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1 Introduction

Non-simply connected Calabi-Yau threefolds play a central role in many studies of string
theory compactifications. In heterotic string model building, a non-trivial fundamental
group is needed to allow for the possibility of Wilson line breaking of Grand Unified
groups [1, 2] (see [3–11] for recent examples with the exact spectrum of the minimal su-
persymmetric standard model). This is especially important given work which shows that
other approaches to achieving the standard model gauge group are hard to realize [12]. In
many other applications, non-simply connected Calabi-Yau threefolds are used simply be-
cause, due to their construction via quotients, they often have fewer moduli. This leads to
more tractable computations in providing concrete examples of various physical phenom-
ena (see [13, 14] for some illustrative examples of this type). Unfortunately, non-simply
connected Calabi-Yau threefolds are rare in the known set of such manifolds. A set of 1695
such spaces associated to the complete intersection Calabi-Yau manifolds in products of
projective spaces (CICYs) was initially studied in [15] with a complete classification being
provided in [16]. There are 16 cases with non-trivial fundamental group in the set of hy-
persurfaces in toric varieties [17] and two more cases related to this data set were isolated
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in [18]. These are the only known examples related to these two constructions, which are
the data sets most commonly used in the physics literature.

In this paper we will classify a new set of non-simply connected Calabi-Yau threefolds.
This will be achieved by classifying a set of discrete, freely acting symmetries on simply
connected Calabi-Yau manifolds, which can then be used to form a non-simply connected
and smooth Calabi-Yau quotient. The symmetries we have classified are available at this1

online database.
In [16], Volker Braun classified a particular set of freely acting symmetries on the CICYs

which give rise to smooth non-simply connected Calabi-Yau manifolds upon quotienting.
The CICYs were first introduced and classified in [19–23]. These threefolds can be described
in terms of a configuration matrix.

X =


Pn1 q1

1 q1
2 . . . q1

k

Pn2 q2
1 q2

2 . . . q2
k

...
...

... . . . ...
Pnm qm1 qm2 . . . qmk

 . (1.1)

Here, the left most column indicates that the Calabi-Yau manifold is being embedded in
an ambient space A = Pn1 × Pn2 × · · · × Pnm . The remaining columns of (1.1) describe a
set of k homogeneous polynomial equations, or defining relations, in the coordinates of the
ambient space, the common solution set to which is the Calabi-Yau threefold. The qij are
integers which specify the degree of the j’th defining relation in terms of the homogeneous
coordinates of the i’th ambient space projective factor. In [20] a classification of these
manifolds was given. A list of 7890 configuration matrices was provided (from here on
termed the ‘original CICY list’) such that any manifold of this type is described by at least
one of those matrices. All of the CICY threefolds are simply connected.

The set of symmetries of the CICYs classified in [16] were those which descended to the
Calabi-Yau from linear actions on the ambient space coordinates and defining polynomials
(a more precise definition will be given in section 2). Such symmetry actions are relatively
easy to control computationally, but they are not expected to be exhaustive in any sense.
In particular, it is clear that which such symmetries are manifested will depend upon the
configuration matrix. That is, the ambient space and polynomial equations being used to
describe the Calabi-Yau threefold. The same manifold can be described by many different
configuration matrices, both matrices within the original CICY list itself and matrices
which are not included therein. One would therefore expect that some extra symmetries of
these Calabi-Yau manifolds could be uncovered by studying different configuration matrices
than those presented in the original list.

One particular type of configuration matrix turns out to be particularly useful in
pursuing concrete computations of various geometrical quantities. A CICY X is termed
as ‘favorable’ if H1,1(X) is spanned by a basis of Kähler forms pulled back from the Pn

factors of the ambient space A. In many physical applications, a complete knowledge of
divisor classes on X is required in order to sufficiently control the geometry to compute

1http://www1.phys.vt.edu/∼grayphys/CyclicSyms.html.

– 2 –

http://www1.phys.vt.edu/~grayphys/CyclicSyms.html


J
H
E
P
0
7
(
2
0
2
2
)
1
1
6

the quantities of interest. Favorable manifolds are typically used in such situations and, for
example, the majority of the example applications cited above were based upon threefolds
of this type. It should be noted that, frequently, properties of a Calabi-Yau quotient are
computed using the geometry of its covering space. Thus we are often interested in cases
where the covering space, as well as the quotient, are favorable.

For the configuration matrices given in the original CICY list [20]2 only 4896 out of
the 7890 configuration matrices are favorable. This restricts the set of manifolds that are
usable in many applications. In [24], favorable configurations were found for all but 48 of
the non-favorable CICYs presented in the original list. This was achieved using the concept
of ‘splitting’ of configuration matrices [25].

Consider starting with some configuration matrix with ambient space A. In the con-
figuration matrix we isolate one column c which will play the central role and denote the
rest of the columns, which will spectate through the splitting process, by the matrix C.
One can then split the original configuration matrix to obtain a new one as follows.[

A c C
]
−→

[
Pn 1 1 . . . 1 0
A c1 c2 . . . cn+1 C

]
. (1.2)

Here the columns ci must be chosen to obey the condition c = c1 + c2 + · · ·+ cn+1. As was
shown in [25], in general there is a conifold transition between the manifolds described by
the two configuration matrices given in (1.2), with the common point in moduli space being
a nodal variety with some number of singular points. The number of these singular points
can be determined by the difference in Euler characteristic between the two varieties. In
particular, if the Euler characteristic of the two CICYs is the same, then the common point
in moduli space is actually smooth and thus the manifolds have the same topology: they
are different descriptions of the same CICY. Such a split is called ineffective.

In [24], chains of ineffective splits were performed to generate favorable configuration
matrices for CICYs that are unfavorable in the original list. The essential idea is that, if the
splits are performed in the correct manner, because there are more ambient factors after a
split, additional divisors can descend from the ambient space. Sufficiently many splits can
result in a favorable configuration matrix. In what follows, we will refer to the resulting
list of configuration matrices as the ‘favorable CICY list’. For the 48 CICYs for which no
favorable configuration was given, it was shown that no chain of splittings can give rise to
such a description (alternative ways of controlling the divisors on X were given in those
cases). It should be noted that in [24] just one favorable configuration was isolated for each
CICY and others certainly exist. This is a point that we shall return to in section 3.

The freely acting symmetries, and thus non-simply connected Calabi-Yau manifolds,
that we will classify in this paper are those cyclic symmetries which descend from the
ambient spaces of the configuration matrices found in the favorable CICY list. We will
see that some symmetries on some manifolds that were found in [16], descending from the
ambient space of the original CICY list, are not manifest in the symmetries that descend
from the ambient space of the favorable CICY list. Likewise, we will find some symmetries

2A machine readable version of the CICY list can be found here: http://www-thphys.physics.ox.ac.uk/
projects/CalabiYau/CicyQuotients/Cicy_Quotients/Cicy_Quotients.html.
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in the favorable description which were previously unknown. Thus, in addition to providing
new non-simply connected threefolds, this investigation will give us a very rough first look
in to how many symmetries may have been missed in focussing on a single description of
each manifold in the original classification of [16].

The rest of this paper is structured as follows. In section 2 we review the rather
technical algorithm, developed in [16], for classifying the symmetries associated to a given
configuration matrix. In section 3 we will give some statistics concerning the symmetries
we have found and will also specify the format in which our results are presented in the
database associated to this paper.1 We will also make some remarks and provide some
examples in comparing our results with those of [16]. Finally in section 4 we conclude and
provide some suggestions for future directions of research. An appendix is provided con-
taining some useful technical formulae which are required in implementing the classification
algorithm.

2 Scanning algorithm

2.1 Symmetries from linear actions on ambient spaces

The set of discrete symmetry actions that we are going to study can be thought of as
combinations of the following components:

• Projective linear actions on the homogeneous coordinates of the ambient Pni ;

• Permutations of rows and columns of CICY configuration matrix;

• Projective linear actions on the defining polynomials.

In fact, in this work, we will restrict ourselves to cyclic groups Zn. In such a context
we can simply consider linear actions on the coordinates rather than projective linear ones.
The reason for this is that any projective linear action can be turned into a linear one
by the simple expedient of multiplying the matrices of the representation by constants.
Formally, for the cyclic groups, the second group cohomology vanishes and the Schur cover
of the group is the same as the group itself. Changing the representations matrices in
this manner does not physically modify the symmetry, due to the scale invariance of the
projective spaces and the invariance of the Calabi-Yau manifold under rescalings of the
defining relations.

The formal description of the group action. We will now follow the procedure
given in [16], for formally describing symmetries of the type just discussed. Let us begin
by considering how the action of the group G of interest permutes the rows and columns
of the configuration matrix. If G is a symmetry group of a certain Calabi-Yau manifold
X with configuration matrix C, then for any g ∈ G, the form of C should be invariant
after g’s action on the rows and columns. To formalize this, Braun defined a quadruple
(C,G, πr, πc), with elements defined as follows.

