that
aΓ(µs, µ) > −1.

While the above solution is exact, the integral over η can in general not be evaluated
in closed form. At LO in RG-improved perturbation theory, however, the function G in the
exponent of the last term can be set to zero, and one obtains

1
2πi

c+i∞∫
c−i∞

dη

(
ω′

ω

)−η Γ(1 + η) Γ(1− η + aΓ)
Γ(1− η) Γ(1 + η − aΓ) = G 1,1

2,2

(
−aΓ, 1−aΓ

1, 0

∣∣∣∣ ω′ω
)
, (2.32)

where G denotes the Meijer G-function [32]. It can be reduced to hypergeometric functions
by using the theorem of residues, yielding

G 1,1
2,2

(
−aΓ, 1−aΓ

1, 0

∣∣∣∣ z) =


Γ(2+aΓ)
Γ(−aΓ) z 2F1 (1 + aΓ, 2 + aΓ; 2; z) ; z ≤ 1 ,

Γ(2+aΓ)
Γ(−aΓ) z

−1−aΓ 2F1
(
1 + aΓ, 2 + aΓ; 2; 1

z

)
; z > 1 .

(2.33)

This function possesses a singularity when z approaches 1. In the vicinity of the singular
point one finds

lim
z→1

G 1,1
2,2

(
−aΓ, 1−aΓ

1, 0

∣∣∣∣ z) = Γ(1 + 2aΓ)
Γ(1 + aΓ) Γ(−aΓ)

1
|1− z|1+2aΓ

+O
(
(1− z)0) . (2.34)

Due to the fact that aΓ ≡ aΓ(µs, µ) < 0 for µ > µs this singularity is integrable. Imple-
menting the asymptotic behavior shown above is particularly useful when integrating the
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Figure 6. Scale evolution of the model functions for the LCDA in momentum space with ω0 =
482MeV and b = 0 (left), b = −2.07 (right). The solid lines show the results at µ = µs = 1GeV,
the dashed lines correspond to µ = 1.5GeV, and the dotted lines refer to the scale of the b-quark
pole mass, µ = mb = 4.8GeV.

Meijer G-function numerically. Combining (2.30) and (2.33), we recover the LO solution
to the RG equation for the momentum-space LCDA found a long time ago in [15], i.e.

φB+(ω, µ)
∣∣
LO = exp

[
SΓ(µs, µ) + aγ(µs, µ)

]
e2γE aΓ

Γ(2 + aΓ)
Γ(−aΓ)

×
∫ ∞

0

dω′

ω′
φB+(ω′, µs)

(
ω>
µs

)−aΓ ω<
ω>

2F1

(
1 + aΓ, 2 + aΓ; 2; ω<

ω>

)
,

(2.35)

where aΓ ≡ aΓ(µs, µ), and we have defined ω< = min(ω, ω′) and ω> = max(ω, ω′). In order
to find the solution valid at NLO in RG-improved perturbation theory, we expand the expo-
nential of the integral over the function G as shown in (2.36), noting however the difference
in the first argument of the G function. After a straightforward calculation, we obtain

φB+(ω, µ) = N(ω;µs, µ) e2γE aΓ

∫ ∞
0

dω′

ω′
φB+(ω′, µs)

[
G 1,1

2,2

(
−aΓ, 1−aΓ

1, 0

∣∣∣∣ ω′ω
)

(2.36)

+ CF αs(µs)
2π

∫ 1

0

dx

1− x
h(x)
β0

1− r−1− 2CF
β0

lnx

1 + 2CF
β0

ln x
G 1,1

2,2

(
−aΓ, 1−aΓ

1, 0

∣∣∣∣ xω′ω
)

+O(α2
s)
]
,

where as previously r = αs(µs)/αs(µ). This equation establishes the solution of the
momentum-space evolution equation at NLO in RG-improved perturbation theory. It is
one of the main new results of our paper.

In figure 6 we illustrate the effect of scale evolution in momentum space. The meaning
of the various curves is the same as in figure 3. As the scale µ is increased, the LCDA is
depleted in the peak region and flows toward larger ω values. The impact of higher-order
contributions to the evolution is most visible in the peak region, as indicated by the lines
in lighter color.
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2.4 Solution in diagonal space

The “dual” space was introduced in [16, 25] in order to find a method that renders the
one-loop RG equation for the LCDA local in the momentum variable ω. The LCDA in this
space, ϕBdual(ω, µ), is related to the Laplace-space LCDA by a suitably constructed integral
transformation. However, the transformation obtained in [16, 25] no longer localizes the
anomalous-dimension kernel in (2.2) when the two-loop contribution γ̂(ω, ω′;αs) is taken
into account. In order to render the RG evolution equation local at two-loop order and
beyond, the “diagonal” space was introduced in [27] for the case of the soft-quark soft
function, whose evolution equation shares many similarities with the RG equation of the
B-meson LCDA. Here we apply the same method to discuss the RG evolution of the LCDA
in the space where its anomalous dimension is diagonal in ω and ω′.

