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1 Introduction

Tidal deformations of self-gravitating compact objects stand as key gravitational-wave
observables to test General Relativity (GR) in the strong field regime. In a coalescing
binary system, the deformability properties of the compact objects affect the gravitational
wave signal at sub-leading post-Newtonian order through finite size effects in the pre-merger
phase. These deformability properties are encoded in the so-called tidal Love numbers
(TLNs) which reflect the rigidity of the system. Their measurements through gravitational
wave astronomy provide rich informations, in particular to constrain the equation of state
of neutron stars and the properties of compact objects beyond GR [1, 2].

The relativistic theory of TLNs was introduced in refs. [3–5] and applied to a variety of
compact objects, from neutron stars, black holes to more exotic self-gravitating systems [9–
15]. As first shown in refs. [4–6], the TLNs of asymptotically flat classical and vacuum black
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holes accidentally vanish in 4-dimensional GR.1 This property descends from demanding
regularity for the tidal response of the black hole at the horizon, which forbids the existence
of induced multipole moments in four dimensions. In contrast, in higher dimensions the
same boundary condition still allows for induced multipoles so that black holes Love num-
bers are in general non-vanishing [26–28]. Moreover, from an effective field theory point of
view, the TLNs enter as suitable coupling constants in the effective action of the binary
system and their vanishing thus appears as a fine tuning [29–31]. This suggests that the
vanishing of TNL in 4-dimensional GR is protected by some symmetry principle yet to be
understood. Identifying this Love symmetry has thus attracting some attention recently.
The role of near-horizon asymptotic symmetries has been investigated by Charalambous,
Dubovsky and Ivanov [32], while the role of Carollian near-horizon symmetry was discussed
by Penna [33].

More recently, Hui, Joyce, Penco, Santoni and Solomon (HJPSS) have exhibited new
symmetries, dubbed horizontal and vertical, for static linear perturbations of massless fields
in Schwarz-schild and Kerr backgrounds [34]. When the tidal field is slowly varying, such
static test field approximation can be used to compute the Love numbers [28], making
this new structure relevant to understand the vanishing of Love numbers. Concretely,
the horizontal HJPSS symmetry forces the profile of the test field which is regular at the
horizon to develop only a growing behavior at infinity. Hence, the static response of the
black hole is absent and the associated Love number vanishes. Moreover, these symmetries
allow an asymptotic observer to infer the behavior of the field at the horizon by inspecting
the conservation of the charges, trading therefore a choice of boundary condition for a
symmetry principle. The origin of the horizontal HJPSS symmetries remains however quite
mysterious.2 What are the explicit finite transformations associated with this symmetry?
Does this symmetry descend from a larger structure to be revealed? This work addresses
these questions and provide a general framework to understand this new symmetry.

Since the static linear perturbations around the Schwarzschild and Kerr black holes can
always be recast into a Sturm-Liouville system, we first investigate the general symmetries
of this system. We stress that any system described by a Sturm-Liouville equation enjoys
an infinite set of conserved charges. This property descends from the fact that for any pair
of linearly independent solutions to the Sturm-Liouville equation, the associated Wronskian
w is a constant of motion. The Wronskian between one such solution and the field thus
provides two conserved charges (w1 and w2). Then, any power of these conserved charges
being also conserved, one obtains an infinite tower of non-independent conserved charges
which form a w∞ charge algebra. We then show that the truncation to linear and quadratic
binomial is organized as a centrally extended one-dimensional Schrödinger charge algebra
given by the semi-direct product sh(1) = sl(2,R) n H. The sl(2,R) sector is generated

1The case of the TNLs of the Kerr black hole has been the subject of debate recently as different claims
have been made. See [16–25] for details.

2The vertical symmetry based on the so-called ladder operators was shown to admit a geometrical origin
in ref. [34]. By mean of suitable conformal transformations, the action for the static massless test scalar
field can be recast into a 3d field on a euclidean AdS space whose conformal isometries are identified with
the infinitesimal generators of the HJPSS symmetry [34]. This vertical symmetry will not be the focus of
this work.
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by the quadratic charges while the Heisenberg algebra H is generated by the linear ones.
There is therefore one such Schrödinger charge algebra for any static linear perturbation
on the Schwarzschild black hole. We derive explicitly the finite symmetry transformation
at the level of the action, which are found to be a set of two Galilean transformations and a
suitable conformal transformation of the field and the coordinate. This hidden Schrödinger
symmetry provides the general structure relevant to understand the origin of the horizontal
HJPSS symmetry.

