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1 Introduction: from Bekenstein-Hawking to Gibbons-Hawking via
Hawking-Page

It is of considerable interest to formulate quantum gravity consistently with the observed
accelerated expansion of the universe. Recent years have seen renewed progress toward
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this goal stemming in part from a simple generalization [1, 2] of the T T̄ deformation [3–8]
applied to AdS/CFT duality, as pioneered in [9–11]. In this correspondence, patches of AdS
or dS spacetime are reconstructed from a deformed holographic seed CFT formulated on
the boundary of a patch; energy levels and various entanglement entropies accessible in the
gravitational sector agree precisely on the two sides [1, 2, 12, 13]. The global cosmological
spacetime may be obtained by sewing together such building blocks. This led to a recent
calculation of the Gibbons-Hawking entropy SGH in [14], reproducing [15] and a logarithmic
correction computed recently in [16].

S = SGH − 3 log(SGH) + . . . (1.1)

In the present work, we define a version of this deformation which provides a microstate
count for the de Sitter observer patch, reproducing the corrected Gibbons-Hawking en-
tropy [17], (1.1) in a more direct way. Specifically, we construct microstates of the de
Sitter observer patch from the microstates of a particular black hole in AdS. The gener-
alization [1, 2] of the T T̄ deformation accommodating de Sitter spacetime (known as the
T T̄ + Λ2 deformation) is defined by

∂

∂λ
logZ = −2π

∫
d2x
√
g 〈T T̄ 〉+ 1− η

2πλ2

∫
d2x
√
g (1.2)

with Z the partition function of the theory and where T T̄ is defined as the quadratic
combination

T T̄ ≡ 1
8(TabT ab − (T aa )2) (1.3)

of components of the energy-momentum tensor Tab.
The prescription (1.2) is applied piecewise, beginning with a pure T T̄ deformation (η =

1) from the seed CFT theory. Once λ is nonzero, it is possible to start a new segment of the
trajectory with nonzero η−1 beginning at some finite value λ = λ0 (say taking η = −1), as
sketched in figure 1. This is universal and solvable in the same sense as the original T T̄ the-
ory, enabling a calculation of the deformed (‘dressed’) energy spectrum for all energy levels.

In our new example of such a combined T T̄ → T T̄ + Λ2 deformation, the microstates
associated with the de Sitter observer patch are dressed microstates of BTZ black holes at
the ∆ ' c/6 energy level of the seed CFT of central charge c� 1 (∆ denoting the operator
dimension).1 In the dual gravitational description, the trajectory corresponds to bringing
in the AdS boundary until it skirts the horizon of the ∆ ' c/6 BTZ black hole, where the
horizon becomes indistinguishable from the horizon of the dS static patch. At this value of
λ = λ0, we adjoin a T T̄ + Λ2 segment of the trajectory, building up the static patch of dS,
bounded by a worldline at its observer position; see figure 1.2 Throughout this process, the
entire spectrum of microstates accounting for the Gibbons-Hawking entropy are retained
as real energy levels. This microcanonical state count has a counterpart in the canonical
ensemble, where the ∆ = c/6 energy level corresponds to the Hawking-Page transition in

1As we will describe in the bulk of the paper, the precise statement of the relevant energy levels is as a
band of order 1 around ∆ = c/6 [18, 19].

2For earlier work on holography and the observer patch see e.g. [20].
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Cosmic horizon patch
(Dressed ∆ ' c

6
black hole microstates)

T T̄
T T̄ + Λ

2

CFT
(∆ ' c

6 )
CH patch

y0 = 3
cπ2

E = 1
πy

(
1 +
√
η + . . .

)

Pole patch
(Dressed ∆ = 0 vacuum)

T T̄

T
T̄

+
Λ
2

CFT
(∆ = 0)

Pole patch

y0 � 1

E = 1
πy

(
1−√η + . . .

)
related by ±√x

Figure 1. A schematic of our prescription for holographic reconstruction of the static patch,
including a microstate count, for a given deformation parameter y = λ/L2. This may be summarized
as follows, with details in the bulk of the paper. On the left, we obtain the indicated patch
containing the cosmic horizon by dressing the ∆ ' c/6 microstates comprising a BTZ black hole at
the Hawking-Page transition and switching between the T T̄ and T T̄+Λ2 trajectories at a value y0 of
the deformation parameter such that the BTZ and Cosmic Horizons degenerate to indistinguishable
near-horizon regions. On the right we depict the trajectory described in [1, 2] which formulates the
complementary patch for the same boundary geometry. The extrinsic curvature of the boundary,
and hence the square root term in the dressed energy formula, are equal and opposite for the two
patches. As contributions to the thermal partition function at fixed boundary geometry, these
dominate for complementary ratios of (β/L)2 = y/y0 − 1, providing a de Sitter analogue of the
Hawking-Page transition. In both cases, we can capture the bulk of the static patch by continuing
the trajectory in the manner indicated by the arrow. The Pole patch with a Dirichlet boundary
condition always excludes the cosmic horizon and does not directly account for the microstates, in
keeping with the sparse set of real dressed energies in that case. However, for the cosmic horizon
patch — the main subject of the current paper — proceeding with the trajectory to yfinal � 1
formulates the static patch with boundary at the observer position at the North Pole.

the seed AdS/CFT system. In the course of our analysis below, we find an analogue of the
Hawking-Page transition in de Sitter.

This derivation of de Sitter microstates is our main result, recovering the connec-
tion between the Gibbons-Hawking entropy and the ∆ = c/6 states associated with the
Hawking-Page transition that was anticipated in [15] and recovered with the first 1/c cor-
rection in [14]. As we will see, there are different versions of such a trajectory with distinct
properties, having to do with choices of integration constants arising in the differential
equation for the dressed energy levels derived from (1.2), related to the role (or not) of
modular transformations in the theory. In holography, the prescription (1.2) captures the
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pure gravitational sector of the theory — the black hole spectrum in AdS and the observer
patch in dS. The physics of other energy levels is subdominant at large c and model-
dependent, as we will describe in our analysis below. A complete description of subleading
excitations (such as local bulk matter) requires additions to the prescription (1.2) including
those analyzed for bulk scalar fields in [11]. We will also explain the relation of the present
results with those of [1, 2, 14].

2 T T̄ + Λ2 trajectories, patchwise holography, and microstates

In the pure gravity sector, finite-cutoff holography in AdS3 and dS3 has recently been
shown, starting with the work of [1, 9, 10] to be dual to certain deformations of a holo-
graphic CFT. Although cosmological spacetimes do not contain time-like boundaries,3 cut-
off patches of spacetime are useful as building blocks for a formulation of the global space-
time (the full spacetime being obtained by sewing such patches together with an integral
over their bounding geometry).4 Moreover, in the special case that the finite patch is the
domain accessible to an observer, bounded by their trajectory and conditioned on their ex-
istence and experience,5 the dual formulation may provide more than just a building block.
The prescriptions [1, 2, 9, 10] along with the new versions we introduce in the present work
provide concrete holographic duals for finite patches, applicable to both situations. In
this section, we give a quick review of the connection, generalizing it appropriately for our
present purposes.

At the end of this section, we will get to the advertised microstate construction obtained
by judicious choice of T T̄ + Λ2 trajectory. We will focus on the dressing of the ∆ ' c/6
band of energy levels to the de Sitter ground state. The role of other levels depends on
additional specifications in the trajectory, which we will elucidate for two versions in the
subsequent sections 3–5. In fact, as we will see those prescriptions essentially reduce to the
micro-states we identify in the present section.

2.1 General formulation

A T T̄ -deformed CFT is defined by the differential equation, and boundary condition,

∂

∂λ
logZ = −2π

∫
d2x
√
g 〈T T̄ 〉+ 1− η

2πλ2

∫
d2x
√
g , Zλ=0,η=1 = ZCFT , (2.1)

where Z(λ, g) is the partition function of the theory on a manifold with metric g, the T T̄
operator is the composite of the stress tensor defined above in (1.3), and (2.1) is expressed
in Euclidean signature.6 We will be particularly interested in the solvable case where the
theory is formulated on a flat space, with Z depending on the circumference L of the
cylinder; in the case of the canonical ensemble at finite temperature it depends on both

3With the exception of specific UV-complete solutions with end-of-the-world codimension-one orientifold
planes such as [21] and relatives such as [22].