The starting point is the observation that the Laplace-space solution (2.15) can be
rearranged in the form

fdiag(η, µ; ρ) = N(ω̄;µs, µ) e2γE aΓ(µs,µ) fdiag
(
η + aΓ(µs, µ), µs; ρ

)
, (2.37)

where

fdiag(η, µ; ρ) = φ̃B+(η, µ) Γ(1 + η)
Γ
(
1− η)

exp

 αs(ρ)∫
αs(µ)

dα

β(α) G
(
η + aΓ(µα, µ), α

) . (2.38)

Here ρ is an auxiliary scale introduced to split up the integral over the function G into
two integrals. The B-meson LCDA in the diagonal space is defined via the inverse Laplace
transform of the function fdiag, i.e.

ϕBdiag(ω, µ; ρ) ≡ 1
2πi

c+i∞∫
c−i∞

dη fdiag(η, µ; ρ)
(
ω

ω̄

)η
, (2.39)

with a suitably chosen constant c. It follows from (2.37) that the scale evolution of this
function (for fixed choice of ρ) is multiplicative,

ϕBdiag(ω, µ; ρ) = N(ω, µs, µ) e2γE aΓ(µs,µ) ϕBdiag(ω, µs; ρ) , (2.40)

which is vastly simpler than the solution (2.30) in momentum space. In fact, relation (2.40)
is the solution to the local (in ω) evolution equation

d

d lnµ ϕ
B
diag(ω, µ; ρ) = −

[
Γcusp(αs) ln µ

ωe−2γE
+ γ(αs)

]
ϕBdiag(ω, µ; ρ) . (2.41)

In other words, the transformation (2.39) diagonalizes the non-local evolution kernel (2.2)
to all orders of perturbation theory.

The LCDAs in the diagonal space and in momentum space are related to each other
via the integral transformations [27]

ϕBdiag(ω, µ; ρ) =
∫ ∞

0

dx√
x
Fdiag(x, µ; ρ)φB+(xω, µ) ,

φB+(ω, µ) =
∫ ∞

0

dx√
x
F inv

diag(x, µ; ρ)ϕBdiag

(
ω

x
, µ; ρ

)
,

(2.42)
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with transfer functions given by

√
xFdiag(x,µ;ρ) = 1

2πi

c+i∞∫
c−i∞

dη
Γ(1+η)
Γ(1−η) x

−η exp
[ αs(ρ)∫
αs(µ)

dα

β(α) G
(
η+aΓ(µα,µ),α

)]
,

√
xF inv

diag(x,µ;ρ) = 1
2πi

c+i∞∫
c−i∞

dη
Γ(1−η)
Γ(1+η) x

η exp
[
−

αs(ρ)∫
αs(µ)

dα

β(α) G
(
η+aΓ(µα,µ),α

)]
,

(2.43)

which obey the orthonormality condition [27]∫ ∞
0
dxFdiag(ax, µ; ρ)F inv

diag(bx, µ; ρ) = δ(a− b) . (2.44)

For practical applications of these results, it is useful to expand the transfer functions
in powers of αs(µ). We obtain

Fdiag(x, µ; ρ) = F
[0]
diag(x) + αs(µ)

4π F
[1]
diag(x, rρ) +O(α2

s) , (2.45)

where rρ = αs(ρ)/αs(µ), and similarly for the function F inv
diag. The expansion coefficients

are obtained by expanding the exponential of the integral over G in powers of αs. This
yields

F
[0]
diag(x) = F

inv [0]
diag (x) = J1(2

√
x) ,

F
[1]
diag(x, rρ) = −2CF

β0

∫ 1

0

dy

1− y h(y) r
1+ 2CF

β0
ln y

ρ − 1
1 + 2CF

β0
ln y

√
y J1(2√xy) ,

F
inv [1]
diag (x, rρ) = 2CF

β0

∫ 1

0

dy

1− y h(y) r
1+ 2CF

β0
ln y

ρ − 1
1 + 2CF

β0
ln y

√
1
y
J1

(
2
√
x

y

)
,

(2.46)

where J1(x) is a Bessel function. The leading-order transfer function was first obtained
in [16].

Starting at two-loop order, the construction of the diagonal space requires the intro-
duction of the auxiliary scale ρ. Following [27], we find that

d

d ln ρ ϕ
B
diag(ω, µ; ρ) =

[
CF

(
αs(ρ)

2π

)2 ∫ 1

0
dx

h(x)
1− x x

aΓ(µ,ρ) +O(α3
s)
]
ϕBdiag

(
ω

x
, µ; ρ

)
.

(2.47)
The dependence on ρ cancels in the product of all functions in a QCD factorization theorem.
This is discussed in more detail in appendix B. A particularly convenient choice for our
purposes is to set ρ = µs, where µs is the scale at which the hadronic input for the LCDA
is provided. With this particular choice, one finds that

ϕBdiag(ω, µs;µs) =
∫ ∞

0

dx√
x
J1(2
√
x)φB+(xω, µs) ,

φB+(ω, µs) =
∫ ∞

0

dx√
x
J1(2
√
x)ϕBdiag

(
ω

x
, µs;µs

)
.

(2.48)
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Figure 7. Scale evolution of the model functions for the LCDA in the diagonal space with ω0 =
482MeV and b = 0 (left), b = −2.07 (right). The solid lines show the results at µ = µs = 1GeV,
the dashed lines correspond to µ = 1.5GeV, and the dotted lines refer to the scale of the b-quark
pole mass, µ = mb = 4.8GeV.