– 4 –
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• C is the data of the configuration matrix of the Calabi-Yau manifold, which can be
formally written as (di, cij , δj)1≤i≤m,1≤j≤k. Herem and k are integers which represent
the number of projective factors in the ambient space and the number of distinct
multi-degrees of defining polynomials of the CICY respectively. Each di represents
the number of homogeneous coordinates of the i-th projective space. The integers
cij give the degree of the j-th distinct column of the configuration matrix in terms
of the homogeneous coordinates of the i’th ambient space projective factor. Finally,
δj represents the multiplicity with which j-th distinct set of defining polynomial
multi-degrees appears in the configuration matrix.

• G is a finite order group which will act on the Calabi-Yau manifold.

• πr : G → Prow is a group homomorphism from G to the set of permutations of
elements of ~d, whose entries are the di defined above. It details how the group action
permutes the rows of the configuration matrix.

• πc : G→ Pcol is a group homomorphism from G to the set of permutations of elements
of ~δ defined above. It details how the group action permutes distinct columns of the
configuration matrix.

Given this notation, in order for the action of G to give a symmetry of X, we must
have that for every group element g ∈ G,

cij = cπr(g)(i)πc(g)(j). (2.1)

A quadruple (C,G, πr, πc) which obeys these conditions was termed a CICY group in [16].
It should be noted that once C,G and πr have been given πc is determined uniquely

by (2.1). Obtaining this uniqueness is the reason why the configuration matrix data is
presented in the above fashion, with multiple copies of same multi-degree defining relations
being denoted by a single column of cij and a multiplicity δj .

Now let us discuss how G acts on the homogeneous coordinates of X and also more
detailed aspects of the action on the defining relations. As we have seen above, a CICY
group can tell us how G can permute elements in the ~d and ~δ vectors. Elements related by
permutations in this manner form orbits of the action of G. To specify the action of G on
the coordinates and defining relations, one can then first specify the action on each orbit.
The full action is subsequently simply given by a direct sum of each of these component
pieces.

Following [16] we will use the concept of a π-representation for which we reproduce
the definition below. This concept will be used in detailing the transformation of both
homogeneous coordinates and defining polynomials.

A π-representation is a quadruple (G′, π,−→D, γ) where

• G′ is a finite order group, usually we will have that G′ = G.

• ~D = (D1, D2, . . . , Dm) is an ordered set of numbers Di. This ~D will be either ~d or ~δ
in our case.

– 5 –
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• π : G→ P is a group homomorphism from G to a permutation group P acting on ~D

defined above.

• For each Di ∈ ~D, we have a map γi : G → GL(Di,C). For any g ∈ G, γi has the
following property.

γπ(h)(i)(g)γi(h) = γi(gh) (2.2)

• Equation (2.2) implies that all the γi’s can assembled into the following matrix:

γ(g) = P (π(g), ~D)diag(γ1, . . . , γm). (2.3)

Here P (π(g), ~D) represents how π(g) permutes the elements in ~D vector.

Given this definition, a CICY group action is then defined to be a tuple (C,G, πr, γ, πc, ρ)
where the following statements hold.

• (C,G, πr, πc) is a CICY group.

• (G, πr, ~d, γ) and (G, πc, ~δ, ρ) are π representations.

The additional structure in the second bullet point above encapsulates the information
that the CICY group action contains beyond that present in the associated CICY group.
Specifically, the two π representations account for the action on the homogeneous coordi-
nates of the ambient space projective factors and also the action on the defining equations
not captured by the permutations of distinct multi-degrees appearing in the data of the
CICY group.

One key question that will arise in what follows is when a given set of defining relations
for a CICY are compatible with a given symmetry. Let us denote the combined homoge-
neous coordinates of a CICY by ~x and the defining polynomials by ~p. Then, we say that
~p is invariant under a CICY group action iff. the following condition is satisfied.

ρ−1(g)~p(γ(g)~x) = ~p(~x) ∀g ∈ G (2.4)

If we fix a CICY group (C,G, πr, πc) and a projective π-representation (G, πr, ~d, γ) acting
on the homogeneous coordinates, then the zero set of the defining polynomials ~p = 0 is
invariant if an only if there is a CICY action (C,G, πr, γ, πc, ρ) leaving the polynomials
invariant in the above sense.

Using orbits and characters to describe symmetries efficiently. If one tries to
enumerate the symmetries of the CICYs of the form discussed above by brute force, one
quickly sees that the numbers of possibilities involved are prohibitively large. However,
in [16], two tools were used to circumvent this problem and make enumerating the symme-
tries on the CICYs practically feasible. First, although the number of possible CICY group
actions is vast, they are built out of a smaller number of actions associated to individual
orbits of the π-representations (G, πr, ~d, γ). One can thus enumerate this smaller set of
possibilities and then later construct the representations of interest as simple Cartesian
products. Second, for many purposes, instead of specifying the detailed coordinate actions
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it is sufficient to encode the representations in terms of characters. In the next section, we
will describe how these two tools are used in the search algorithm to classify the symmetries
of interest. In this section, we simply introduce some of the technology necessary to follow
such an approach.

As discussed above, for a given π representation (G, πr, ~d, γ), πr will break ~d into
several orbits. The problem of finding representations of G on a single orbit can be solved
by using what is called induction, a process which we now describe.

Clearly, πr can only permute dis which are equal to each other. Therefore di will be a
fixed number on each orbit which we will denote as d below. For a single orbit indexed by
{1, . . . , n}, G will permute those indices in a certain way. There are some group elements
which act trivially on the first element in the orbit. These form the stabilizer of 1 and we
denote it as G1:

G1 = {g ∈ G | πr(g)(1) = 1}. (2.5)

Let us denote by γ1 the restriction of γ to the first projective factor. For a representation
γ of G, because G1 does not permute the first entry in our set at all, γ1’s restriction on
G1 is a representation of G1. Once we know γ1|G1 , it turns out that we can recover the
original representation γ of G on the whole orbit. We first fix g1 = 1, then for i = 1, . . . , n,
we choose gi such that π(gi)(1) = i. By using this set of group elements {g1, . . . , gn}, any
group element g can be factorized as:

∀g ∈ G, ∀ 1 ≤ i ≤ n, ∃h ∈ G1 : g = gπ(g)(i) ◦ h ◦ g−1
i . (2.6)

Since we choose g1 = 1, we have that γ1(g1) = 1d×d. Since each gi will map the first block
to the i-th block, we can, by a suitable choice of coordinates on the i’th block, choose
γ1(gi) = 1d×d as well. Now we can use (2.3) and (2.6) to derive the following.

γi(g) = γ1(gπ(g)(i))γ1(h)γ1(gi)−1 = γ1(h) ∀i = 1, 2, . . . , n (2.7)

Thus, given the representation γ1(h), and the permutations associated to the CICY group,
we can recover the full action of the form (2.3) on our orbit. This procedure is called
induction and γ thus obtained is denoted by γ = IndGG1γ1. So to summarize, we can
enumerate G’s representations on a single orbit by enumerating one block’s stabilizer’s
representations on that block, and then using induction.

A second key piece of technology in what follows is the use of characters. For semi-
simple representations, the character, a list of numbers where each element is the trace of
the representation matrix associated to each group element, is in one-to-one correspondence
with the representation itself up to isomorphism. Thus a lot of the information that we
require can be encoded in terms of characters, which are computationally efficient to work
with. In particular, the character of the induced representation IndGG1γ1 can be efficiently
obtained from the character of the representation of the stabilizer subgroup γ1. There
exists an inner product for characters, which is defined as:

〈χ, ψ〉 = 1
|G|

∑
g∈G

χ(g)ψ(g). (2.8)
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With respect to this inner product, for a group G and its subgroup G1, characters χ of G1
and characters ψ of G will satisfy:

〈IndGG1(χ), ψ〉 = 〈χ,ResGG1(ψ)〉. (2.9)

In this expression, if χ is the character of some representation γ1 of G1 then IndGG1(χ) is
the character of IndGG1γ1. In addition, ResGG1(ψ) is the character obtained by restricting ψ
to the subgroup G1. The data that can be obtained from this inner product is enough to
reproduce IndGG1(χ). In particular, simply evaluating (2.9) multiple times, once taking ψ
to be the character of each irrep of G, is enough information to reconstruct the complete
list of numbers IndGG1(χ).

So in general, without constructing explicitly the induced representation, we can get
the relevant characters associated to G by using characters associated to G1 from (2.9).
Therefore, by enumerating all of the characters of G1, we can enumerate all the associated
characters of G by using induction. From here it is a simple task to obtain the characters
of a full cartesian product group action.

2.1.1 An example

As an illustrative example, let us take G = Z4 and consider CICY number 7300 in the
standard list [20],2 whose configuration matrix is given below.