4For a different approach involving finite patches of spacetime see e.g. [23].
5We thank Zhenbin Yang for suggesting this perspective in related discussions. The fixed metric condition

at the Dirichlet wall below corresponds to conditioning on the metric experienced by this observer.
6Appendix A collects our notation and conventions.
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L and the Euclidean time period β (in addition to its dependence on the deformation
parameter λ). We sometimes denote the second term here as Λ2 (distinct from the bulk 3d
cosmological constant Λ3 whose sign will correspond to −sign(η)). ZCFT is the partition
function of the ‘seed’ CFT that we deform by this procedure. As we will explain shortly, one
can define a deformed theory by joining together solutions to this equation with different
values of η, given appropriate boundary conditions on each segment of the trajectory.

This deformation is most rigorously defined for all QFTs on flat two-dimensional man-
ifolds [3, 24], though progress has been made on curved spaces [1, 25] and higher dimen-
sions [11] in perturbation theory. Here, we work only with holographic seed CFTs, where
there is a large-c and large ’t Hooft coupling semi-classical limit, for which the theory has
additional bulk locality properties and enhanced theoretical control. This entails a sparse
light spectrum in the sense of [18, 19], which guarantees a Cardy entropy count beginning
with the energy level corresponding to operator dimension ∆ = c/6. We will be most
interested in universal aspects of the physics, captured by the Einstein gravitational sector
which well describes black hole solutions in AdS and the de Sitter cosmic horizon. At the
same time, we will keep track of where this description becomes inadequate, as it does for
energy levels arising from model-dependent particle states in the sparse low-energy part of
the seed CFT spectrum.

As indicated in (2.1), a differential equation is not sufficient to define a theory; we also
need a boundary condition for each segment of the trajectory. For η = 1, when the second
term vanishes, there is an obvious boundary condition at λ = 0,

Zη=1,λ
λ→0−−−→ ZCFT . (2.2)

Once λ is nonzero, we may split off a trajectory including the Λ2 deformation with η = −1
starting from any nonzero value λ0.

Before continuing, it is useful to incorporate the fact that the physics depends only
on the appropriate dimensionless quantities. The deformed path integral has the scale-
invariance

Z[λ, λ0, g2] = Z
[
e2Ωλ, e2Ωλ0, e

2Ωg2
]
, (2.3)

where Ω is a constant. We will mainly be interested in the case when the manifold is
a cylinder with circumference L (or a torus with cycle lengths β, L in some Euclidean
calculations). Let us introduce the shorthand notation

y = λ

L2 , y0 = λ0
L2 . (2.4)

It is useful to think of the trajectory as obtained by varying the dimensionless variable
y. As we will review shortly, the gravity side holographically starts by bringing in the
boundary, most directly changing L [1, 2, 9, 10], while the description natural in the 2d
language involves changing λ as in the defining equation (2.1) while working on a fixed
cylinder; in both descriptions y changes along the trajectory.

Given a nonzero value of y0, we have a boundary condition

Zη 6=1,y=y0 = Zη=1,y=y0 (general case) . (2.5)
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In saying this, we must keep in mind that the simple formulation as written in (2.1)
pertains holographically only to universal (‘pure gravity’) quantities in the theory. Below
we will describe in detail the implementation of the boundary conditions at the level of the
appropriate energy levels in the system.

Previous work [1, 2] focused on the case where we begin this T T̄+Λ2 trajectory at y0 �
1. The Λ2 term disappears at λ→∞, and we may set a boundary condition in this limit

lim
λ→∞

Zη 6=1,λ = lim
λ→∞

Zη=1,λ (previous work) . (2.6)

In the present work, we will introduce a different deformed theory in which the T T̄ + Λ2
trajectory splits off from the pure T T̄ trajectory well before y = λ/L2 reaches infinity. As
motivated above in the introduction, this will yield a microstate count for the de Sitter
static patch by dressing CFT states at dimension ∆ = h+ h̄ = c/6 to the dS3 static patch,
obtained via a splitting off point y0 = 3/πc2.

As pioneered in [3, 4, 6], the dressed energy levels comprise a key computable quantity
in the deformed theory.7 The original derivation proceeds by expressing the deformation in
terms of the interaction Hamiltonian, deriving a differential equation for the energy levels
(applied level by level). Equivalent results arise from an inverse Laplace transform of the
partition function as in [14] and from the 2d gravity reformulation of the theory [7, 25, 28].
With Λ2 ∝ 1 − η included, the differential equation for the energy levels becomes (see
appendix A of [1])

πyE(y)E ′(y)− E ′(y) + π

2 E(y)2 = 1− η
2πy2 + 2π3J2 (2.7)

where we defined the dimensionless dressed energy

E = EL . (2.8)

For a seed CFT,
E
∣∣
y=0,η=1 = ECFT = 2π

(
∆− c

12

)
. (2.9)

Again here, a given T T̄ + Λ2 theory will entail particular boundary conditions on this
equation.

The general solution to the differential equation takes the form

E(y) = 1
πy

(
1±

√
η − 4C1y + 4π4J2y2

)
, (2.10)

with the integration constant C1 and the branch of the square root determined appropri-
ately for each segment of the trajectory (meaning the initial segment consisting of the T T̄
deformation alone, and the final segment deforming by T T̄ + Λ2 starting from y0). Here J
is the spin; in terms of left and right scaling dimension (h, h̃), we have ∆ = h+h̃, J = h−h̃.

For quantities admitting a smooth ‘pure gravity’ description — which are the only ones
captured by the pure T T̄ and T T̄ + Λ2 deformations — we will require continuity in the

7See e.g. [26] and [27] for interesting studies of the behavior of additional quantities (correlation functions
and wavefunctions) under the deformation.
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energy at y = y0 (in addition to the boundary condition matching the seed at y = 0 (2.7)).
We do not generally require continuity of this formula for all energy levels, for the following
reason. In general, in order to capture local bulk matter in detail, the prescription for
the deformation (1.2) will require additional model-dependent specifications such as those
carried out in the scalar sector in [11]. For such model-dependent contributions to the
spectrum, subdominant for c � 1, the differential equation for the energies (2.7) and its
solutions (2.10) require additional contributions; it is only those corrected formulas that
must be continuous. Happily, the entropically dominant states — those of our main interest
— are captured by the solvable and universal pure T T̄ + Λ2 deformation.

In the remainder of this section, we will focus on this universal piece of the physics,
associated with the observer patch of the dS3 vacuum as dressed ∆ = c/6 BTZ black
holes. In subsequent sections, we will lay out separate versions of the complete theory,
accounting for the fate of all energy levels (with due regard to the appropriate level of
model-dependence in dS3 holography).

2.2 Gravity side and dictionary

At this point, it is useful to review the basic idea of the map to the gravity side in the
holographic correspondence developed in [1, 2, 9, 10]. The differential equation for the
energy levels is equivalent to the Einstein equations in a bounded patch of (A)dS spacetime.
This connection proceeds starting from the bulk gravity action (in Lorentzian signature)

I = 1
16πGN

∫
M3

d3x
√
−g

(
R+ 2

`2
η

)
+ 1

8πGN

∫
∂M3

d2x
√
−g

(
K − 1

`

)
(2.11)

with boundary condition
ds2
M3

∣∣∣
∂M3

= ds2
M2 . (2.12)

Specializing to the case where the boundary metric is a flat cylinder of proper circum-
ference L, the differential equation for the energy given above in (2.7) follows from the
Einstein equations [9, 10], once we identify the energy with the Brown-York energy [29].8

The Einstein equations can be processed as reviewed in the appendix of [1] to yield the
equation (2.7) for

E = L

∫ L

0
dxT tt (2.13)

in terms of cylinder coordinates −dt2 + dx2, with the Brown-York stress-energy tensor
given by

Tµν = 2√
−g

δIon-shell
δgµν

= 1
8πGN

(
Kµν − gµνK + 1

`
gµν

)
(2.14)

in terms of the extrinsic curvature Kµν of the Dirichlet wall. In this correspondence, the
map of parameters is

c = 3`
2GN

, λ = 8GN` . (2.15)

In this correspondence, different choices of branch and integration constant in the
solutions (2.10) correspond to different choices of the patch and its excitations (insofar as

8With similar statements holding for the curved case perturbatively around large c.
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they are contained in the ‘pure gravity’ sector of the theory). This will be a key technical
point of our work, which we will spell out in detail in what follows for the cases of interest.
In particular, the choice of branch of the square root in (2.10) corresponds to the sign of the
extrinsic curvature K. This is not immediately obvious from inspection, but can be seen
from the derivations in [1, 9, 10] (in which the non-square-root term is tied to a relatively
inconsequential counterterm).9 As such, opposite signs of the square root correspond to
complementary ways to fill in the bulk patch starting from the same Dirichlet wall. To
anticipate a little, this is the difference between the patches depicted in figure 1.