These relations allow for a simple mapping of the LCDA from momentum space to the
diagonal space. The price one pays is that the jet function in the factorization formula (B.5)
then depends in a complicated way on the two scales µj and ρ = µs. However, the jet
function is a perturbative object, and this dependence can be controlled using RG-improved
perturbation theory.

We now consider the model function (2.6) to illustrate the effects of scale evolution in
diagonal space. Ignoring the radiative tail of the model functions for simplicity (we have
not succeeded to obtain an analytic form of the integral transformation for this term), we
obtain the simple form

ϕBdiag(ω, µs;µs) =
( 1
ω
− b

2
ω0
ω2

)
e−ω0/ω +O

(
αs(µs)

)
. (2.49)

Note, however, that in our numerical results the radiative tail is always included. In figure 7
we illustrate the effect of scale evolution in the diagonal space. The meaning of the various
curves is the same as in figure 3. As the scale µ is increased, the LCDA is depleted in a
more uniform way than in momentum space.

3 Scale-invariant factorization formula

We now return to the problem of deriving an RG-improved result for the B− → γ `− ν̄

decay amplitude in (1.1), in which all large logarithmic corrections are resummed. As
shown in [28], our exact solution of the evolution equation for the LCDA in Laplace space,
combined with known solutions for the evolution equations of the hard and jet functions,
allows one to derive a master formula in which all logarithmically enhanced terms are
resummed, and which is explicitly (not only implicitly) independent of the factorization
scale µ. Here we provide the technical details of this calculation. The representation of the
factorization formula in the diagonal space is discussed in appendix B.
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3.1 Evolution equations

As written in (1.1), the convolution integral

I = H(mb, Eγ , µ)
∫ ∞

0

dω

ω
J(−2Eγω, µ)φB+(ω, µ) (3.1)

is independent of the factorization scale µ. This fact is reflected by the RG evolution
equations obeyed by the hard and jet functions and by the LCDA. The evolution of the
hard function is governed by the equation (here and below αs ≡ αs(µ)) [33, 34]

d

d lnµ H(mb, Eγ , µ) =
[
Γcusp(αs) ln 2Eγ

µ
+ γH(αs)

]
H(mb, Eγ , µ) . (3.2)

The cusp anomalous dimension Γcusp(αs) is known at four-loop order [31], while the anoma-
lous dimension γH(αs) is known to three loops. It can be written as [35]

γH(αs) = γq(αs) + γQ(αs)− γF (αs) , (3.3)

where the quantities on the right-hand side are the anomalous dimension for a light quark,
a heavy quark, and the hard matching coefficient KF (µ) in (1.3), which satisfies [36]

d

d lnµ KF (mb, µ) = γF (αs)KF (mb, µ) . (3.4)

The three-loop expressions for these quantities were obtained in [37, 38] for γq, [39] for γQ,
and [40] for γF . The general solution to the RG evolution equation for the hard function
can be written in the form

H(mb, Eγ , µ) = H(mb, Eγ , µh)
(2Eγ
µh

)−aΓ(µh,µ)
exp

[
SΓ(µh, µ)− aγH (µh, µ)

]
, (3.5)

where aγH is defined in analogy with aΓ in (2.14). Here µh ∼ mb denotes a hard matching
scale, at which the initial condition for the hard function is free of large logarithms and
hence can be calculated in fixed-order perturbation theory.

The RG equation for the jet function reads [26]

d

d lnµ J(p2, µ) = −
∫ ∞

0
dx γJ(p2, xp2;µ) J(xp2, µ) . (3.6)

The anomalous-dimension kernel is given by

γJ(p2, xp2;µ) =
[
Γcusp(αs) ln −p

2

µ2 − γ
′(αs)

]
δ(1− x) + Γcusp(αs) Γ(1, x) + γ̂(x, 1;αs)

x
,

(3.7)
with the same function γ̂ as in (2.2). Using these equations along with the RG equation
of the LCDA shown in (2.1), it is straightforward to show that the convolution integral I
is scale independent if, to all orders of perturbation theory,

γ′(αs) = γ(αs)− γH(αs) . (3.8)
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The anomalous dimensions γ(αs) and the kernel γ̂(ω, ω′;αs) were obtained at two-loop
order in [24]. The general solution of the evolution equation (3.6) is [26]

J(p2,µ)=exp
[
−2SΓ(µj ,µ)−aγ′(µj ,µ)−2γEaΓ(µj ,µ)

]
J(∂η,µj)

(
−p2−i0
µ2
j

)η+aΓ(µj ,µ)

×
Γ
(
1−η−aΓ(µj ,µ)

)
Γ(1+η)

Γ
(
1+η+aΓ(µj ,µ)

)
Γ(1−η)

exp
[
−

αs(µ)∫
αs(µj)

dα

β(α)G
(
η+aΓ(µj ,µα),α

)]∣∣∣∣∣
η=0

.