P1 1 0 1
P1 0 1 1
P1 0 1 1
P1 0 1 1
P1 1 0 1
P1 1 0 1


(2.10)

In this case, since the configuration matrix, C, has no repeated equation degrees, the above
matrix is also c. The ambient space of this CICY is P1 × P1 × P1 × P1 × P1 × P1. Since all
of the projective spaces in this ambient space are P1’s and since all of the entries in each
row are either 0 or 1, in principle all of the rows can be permuted with each other. Thus
Z4 should act as a permutation on the set {1, 2, 3, 4, 5, 6}. There are lots of choice for Prow
in such a case, but here we shall choose it to be generated by q = (13)(26)(45), and we
define πr to be induced by the map g → q where g is the generator of Z4. This basically
means that g will exchange row 1 and row 3, row 2 and row 6, row 4 and row 5. Given
this, g2 induces no permutation on the rows and the effect of the action of g3 will be the
same as that of g. After g’s action on the rows, the CICY configuration matrix becomes
the following. 

P1 0 1 1
P1 1 0 1
P1 1 0 1
P1 1 0 1
P1 0 1 1
P1 0 1 1


(2.11)
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By comparison of (2.10) and (2.11), we can see that if we choose πc to be induced by
g → (12), then g will interchange column 1 and column 2 of the above configuration which
will then be invariant under the action of g. Therefore, the (C,G, πr, πc) we have chosen
here form a CICY group as defined in the discussion around (2.1).

For the configuration matrix (2.10), we have that ~d = (2, 2, 2, 2, 2, 2) and ~δ = (1, 1, 1).
As an example of π representation, let us study the orbit {1, 3} in the above example.
We are thus interested in a G = Z4 symmetry acting on X = P1 × P1. If we denote
the elements of G by {1, g, g2, g3} then the stabilizer of 1 in this example is the group
G1 = Z2 associated to the set {1, g2}. Following the discussion of the previous page we
choose g1 = 1 and g2 = g and then choose coordinates such that γ1(g1) = γ1(1) = I2×2 and
γ1(g2) = γ1(g) = I2×2.

Given this setup, we should be able to choose a representation of G1 = Z2 on the
first P1 and from there induce a representation of G = Z4 on P1 × P1. We will illustrate
how this works in two different ways. First, we will work with the representations directly
themselves. Second, we will work with characters to obtain the same information in a more
computationally efficient, albeit more abstract, manner.

To choose our representation of G1 on the homogeneous coordinates of the first P1 we
simply need to specify γ1(g2) given that the above conventions already specify γ1(1). For
the purposes of this example we will choose,

γ1(g2) =
(

1 0
0 −1

)
. (2.12)

With the specification of the representation of G1 on P1 completed with this choice, we can
now induce an action of G on P1×P1. In detailing this larger representation, via (2.3), we
can use the above discussion to observe that P (π(g), ~D) (where ~D = (2, 2)) will be given
by the following.

P (π(g), ~D) =
(

0 I2×2
I2×2 0

)
(2.13)

Therefore, with the rest of the information given above, we find that we simply need to
obtain expressions for γ1(g3) and all of the γ2’s. To do this, we use (2.6) to obtain the
appropriate h ∈ G1 in each case and then (2.7) to write down the relevant matrix, using
our known quantities. We find the following.

γ1(g3) =
(

1 0
0 −1

)
, γ2(1) =

(
1 0
0 1

)
, γ2(g) =

(
1 0
0 −1

)
(2.14)

γ2(g2) =
(

1 0
0 −1

)
, γ2(g3) =

(
1 0
0 1

)
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Given these quantities we can now use (2.3) to write down the induced representation
on our orbit P1 × P1. We find,

γ(1) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , γ(g) =


0 0 1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , (2.15)

γ(g2) =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , γ(g3) =


0 0 1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 .

It can be simply checked that the above is indeed a good representation of Z4 as expected.
A similar analysis could have been repeated for each of the three orbits in the row

permutation action we are considering on (2.10). There is in fact only one other (trivial)
inequivalent choice we could have made in specifying the G1 representation on the homo-
geneous coordinates of P1. Thus, given two choice for each of three orbits we can now
easily understand eight different representations. In doing this we only need to explicitly
analyze two possibilities on a smaller system P1 × P1, clearly leading to some computa-
tional advantage. This on its own will not be enough to make the problem of exhaustively
analyzing symmetries tractable however, and thus we now repeat this computation using
the technology of characters.

Instead of specifying the representation γ1 of G1 explicitly as above we could simply
give its character. Taking the trace of γ1(1) and γ1(g2) above we find that we would specify
the character χ = (2, 0) in this case. It is then simple to derive the character IndGG1(χ) of
the representation (2.15) using (2.9). The characters of the irreducible representations of
Z4 are as follows.

ψ1 = (1, 1, 1, 1) , ψ2 = (1, i,−1, i) , ψ3 = (1,−1,−i, i) , ψ4 = (1,−i, i,−1) (2.16)

The restrictions of these to the subgroup G1 = Z2 given above is then,

ResGG1(ψ1) = (1, 1) , ResGG1(ψ2) = (1,−1) , ResGG1(ψ3) = (1,−i) , ResGG1(ψ4) = (1, i) .
(2.17)

Using χ = (2, 0) and (2.16) and (2.17) in (2.9) we find the following.

〈IndGG1(χ), ψ1〉 = 〈IndGG1(χ), ψ2〉 = 〈IndGG1(χ), ψ3〉 = 〈IndGG1(χ), ψ4〉 = 1 (2.18)

This is enough for us to identify IndGG1(χ) = (4, 0, 0, 0), which indeed is reproduced by the
trace of the matrices in (2.15).

Thus, for applications where we only need to know the characters of the representations
involved, one can simply specify the character of the representation given by γ1 restricted
to the subgroup G1 (together with the relevant row permutations) and from there one
can directly obtain the character of the representation induced on the full orbit. The
representation itself does not need to be presented explicitly. For many, but not all, of
the steps in the classification algorithm of [16], knowledge of the relevant characters is
sufficient, which facilitates computation greatly.
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2.2 The algorithm

In this subsection we present the algorithm, first developed in [16], for classifying the
CICY group actions on the CICYs. We will be applying this algorithm to the newly found
favorable CICY list.

1. First we constrain which group orders could possibly appear for each CICY by eval-
uating certain topological indices which can be computed purely from the data given
in the configuration matrix [21]. More precisely, the indices

χ(N k ⊗ TX l) =
∫
X
td(TX) ∧ ch(N k ⊗ TX l) (2.19)

σ(N k ⊗ TX l) =
∫
X
L(X) ∧ c̃h(N k ⊗ TX l)

must give an integer when divided by any group order of a possible freely acting
symmetry (for any k and l). Here N is the normal bundle and TX the tangent
bundle of the Calabi-Yau manifold. The quantities td and ch are the Todd and Chern
characters as usual, L is the Hirzebruch L-polynomial and c̃h the Chern character
where the curvature form is replaced with twice its value. This is a computationally
cheap initial step that leads to a finite number of possible group orders for each
configuration matrix. Since there are only a finite number of finite groups of each
order, this step is already sufficient to make the problem bounded (if still formidable).

2. For each possible symmetry order found above, we next obtain all the possible CICY
groups, i.e., all the favorable configuration matrices’ row and column permutations
which leave the configuration matrix invariant. This step is possible to perform by
simple brute force computation.

3. Next a necessary but not sufficient check for fixed point freeness is performed. This
step, which will be described in detail below, only requires us to specify the character
of the CICY group action, not the full π representations themselves. This allows for
the elimination of many possibilities before the full symmetry action has to be written
down in detail, a crucial step in rendering the problem computationally tractable.

4. For each possible potential symmetry which has not been ruled out by the proceeding
steps a necessary and sufficient check for fixed point freeness is performed by direct
computation. This requires us to explicitly specify the CICY group action and invari-
ant defining polynomials at this stage. The fixed point freeness is checked for each
Calabi-Yau manifold starting from lower and proceeding to high order of the possi-
ble symmetries. If a symmetry group has non-fixed point free (or non-smooth, see
the next point) sub-groups, then the full group can not be fixed point free (smooth)
either and thus need not be checked.

5. Finally, for the fixed point free CICY group actions a standard Gröbner basis compu-
tation is used to ascertain whether the generic invariant defining polynomials lead to
a smooth manifold. These calculations are performed over a (variety of) finite fields
in order to make them tractable, as is standard in such situations.

– 11 –
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As briefly mentioned in the proceeding subsection, the use of characters in step 3 here
is crucial in rendering the above algorithm practically feasible. It enables the number of
potential symmetries to be greatly reduced before it is necessary to specify the full CICY
group action or use computationally intensive techniques such as Gröbner basis computa-
tions. Given its importance, we review some more details of this step, following [16], in the
next subsection.

2.3 Fixed point freeness checks from character valued indices

In this subsection, we present a detailed review of the character valued index methods
used in step 3 of the algorithm discussed in the proceeding subsection. As we have seen,
a CICY group action acts on the homogeneous coordinates of the ambient space of the
Calabi-Yau manifold X via the π representation (G,−→d , πr, γ). This action defines a map
from X to itself, γ(g) : X → X, ∀g ∈ G. For each action γ(g), there is an induced
action on an invariant line bundle L with respect to this group action as well, γ∗(g),
γ∗(g)L → L. Finally, this pullback map will induce an action on the cohomology H i(X,L)
of the G invariant line bundle L which, by a slight abuse of notation, we will denote by the
same symbol. Given all of this, the following character valued generalization of the Euler
characteristic of a line bundle L can be defined.