In order to capture a particular bulk patch as a gravitational representation of a dressed
energy level in this way, we must specify the full trajectory including the choices of branch
and integration constant. At this point, rather than continuing with the generalities, we
will shortly spell this out for several cases of interest.

To proceed to that, let us record metrics for AdS and dS vacua and for BTZ black holes
(with these and particle states related by various identifications). First, the locally-AdS3
metric

ds2
3 = −

(
r2 − r2

h

l2

)
dτ2 +

(
l2

r2 − r2
h

)
dr2 + r2dφ2, r2

h ≥ −`2, φ ∼ φ+ 2π (2.16)

captures the AdS3 global vacuum and spinless BTZ black holes. The case r2
h = −`2 is

global AdS. In terms of the black hole mass, 8GNM = r2
h/`

2, we have `M = ∆ − c/12,
leading to the dictionary (adding to (2.15) above)

∆− c

12 = r2
h

8GN`
= 1

2πEy=0 (2.17)

where the last subscript indicates the dimensionless energy E = EL in the seed CFT. As
mentioned above, the spectrum of the holographic seed theory breaks up into the following
windows (see for instance [18, 19]):

∆ <
c

12 : sparse spectrum (particle states)

∆ ≥ c

6 : S ' SCardy = 2π
√
c

3

(
∆− c

12

)
(2.18)

(in between which is a window of light BTZ black hole states). More precisely, the detailed
CFT states are generically non-degenerate, split by energy differences of order exp(−S).
This enables a continuum approximation to the density of states; in recent work, the count
of states given by SCardy [19] was shown to apply to an order one band (i.e. order c0)
around a fixed ∆ ∼ O(c) level. We note from (2.15), (2.17) a relation which will play a
role in our analysis (following [15]):

∆ = c

6 =⇒ rh = ` . (2.19)

9This counterterm is chosen first of all to match the one required for AdS/CFT [30] in the limit y → 0,
and for simplicity we maintain the same value for it throughout the trajectories we consider here.
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We will see below in section 4 that this energy level has a special place in the spectrum
associated with modular transformations and the Hawking-Page transition. These results
are general; one may consider as an example of a seed theory the D1-D5 CFT, whose black
hole entropy count is known microphysically [31] and for which an uplift to de Sitter was
constructed in [32].

Secondly, the static patch metric for dS3 is

ds2
3 = −

(
`2 − r2

`2

)
dτ2 +

(
`2

`2 − r2

)
dr2 + r2dφ2 . (2.20)

In both cases, various further identifications yield additional states; e.g. restricting the
period of φ in (2.20) describes the metric sourced by a particle at the pole at r = 0 [1],
and more elaborate identifications introduce spinning states (see e.g. [33]).

2.3 Trajectories and horizon entropy

Now that we have laid out the formalism on both sides of the duality, let us explain the
key examples of interest here. In brief: we will review how the original version of the
T T̄ + Λ2 trajectory captures a patch of spacetime not containing the cosmic horizon but
containing the observer trajectory (say the North Pole) within the static patch. The new
version captures the complementary part of the static patch, including the cosmic horizon.
The latter exhibits the microstates (with the correct count) as appropriate dressed energy
levels of the seed CFT.

2.3.1 Previous version: the Pole patch

First we will quickly review the original prescription carried out in [1, 2]. There, we work
with the boundary condition (2.6) for the T T̄ + Λ2 part of the trajectory, meaning we
continue with the pure T T̄ trajectory until y = λ/L2 reaches the matching point y0 � 1.
This first segment of the trajectory, applied to the ground state, entails bringing in the
boundary of global AdS3 — prescribing a Dirichlet wall at r = rc = L/2π and filling in the
region r < rc until the bounding cylinder is very small, with the patch inside of it being
indistinguishable from a similar patch centered on an observer worldline (e.g.the North
Pole r = 0) in de Sitter spacetime. Then beginning the η = −1 part of the trajectory, with
the appropriate choice of branch and integration constants, formulates a patch of dS3 with
r ≤ rc. The energy formula for this case is given by

E = L2

πλ

1−
√
η − 4π2λ

L2

(
∆− c

12

)
+ 4π4J2 λ

2

L4

 . (2.21)

This produces the correct CFT energy at y = λ/L2 → 0, η = 1, and at the matching
between T T̄ and T T̄ + Λ2 the energies are continuous since y = λ/L2 →∞.

Note that the gravity-side patch that is thus formulated does not contain the cosmic
horizon at r = `. For rc → `, ∆ = 0 this (almost) captures the static patch of de
Sitter, but without the cosmic horizon given this order of limits, a distinction that will
greatly concern us in this work. What this corresponds to in the deformed-CFT dual is
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the following: in the family of (A)dS patches we just reviewed that were formulated in the
original trajectory [1, 2], only the particle states (2.18) survive in the real spectrum. This
is not enough to account directly for the Gibbons-Hawking microstates. That fact agrees
with the absence of the cosmic horizon (CH) in the patch.

We are now ready to present the essence of the new trajectory, one that formulates
the complementary patch containing the cosmic horizon, with a concommitant count of
microstates.

2.3.2 New version: the Cosmic Horizon (CH) patch

The branching-off point y0 for the T T̄ +Λ2 part of the trajectory may be chosen differently
from that in the previous section, so long as the energy levels that are accessible in the
model-independent pure-gravity sector of the theory are continuous in the transition from
η = 1 (Λ3 < 0) to η = −1 (Λ3 > 0). Moreover, as we stressed above in (2.10), the solution
space of the differential equation for the energies has choices of integration constant C1 and
a choice of the branch of the square root (in principle, these could be chosen separately
level by level).

In this section, we will see that this freedom enables the construction of a consistent
class of trajectories which formulate the cosmic horizon (CH) region of the static patch as a
set of dressed states in the band of energies around ∆ = c/6. At the end of the trajectory,
this captures the entire static patch, bounded by the observer worldline at (say) the North
Pole of the bulk de Sitter spacetime.

Let us begin with a standard observation — the similarity between the near-horizon
regions in a black hole spacetime (2.16) with rh = l and the dS3 static patch (2.20) with
the same curvature radius `. In the black hole case, we make the coordinate transformation

r ≡ rh + δr = `+ δr, δr = w2

2` � rh = `, (2.22)

to find that the black hole metric (2.16) gets transformed into a nearly flat near-horizon
region

ds2
3 = −w

2

`2
dτ2 + dw2 + `2dφ2 + . . . (2.23)

Similarly, in the dS3 vacuum we take

r ≡ `− δr, δr = w2

2` � ` . (2.24)

Keeping one more contribution, for both cases the near-horizon metric takes the form

ds2
3 = −w

2

`2
dτ2 + dw2 + (`2 + ηw2)dφ2. (2.25)

where as usual η = 1 for the rh = ` BTZ case and η = −1 for the dS3 vacuum. Thus
we find exactly the same near-horizon metric (2.23) at leading order in an expansion in
δr = w2/2`. Note that the value rh = ` at which these match corresponds to the energy
level ∆ = c/6 (2.19), [15].
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Recall that the bulk intuition for the boundary condition (2.6) was precisely that the
spacetime near r = 0 is nearly flat in either global AdS3 (2.16) or the static patch of
dS3 (2.20), i.e. it becomes independent of the bulk cosmological constant in the relevant
limit; in that case the system reverted to a nearly flat bulk spacetime contained within
a small bounding cylinder. It is quite analogous that the near-horizon region boils down
similarly to a nearly flat patch of spacetime. The extrinsic curvature Kµν and hence the
Brown-York stress energy (2.14) agree at leading order in this approximation (when we
drop the η-dependent term in (2.25)).

In particular, the extrinsic curvature of the metric (2.25) approaches zero in this region:

Kµν = 1
2∂wgµν ∼ O(w)→ 0 (2.26)

This non-trivial agreement at leading order in w suggests that there is a new class of
trajectories that may be defined, with a consistent boundary condition at a finite value
of y0, in which the transition from η = 1 to η = −1 occurs when the system formulates
equivalently the near-horizon region of either the ∆ = c/6 black hole or the dS3 static patch.