(3.9)

Here µj is a matching scale set by the typical value of |p2|1/2 in a given process. At this scale,
one defines J(p2, µj) ≡ J(Lp, µj), where Lp = ln

[
(−p2− i0)/µ2

j

]
. In the solution above, the

first argument in the function J is replaced by a derivative with respect to the auxiliary
parameter η. The function G has been defined in (2.13), and moreover relation (3.8) implies
that aγ′(µj , µ) = aγ(µj , µ)− aγH (µj , µ).

For the convenience of the reader, we list the perturbative expansion coefficients of all
relevant anomalous-dimension coefficients in appendix A.

3.2 Matching conditions

To complete the solutions, one needs to specify the hard and jet functions at their respective
matching scales µh and µj , where they can be calculated in fixed-order perturbation theory.
The hard function H = C1/KF is given by the ratio of two quantities. The first one is the
short-distance Wilson coefficient C1(mb, 2Eγ , µ) in the matching relation for the heavy-light
current operator,

ūγµ(1− γ5)b =
3∑
i=1

Ci(mb, 2E,µ) X̄nΓihv +O
(ΛQCD

mb
,
ΛQCD

2E

)
, (3.10)

where hv denotes the effective b-quark field in HQET, Xn = W †n ξn is the effective collinear
up-quark field in soft-collinear effective theory [33, 41], E ≈ mb/2 denotes the large energy
carried by the collinear quark in the rest frame of the B meson, and the relevant Dirac
structures can be chosen as Γ1 = γµ(1−γ5), Γ2 = vµ(1+γ5) and Γ3 = nµ(1+γ5). The two-
loop result for the coefficients Ci have been obtained independently by four groups [42–45].
The second quantity entering the expression for the hard function is the matching coefficient
KF (mb, µ) defined in relation (1.3), which has been calculated at two-loop order in [22, 23].
Combining these result, we obtain

H(mb,Eγ ,µh) = 1+ CF αs(µh)
4π

[
−2L2

m−(2−4lnx)Lm−2ln2x+ 2−3x
1−x lnx

−2Li2(1−x)−4− π
2

12

]
(3.11)

+
[
αs(µh)

4π

]2[
h0(Lm)+(1−x)h1(Lm)+(1−x)2h2(Lm,x)+ . . .

]
+O(α3

s) ,

where x = 2Eγ/mb and Lm = ln(µh/mb), with mb = 4.8GeV the b-quark pole mass. The
analytical expression for the two-loop correction in terms of harmonic polylogarithms is
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very lengthy. For convenience, we present here the first few terms in a Taylor expansion
around x = 1, where the numerical coefficients are obtained for Nc = 3 colors and nf = 4
light (massless) quark flavors. We find

h0(Lm) = 32
9 L4

m −
208
27 L3

m +
(
−1504

27 + 80π2

27

)
L2
m +

(
−10480

81 + 32π2

27 + 136ζ3
3

)
Lm

− 29914
243 − 1055π2

54 + 940ζ3
27 + 856π4

405 − 4π2

3 ln 2 ,

h1(Lm) = 128
9 L3

m −
128
9 L2

m +
(
−4268

27 + 160π2

27

)
Lm

− 2422
27 − 3572π2

27 + 364ζ3
9 + 5177π4

405 − 16π2

9 ln 2 ,

h2(Lm, x) = 64
9 L3

m + 328
27 L2

m +
(
−1984

27 + 80π2

27

)
Lm −

193
9 ln(1− x) + 193

27 ln2(1− x)

+ 57071
243 − 61237π2

162 + 11ζ3
9 + 4754π4

135 + 2π2

9 ln 2 . (3.12)

The jet function J(p2, µ) has been calculated at two-loop order in [26]. In our case the
characteristic value of the momentum transfer are such that p2 = −2Eγω = O(ΛQCDmb),
since 2Eγ ≈ mb and the characteristic values of ω are governed by nonperturbative QCD
dynamics. At a matching scale µ2

j = O(ΛQCDmb), the function J(Lp, µj) reads

J(Lp,µj) = 1+ CF αs(µj)
4π

[(
L2
p−1− π

2

6

)
+ αs(µj)

4π
(
CF kF +CAkA+TF nf knf

)]
+O(α3

s) ,

(3.13)
with

kF =
L4
p

2 −
(

1 + π2

6

)
L2
p +

(
π2 + 4ζ3

)
Lp + 3

2 −
π2

3 − 39ζ3 + 119π4

360 ,

kA = −11
9 L3

p +
(

67
9 −

π2

3

)
L2
p −

(305
27 − 14ζ3

)
Lp + 493

162 −
103π2

108 + 140ζ3
9 − 43π4

180 ,

knf = 4
9 L

3
p −

20
9 L2

p + 76
27 Lp + 14

81 + 5π2

27 + 8ζ3
9 . (3.14)

3.3 Master formula for the convolution integral

When the RG-improved expression for the jet function is inserted in the convolution integral
in (1.1), one encounters the integral∫ ∞

0

dω

ω

(
2Eγω
µ2
j

)η+aΓ(µj ,µ)

φB+(ω, µ) =
(

2Eγ ω̄
µ2
j

)η+aΓ(µj ,µ)