Indeed, applying this whole structure to the case of a static massless scalar field on the
Schwarzschild black hole, we show that among the infinitesimal generators generating the
sl(2,R) symmetry, one of them, denoted δQ+ , coincides with the HJPSS symmetry: it leaves
the growing branch invariant. However, we point that one of the other sl(2,R) generators
leaves instead the decaying branch invariant. From this observation, we argue that the
reasoning developed in ref. [34] has to be improved to select the symmetry protecting the
growing branch (and thus the vanishing of the Love number) over the other. We show
that one can discriminate between the different symmetry transformations by inspecting
the on-shell values of the boundary term induced by the symmetry at the level of the
action. Concretely, among the five Schrödinger charges, only two of them generate a
finite shift of the on-shell action. These two charges commuting, we conclude that the full
Schrödinger group is broken down to an abelian global symmetry group at the horizon. This
residual symmetry protects the field from being divergent at the horizon. We argue that
this symmetry breaking provides the right criterion to identify the protecting symmetry
associated to the purely growing behavior of the static response of the Schwarzschild black
hole. This provides the second main result of this work. Let us stress that, as shown in
appendix A, the same strategy can be applied to the static response of the Kerr black hole
which can also be recast in terms of a Sturm-Liouville system.

While the main motivation of the present work is to provide the right framework to
understand the result of ref. [34], we stress that the Schrödinger charge algebra for static
fields around a black hole provides a new structure with interesting applications for the
black hole perturbation theory. We shall comment on this along this work and in the final
discussion.

This article is organized as follows. Section 2 exposes the problem and provides a brief
overview of the computation of the Schwarzschild Love number in the test field approxima-
tion. We present the infinite dimensional charge algebra and its Schrödinger sub-algebra
for the Sturm-Liouville system in section 3.1. The finite symmetry transformations of
the action are discussed in section 3.3. We then apply this structure to the problem in
section 4.1 where we first identify the HJPSS symmetry generator as belonging to the
Schrödinger generators. The symmetry-breaking is discussed in section 4.2. We conclude
in section 5 by a brief discussion on our results and the open directions. Finally, in ap-
pendix A, we briefly show that the static massless scalar field on the Kerr black hole can
also be recast in terms of a Sturm-Liouville equation, which shows that our results extend
trivially to the rotating case. In appendix B, we discuss how the static linear peturbations
can be mapped onto the free particle by identifying the so-called trivializing coordinate and
how it allows to understand the Schrödinger symmetry uncovered in this work in terms of
the standard Schrödinger symmetry of the free particle.
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2 Static response of black hole: overview of the problem

As a starting point, let us first review the standard computation of the Schwarzschild Love
number in the test field approximation. When the black hole is immersed in a slowly
varying tidal field, it can be considered as static and it was shown that the static test field
approximation is well adapted to evaluate the Love numbers [28, 31, 32]. For simplicity,
we shall represent the tidal field as a static massless scalar field.

Let us consider a massless scalar field living on the Schwarzschild metric given by the
line element in spherical coordinates (t, r, θ, φ),

ds2 = −A2(r)dt2 + dr2

A2(r) +r2dΩ2 , with A2(r) := 1− rs
r

and dΩ2 = dθ2 +sin2 θdφ2 ,

(2.1)
where its action is given by:

S[ϕ] = 1
2

∫
d4x

√
|g|gµν∂µϕ∂νϕ (2.2)

= 1
2

∫
dtdrd2Ω

[
−r2A−2(∂tϕ)2 + r2A2(∂rϕ)2 + (∂θϕ)2 + 1

sin2 θ
(∂φϕ)2

]
.

This field action consists in a kinetic term, with the time derivative, plus a potential term,
depending on the spatial variations of the field. Let us now consider a static field, thus
∂tϕ = 0. Its reduced action consists simply the potential term of the full action, dropping
both the time derivative and the time integration. Upon integrating by part, the action of
the static massless scalar field ϕ(r, θ, φ) is then:

S[ϕ] = 1
2

∫
drdΩ2

[
r2A2(∂rϕ)2 − ϕ∆S2ϕ

]
, (2.3)

where ∆S2 is the Laplacian operator on the 2-sphere. Static solutions, satisfying the static
equation of motion

∂r
[
r2A2∂rϕ

]
+ ∆S2ϕ = 0 , (2.4)

give the equilibirum configurations of the dynamical model.
Decomposing the field in spherical harmonics,