As explained above, the square root term in the energy formula (given in general form
in (2.10)) is proportional to the extrinsic curvature of the boundary on the gravity side.
The matching of the two segments of the trajectory, at the indistinguishable horizon on the
gravity side, should occur for the value of y0 where this square root term vanishes. At that
point, we are free to continue with the T T̄ + Λ2 trajectory with either sign of the square
root, still maintaining continuity of the energy.

Indeed, if we choose
y0 = 3

cπ2 (2.27)

then we see that the square root term in the η = 1 (pure T T̄ ) energy formula (2.21) vanishes
at y ' y0, for a band of energy levels within order one of ∆ = c/6.10

At that point, we may start our η = −1 segment of the trajectory, with energy levels
of the form (2.10), matching the T T̄ -dressed ∆ ' c/6 level at y = y0 with an energy level
that similarly has vanishing square root.

Consider again the energy formula (2.21) for η = −1 and ∆ = 0. This is the Brown-
York energy of a cutoff region of the static patch not containing the cosmic horizon (the
pole patch in the right hand picture in figure 1). We can immediately write down the
energy formula for a T T̄ + Λ2 trajectory which builds up the patch complementary to this
region, which we will call the cosmic horizon (CH) patch. It is given simply by flipping the
sign of the square root:

E = L2

πλ

1+

√
−1− 4π2λ

L2

(
− c

12

) = 1
πy

(
1+
√
−1 + y

y0

)
(2.28)

since this corresponds to flipping the sign of the extrinsic curvature, thus capturing the
complementary fill-in of the bulk region starting from the Dirichlet wall cutoff surface. We

10Below in section 3 will spell out the role of this band of split levels around ∆ = c/6.
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see that also for the cosmic horizon patch when y = λ/L2 reaches y0 (2.27), the square
root vanishes.

Putting all this together we may prescribe a combined trajectory as follows. First, we
do a T T̄ trajectory as in (2.21), increasing y from y = 0 until y reaches y0 (2.27). Then
we evolve with T T̄ + Λ2 increasing y from its initial value of y0 and choosing the branch
of the square root indicated in (2.28).

As advertised, this smoothly dresses the ∆ ' c/6 BTZ black hole to the dS vacuum.
We can identify the microstates comprising the dS3 observer patch as given explicitly by
the dressed ∆ ' c/6 states. The Cardy entropy of these states, matching the horizon
entropy 2π`/4GN , carries through the entire deformation since this pertains energy level
by energy level.11

Moreover, the agreement extends at least to the first logarithmic correction (1.1) in the
entropy [16] at the level of pure gravity, as already derived in [14]. This follows immediately
because the same result S = A/4GN − 3 log(A/4GN ) arises in the AdS case as computed
by Sen and Carlip [34, 35]. This density of states of the ∆ ' c/6 band of energy levels
goes along for the ride in the T T̄ and T T̄ + Λ2 trajectories, for the pure gravity subsector
of the theory. It would be very interesting to extend this to all orders as in [16] (for a pure
gravitational subsector of the theory) and explore the role of edge mode degrees of freedom
as in [36].

Here we focused on the dressing of a particular band of energy levels near ∆ = c/6.
At the level of the T T̄ + . . . deformed CFT, there are multiple ways to extend this readily
to account for other energy levels. For the purpose of dS3 holography, we will describe the
relevant prescription next in section 3. In this context, it is the energy level we already
described which contains the information about the theory that is accessible at the level
of the pure gravity prescription we have formulated. In our prescription in section 3, the
higher energy levels will not remain in the real spectrum of the theory; the total dimension
of the real Hilbert space captures the dS3 Gibbons Hawking entropy (in addition to a log
correction [14, 16]). In order to capture the physics of the model-dependent energy levels
with ∆ < c/6, which are generically subleading at large c, we generally require additions to
the specifications of the trajectory (as laid out in some cases in [11]). As such, the energy
levels in this window ∆ < c/6 need not be (and are not) continuous in the transition from
between η = 1 and η = −1.

As it turns out, there is another way to generalise the energy level dressing (2.28)
of ∆ ' c/6 to other levels in the seed, based on matching the bulk geometries for black
holes with rh 6= ` following the same steps as (2.22)–(2.25). We present this in section 5.
Interestingly, levels with ∆ > c/6 dress to locally dS3 geometries with undesirable conical
excesses; but these levels are screened out with a Hagedorn transition.

A standard result from the original T T̄ studies on a two-dimensional cylinder is the
super-luminal propagation of perturbations. On the gravity side of the holographic version
laid out in [9], this is clear from the statement that perturbations travel more quickly in the

11This is sometimes described as an integrable deformation, though we stress that the seed theory need
not be an integrable QFT (and our seed holographic CFTs of interest are not integrable).
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bulk bounded by a finite cylinder (rather than along the boundary). It is not a pathology,
being consistent with causality in the gravity theory, but does complicate the analysis of
causal and entanglement wedges in the theory [2].12 We may ask the same question for
T T̄ + Λ2 on the cylinder. This retains the faster-in-the-bulk propagation for pole patch
formulated by the original trajectory [1, 2]. By the same token, it is sub-luminal, faster
to propagate on the boundary, for the cosmic horizon patch. One can show that this lines
up with the behavior of the boundary theory including for entanglement-based measures
of propagation speed [37, 38].

Finally, without getting into details, we can describe the Hawking-Page generalization
rather simply with the aid of figure 1: below the transition, the spatial circle size L can
shrink to zero in the bulk, while above the transition it is β that can shrink to zero,
producing a horizon with a finite area. These features are evident in the distinction between
the non-CH patch and the CH patch in de Sitter: in the non-CH patch the circle shrinks to
zero at the north pole, while in the CH patch we get a horizon (where β shrinks to zero in the
interior but L stays finite, taking the value 2π`). Finally, we note that one may formulate
a thermofield-double system as in figure 3 and join the non-CH and CH patches together,
integrating over their identified boundaries, to obtain a formulation of global dS3 (consistent
with its full symmetry group). We will comment on this further below, see figure 3.

3 Further details of dS3 holography and microstates from T T̄ + Λ2

Recall first that ref. [15] showed that the Cardy entropy of the ∆ = c/6 energy level matches
the dS Gibbons-Hawking entropy (understood as an entanglement entropy between the two
sectors of the dS/dS correspondence) if we identify the neck of this BTZ black hole with
the dS neck. This extends universally to higher dimensions, where the agreement works for
AdS black holes at the Hawking-Page transition. The way that the sinh2(w/`) warp factor
of AdS/dS morphs into the sin2(w/`) warp factor of dS/dS [39] was clarified in [1, 2], by
showing that the Λ2 addition to T T̄ gives a holographic description of the bulk dS rather
than bulk AdS geometry in various patches. This used the prescription reviewed above
in section 2.3.1, joining the trajectories at λ/L2 � 1. But the count of microstates here
has remained obscure given the fact that the vacuum is dressed to the vacuum, and the
∆ = c/6 energy level (which contains the GH number of states) becomes complex in the
dressed energy formula. Furthermore, the remaining step of joining the two dS/dS sectors
by path-integrating over the metric at the central slice was not taken in [1, 2].

In this section we present more details of a prescription which provides a more direct
count of microstates for the dS entropy as described above. Instead of joining the T T̄ and
T T̄ + Λ2 trajectories at λ/L2 →∞, we join them at a horizon — the ∆ = c/6 (HP) BTZ
horizon to the dS static patch horizon. That is, we bring in the boundary on the AdS side,
stopping at the value of λ/L2 for which the Dirichlet wall skirts the horizon of the HP
black hole. The patch captured by the near horizon region of the BTZ HP black hole is
indistinguishable from the near-horizon region of the de Sitter static patch. We start the

12Interestingly, this issue does not arise for the case where the boundary theory lives on dS2 [1], which
can be similarly understood on both sides of the duality.

– 13 –



J
H
E
P
0
7
(
2
0
2
2
)
1
4
0

T T̄ + Λ2 deformation from this value of λ/L2, and move the boundary back out, obtaining
instead the dS static patch. This deformation uses the opposite sign of the square root
compared to [1, 2], since the bulk patch we formulate is on the other side of the boundary.
The full static patch is obtained as a region bounded by a small cylinder at the pole (the
region outside the cylinder).