χ(g)(L) =
∑
i

(−1)iTrHi(L)(γ∗(g)) (2.20)

This is a character as it gives a number for each group element g ∈ G. It is a generalization
of the Euler characteristic because if, for example, γ(g) acts trivially on X, then χ(g)(L)
just reduces to that more familiar object.

The reason it is useful to define (2.20) is that, if the symmetry action is fixed point
free, then this quantity obeys the following two useful properties.3

• If L is an invariant line bundle with respect to the symmetry, then χ(L)(g)=0 ∀ g 6= 1.

• If L is in addition equivariant, then χ(L)(1) should be an integer multiple of the
order of the group.

Crucially, the character valued index (2.20) can be computed purely in terms of ma-
nipulations of characters, given the characters associated to the CICY group action being
studied. Thus by computing (2.20) for judicious choices of L one can rule out many possible
symmetries in an efficient manner because they have fixed points. As we will discuss further
in the next section, there are a series of tricks in terms of choosing which L’s to consider
that can greatly speed up computation. Obviously, one should consider line bundles for
which less calculation resources are required to compute (2.20) first, as once a symmetry
has been shown to have fixed points there is no need to proceed further. More subtle
improvements can be obtained by recalling that, as we saw in former sections, a group
action will separate the projective spaces factors of the ambient space into several orbits.

3We have simplified the statement of these properties here slightly from the general case to versions that
hold for the symmetries we study. For the general statement see [16].
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It is possible to choose L’s in such a manner that they only are affected by the action on a
single orbit. In this manner orbits can be checked one-by-one and if an action on an orbit
is found not to be compatible with fixed point freeness then one can rule out its inclusion
in any Cartesian product to give a full CICY group action. Such methodology can show
that large numbers of possible symmetries are not fixed point free with one computation
of the character valued index.

Utilizing these techniques, it turns out that computing the character valued index (2.20)
for various L can be used to rule out most possible symmetries which actually exhibit fixed
points (a fact that can be gleaned by comparing the results of steps 3 and 4 of the algorithm
in section 2.2). Such computations are key to making a classification of the symmetries of
interest tractable and thus, in the following subsections, we will describe in some detail,
following [16], how they are performed.

2.3.1 Character valued cohomology on a single projective space

Let us start by describing how to compute the character valued cohomology hq(Pj ,L) of a
line bundle L on Pj efficiently. We consider the case where we are given a group action on
the homogeneous coordinates of Pj and wish to compute the induced representation on the
q’th cohomology of L, Hq(Pj ,L). The quantity hq(Pj ,L) is then simply the vector given
by the trace of this representation for each group element. This is a character, hence the
name character valued cohomology, which encodes the information of the representation
content of the line bundle cohomology being considered.

In principle, one could write down a polynomial (or more precisely Bott-Borel-Weil
tensorial [26]) descriptions for Hq(Pj ,L). Then it is possible to induce an action of the
symmetry on these polynomial descriptions from the symmetry action on the Pj coordi-
nates. Once these symmetry actions have been obtained, one could then directly compute
the trace of the representation matrices. Given that our computations are going to become
much more complex, however, we follow [16] in performing the computation directly in
terms of the character χ of the action of the homogeneous coordinates of Pj .

On Pj a line bundle cohomology Hq(Pj ,L) can be non vanishing for q = 0 or q =
j. We will deal with each of these cases in turn. Global holomorphic sections of the
line bundle L = O(k) where k ≥ 0 on Pj can be represented by the set of degree k

polynomials in the homogeneous coordinates of that projective space. The group action on
the homogeneous coordinates will form some representation r with character χr. The action
on these symmetric polynomials is then associated to the character χSymk(r) associated to
the kth symmetric power of r.

h0(Pj ,O(k)) = χSymk(r) (2.21)

Useful formulae for computing χSymk(r) for different k can be found in appendix A.
For the cohomology Hj(Pj ,O(−k)) where k ≥ 0 the formula is a little more involved.

Cohomologies of this type can be represented as completely antisymmetric epsilon symbols
multiplied by polynomials of degree k − j in the inverses of the homogeneous coordinates
1/xi with i = 0, . . . , j [26]. We then have the following.

hj(Pj ,O(−k)) = χε
(
χSymk−j−1(r−1)

)
(2.22)
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Here r−1 is the representation of the symmetry action on the inverse of the homogeneous
coordinates 1/xi and the number χε is given by the action on the completely antisymmetric
epsilon symbol ε0...j induced from that on the homogeneous coordinates.

Example. To illustrate the above, let us consider the simple example of inducing an
action of Z2 on H0(P1,O(2)). Let us take the group action on the homogeneous coordinates
of P1 to be given by the following.

γ(1) =
(

1 0
0 1

)
, γ(g) =

(
1 0
0 −1

)
(2.23)

A basis for the global section of O(2) is given by
{
x2

0, x0x1, x
2
1
}
and, acting on this basis,

the induced group action can easily be seen to be of the following form.

γH0(O(2))(1) =

 1 0 0
0 1 0
0 0 1

 , γH0(O(2))(g) =

 1 0 0
0 −1 0
0 0 1

 (2.24)

Let us reproduce this simple result using (2.21). The character associated to (2.23) is
χr = (2, 0). From (A.3) in appendix A, we see that the formula for χSym2(r) is as follows.

χSym2(r)(g) = 1
2
(
χr(g)2 + χr(g2)

)
(2.25)

In our case we have χr(g)2 = (4, 0) and χr(g2) = (2, 2) (since g2 = 1 for Z2). Thus, a
simple computation using (2.21) and (2.25) returns that h0(Pj ,O(2)) = χSym2(r) = (3, 1)
in this case. This result agrees precisely with the trace of the representation matrices given
in (2.24).

2.3.2 Character valued indices on products of projective spaces

Now let us go to the next layer of complexity of calculating the character valued index and
consider line bundles on products of projective spaces. Here, one important difference from
the single projective space case is that the group can not only act on the homogeneous
coordinates but can also permute projective space factors with the same dimension. We
will first describe how to compute the character of the induced representation on a single
orbit of a group action. Then the generalization to allow for multiple distinct orbits will
be straightforward by using Kunneth’s formula.

Consider a non-trivial orbit involving multiple copies of a complex projective space.
As in previous subsections, we first consider the action γ1|G1 of the stabilizer G1 on the
homogeneous coordinates of the first complex projective space factor. Then, instead of
computing the induced action on the homogeneous coordinates of the entire orbit, as we
did in section 2.1.1, we wish to compute the induced action on a line bundle cohomology
associated to the orbit. To do this, we induce the required result from character valued
cohomologies associated to single projective spaces as computed in (2.21) and (2.22).
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Consider an orbit ∏i Pni of a projective space factor Pn1 under some π representation
with row action πr. Define the embedding map

f1 : Pn1 →
∏
i

Pni . (2.26)

It can be proven that the correct operation to compute the character of the induced rep-
resentation of G on a cohomology associated to the whole orbit, h|G:G1|q (∏i Pni ,L) from
the row permutations πr and the character of the representation of the stabilizer G1 act-
ing on a cohomology associated to the first projective space hp(Pn1 , f∗1L) is given by the
following [16].

h|G:G1|q
(∏

i

Pni ,L
)

= GrIndGG1(hq(Pn1 , f∗1L)) (2.27)

In this formula, the operation GrInd is equivalent to SymInd if q is even and AltInd if q is
odd, symmetrized and antisymmetrized power versions of the induction operation respec-
tively. This is simply because, thinking of elements of cohomology as equivalence classes
of forms, even degree forms commute, leading to a symmetric product of representations
of which we must take the character, whereas odd degree forms anti-commute, leading to
the antisymmetric operation instead. Formulae for SymInd and AltInd can be found in ap-
pendix A. It should be noted that the degree of the character valued cohomology on the left
of (2.27) is |G : G1|q. The reason for this is that we are combining q degree cohomologies
for |G : G1| projective spaces in the orbit. Given (2.27), and the results from section 2.3.1,
we can compute character valued cohomology on a product of projective spaces forming an
orbit of a group action.