φ̃B+
(
− η − aΓ(µj , µ), µ

)
, (3.15)

which is given in terms of the Laplace-space LCDA defined in (2.11). We now combine
the relations (3.5), (3.9) and (2.15) to derive a RG-improved expression for the decay
amplitude. Using then the identities

aΓ(ν1, µ)− aΓ(ν2, µ) = aΓ(ν1, ν2) ,

SΓ(ν1, µ)− SΓ(ν2, µ) = SΓ(ν1, ν2)− aΓ(ν2, µ) ln ν1
ν2
,

(3.16)
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which follow from the definitions (2.14) and (2.17), one finds that all reference to the
factorization scale µ cancels in the final expression. This leads to the master formula [28]

I =H(mb,Eγ ,µ)
∫ ∞

0

dω

ω
J(−2Eγω,µ)φB+(ω,µ)

= exp
[
SΓ(µh,µj)+SΓ(µs,µj)−aγH (µh,µj)+aγ(µs,µj)+2γE aΓ(µs,µj)

]
(3.17)

×H(mb,Eγ ,µh)
(2Eγ
µh

)−aΓ(µh,µj)
J(∂η,µj)

(
2Eγ ω̄
µ2
j

)η Γ
(
1−η+aΓ(µs,µj)

)
Γ(1+η)

Γ
(
1+η−aΓ(µs,µj)

)
Γ(1−η)

×exp
[ αs(µj)∫
αs(µs)

dα

β(α) G
(
−η+aΓ(µα,µj),α

)]( ω̄
µs

)−aΓ(µs,µj)
φ̃+
(
−η+aΓ(µs,µj),µs

)∣∣∣∣
η=0

.

In this expression, all large logarithmic corrections are resummed in the RG coefficients
SΓ and aΓ, aγH , aγ . The result depends on the three matching scales µh ∼ mb, µj ∼√

ΛQCDmb, and the low scale µs, at which the model function for the LCDA is assumed.
However, at any given order in the RG-improved perturbation theory this dependence
cancels out up to higher-order corrections.

In our numerical analysis below, we will find that the RG evolution effects from the
low scale µs to the intermediate scale µj are necessarily very small. The reason is that
µs cannot be chosen smaller than about 1GeV, since it needs to be in the perturbative
regime. On the other hand, the master formula indicates that µj should be chosen such
that µ2

j ≈ 2Eγ ω̄ ≈ mb ω̄, and with ω̄ values such as those shown in the table following
equation (2.6) one finds µj ≈ 1GeV. Even for a larger value such as µj = 1.5GeV, one
obtains aΓ(µs, µj) ≈ −0.098, which is a small effect. This implies that the first argument
of the Laplace-space LCDA is close to the origin, and hence the Taylor series in (2.21)
can be used to obtain a model-independent parameterization of the LCDA in terms of the
parameters λB, ω̄ and σBn with n ≥ 2, all defined at the low scale µs.

In light of the above remarks, one may even consider setting the two scales µj and µs
equal to each other. This leads to the much simpler formula

I = exp
[
SΓ(µh, µs)− aγH (µh, µs)

]
H(mb, Eγ , µh)

(2Eγ
µh

)−aΓ(µh,µs)

× J(∂η, µs)
(2Eγ ω̄

µ2
s

)η
φ̃+(−η, µs)

∣∣∣∣
η=0

.

(3.18)

3.4 Numerical results

We are now ready to present our numerical results for the convolution integral in the mas-
ter formula (3.17), which governs the B− → γ `− ν̄ decay amplitude at leading order in
the expansion in powers of ΛQCD/mb, following the discussion presented in [28]. Based
on known results for the relevant anomalous dimensions and matching conditions, we can
evaluate the convolution integral at (approximate) NNLO in RG-improved perturbation
theory. This requires the two-loop expressions for the hard function H(mb, Eγ , µh) and the
jet function J(Lp, µj) given in section 3.2, the four-loop expression for the cusp anomalous
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dimension (needed for the calculation of the Sudakov exponent SΓ), and three-loop expres-
sions for the remaining anomalous dimensions (needed for the calculation of the exponents
aΓ, aγH , aγ and the function G). At present one can only achieve approximate NNLO
accuracy, since the anomalous dimension γ in (2.2) and the function G in (2.13) are only
known at two-loop order. However, in practice this is not a limitation, because the scales
µs and µj are rather close to each other, and evolution effects between these scales have
only a minor impact. In fact, figure 3 shows that in the vicinity of the origin even the
effects of NLO scale evolution are hardly visible. Note that for the special scale choice
µj = µs our predictions have strict NNLO accuracy.

When we derive the perturbative expansions in RG-improved perturbation theory, we
consistently expand out higher-order terms in αs in a perturbative series. We will denote
the result as IaNNLO. Alternatively, one could perform the expansion of the RG functions SΓ
and aΓ, aγH , aγ in the exponent (denoted by I ′aNNLO). Both approximations have the same
parametric accuracy, but the differences between the results obtained in these two ways can
serve as an estimator of unknown higher-order corrections (see below). For comparison,
we will also show results obtained at NLO in RG-improved perturbation theory.