3.1 Energy levels beyond ∆ ' c/6

If we move off along the T T̄ + Λ2 trajectory starting at some nonzero value y0, the dressed
energy levels now take the form

E = 1
πy

(
1∓

√
η + y

y0
(1− η)− 4π2y

(
∆− c

12

)
+ 4π4y2J2

)
, (3.1)

for states accessible at the level of pure gravity, where we have fixed the integration constant
C1 of (2.10) in terms of the joining point y0. If we kept the same branch of the square root,
this formula would be manifestly continuous for all energy levels and all angular momenta,
since the η dependence drops out at y = y0. However, the pressure component is not
continuous in this case.

We want to require continuity of the dressed energy for the entropically dominating
HP level ∆ = c/6, J = 0. Also, since the Cardy count comes from an O(1) window [19]

c

6 < ∆ ≤ c

6 + δ (3.2)

with δ ∼ 1, we need to make sure that the corresponding dressed states stay real. These
requirements are satisfied if the matching point corresponds to the horizon of the BTZ
black hole with

∆∗ = c

6 + δ , (3.3)

namely
y0 = 1

4π2(∆∗ − c/12) . (3.4)

The minus branch from η = +1 is matched to the plus branch for η = −1 and this results
in a continuous stress-tensor across y = y0 for this level.

The resulting dressed energy for y > y0 and J = 0 becomes

Eη=−1 = 1
πy

(
1 +

√
−1 + 4π2y

(
∆∗ −

c

12 + (∆∗ −∆)
))

. (3.5)

The upper limit ∆ = ∆∗ gives a stress tensor that matches continuously by construction at
y = y0. For the remaining states in the window (3.2) there are 1/c-suppressed discontinu-
ities in the stress-energy.13 Therefore the Cardy entropy is not modified at leading order in
c. States with ∆ > ∆∗ have complex dressed energies at y = y0; they are truncated from
the spectrum. We focused here on J = 0, but it was shown in [18] that nontrivial spins do
not change the basic structure of the spectrum and entropy count.

This achieves our goal, providing an explicit microstate count for the de Sitter entropy
in terms of dressed BTZ black hole states with real dressed energies.

13These states translate into particle states with O(1) negative masses, corresponding to small conical
excesses which are degenerate with 1/c corrections including quantum effects.
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φ

Λ3
> 0

Λ3
< 0

y > y0y = y0y < y0

Figure 2. A schematic of a time slice of the bulk dual for dressed ∆ < c/6 states. The spatial
geometry piecewise forms a cone. A domain wall sits between bulk regions with different signs of
Λ3. Deforming with T T̄ + Λ2 to y > y0 has the effect of increasing the volume of the positive-Λ3
domain. The radius of the internal circle decreases away from the wall at y = y0 on both sides,
unlike in the diagram.

3.2 The sparse light spectrum (subleading at large c)

Consider for completeness now the dressed ∆ < c/6 states. These are sparse in the holo-
graphic seed CFT and correspond to model-dependent particle states in the bulk theory.
In the T T̄ part of the trajectory, when we deform until y = y0 (2.27) we reach the horizon
of the ∆ = c/6 black hole states. As such, in the case of the ∆ < c/6 states we do not
reach the particle position before moving out with T T̄ + Λ2. Thus on the gravity side,
these states entail a domain wall between bulk regions with Λ3 < 0 and Λ3 > 0. We
very schematically depict a time-slice of this model-dependent state in figure 2. However,
in order to capture that accurately, one would require additions to the trajectory going
beyond pure gravity (building from the results in [11]).

3.3 Lazarus states: ∆ > c/6 at large y

An interesting note regarding the formula (3.1) is that the energies are real for

∆ < ∆max ≈
c

4 −
1

4π2y
. (3.6)

For y = y0, the r.h.s. is c/6, as required by consistency with the previous discussion. But
the value of ∆max increases with y.

This means that as we increase y to y0, flip η and continue along the trajectory, many
states with ∆ > c/6 go complex and then become real again — they are resurrected, as in
the Biblical story of Lazarus. We do not currently have a proposed bulk interpretation for
these states. Of course, if we maintain unitarity throughout this process by restricting the
theory to its real spectrum at every step, there is no reason to include them again.

4 Modular behavior and a role for the Hawking-Page transition

The dressed ∆ ' c/6 band of energies accounting for the microstates has a special status
in the seed CFT: this energy level corresponds to the Hawking-Page transition [15, 40]. In
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this section, we note that the role of these microstates could be motivated starting from
the original trajectory [1, 2] (reviewed in section 2.3.1) and applying a remnant of modular
invariance in our system.

We may work in a canonical or microcanonical ensemble, with fluctuations suppressed
at large c. In the gravity variables, these are spelled out in the Brown-York papers [41]
and [42]. Consider a partition function for a two-dimensional theory on a torus of size L×β.
For simplicity, let us set the spin to 0 and take the sides of the torus to be orthogonal. The
modular S-transformation takes this torus to one of dimensions β×L. This is a symmetry,
due to the fact that there is no special choice of time on this Euclidean torus,

Zλ(L, β) = Zλ(β, L). (4.1)

This trivial property, which is just a special case of the diffeomorphism-invariance of the
theory, is called S-invariance.14 As the deformation (2.1) is diffeomorphism-invariant, we
expect it to also be S-invariant, at least before discarding the complex energy levels (at
which point the theory reduces to ordinary 0+1-dimensional quantum mechanics). In fact,
even restricting attention to the real energy levels leaves us with a residual S-invariance as
follows.

In large c field theories with a sparse spectrum, for β sufficiently close to L, the partition
function takes the form

logZ ' max {−βEvac(L) , −LEvac(β)} (4.2)

to leading order at large c [18]. Starting from this seed CFT, the T T̄ and T T̄ + Λ2
deformations proceed energy level by energy level [1, 2, 4]. Clearly, the first term dominates
if L < β and the second if L > β.

It is interesting to consider the bulk dual corresponding to the two terms. To do so,
we have to embed the torus into the Euclidean version of the static patch metric (2.20)
(where the Euclidean time τE is constrained to have a periodicity of 2π` by smoothness).
From the bulk metric, an r = rc surface is a torus of dimensions 2πrc × 2π

√
`2 − r2

c . By
the matching conditions (2.15), this constrains the boundary modular parameter to be

(β/L)2 = y

y0
− 1. (4.3)

So we see that, unlike a standard two-dimensional theory, the modular parameter and the
coupling cannot be varied independently.15

In the recent work [14], the second term of (4.2) in the T T̄ + Λ2 deformation, in the
limit β/L→ 0, accounts for the leading (and first subleading) contribution to the Gibbons-
Hawking entropy. So, let us restrict attention to the second term, where the contractible

14In some of the literature, the S-transformation is defined not just as a diffeomorphism but as a diffeo-
morphism followed by a rescaling L × β → L × L/β, following the CFT literature. That is a symmetry
if we also take λ → λ/(β/L)2. The final answers don’t depend on which symmetry we work with. See
e.g. [43–45] for previous studies of modular properties of T T̄ deformed theories.

15This is the case if we restrict to global dS3. More generally, we may allow conical deficits, in which
case (4.3) becomes an inequality — owing to the fact that conical excesses are not allowed. This is still
surprising from the two-dimensional point of view.
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cycle in the bulk is identified with the time cycle in the boundary. Assuming then that
β < L, we can write (4.2) as

logZ|β<L ' −LEvac(β) = SCardy(∆ = c/6)− βE∆=c/6(L) (4.4)

with Evac given by the dressed energy (2.21) with ∆ = 0, and E∆=c/6 the T T̄ + Λ2 dressed
energy (3.1) corresponding to the cosmic horizon patch. The crucial second equality follows
from (4.3). A proof of (4.4) is explained in more detail in appendix C.

Note that Evac is the vacuum energy in the trajectory of [2] (discussed in section 2.3.1),
whereas E∆=c/6 is an energy in the new trajectory defined in section 2.3.2. In section 2,
these two trajectories were introduced merely as two versions of the T T̄ + Λ2 theory, but
now we see that the partition function somehow puts them in the same theory, as two
different sectors. The vacuum state in the old section 2.3.1 trajectory seems to be mapped
to the ∆ = c/6 state in the new section 2.3.2 trajectory. To be clear, in this section we have
not allowed arbitrary energies to appear — thanks to the constraint (4.3). In that sense, we
have discussed a one-dimensional theory which has only certain states and cannot have full
modular S-invariance. However, because of the large c thermodynamic limit, the partition
function in the CH phase is dominated by states with ∆ ' c/6; thus it is reasonable for the
vacuum to map to only this window of states in some remnant of S-invariance that shows up
in a partition function constrained by (4.3). Thus, demanding that the theory defined by
the energy levels in [2] satisfy this constrained version of S-invariance automatically implies
that the theory also contains energy levels corresponding to the Gibbons-Hawking entropy.