In the above discussion we described how the operation GrInd can be used to calculate
character valued cohomology of a line bundle on a single orbit of projective spaces. More
generally, the ambient space A = Πn

k=1Pdk of a CICY will be the product of several orbits.
Given a π representation (G, πr,

−→
d , γ) acting on it, A will be split into several orbits as

follows:
Sn = {1 . . . } ∪ · · · ∪ {. . . n} =

⋃
G{i}∈Sn/G

G{i}. (2.28)

To calculate the character valued cohomology of an invariant line bundle L on A, we will
follow the following procedure [16]. First, for each orbit, we find a representative projective
space Pdi , and we denote its embedding in A by i.

i : Pdi −→ A (2.29)

Let us label the stabilizer of Pdi by Gi. By following the procedure described above we can
obtain the character valued cohomology associated to each orbit. A simple application of
the Kunneth formula then reveals that we can obtain the character valued cohomology on
the total ambient space A by taking a simple product of those results.

hq(A,L) =
∏

G{i}∈Sn/G
GrIndGGi(h

qi
i (Pdi , i∗L)) (2.30)
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In this expression,
q =

∑
G{i}∈Sn/G

|G : Gi|qi, (2.31)

with the cohomological degrees of the pieces of the product in (2.30) adding, as is usual in
the Kunneth formula.

In what follows it will be useful to calculate, not just the character valued cohomol-
ogy, but in addition the character valued index of invariant line bundles on A. This is a
straightforward application of (2.30) to (2.20) which leads us immediately to the following
result.

χ(A,L) =
∑
~q

(−1)
∑

G{i}∈Sn/G
|G:Gi|qi ∏

G{i}∈Sn/G
GrIndGGi(h

qi
i (Pdi , i∗L)) (2.32)

In the above formula ~q is a degree vector composed by all the qi.

Example. Let us consider the example of L = O(−3,−3) on P1×P1 with the symmetry
action considered in (2.15). This Z4 symmetry action, which is associated with a πr where
the generator of Z4 swaps the two P1 factors, is induced from the action (2.12).

Let us take as a basis for H2(P1 × P1,O(−3,−3)) the set4

1
x0x1y0y1

×
{ 1
x0y0

,
1

x0y1
,

1
x1y0

,
1

x1y1

}
. (2.33)

Here we have denoted the homogeneous coordinates of the first P1 by x0, x1 and those of
the second P1 by y0, y1. Direct computation then allows us to derive the action induced
from (2.15) on H2(P1 × P1,O(−3,−3)). In terms of the basis (2.33) we find the following
action.

γH2(O(−3,−3))(1) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , γH2(O(−3,−3))(g) =


1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 −1

 (2.34)

γH2(O(−3,−3))(g2) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 , γH2(O(−3,−3))(g3) =


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 −1


Let us now perform the computations involving characters outlined in this section and

show that we get the result that one would expect from the above direct calculation. We
consider the action of the stabilizer Z2 of the first P1 factor, as given in (2.12). First, we
use (2.22) to obtain the character valued cohomology associated to H1(P1,O(−3)).

h1(P1,O(−3)) = χε
(
χSym1(r−1)

)
= (1,−1) (2, 0) = (2, 0) (2.35)

4We should really use Bott-Borel-Weil tensor descriptions of the cohomology here. However, the result
is unchanged from that obtained from this rationome description and so we will stick to this form here for
simplicity.
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Once we have obtained h1(P1,O(−3)), we can use (2.27). In this example, we have q
from (2.27) taking a value of 1, and thus GrInd is the same as AltInd in this case. In
addition, G = Z4, G1 = Z2, |G : G1| = |Z4 : Z2| = 2 and f∗1L = O(−3). Therefore, we find
the following from (2.27).

h2(P1 × P1,O(−3,−3)) = AltIndZ4
Z2

(h1(P1,O(−3))) (2.36)
= AltIndZ4

Z2
((2, 0))

Using (A.8) together with some intuitive notation introduced in appendix A, we find that

AltIndZ4
Z2

((2, 0)) = Alt2(IndZ4
Z2

((2, 0)))− IndZ4
Z2

(Alt2((2, 0))) . (2.37)

We have already computed IndZ4
Z2

((2, 0))=(4, 0, 0, 0) in the discussion around equations (2.16)
to (2.18). We then compute, using (A.4) in appendix A:

χAlt2(r)(g) = 1
2
[
χr(g)2 − χr(g2)

]
, (2.38)

to find the following.

Alt2(IndZ4
Z2

((2, 0))) = Alt2((4, 0, 0, 0)) = 1
2 [(16, 0, 0, 0)− (4, 0, 4, 0)] = (6, 0,−2, 0) .

(2.39)

Similarly, given (2.38) we find

Alt2((2, 0)) = 1
2 [(4, 0)− (2, 2)] = (1,−1) . (2.40)

Finally, pursuing a computation to work out the induced character as we did in the dis-
cussion around (2.16) to (2.18) we arrive at the following.

IndZ4
Z2

(Alt2((2, 0))) = (2, 0,−2, 0) (2.41)

Putting the above discussion together and combining our results in (2.41), (2.39), (2.37)
and (2.36) we obtain the following.

h2(P1 × P1,O(−3,−3)) = AltIndZ4
Z2

((2, 0)) = (6, 0,−2, 0)− (2, 0,−2, 0) = (4, 0, 0, 0)
(2.42)

Comparing this result to (2.34) we see that it correctly reproduces the traces of the repre-
sentation matrices.

2.3.3 Character valued indices on CICYs

In the above we have described how to obtain character valued indices of line bundles on
the ambient space A of our Calabi-Yau manifolds. The final step is to use these results to
obtain expressions for the character valued indices of line bundles on the threefold X itself.
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Line bundles on the ambient space and Calabi-Yau manifold are related to one another by
the long exact Koszul sequence.

0→ O
(
−
∑

Dj

)
⊗ V → · · · →

⊕
j<k

O(−Dj −Dk)

⊗ V → O(−Di)⊗ V → V |X → 0

(2.43)
Here, all of the objects are vector bundles on A except V |X which is the sheaf on A which
corresponds to the associated vector bundle on X. The Di are the divisor classes of the i′th
defining relations of the CICY. By the properties of long exact sequences, if the defining
relations of the Calabi-Yau manifold, and thus the maps in (2.43), were to be G-invariant
then one simply obtain the following.

χ(X,L|X) =
∑

1<j1<j2<···<jp
(−1)pχ(L ⊗O(−Dj1 −Dj2 − · · · −Djp))|A (2.44)

However, in general the defining relations, and thus maps, involved do transform non-
trivially, and thus more care is needed in computing the character valued index on X.

Following [16], we define some notation to make the formulae that follow more compact.
First we denote O(−Dj1 − . . . − Djp) = Oj1∧...∧jp . We then define the standard basis of
anti-symmetrized indices as follows.

Λm = {j1 ∧ . . . ∧ jp|0 ≤ p ≤ m, 1 ≤ j1 < . . . < jp ≤ m} (2.45)

Unfortunately, a line bundle Oj1∧...∧jp will not in general be invariant under our symmetry
action, thus we must consider index sets which would group the associated bundles into
orbits of G. We thus define,

Λm/G =
{

[∧~j(1)], [∧~j(2)], . . .
}

= {j1 ∧ . . . ∧ jp|0 ≤ p ≤ m} /〈±, G〉 . (2.46)

Here [∧~j(i)] denotes a class of ∧~j that form an orbit under G and in the second equality,
the relevant classes have been expressed in terms of representatives.

We denote by
p∧~j = pj1 ∧ . . . ∧ pjp (2.47)

the exterior powers of the group characters associated to defining polynomials j1 to jp. It
turns out that this anti-symmetric object plays a key role in the results to follow because of
the way that negative signs that appear in the map structure of the Koszul sequence [16].

We need to define some stabilizers of the symmetry group G. First we have the
stabilizer of a particular multi index ∧~j.

G∧~j = stab∧~j(G) =
{
g ∈ G|π(g)(∧~j) = ± ∧~j

}
(2.48)

Second, we need the stabilizer of an individual defining relation.

Gj = stabj(G) = {g ∈ G|π(g)(j) = ±j} (2.49)
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With these preliminaries completed we can now describe how (2.44) is modified by the
G dependence of the maps in the Koszul sequence (2.43). We can compute p∧~j defined
in (2.47) via the following formula.

p∧−→j =
∏

j∈−→j /G

AltInd
G∧−→j
Gj∩G∧−→j

(ResGjGj∩G∧−→j (pj)) (2.50)

This computes the relevant G∧~j character from Gj characters associated to single defining
polynomials. Given these G∧~j characters we can then compute the G-character valued
index of the line bundle L|X on X as follows.5

χ(L|X) =
∑

∧~j∈Λm/G

(−1)|∧~j|IndGG∧~j
(
p∧~jχ(O∧~j ⊗ L)

)
(2.51)

This formula generalizes (2.44) in two ways. First it performs the sum not over line
bundles but over orbits of line bundles appearing in the Koszul sequence. The induction
that appears in (2.51) induces the action on an entire orbit from the action of the stabilizer
group on a single element in the orbit. Second, (2.51) takes into account the non-trivial
character structure due to the polynomials themselves, though p∧~j as given in (2.50). Note
that both p∧~j and χ(O∧~j ⊗ L) are G∧~j characters so this formula induces a G character
from an G∧~j one correctly as indicated by the use of IndGG∧~j .