In order to present our results we fix the photon energy (defined in the rest frame
of the B meson) to 2.2GeV and vary µh by a factor of two around its default value of
µh = mb = 4.8GeV. In addition, we fix µs = 1.0GeV and vary µj by a factor of

√
2

around its default value of
√

2GeV, as proposed in [28]. Finally, we set the parameter ω̄
equal to the reference value 300GeV. The dependence on this choice will be investigated
later. To good approximation, one finds that changing the value of ω̄ has the effect of
changing the convolution integral by a factor (ω̄/300MeV)−aΓ(µs,µj), where the exponent
is approximately 0.1 for our default scale choices.

With these parameter and scale choices, we obtain

IaNNLO = 1
λB

[(
0.664 +0.011

−0.013
+0.024
−0.038

)
+
(
4.36 +0.15

−0.08
+0.07
−0.45

)
· 10−2 σB2

+
(
0.35 +0.12

−0.02
+2.97
−1.99

)
· 10−3 σB3 +

(
5.02 +0.28

−0.08
+5.84
−1.91

)
· 10−4 σB4 + . . .

]
,

(3.19)

where for each value the quoted errors arise from the variations of µh and µj . In this
expression, the hadronic parameters λB, σBn and ω̄ are defined at the reference scale µs =
1GeV. We observe that the uncertainties from scale variation are rather small for µh,
but significantly larger for µj , especially as far as the coefficients of the higher moments
are concerned. The moment expansion itself appears to be well behaved. If instead the
perturbative expansion of the RG coefficients is performed in the exponent, one finds

I ′aNNLO = 1
λB

[(
0.675 +0.014

−0.013
+0.022
−0.040

)
+
(
4.14 +0.08

−0.08
+0.12
−0.48

)
· 10−2 σB2 (3.20)

+
(
− 0.14 +0.003

−0.003
+3.00
−1.85

)
· 10−3 σB3 +

(
4.33 +0.09

−0.08
+5.02
−1.42

)
· 10−4 σB4 + . . .

]
.

Comparison with (3.19) shows that the two results are consistent with each other within
the quoted errors. In order to study the impact of the NNLO corrections, it is instructive
to compare our result with the one obtained at NLO in RG-improved perturbation theory.
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Figure 8. Coefficients of the leading term (blue) and of 0.1σ2 (red) in the result (3.19) including
scale variations added in quadrature, for different values of ω̄.

It reads

INLO = 1
λB

[(
0.731 +0.015

−0.014
+0.019
−0.047

)
+
(
3.53 +0.21

−0.06
+0.93
−0.76

)
· 10−2 σB2

+
(
− 2.75 +0.05

−0.17
+2.75
−0.91

)
· 10−3 σB3 +

(
1.09 +0.07

−0.02
+1.43
−1.09

)
· 10−4 σB4 + . . .

]
.

(3.21)

The central value of the leading term is about 10% larger than at aNNLO, indicating that
the higher-order effects are indeed significant and should be included in phenomenological
analyses of the B− → γ `−ν̄ photon spectrum. Within the quoted errors, the two values
are nevertheless consistent with each other.

Given the small coefficients of the terms involving the higher moments, we can approx-
imate the result (3.19) as

IaNNLO '
1

λB(µs)
[(

0.664 +0.026
−0.040

)
+
(
4.36 +0.17

−0.46
)
· 10−2 σB2 (µs)

]
, (3.22)

where µs = 1GeV, and we have added the two types of scale uncertainties in quadrature.
This result refers to Eγ = 2.2GeV. Slightly different coefficients are obtained for different
values of the photon energy, but the variations are small. It follows that from a measure-
ment of the photon spectrum one can in principle extract the above combination of the
parameters λB and σB2 . For a reliable extraction, it would however be important to include
power-suppressed contributions to the decay amplitude, which are neglected here. We be-
lieve that extracting the parameters λB and σB2 individually will be very difficult without
a full control over such power-suppressed terms, because they can introduce contributions
scaling like (ΛQCD/Eγ)n.

The result (3.19) refers to ω̄ = 300MeV. Figure 8 shows how the coefficients of the
leading term and of σ2 vary with ω̄. The range shown is motivated by the fact that paramet-
rically ω̄ ∼ ΛQCD. The leading coefficient increases slightly with ω̄, whereas the coefficient
of σ2 is almost independent of it. Note that the scale variations increase for smaller values
of ω̄. As can be seen from (3.17), the quantity 2Eγ ω̄ sets the “natural” scale for µ2

j , and
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for ω̄ < 0.23GeV this scale drops below 1GeV, outside the range of variation of µj . This
suggests that the perturbative corrections to the jet function get larger the smaller ω̄ is.

All results shown above refer to the reference choice µs = 1GeV. One is, of course, free
to make a different choice µ′s. It is important to realize that in this case the parameters
ω̄, λB and σBn have a different meaning, because they refer to a different LCDA, obtained
form the previous one by RG evolution. For illustration, we present our result for the
case of a higher reference scale µ′s = 1.5GeV, in this case varying the intermediate scale
µj by a factor of

√
2 about the default value µj = µs = 1.5GeV. As previously we take

ω̄ = 300MeV as our reference value. In this way, we obtain

IaNNLO = 1
λB

[(
0.712+0.011

−0.014
+0.029
−0.041

)
+
(
4.24+0.14

−0.08
+0.02
−0.40

)
× 10−2 σB2

+
(
4.22+0.26

−0.07
+2.68
−2.43

)
× 10−3 σB3 +

(
6.69+0.42

−0.12
+7.91
−3.81

)
× 10−4 σB4 + . . .