This is analogous to the Hawking-Page transition in AdS spacetime. For the Cosmic
Horizon patch, considered in Euclidean signature, the thermal circle shrinks smoothly in
the interior (at the horizon). The complementary Pole Patch has the spatial circle shrinking
smoothly at the pole. On the gravity side, we have defined a Dirichlet boundary condition
that the boundary be a torus of given dimensions and the path integral is a sum over all
3d manifolds that satisfy this boundary condition. So, we find

logZ = −min(IP , ICH) = −βL
πλ

min
{

1− β

L
, 1− L

β

}
(4.5)

where IP and ICH are the classical Euclidean actions for the Pole and Cosmic Horizon
patches. We supply the details of this calculation in appendix B. We see explictly that the
pole (CH) saddle dominates when β > L (β < L).

In the way that the two saddles correspond to a choice of contractible boundary cycle,
the role of the two terms here is the same as the standard Hawking-Page transition in
AdS/CFT. However, there is an important difference: in the present case we don’t have a
tower of energy levels, as shown by our energy formula. To see that this is consistent with
the formulas above, we merely have to take the β → 0 limit of (4.5) to find the dimension
of the Hilbert space [46]. We find that the action approaches 1/(π√y0y) =

√
c/(3y).

Finally, let us note that we may formulate a thermofield double state of two copies of
our system,

|TFD〉 =
∑
n

e−βEn/2|En,L〉|En,R〉 (4.6)
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r = 0
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=
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Figure 3. The two phases of the doubled system, including the entangled cosmic horizon patches
in the right panel. In that case, the upper and lower triangles should be reconstructable by bulk
evolution. One may treat these patches as conditioned on an observer at the Dirichlet wall bound-
ary, or alternatively use them as building blocks, joining these patches together at their common
boundary, integrating over its geometry, to obtain global dS3 with its symmetries. It would be
interesting to connect the full nonlinearity of the deformed theory as a function of the fundamental
seed CFT variables to the notions of hyper-scrambling and complexity suggested recently in [47, 48].

whose norm is Z(β). The corresponding bulk dual is as in figure 3. Note however that,
because of (4.3), we cannot describe the CH patch with a boundary arbitrarily close to the
poles in the canonical ensemble. This patch was, however, formulated above in section 2–3
in the microcanonical ensemble, leading to our microstate count for arbitrary y ∈ (y0,∞).
In the canonical ensemble, on the other hand, since this saddle only dominates when β < L,
we find that the boundary of the CH patch must satisfy

y < ymax,CH = 2y0 = 6
cπ2 ⇒ r2

c >
`2

2 . (4.7)

Interestingly, since this is the limit β = L, the boundary of the pole patch must satisfy
r2
c < `2/2 for the dominant contribution in the canonical ensemble.

5 An alternative deformation with a Hagedorn transition

In this section, we will explore another version of the T T̄ + Λ2 deformed CFT which again
makes use of the freedom to choose the integration constant and branch of the square
root in the energy formula (2.10). This version will exhibit a Hagedorn transition at the
would-be Hawking-Page transition point β = L, leading to different physics above that
scale. This version agrees with the above prescription in section 3 for the microstates of
interest — at least in the near-horizon regime, — but rather than turning the higher levels
complex (so dropped in a unitary theory), it prescribes a high-energy spectrum that leads
to a Hagedorn divergence in the naive partition function above the dressed ∆ = c/6 energy
level. It may be that this Hagedorn behavior similarly screens the system from unphysical
higher energy levels — indeed in the fundamental string version of a Hagedorn transition,
there is a winding string condensate that has been argued to reduce the number of degrees
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of freedom in the system [49]. In this work we will not pursue this transition further,
returning our attention to the microstates captured in the prescription of section 2–3.
The simplest way to think about this new theory is to imagine following the steps of the
matching in (2.22)–(2.25) that related the dS3 vacuum to the rh = ` BTZ black hole, but
for a black hole with rh > `. The only role that the precise value of rh played in the
matching above was in ensuring that on the dS side the horizon had the right area —
which is fixed by the global smoothness of the solution, So, the cost we pay for increasing
rh on the BTZ side is to introduce a pair of conical excesses at the poles of dS; the Penrose
diagram remains identical to that in figure 1.

We find for the energies

E = 1
πy

{
1 +

√
−1 + 4π2y

(
∆− c

12

)
+ 4π4J2y2

}
. (5.1)

In terms of a trajectory, this corresponds to flipping the value of η at a state-dependent
value

y0 = 1
4π2(∆− c/12) . (5.2)

The bulk description of these states in the case J = 0 is the patch

ds2 = −
(

1− ρ2

`2

)
dτ2 + dρ2

1− ρ2

`2

+ ρ2dφ2, ρ ∈ [ρc, `] , φ ∼ φ+ 2πµ, (5.3)

where

ρc = `

µ

√
3

cπ2y
= L

2πµ, µ = 1√
(4π2y)(c/12)− (β/L)2 . (5.4)

The parameter µ, the weight of the conical defect, can be fixed by calculating the Brown-
York stress tensor, giving

∆− c

12 = c

12µ
2

(
∆ >

c

12

)
. (5.5)

For ∆ > c/6, this would correspond to a conical excess sourced at ρ = 0. By increasing
∆, this would formally give an arbitrarily negative mass source at this point in the bulk.
The reason this is not an out-and-out inconsistency is that these negative-mass sources
are outside the patch described by our putative boundary theory. Regardless, since our
interest is a theory of dS3 we would hope that they are excluded in some fashion.

As it happens, this may very well be the case. To see this, let us ask whether there
is any reason to consider this alternative theory at all, given the double strangeness of
a state-dependent y0

16 and conical excesses. The answer is that these conical excesses
naturally arise when trying to extend the considerations of section 4 beyond boundary
modular parameters satisfying the global dS3 constraint (4.3).17 Happily, studying this

16We should clarify that this is an aesthetic problem; a theory with the above energy levels is a perfectly
valid solution to the flow equation. It is also connected to the seed CFT in a novel and interesting way.

17The weight of the conical singularity in the canonical ensemble is

µ2 = 1
(y/y0)− (β/L)2 .
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partition function further reveals the existence of a Hagedorn transition that intervenes
before these naive (and problematic) states enter.

Indeed, let us check the Hagedorn temperature for the naive spectrum (5.1). The
partition function takes the form18

Z(β, L) =
∑
∆
ρ(∆) exp(−βE/L) (5.6)

where in this expression ρ(∆) is the number of states at the energy level 2π
L (∆ − c

12) in
the seed theory (this number stays constant throughout the deformation at the level of
pure gravity). In order to locate the Hagedorn transition temperature, we must check
convergence of this expression. For fixed deformation parameter y and a given β, the
question of convergence is determined by the behavior of the summand (or integrand in
a continuum treatment) at large ∆, where the density of states take the Cardy form (as
it does for all levels starting at ∆ = c/6), and where the ∆ term inside the square root
dominates in the energies (5.1). So the summand/integrand boils down to

exp

2π
√
c

3

(
∆− c

12

)
− 2β

L

√
∆− c

12
y

 (5.7)

meaning that there is a Hagedorn transition,

Z <∞ when β

L
>
β

L

∣∣∣∣
Hagedorn

= π

√
cy

3 =
√
y

y0
. (5.8)

Since we don’t have the constraint (4.3) in this case, this system exhibits a Hawking-
Page transition at

ICH < IP when β

L

∣∣∣∣
Hawking−Page

< 1. (5.9)

Since we want to describe the CH patch, we need to check that the inequality (5.8) is
consistent with this one. Clearly, the answer to this question depends on y. In the trajectory
defined here, y ranges from y0 where we switch to the T T̄ + Λ2 part of the trajectory, to
some yfinal which we will take to be state-independent.