With formula (2.51) we have a closed form expression for computing the character
valued index of line bundles on CICYs. This is all that is required to perform step 3 of the
algorithm given in section 2.2.

3 Results

In this section we will describe the results of our scan for cyclic symmetries on the favorable
CICY list. In doing so we will emphasize comparisons to the symmetries found in [16] which
were manifest from the description of the same manifolds found in the standard CICY list.
Our code reproduced identical results to those found in [16] for the cyclic symmetries
when applied to the original CICY list, providing a highly non-trivial check that the code
is working as intended before applying it to new, favorable, configuration matrices. In
obtaining the results in this paper we have made use of the CICY Package [36], GAP [37]
and Singular [38].

This section is split into four subsections. In the first, we describe how to access our
full results from an associated online database and provide some overview statistics of the
types of symmetries, and so non-simply connected Calabi-Yau threefolds, we have found.
In subsequent subsections we give examples illustrating how the symmetries which are
manifest from ambient space actions in the favorable CICY list can both vary from and
overlap with those manifest from the original CICY list.

5In fact, the final formula given in [16] is somewhat more complicated than the one reproduced here.
For the types of symmetry we are studying in this paper, this simpler expression turns out to be sufficient.

– 19 –



J
H
E
P
0
7
(
2
0
2
2
)
1
1
6

7246,

1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 1
0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0 1
0 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 1 1

, 2,

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

,

0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

, True, False, ...

Figure 1. A simple example illustrating the format described in the text. This example describes
the symmetries associated to CICY 7246, the favorable configuration matrix for which is the second
entry in this list. The third entry in the list is a list of symmetries of which only the first is
shown explicitly. This symmetry is associated to an order 2 cyclic group with the action on the
homogeneous coordinates being given by the first matrix and the action on the defining polynomials
being given by the second. This particular example has been proven to lead to a smooth set of
invariant defining relations but it is not know whether it corresponds to a new symmetry (although
it is certainly a new representation of one).

3.1 Statistics and database of results

The symmetries we have classified can be found at this link,1 in the form of a machine
readable list. Each entry in the list is of the following form.

{Num,Config, {{n1,CoordAct1,PolyAct1, Smooth1,New1}, {n2,CoordAct2,PolyAct2, Smooth2,New2}, . . . }} .

Here Num is the number of a CICY in the original CICY list, and Config is the favorable
configuration matrix for that manifold as provided in [24]. The third entry of the list is a
collection of lists, one for each symmetry manifest from the favorable configuration. The
integer n# indicates that the cyclic group Zn# is being manifested. The entries CoordAct#
and PolyAct# are the actions of the homogeneous coordinates of the ambient space and
the defining polynomials of the favorable CICY respectively. Finally the entries Smooth#
and new# will either by True or False. As we will discuss shortly, in some cases the
computational power we have had available has proven insufficient to decide whether the
manifold where the complex structure has been tuned in order to respect the symmetry
is smooth or not. If the manifold has proven to be smooth then Smooth# will be True
otherwise it will be False. Cases that have been proven to be singular have of course be
discarded. The entry new# will be True if it has been proven that the symmetry in question
is not equivalent to one in the results of [16], otherwise it will be False. This has simply
been decided by determining whether a symmetry of the correct order on the manifold in
question appeared in [16] or not. This is a very crude, sufficient but not necessary, condition
for symmetries to be previously unknown, which may be improved upon in future work as
described below. An example of this format can be found in figure 1.

There are 2946 CICYs for which a new, favorable, configuration matrix is provided
in the list of [24]. Of these, 1393 manifolds have at least one symmetry that would be in
principle allowed by index considerations (step 1, in the algorithm in section 2.2). Scanning
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over those 1393 manifolds, we found, using the character valued index methods of step 3
in the algorithm, that there are 199 possible fixed point free symmetries on 99 different
manifolds. Of these almost all, 175 out of 199 on the same 99 manifolds, are really fixed
point free when the necessary and sufficient check of algorithm step 4 was performed.
These numbers show how efficient the character valued index method developed in [16] is
at deciding this issue. After removing some redundancies, where symmetries can be shown
to be the same by trivial relabeling of ambient space factors and defining relations, the total
number of symmetries is reduced to 129. Finally a smoothness check was carried out as per
step 5 of the algorithm. Some of these computations are still continuing and it is not known
if they will finish with currently available computing resources (the favorable list involves
bigger configuration matrices than the original CICY list, making such computations much
more intensive). Thus far we have shown that approximately 57% of these symmetries do
lead to smooth invariant defining relations. For the remaining examples, results will be
added to the online data base when and if they become available. Of the different possible
types of freely acting cyclic symmetries we find 101 Z2, 14 Z3 and 14 Z4 symmetries.

It is interesting to compare the symmetries found for these 2946 favorable configura-
tions with those descending from the ambient space of the description of the same manifolds
in the original CICY list. There, in [16], 506 cyclic symmetries were found over 97 man-
ifolds. These included, 432 Z2, 28 Z3, 14 Z4, 27 Z6 and 5 Z12 symmetries. Clearly there
are differences between this symmetry content and what we have found for the favorable
configurations. Many known symmetries do not descend from linear actions on the ambient
space of the favorable matrices as there are 377 more symmetries found in the original list
than in our scan. In particular, we find no Z6 or Z12 symmetries at all. By contrast there
are some symmetries that descend from the ambient space of the favorable configuration
matrices that are not present in the original list. In fact, we find 33 symmetries where a
symmetry of the same order was not previously known on the manifold in question. These
symmetries are definitely new. To know how much overlap there is between the remaining
symmetries in the two lists would be a much longer question to answer. We give an example
of how to address this issue in section 3.3.

From the above statistics we see that we have discovered, at the very least, 33 seemingly
new non-simply connected Calabi-Yau manifolds, and possibly many more. One way to gain
some information as to which of the other geometries correspond to truly new topological
types of Calabi-Yau threefold would be to compute invariants of these quotients, such
as their Hodge numbers. The technology developed in [15, 27–30] could be used to do
this, although such computations are beyond the scope of this paper. Instead, in the
rest of this section we will examine in more detail a few examples which illustrate the
relationship between the symmetries descending from linear actions on the ambient spaces
of the favorable configurations and those descending from the non-favorable matrices of
the original CICY list.

3.2 Ruling out non-permuting cyclic symmetries for the new favorable CICYs

In this subsection we wish to illustrate two points. First, by calculating the character
valued index for carefully chosen line bundles, one can quickly rule out the existence of
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large classes of possible symmetries. Second, symmetries descending from the ambient
space of a CICY configuration matrix in the original list will not necessarily be manifested
as a similar such an action in a given favorable configuration.

Let us start by discussing a particular property of the new favorable CICY matrices
introduced in [24]. They admit no cyclic symmetries which do not permute the rows or
columns of the configuration matrix. To show this we need to consider the symmetries Z2,
Z3, Z5, Z7 and Z13. By index considerations from step 1 of the algorithm in section 2.2,
these are the only cyclic groups of prime order that could appear. The possible non-prime
cyclic groups whose order is compatible with index considerations all have subgroups in the
above list. Therefore if the above groups can’t be realized as fixed point free symmetries
with smooth invariant defining polynomials then those larger groups certainly can not
either. Thus if we can rule out these prime possibilities then our discussion will be complete.
A character valued index computation for carefully chosen line bundles can rule out these
cases with very little computational effort.

To illustrate the method, we will consider the favorable description of CICY num-
ber 7300:

X =



P2 1 1 1 0 0 0 0
P1 0 0 1 0 0 0 1
P1 0 0 0 0 1 0 1
P2 0 0 0 1 1 1 0
P1 0 1 0 0 0 0 1
P1 1 0 0 0 0 0 1
P1 0 0 0 1 0 0 1
P1 0 0 0 0 0 1 1


. (3.1)

As we can see from this configuration matrix, this manifold has 7 defining polynomials. For
some line bundle L′ on X, there will be at most 128 line bundles in the Koszul sequence
whose character valued index would need to be calculated in order to obtain χ(L′|X)
from (2.51). One way to simplify this calculation is to choose a special line bundle L, for
which most of the line bundles in the associated Koszul sequence have zero cohomology.
One candidate is the following.

L = O(1, 1, 0, 0, 0, 0, 0, 0) (3.2)

For this choice of L it can trivially be shown, using the Bott-Borel-Weil theorem [26], that
the only ambient space line bundles appearing in the Koszul sequence that do not have
vanishing cohomology are O and L, with all others falling into the so called ‘Bott gap’.
Further more, because of the form of (3.2), we need only specify the symmetry action on
the coordinates of the first two ambient space factors in order to compute χ(L|X).

Using this let us examine the possibility of non-permuting Z2 symmetries. By using
the two simplifications above, one can very quickly, by hand, show that there is no choice
of action on the leading P2×P1 factor of the ambient space of (3.1) that will lead to χ(L|X)
being compatible with the existence of such as symmetry, according to the discussion of
section 2.3.
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One might think that the above simplifying choice of L is a special feature of the
configuration matrix (3.1). However, a direct scan over all of the new favorable CICY
configuration matrices of [24] which could possibly have an order 2 symmetry shows that
each of them exhibits a line bundle that satisfies the two following constraints.