]
.

(3.23)

Let us work out how the parameters λB and σBn in this result are related to the parameters
in (3.19). When the LCDA is evolved from the scale µs to a different scale µ′s (at fixed
ω̄), the values of λB(µs) and σBn (µs) evolve to new values λB(µ′s) and σBn (µ′s), as discussed
in detail in section 2.2. In general, this leads to a non-zero first moment σB1 (µ′s) 6= 0. We
must now readjust the parameter ω̄ such that [σB1 (µ′s)]new = 0. According to (1.5), this
leads to ω̄new = ω̄ e−σ

B
1 (µ′s). With this new reference scale, one finds the new moments[

λB(µ′s)
]
new = λB(µ′s) ,[

σB2 (µ′s)
]

new
= σB2 (µ′s)−

[
σB1 (µ′s)

]2
,[

σB3 (µ′s)
]

new
= σB3 (µ′s)− 3σB2 (µ′s)σB1 (µ′s) + 2

[
σB1 (µ′s)

]3
,[

σB4 (µ′s)
]

new
= σB4 (µ′s)− 4σB3 (µ′s)σB1 (µ′s) + 6σB2 (µ′s)

[
σB1 (µ′s)

]2
− 3

[
σB1 (µ′s)

]4
,

(3.24)

etc., and these are the parameters entering the result (3.23). Note that, if µ′s > µs, the
first moment σB1 (µ′s) is negative, and hence ω̄new > ω̄ in this case.

4 Conclusions

In this paper, we have presented the technical details of the derivation of the master
formula (3.17), which was first presented by two of us in [28]. In particular, we have
given a detailed explanation of how to obtain this solution in the presence of the second
non-local kernel arising at two loop-order in the anomalous dimension (2.2) of the LCDA.
Furthermore, we have derived an infinite set of coupled differential equations relating the
logarithmic moments of the LCDA and presented their exact solution. In addition, we have
worked out the solution to the evolution equations for the LCDA also in momentum space
and in the diagonal (or dual) space. All results were illustrated using two model functions
for the LCDA defined at the matching scale µs = 1GeV. In Laplace space, RG evolution to
a higher scale has the effect of a global downward shift of the LCDA in the region near the
origin, and it changes the location and residues of the nearest pole singularities at positive
and negative values of the Laplace variable η. In momentum space, this corresponds to
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an increase of the value of λB(µ) as the scale µ is increased, and it has an impact on
the asymptotic behavior for large and small values of the variable ω. Comparing our new
results obtained at NLO in RG-improved perturbation theory with the previously available
LO results, we observe a genuinely small effect of the NLO contributions to the evolution
equations (see figures 3, 6 and 7).

In the last part of the paper, we have re-derived the explicitly scale-independent
factorization formula for the convolution integral governing the B− → γ `− ν̄ decay
amplitude at leading power in the heavy-quark expansion, in which all non-perturbative
hadronic information is contained in the Laplace-space LCDA evaluated in the vicinity
of the origin. We have evaluated this result at (approximate) NNLO in RG-improved
perturbation theory, taking into account the uncertainties from variations of the matching
scales µh and µj . We have also discussed in detail how the results change if one adopts a
different matching scale µ′s > 1GeV. These numerical results will be of relevance to future
determinations the parameter λB (in correlation with some of the logarithmic moments
σBn ) from experimental data.
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A Anomalous dimensions and RG functions

We write the perturbative expansion of the various anomalous dimensions in the form

Γcusp(αs) =
∑
n≥0

Γn
(
αs
4π

)n+1
, γi(αs) =

∑
n≥0

γi,n

(
αs
4π

)n+1
. (A.1)

We evaluate the various expansion coefficients for Nc = 3 colors. The coefficients of the
cusp anomalous dimension up to four-loop order are

Γ0 = 16
3 ,

Γ1 = 1072
9 − 16π2

3 − 160
27 nf ,

Γ2 = 1960− 2144π2

9 + 352ζ3 + 176π4

15 +
(
−5104

27 + 320π2

27 − 832ζ3
9

)
nf −

64
81 n

2
f ,

Γ3 = 337112
9 − 178240π2

27 + 28032ζ3 + 3608π4

5 − 704π2ζ3 −
34496ζ5

3 − 1536ζ2
3 −

32528π6

945

+
(
−1377380

243 + 51680π2

81 − 616640ζ3
81 − 2464π4

135 + 1664π2ζ3
9 + 25472ζ5

9

)
nf

+
(

71500
729 − 1216π2

243 + 16640ζ3
81 − 416π4

405

)
n2
f +

(
−128

243 + 256ζ3
81

)
n3
f , (A.2)
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where nf is the number of light (massless) quark flavors. The anomalous dimension γH in
the evolution equation for the hard function is known to three-loop order, with coefficients

γH,0 = −8
3 ,

γH,1 = −2408
27 + 26π2

27 + 136ζ3
3 +

(
320
81 + 4π2

9

)
nf ,

γH,2 = −312694
243 + 8626π2

81 + 53296ζ3
27 − 5726π4

1215 − 6176π2ζ3
81 − 11440ζ5

9

+
(

73028
729 + 260π2

27 − 4832ζ3
81 + 68π4

1215

)
nf +

(
6752
2187 −

40π2

81 − 32ζ3
81

)
n2
f .