First, note that if we took yfinal →∞ (to capture the full static patch with identifica-
tions) it would lead to a vanishing Hagedorn temperature. To avoid this, let us consider a
yfinal which is common to all levels, and as small as possible given that. This is a yf which
is equal to the y0 value for the ∆ = c/6 level,

yfinal ≡ y0 = 1
4π2( c6 −

c
12) = 3

cπ2 (5.10)

and we find
β

L

∣∣∣∣
Hagedorn

= π

√
c yfinal

3 = π

√
c y0

3 = 1 = β

L

∣∣∣∣
HP

. (5.11)

18The density of states is the Cardy density of states in terms of the seed dimension ∆; this can be
checked by an inverse Laplace transform of ICH on a background that includes these excesses.
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As a result, the partition function of this version of a 2d T T̄+Λ2 trajectory simply does not
converge above the HP=Hagedorn transition, indicating a phase transition.19 This phase
transition is complicated in the analogous case of fundamental string theory [49], but it
may provide a self-censorship of the problematic high energy spectrum (5.1).

Further, since we are interested in describing the CH patch with no conical excesses,
we must compare with the global dS3 condition (4.3). Clearly,

β

L

∣∣∣∣
Hagedorn

=
√
y

y0
>

β

L

∣∣∣∣
global

=
√
y

y0
− 1, (5.12)

and so the partition function doesn’t converge in the requisite regime. It is of course
possible that the scale of new physics is at high enough temperature that the global dS3
regime isn’t screened, but we cannot check this with the tools at our disposal.

Thus, we are led to focus on the prescription in section 2–3 accounting for the mi-
crostates as dressed ∆ = c/6 levels (related to modular transformations and the Hawking-
Page transition as summarized in section 4).

6 Discussion

In this work, we exhibited a concrete set of microstates accounting for the Gibbons-Hawking
entropy SGH . The microstates, a band of energy levels obtained as dressed ∆ ' c/6 states
in the seed CFT, are accessible at the level of pure gravity, which is formulated by the
T T̄ + Λ2 deformation. This theory also reconstructs the de Sitter geometry as in [1, 2].
The finiteness of SGH fits with the finiteness of the real dressed spectrum of the theory.
The results extend to corrections such as those treated in [14, 16] as a dressing of the
corresponding AdS/CFT results in [34]; it will be interesting to connect also to recent
studies such as [36, 50] identifying microphysical degrees of freedom from another approach,
as well as top-down methods such as [32].

The theoretical control we have in this work is based on the universality and solvability
of the T T̄ + Λ2 theory, in the same sense as in the original T T̄ deformation [3, 4, 28]. This
universal and solvable theory captures the physics that is available in the pure gravity sec-
tor. A full accounting of finer structure requires additional generalizations, as introduced
e.g. for bulk scalar fields in [11]. Even at the level of pure T T̄ and T T̄ + Λ2, although
calculable in terms of the dressed energy spectrum, these theories remain somewhat mys-
terious. We may regard the holographic matching of energies and entropies — even in the
case of bulk de Sitter spacetime — as ample motivation to improve our understanding of
this space of deformed theories. It explicitly captures essential features of the physics, but
it may have limitations in its regime of validity; we comment on this further below in the
context of late-time physics in cosmological quantum gravity.

19Indeed, this value of yfinal is minimal: from this analysis, the partition function converges for β
L
≥

π
√

cλ
3L2 . Since we used S-invariance in the approach of this section, we also need to demand this inequality

under the exchange β ↔ L, L
β
≥ π
√

cλ
3β2 . This last inequality requires c π2

3 y ≤ 1 ⇒ y ≤ y0.
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6.1 Remarks and future directions

Finally, in the remainder of this section we will comment on additional aspects of our
theory and future directions.

6.1.1 Other dimensionalities

We have exhibited the Gibbons-Hawking microstates specifically for a dS3 bulk theory in
the bulk of this paper. At least at large N , similar methods apply in other dimensionalities:
the Λ2 deformation generalizes to a similar Λd contribution to the appropriate analogue
of the T T̄ deformation, providing a building block for formulating dSd+1. Analogues of
the T T̄ deformation in other dimensionalities have been treated in a number of works
including [11, 51–54].

In all dimensionalities it was noted in [15] that black holes at the Hawking-Page tran-
sition at large c account for the Gibbons-Hawking entropy for de Sitter with the same
horizon size; moreover at the HP level the warp factor in the AdSd+1 geometry matches
that of dSd+1, with both foliated by dSd slices. The static patch Hamiltonian is the mod-
ular Hamiltonian for the dS/dS correspondence [1, 2, 39], so the calculations are closely
related. It would be interesting to analyze this further.20 It is particularly important to
study the case of dS4 and incorporate the physics of black holes in de Sitter, a topic studied
recently in e.g. [56, 57] with an eye toward holography.

6.1.2 Chaos and complexity

It was recently suggested in [47] that a dual to de Sitter requires a hyper-scrambling behav-
ior, and must generate rapidly growing complexity.21 To the extent that this follows from
the gravity-side calculation given there and in [48], this was connected to the Hamiltonian
needing to be non-k-local in terms of the fundamental degrees of freedom. This means that
at fixed number of degrees of freedom, the Hamiltonian must contain more than a certain
monomial power of the fundamental degrees of freedom [47].

In this regard, let us note that the T T̄ + Λ2 deformation is irreducibly nonlinear
(and hence non-k-local) in terms of the seed CFT degrees of freedom. With η = −1
(corresponding to nonzero Λ2), the square root formula for the dressed energies — as well
as the dressed classical action and Hamiltonian — does not admit an expansion in the CFT
variables. (During the earlier T T̄ segment of the trajectory, the Taylor expansion of the
square root is available, and has radius of convergence 1, becoming highly nonlinear as we
approach the matching point.)

Since the T T̄ + Λ2 theory embodies the geometry of de Sitter space, having passed
significant and detailed tests in matching the Brown-York energies and entanglement en-
tropies [1, 2], it would be interesting to probe it further using these ideas about scrambling
and chaos. This approach is versatile and applies to truly large-radius gravity, e.g. for the
seed CFT being the D1-D5 system, although with additional elements beyond T T̄ +Λ2 [11]
required for approximate bulk locality.

20Including the question of the fate of modular invariance properties — which played a role at intermediate
steps in our analysis — in higher dimensions [55].

21The infinite complexity of de Sitter surprising nobody who has worked on the subject.

– 22 –



J
H
E
P
0
7
(
2
0
2
2
)
1
4
0

However, in this analysis we should take into account the subtleties with arbitrarily
late time physics in cosmological quantum gravity. We will comment on that briefly in
section 6.1.4.

6.1.3 Joining the cosmic horizon and pole patches: global bulk dS and its
symmetries

As described above, the culmination of the new trajectory we defined here is to move
the boundary of the cosmic horizon patch to the pole. This yields in the bulk the full
static patch, with boundary at the observer position. This may be viewed as a formulation
conditioned on such an observer. But it is also possible to join together the cosmic horizon
and pole patches, identifying their shared boundary and path integrating over its geometry.
In the doubled system depicted in figure 3, this joined system covers global dS3. As such,
it should contain the full symmetries of global de Sitter at the level of the combined
T T̄ + Λ2 systems. Understanding the re-emergence of the full symmetry group is an
important direction, at the appropriate level of approximation (given the possibility of
non-perturbative decays of de Sitter spacetime).

6.1.4 Late times

There are strong indications that de Sitter eventually decays at late times, a manifest
feature of string compactifications (including those built by uplifting AdS/CFT models [32,
58]) since the effective potential decays to zero at weak curvature. This is not immediately
evident in the T T̄ + Λ2 theory, which is solvable at finite c. But this is not a contradiction:
the details of the decay arise in the bulk scalar sector of the theory, which is model-
dependent and involves the further generalization of T T̄ formulated e.g. in [11]. Both
the covariant entropy bound [59] and string-theoretic counts of microphysical degrees of
freedom [60] indicate that the dimension of the Hilbert space relevant to the full decaying
system increases, asymptotically approaching infinity. It would be interesting to extend
the T T̄ + Λ2 approach to include this late-time physics.

Even before considering this more general late-time behavior, it is interesting to con-
sider situations where approximately de Sitter expansion does not extend arbitrarily far in
the past. For example, depending on the quantum gravitational resolution of spacelike sin-
gularities, it may happen that consistent histories exist which do not include the de Sitter
neck (where its spatial sphere reaches its minimal value at the moment of time symmetry),
and the system instead starts from a spacelike classically singular initial condition. Such
cases, if they are consistent in quantum gravity, may require additional states with large
entropy.22

In any case, for the present work we focused on the observer patch in dS3, whose
finite entropy (1.1) precisely matches the real spectrum of our simple solvable T T̄ + Λ
deformation. This motivates further work in many directions.