• First, L has most of its entries 0, except for a 1 entry on a single P1 and a 1 entry
on a single P2.

• Second, the Koszul sequence of L only contains two ambient space line bundles with
non-vanishing cohomology, O and L.

Furthermore, in each case the line bundle of interest is simply one of those appearing in
the normal bundle. Thus one can quickly repeat the same computation in all of those cases
to find that there can be no Z2 symmetries descending from the ambient space of these
favorable configurations without row or column swapping actions. In fact, our exhaustive
scan shows that there is no Z2 symmetry descending from the ambient space of (3.1) at
all, with or without permutation actions. This same Calabi-Yau threefold does exhibit a
Z2 symmetry which can be found in the classification [16] based upon the original CICY
list. It is simply the case that this symmetry does not descend from the ambient space in
a simple manner in the new configuration.

The reason this is happening could well be due to the particular choice of splittings
that are used in generating favorable configurations in [24]. For example, in (3.1) two P2

factors have been introduced relative to the original configuration matrix.

Xnon-favorable =



P1 1 0 1
P1 0 1 1
P1 0 1 1
P1 0 1 1
P1 1 0 1
P1 1 0 1


(3.3)

There are natural actions of Z2 on P1 with minimal dimensionality fixed point loci, by
virtue of the fact that every coordinate can transform differently under a toric action. The
same is not true for a P2 ambient factor. Two of the coordinates of P2 must transform in
the same manner under Z2 and this leads to a larger fixed point set, that is then more
likely to intersect the Calabi-Yau manifold.

This discussion leads us back to the comment that was made in section 1 that the
favorable configurations found in [24] are not unique. One could imagine attempting to
generate different favorable configurations if one was interested in a specific symmetry that
was either known to exist from a non-favorable description or suspected to exist from index
and other considerations. For example, if one was interested in Z2 symmetries, one might
try to generate such a configuration utilizing only P1 splits.

For Z3 symmetries there is an exactly analogous story. Ruling out Z5, Z7 and Z13
symmetries which do not permute the equations or ambient space factors is slightly different
however. One can quickly show that in those cases a line bundle satisfying the two criteria

– 23 –



J
H
E
P
0
7
(
2
0
2
2
)
1
1
6

described above can not always be found. Instead, in these cases, we search for a line
bundle with the following two properties.

• First, L has most of its entries 0, except having a 1 entry on a single P1, a 1 entry
on a single P2.

• Second, all of the ambient space line bundles in the Koszul sequence must have
vanishing cohomology except for L itself.

With these conditions being imposed, L will never be a line bundle in the normal bundle.
Nevertheless, a line bundle of this type can easily be found for every relevant manifold.

From the second of these new conditions, we can see that the character valued index
of LX is totally decided by that of LA, along with any data associated to the maps in the
Koszul sequence. Then because of the first condition, the calculation of χ(LX) boils down
to a simple calculation involving χ(O(1, 1)P1×P2). Using the methods outlined in section 2
it is then easy to show that for a line bundle satisfying the two conditions of the previous
paragraph, it is not possible to have a zero character valued index for a non-trivial group
element for groups Z5, Z7 or Z13. Thus no such symmetries exist which are fixed point free.
This completes the proof that there are no cyclic symmetries that do not permute rows or
columns of the configuration matrix on the new favorable CICY configurations of [24].

3.3 An example of a symmetry appearing in both favorable and non-favorable
configurations

Despite the restriction on cyclic actions discussed in the previous sub-section there certainly
are symmetries appearing in the results of [16] that are reproduced non-trivially in our
classification based on the favorable CICY list. In this section we will give an example of
a symmetry that can be realized in terms of linear actions on the ambient spaces of both
the standard and favorable configuration matrices in this manner. The CICY we are going
to examine is number 7800 in the standard list with configuration matrix:

X7800 =


P1 1 1
P1 1 1
P1 1 1
P2 0 3

 . (3.4)

The favorable cousin of the above configuration matrix is as follows.

X7800 favorable =


P2 1 1 1 0
P1 0 0 1 1
P1 0 1 0 1
P1 1 0 0 1
P2 0 0 0 3

 (3.5)

The favorable matrix above was obtained in [24] by using a P2 split of the first column
of (3.4). In order to compare a symmetry appearing in both of these descriptions of this
manifold, we label the homogeneous coordinates of the first P2 in (3.5) as (x0,1, x0,2, x0,3).
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For other projective spaces in both (3.4) and (3.5) we use the same notation since they are
identical in the two cases. We label their homogeneous coordinates as (xi,1, xi,2, . . .) where
i = 1, . . . 4.

In [16] a Z3 symmetry descending from the ambient space of X7800 was found which
acts on the homogeneous coordinates in the following manner.

γ1 =



0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 e 2iπ

3 0
0 0 0 0 0 0 0 0 e−

2iπ
3



(3.6)

This Z3 symmetry acts on the defining polynomials trivially. For X7800 favorable, we find a
Z3 symmetry which acts on the homogeneous coordinates as follows.

γ2 =



1 0 0 0 0 0 0 0 0 0 0 0
0 e 2iπ

3 0 0 0 0 0 0 0 0 0 0
0 0 e−

2iπ
3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 e 2iπ

3 0
0 0 0 0 0 0 0 0 0 0 0 e−

2iπ
3



(3.7)

We find that this symmetry also acts on the defining polynomials non-trivially:

γ2p =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 . (3.8)

If we compare these two coordinate actions, (3.6) and (3.7), we find that, apart from
the coordinate action of the first P2 of (3.5), they are identical. Considering the invariant
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defining polynomials in the two cases, we then see that the last defining polynomials of
both (3.4) and (3.5) only depend on coordinates which will be acted on identically by (3.6)
and (3.7), and are thus the same. For the first three defining relations in (3.5) we observe
that all three of them depend linearly on the coordinates of the first P2 structure. Therefore
they are solved iff. the determinental equation associated to these relations holds (the
standard structure for an ineffective splitting). This determinental variety is identical to
the first defining relation of (3.4), tuned to be invariant under the symmetry (3.6).

Thus we see, as would be expected from the matching of the coordinate actions (3.6)
and (3.7), these two symmetries are the same. They are simply expressed in terms of two
different descriptions of one Calabi-Yau threefold.

3.4 An example of a new symmetry

In addition to symmetries that descend only from linear actions on the ambient spaces
given in the original CICY list, or cases which descend from both the original and favorable
descriptions of the manifolds, there are new symmetries which descend from the ambient
spaces of the favorable configurations. These are symmetries of these threefolds that are, as
far as we are aware, new to this work, and thus so are the associated non-simply connected
quotient Calabi-Yau manifolds.

One example of a new symmetry is found on CICY 6925. In the standard CICY list
this Calabi-Yau manifold is described by the following configuration matrix.

X6925 =


P1 1 1 0
P1 1 0 1
P1 2 0 0
P1 2 0 0
P2 0 1 2

 (3.9)

In [16], it was shown that this manifold does not exhibit any freely acting discrete symme-
tries that descend from linear actions on this ambient space.

The favorable description of the same manifold, as given in [24], is as follows.

X6925 favorable =



P1 1 1 0 0 0 0 0
P2 0 1 1 1 0 0 0
P1 0 0 0 1 1 0 0
P2 1 0 0 0 1 1 0
P1 0 0 1 0 0 0 1
P1 0 0 0 0 0 0 2
P1 0 0 0 0 0 0 2
P1 0 0 0 0 0 1 1


(3.10)

Our results show that this Calabi-Yau does have a freely acting symmetry descending from a
linear action on this ambient space which leads to a smooth, non-simply connected, Calabi-
Yau quotient. The symmetry group is Z2 and it acts on the homogeneous coordinates of
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the ambient space of X6925 favorable in the following manner.

γ =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0



(3.11)

The symmetry also acts non-trivially on the defining polynomials as follows.

γp =



0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1


(3.12)

Such results are not of course a surprise. It has been known since the classification
was performed that the symmetries found in [16] were probably only a subset of those
that exist on the Calabi-Yau threefolds being studied. Here we have simply provided a
concrete description of some of the missing possibilities, concentrating on those that are
associated to the most practically useful descriptions of the manifolds in question (favorable
configuration matrices).

4 Conclusions and future directions

The most commonly used construction of non-simply connected Calabi-Yau threefolds is
to quotient a simply connected space by a freely acting discrete symmetry. The freely
acting discrete symmetries that have been classified in the literature are described in terms
of a linear action on some ambient space, which then induces the symmetry action on
the Calabi-Yau manifold embedded inside it. Following such a methodology, different
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symmetries will be found by embedding the Calabi-Yau threefolds in different ambient
spaces. In practical applications, the most useful descriptions of Calabi-Yau manifolds
tends to be those in which the embedding inside an ambient space is ‘favorable’ so that
a complete understanding of the divisors on the variety can be obtained from restricting
ambient space objects. In [16], a classification was made of symmetries of the complete
intersection Calabi-Yau threefolds in products of projective spaces which descend from the
ambient spaces for these manifolds that were originally given in [20]. In this paper we
have classified a new set of cyclic symmetries of the same manifolds, descending from the
ambient spaces of the favorable descriptions of these Calabi-Yau threefolds given in [24]. In
doing so, we have also presented a new class of non-simply connected Calabi-Yau manifolds.