(A.3)

Finally, the anomalous dimension γ for the B-meson LCDA is known to two-loop order,
with coefficients

γ0 = −8
3 ,

γ1 = 824
27 −

106π2

27 − 200ζ3
3 +

(
−128

81 + 20π2

27

)
nf .

(A.4)

In the calculation of the RG functions we also need to coefficients of the QCD β-
function up to four-loop order. They are given by [46]

β0 = 11− 2
3 nf ,

β1 = 102− 38
3 nf ,

β2 = 2857
2 − 5033

18 nf + 325
54 n2

f , (A.5)

β3 = 149753
6 + 3564ζ3 −

(1078361
162 + 6508

27 ζ3

)
nf +

(50065
162 + 6472

81 ζ3

)
n2
f + 1093

729 n3
f .

At NLO in RG-improved perturbation theory, the RG functions aΓ and SΓ defined
in (2.14) and (2.17) are given by

aΓ(ν, µ) = Γ0
2β0

[
ln αs(µ)
αs(ν) +

(Γ1
Γ0
− β1
β0

)
αs(µ)− αs(ν)

4π + . . .

]
, (A.6)

and

SΓ(ν, µ) = Γ0
4β2

0

{
4π
αs(ν)

(
1− 1

r
− ln r

)
+
(Γ1

Γ0
− β1
β0

)
(1− r + ln r) + β1

2β0
ln2 r

+ αs(ν)
4π

[(
β1Γ1
β0Γ0

− β2
β0

)
(1− r + r ln r) +

(
β2

1
β2

0
− β2
β0

)
(1− r) ln r

−
(
β2

1
β2

0
− β2
β0
− β1Γ1
β0Γ0

+ Γ2
Γ0

)
(1− r)2

2

]
+ . . .

}
,

(A.7)

where r = αs(µ)/αs(ν). The extensions of these results to NNLO can be found in equations
(A.2) and (A.3) of [38].
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B Factorization in the diagonal space

Using the orthonormality relation (2.44), it is straightforward to show that in diagonal
space the convolution integral I defined in (3.1) takes the same form as in momentum
space, i.e.

I = H(mb, Eγ , µ)
∫ ∞

0

dω

ω
Jdiag(−2Eγω, µ; ρ)ϕBdiag(ω, µ; ρ) , (B.1)

where the LCDAs in momentum space and in the diagonal space are related by (2.42).
For the jet function, we define these transformations with the opposite transfer functions,
such that

Jdiag(p2, µ; ρ) =
∫ ∞

0

dx√
x
F inv

diag(x, µ; ρ) J(xp2, µ) ,

J(p2, µ) =
∞∫
0

dx√
x
Fdiag(x, µ; ρ) Jdiag

(
p2

x
, µ; ρ

)
,

(B.2)

where the transfer functions have been given in (2.43). By construction, the dependence
on the auxiliary scale ρ cancels out in the convolution integral I.

The RG evolution of the jet function in the diagonal space is multiplicative, such that

Jdiag(p2, µ; ρ) = exp
[
−2SΓ(µj , µ)−aγ′(µj , µ)

](−p2 e−2γE

µ2
j

)aΓ(µj ,µ)

Jdiag(p2, µj ; ρ) . (B.3)

The jet function at the matching scale µj can be written in the form [26, 27]

Jdiag(p2, µj ; ρ) = Ĵ(∂η, µj)
(
−p2e−2γE

µ2
j

)η
exp

[
−

αs(ρ)∫
αs(µj)

dα

β(α) G
(
− η + aΓ(µα, µj), α

)]∣∣∣∣∣
η=0

.

(B.4)
The function Ĵ(Lp, µj) has been calculated at two-loop order in [26].

Combining the solutions (3.5) and (B.3), we now obtain

I = exp
[
SΓ(µh,µj)+SΓ(µs,µj)−aγH (µh,µj)+aγ(µs,µj)

]
H(mb,Eγ ,µh)

(2Eγ
µh

)−aΓ(µh,µj)

×
∫ ∞

0

dω

ω

(
ωe−2γE

µs

)−aΓ(µs,µj)

Jdiag(−2Eγω,µj ;ρ)ϕBdiag(ω,µs;ρ) . (B.5)

Notice that also this expression is manifestly independent of the factorization scale µ, but
contrary to (3.17) there is still a convolution integral remaining. As mentioned earlier, the
dependence on the auxiliary scale ρ cancels between the jet function and the LCDA. In
section 2.4 we found it convenient to set ρ = µs, so that the LCDA in the diagonal space
obeys a relatively simple relation to the momentum-space LCDA, see (2.48). When this
is done, the jet function Jdiag at the matching scale contains some large logarithms, which
are resummed via (B.4). We find

Jdiag(p2, µj ;µs) = Ĵ(∂η, µj)
(
−p2e−2γE

µ2
j

)η
exp

[ αs(µj)∫
αs(µs)

dα

β(α) G
(
− η + aΓ(µα, µj), α

)]∣∣∣∣∣
η=0

.

(B.6)
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