22Recent works exploring interesting aspects of the particular case of no boundary wavefunctions, and
their implications for de Sitter entropy include [61] and [62].
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A Conventions

We consider the following conventions, in Euclidean signature (euclidean signs as in [10]):

Tµν = 2
√
g

δ

δgµν
logZ

T T̄ ≡ 1
8(TabT ab − (T aa )2)

∂

∂λ
logZ = −2π

∫
d2x
√
g 〈T T̄ 〉+ 1− η

2πλ2

∫
d2x
√
g

Tµµ = − c

24πR
(2) − 4πλT T̄ + 1

πλ
(1− η)

E = EL = (−T ττ )L2 = L2

πλ

1∓
√
η − 4π2 λ

L2

(
∆− c

12

)
+ 4π4J2 λ

2

L4


∆ = h+ h̃ , J = h− h̃ . (A.1)

Here L = 2πr is the length of the circle, the energy density ρ = −T ττ , and λ has energy
dimension −2. We will often employ the dimensionless combination

y = λ

L2 , (A.2)

which transforms under modular transformations. In particular, the S-transformation hav-
ing L explicit is just β ↔ L, where β is the length of the thermal circle; so y → L2

β2 y.
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In Lorentzian signature (−,+) this is:

Tµν = − 2√
−g

δ

δgµν
logSeff

T T̄ ≡ 1
8(TabT ab − (T aa )2)

− ∂

∂λ
Seff = −2π

∫
d2x
√
−g 〈T T̄ 〉+ 1− η

2πλ2

∫
d2x
√
−g

Tµµ = − c

24πR
(2) − 4πλT T̄ + 1

πλ
(1− η)

E = EL = (+T ττ )L2 = L2

πλ

1∓
√
η − 4π2 λ

L2

(
∆− c

12

)
+ 4π4J2 λ

2

L4


∆ = h+ h̃ , J = h− h̃ . (A.3)

where again L = 2πr is the length of the circle, λ has energy dimension −2, and we will
define y = λ/L2. The energy density in Lorentzian signature is now ρ = +T ττ .

The energies in the seed CFT are

E0 = E0L = 2π(∆− c

12) . (A.4)

B Euclidean actions for the Pole patch and the Cosmic Horizon patch:
exchange of dominance at β = L

In this appendix, we compute the Euclidean gravitational actions for the pole patch and
the Cosmic Horizon patch, and show that the two saddles switch dominance at β = L.

The Euclidean version of the action (2.11) is

IE = − 1
16πGN

∫
M3

d3x
√
g

(
R+ 2

`2
η

)
− 1

8πGN

∫
∂M3

d2x
√
g

(
K − 1

`

)
. (B.1)

The Pole patch metric with τE = iτ is

ds2
3 =

(
`2 − r2

`2

)
dτ2
E +

(
`2

`2 − r2

)
dr2 + r2dφ2,

with
r ∈ [0, rc] , τE ∼ τE + βc, φ ∼ φ+ 2π (B.2)

where

rc = `

√
3

cπ2y
= L

2π , βc = β√
1− 3

cπ2y

= β√
1− r2

c
`2

. (B.3)

From the near-horizon behavior derived above in (2.25) we see that βc = 2π`.
The extrinsic curvature at the boundary r = rc is

KτEτE = −rc
`2

√
1− r2

c

`2
, Kφφ = rc

√
1− r2

c

`2
, K =

1− 2r2
c

`2

rc

√
1− r2

c
`2

(B.4)

√
g

(
K − 1

`

)
= 1− 2r2

c

`2
− rc

`

√
1− r2

c

`2
. (B.5)
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The first term in (B.1) is

− 1
16πGN

∫ βc

0
dτE

∫ 2π

0
dφ

∫ rc

0
dr

4r
`2

= − βc
4GN

r2
c

`2
(B.6)

and the second term in (B.1) is

− 1
8πGN

∫ βc

0
dτE

∫ 2π

0
dφ
√
g

(
K − 1

`

)
= − βc

4GN

1− 2r2
c

`2
− rc

`

√
1− r2

c

`2

 . (B.7)

Adding the two terms, we get

IPole = 1
4GN

β√
1− r2

c
`2

rc
`

√
1− r2

c

`2
−
(

1− r2
c

`2

) = βrc
4GN`

(
1−

√
`2

r2
c

− 1
)
. (B.8)

Using the dictionary (2.15) and (B.3), we get

IPole = βL

πλ

1−

√
cπ2λ

3L2 − 1

 = βL

πλ

1−

√
cπ2y

3 − 1

 = βEvac(L) (B.9)

for the pole patch. Note that, when the pole patch can be embedded in global dS3, (4.3)
gives us IP = βL(1−β/L)

πλ .
The Cosmic Horizon patch captures the other side of the Dirichlet wall. Here we use

a different coordinate notation (r → ρ) to distinguish our two cases.

ds2 =
(
`2 − ρ2

`2

)
dτ2
E +

(
`2

`2 − ρ2

)
dρ2 + ρ2dφ2

with
ρ ∈ [ρc, `] , τE ∼ τE + βc, φ ∼ φ+ 2π (B.10)

where

ρc = `

√
3

cπ2y
= L

2π , βc = β√
1− ρ2

c
`2

. (B.11)

For the CH patch, the extrinsic curvature at ρ = ρc has different signs from (B.4):

KτEτE = ρc
`2

√
1− ρ2

c

`2
, Kφφ = −ρc

√
1− ρ2

c

`2
, K =

−1 + 2ρ2
c

`2

ρc

√
1− ρ2

c
`2

(B.12)

√
g

(
K − 1

`

)
= −1 + 2ρ2

c

`2
− ρc

`

√
1− ρ2

c

`2
. (B.13)

The first term in (B.1) for the CH patch is

− 1
16πGN

∫ βc

0
dτE

∫ 2π

0
dφ

∫ `

ρc
dρ

4ρ
`2

= − βc
4GN

`2 − ρ2
c

`2
(B.14)
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and the second term is

− 1
8πGN

∫ βc

0
dτE

∫ 2π

0
dφ
√
g

(
K − 1

`

)
= − βc

4GN

−1 + 2ρ2
c

`2
− ρc

`

√
1− ρ2

c

`2

 . (B.15)

Adding the two terms,

ICH = βc
4GN

−ρ2
c

`2
+ ρc

`

√
1− ρ2

c

`2

 = βρc
4GN`

1−

√(
1− ρ2

c

`2

)−1
− 1

 . (B.16)

Again, using the dictionary (2.15) and (B.11) with the relation (β/L)2 = y/y0− 1, we get:

ICH = βL

πλ

(
1−

√
cπ2y

3(β/L)2 − 1
)

= βL

πλ

1−
√
cπ2λ

3β2 − 1

 = LEvac(β). (B.17)

where we used the relation:(
1− ρ2

c

`2

)−1

= y

y − y0
= y

y0(β/L)2 .

Again, in the case in which the bulk can be embedded in global dS3, we find by (4.3) that
ICH = βL(1−L/β)

πλ .
From (B.9) and (B.17), we can see that the Pole patch dominates for β > L for which

(IPole < ICH), and the CH patch dominates otherwise.

C Proof of relationship (4.4)

To prove (4.4), we first recall that

SCardy(∆ = c/6) = 2π
√
c

3

(
c

6 −
c

12

)
= πc

3 = 1
πy0

−βE∆=c/6(L) = −βL
πλ

1 +

√
−1 + π2c

3 y

 = −β/L
πy

(
1 +

√
−1 + y

y0

)

−LEvac(β) = −βL
πλ

1−
√
−1 + π2cy

3
L2

β2

 = −β/L
πy

1−
√
−1 + y

y0

L2

β2

 .

Using (4.3), we can rewrite these as:

SCardy(∆ = c/6) = 1
πy

y

y0
= 1
πy

(
1 + β2

L2

)

−βE∆=c/6(L) = −β/L
πy

(
1 + β

L

)
−LEvac(β) = −β/L

πy

(
1− L

β

)
= 1
πy

(
1− β

L

) (C.1)
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Now, from (C.1), we have that

SCardy(∆ = c/6)− βE∆=c/6(L) = 1
πy

(
1 + β2

L2 −
β2

L2 −
β

L

)
= 1
πy

(
1− β

L

)
= −LEvac(β),

(C.2)
which is (4.3).
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