We have presented a set of 129 symmetries. Of these, some are equivalent to the
symmetries found in [16], but phrased in terms of a different description of the Calabi-Yau
threefold. Some are definitely new however. For example, 33 of these symmetries are of an
order that simply was not known to exist on the relevant manifolds before this work. Our
results are available, in a format described at the start of section 3.1 at this link.1

In addition to providing new freely acting symmetries/non-simply connected Calabi-
Yau manifolds, this work provides a rare insight into how much the obvious symmetries of a
Calabi-Yau threefold depend upon the ambient space in which we embed it. By performing
two different classifications for different choices of ambient spaces of the same manifolds,
we gain some information as to how common it is to miss symmetries by restricting to
one description. In the original CICY list whose symmetries were classified in [16] there
are 2946 manifolds whose description is not favorable, and so for which the configuration
matrix in the list provided in [24] is different. For this set of manifolds our work finds
129 cyclic symmetries descending from the favorable ambient spaces whereas the results
of [16] found 506 cyclic symmetries descending from the non-favorable ones. As mentioned
above, at least 33 of the symmetries that we have found have an order that was not in
the set classified in [16] and so are definitely new. Thus we see that, as was expected, the
two sets of symmetries have significant differences and classifying symmetries that descend
from one ambient space description does not give anything like a complete picture of the
symmetries of a manifold. Indeed, if more descriptions of these same CICYs were studied
one would expect to find further symmetries beyond those discussed here. It is interesting
to note that relatively fewer symmetries were found in the favorable CICY list than in the
original description of these manifolds. This is the second time in the recent literature [18]
that a search for non-simply connected manifolds has lead to relatively sparse results. It
will be interesting to see if this trend continues in future searches and if this is an early
indication that non-simply connected Calabi-Yau threefolds are rather rare. If true, this
fact would be of great interest in string model building.

A first obvious extension of the work we present here would be to classify the non-cyclic
symmetries descending from the ambient spaces of the favorable CICY descriptions of [24].
One might also consider searching for symmetries descending from different favorable am-
bient spaces than the ones presented in that reference and in this regard, in section 3.2, we
gave a suggestion. As we discussed there, there are certain ways of generating favorable
descriptions of manifolds which are more likely to make symmetries of certain orders man-

– 28 –



J
H
E
P
0
7
(
2
0
2
2
)
1
1
6

ifest. It would be interesting to explore this further and see if it is possible to start with a
type of symmetry you would like to have, and then tailor your description of the manifold
to that symmetry (if it is indeed realized in the Calabi-Yau manifold). Finally, one could,
of course, apply similar techniques to manifolds embedded in different ambient spaces than
products of projective spaces, a study that has been initiated in [18]. Indeed, if sets of
manifolds of the type introduced in [31] (see [32–35] for related work) could be classified,
then one could even pursue similar investigations in cases where the Calabi-Yau manifold
is described, not by a complete intersection, but by a generalized complete intersection.
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A Some formulae for character valued indices

In this appendix, we reproduce some well known results which are useful in carrying out
the algorithm, first developed in [16], that is described in the main text of the paper.

If one wants to compute the character of a p’th symmetric or anti-symmetric power of
a representation r which has character χr one can use the following recursive formulae [39].

χSymp(r)(g) = 1
p

p∑
k=1

χr(gk)χSymp−k(r)(g) (A.1)

χAltp(r)(g) = 1
p

p∑
k=1

(−1)k−1χr(gk)χAltp−k(r)(g) (A.2)

For example, using these formulae we can obtain the following simple closed form expres-
sions at low p.

χSym2(r)(g) = 1
2
(
χr(g)2 + χr(g2)

)
(A.3)

χAlt2(r)(g) = 1
2
(
χr(g)2 − χr(g2)

)
(A.4)

χSym3(r)(g) = 1
6
(
χr(g)3 + 3χr(g)χr(g2) + 2χr(g3)

)
(A.5)

χAlt3(r)(g) = 1
6
(
χr(g)3 − 3χr(g)χr(g2) + 2χr(g3)

)
(A.6)

The necessary formulae for Grind, that is SymInd and AltInd, used in the main text
were provided in [16]. We reproduce them here for convenience. If we are inducing from
a subgroup H to a group G then the formulae only depend upon the index [G : H] of
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the subgroup H (recall that this quantity is related to the order of the two groups by
[G : H] = |G|/|H|).

If [G :H]=1: (A.7)
SymIndG

H(χr) = IndG
H(χr)=χr

AltIndG
H(χr) = IndG

H(χr)=χr

If [G :H]=2: (A.8)
SymIndG

H(χr) = Sym2(IndG
H(χr))− IndG

H(Sym2(χr))

AltIndG
H(χr) = Alt2(IndG

H(χr))− IndG
H(Alt2(χr))

If [G :H]=3: (A.9)
SymIndG

H(χr) = Sym3(IndG
H(χr))− IndG

H(Sym3(χr))− IndG
H(Sym2(χr))IndG

H(χr)

+IndG
H(Sym2,1(χr))

AltIndG
H(χr) = Alt3(IndG

H(χr))− IndG
H(Alt3(χr))− IndG

H(Alt2(χr))IndG
H(χr)

+IndG
H(Alt2,1(χr))

If [G :H]=4: (A.10)
SymIndG

H(χr) = Sym4(IndG
H(χr))− Sym2(IndG

H(Sym2(χr)))− Sym2(IndG
H(χr))IndG

H(Sym2(χr))

+IndG
H(Sym2,2(χr))− IndG

H(Sym2,1,1(χr))− IndG
H(Sym3(χr))IndG

H(χr)

+IndG
H(Sym2,1(χr))IndG

H(χr) + IndG
H(Sym2(χr))IndG

H(Sym3(χr))

AltIndG
H(χr) = Alt4(IndG

H(χr)) +Alt2(IndG
H(Alt2(χr)))−Alt2(IndG

H(χr))IndG
H(Alt2(χr))

+IndG
H(Alt2,2(χr))− IndG

H(Alt2,1,1(χr))− IndG
H(Alt3(χr))IndG

H(χr)

+IndG
H(Alt2,1(χr))IndG

H(χr)

If [G :H]=5: (A.11)
SymIndG

H(χr) = Sym5(IndG
H(χr))− IndG

H(Sym5(χr)) + 2Sym4(IndG
H(χr))IndG

H(χr) +

−Sym2(IndG
H(Sym2(χr)))IndG

H(χr)− Sym3(IndG
H(χr))Sym2(IndG

H(χr)) +

−Sym3(indG
H(χr))IndG

H(Sym2(χr))− 9IndG
H(Sym4,1(χr)) + IndG

H(Sym3,2(χr))

+19IndG
H(Sym3,1,1(χr))− IndG

H(Sym2.2.1(χr))− 12IndG
H(Sym3,1(χr))IndG

H(χr) +

−9IndG
H(Sym2,1,1,1(χr)) + IndG

H(Sym2,1,1(χr))IndG
H(χr)

+2IndG
H(Sym1,1,1,1(χr))IndG

H(χr) + IndG
H(Sym3(χr))IndG

H(Sym2(χr))

+6IndG
H(Sym2,2(χr))IndG

H(χr)

AltIndG
H(χr) = Alt5(IndG

H(χr))− IndG
H(Alt5(χr)) + 2Alt4(IndG

H(χr))IndG
H(χr)

+Alt2(IndG
H(Alt2(χr)))IndG

H(χr)−Alt3(IndG
H(χr))Alt2(IndG

H(χr)) +

−Alt3(IndG
H(χr))IndG

H(Alt2(χr))− 9IndG
H(Alt4,1(χr)) + IndG

H(Alt3,2(χr))

+19IndG
H(Alt3,1,1(χr)) + 4IndG

H(Alt2.2.1(χr))− 12IndG
H(Alt3,1(χr))IndG

H(χr) +

−9IndG
H(Alt2,1,1,1(χr)) + IndG

H(Alt2,1,1(χr))IndG
H(χr)

+2IndG
H(Alt1,1,1,1(χr))IndG

H(χr) + IndG
H(Alt3(χr))IndG

H(Alt2(χr))

In these expressions the short hand

Symi1,i2,...(χr)(g) =
∏
j

χSymij (r)(g) (A.12)
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has been used to denote relevant combinations of the symmetrization operations on char-
acters given at the start of this appendix. Similarly the following has been defined for the
anti-symmetric case.

Alti1,i2,...(χr)(g) =
∏
j

χAltij (r)(g) (A.13)
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