ϕ(r, θ, φ) =
∑
`∈N

+∑̀
m=−`

ϕ`,m(r)Y m
` (θ, φ) , (2.5)

we diagonalize the spherical Lagrangian and obtain one-dimensional differential equations
for the radial factors:

z∂2
rϕ`,m + ∂rz∂rϕ`,m − `(`+ 1)ϕ`,m = 0 , (2.6)

where we have introduced the notation

z := r2A2(r) = r(r − rs) . (2.7)

This function z matches the quantity ∆ in ref. [34], while avoiding potential confusion with
the Laplacian and finite variations.
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2.1 Legendre solutions and Love number

In order to solve these equations of motion, putting the label m aside, we notice that a
simple change of variable allows to write them as Legendre differential equations:

ϕ`(r) = f`(x) with x = 2r
rs
− 1 ⇒ (1− x2)f ′′` − 2xf ′` + `(`+ 1)f` = 0 . (2.8)

It is well-known that such a second order differential equation admits two independent
solutions, the Legendre functions of the first and second kinds P`(x) and Q`(x).3 These
functions are usually defined on the interval x ∈ ]− 1,+1[, but their definition is straight-
forwardly extendable to the half-line x ∈ ] + 1,+∞[ corresponding to the exterior of the
black hole r ∈ ]rs,+∞[. The P`’s are the Legendre polynomials, the Q`’s differ by a loga-
rithmic factor. The P`’s take finite values at the horizon r = rs and diverge at r → +∞,
while the Q`’s have the opposite behavior, they diverge at the horizon and asymptotically
vanish as r grows to infinity. A general solution is thus a superposition of the two Legendre
functions,

ϕ`(r) = c1 (ϕ`)1 + c2 (ϕ`)2 , with

 (ϕ`)1 = P`
(

2r
rs
− 1

)
(ϕ`)2 = Q`

(
2r
rs
− 1

)
,

(2.10)

where the two branches and their asymptotic are given by:

(ϕ`)1(r) ∼
r→r+

s

1 , (ϕ`)1(r) ∼
r→+∞

22`Γ(`+ 1/2)√
π`!

(
r

rs

)`
, (2.11)

(ϕ`)2(r) ∼
r→r+

s

− 1
2`! log

[
2
(
r

rs
− 1

)]
, (ϕ`)2(r) ∼

r→+∞

22`√π
Γ(`+ 3/2)

(
r

rs

)−`−1
. (2.12)

The coefficients (c1, c2) are a priori arbitrary constants determining a general solution.
But due to the divergent behavior of the two chosen solutions (ϕ`)1 and (ϕ`)2 either at the
horizon or at spatial infinity, those coefficients will be fixed by imposing suitable boundary
conditions. Since the Q` solution diverges at the horizon because of the logarithmic factor,

3The Legendre functions P`(x) are polynomials when ` is an integer, and thus are well-defined and
real-valued on the whole real line R. They only diverge at infinity. Concerning Q`(x), they are usually
defined on ] − 1,+1[, corresponding to r/rs ∈ ]0, 1[. Adapting their definition to the exterior interval is
straightforward. Starting from ` = 0, we slightly modify the definition of the Q0,

Q0(x) = 1
2 ln 1 + x

1− x , ∀x ∈ ]− 1,+1[ and Q0(x) = 1
2 ln x+ 1

x− 1 , ∀x ∈ ] + 1,+∞[ , (2.9)

then construct the higher angular momenta solutions Q` from the Bonnet recursion as

Q1(x) = xQ0 − 1 , Q`(x) = 2`− 1
`

Q`−1 −
`− 1
`

Q−2 for ` ≥ 2 .

They can also be expressed in terms of hypergeometric functions defined on ]1,+∞[. as

Q`(z) =
Γ(`+ 1)Γ

(
1
2

)
2`+1Γ

(
`+ 3

2

)x−(`+1)
2F1

(
`+ 2

2 ,
`+ 1

2 ; `+ 3
2 ; z−2

)
.
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and we require that the tidal field be regular at the horizon, this imposes that c2 = 0 and
that the only admissible solution is the first branch

ϕ`(r) = P`

(2r
rs
− 1

)
, hence ϕ`(r) ∝

r�rs
r` . (2.13)

Therefore, the profile of the static test scalar field does not exhibit any tail. This means
that the Love number vanishes in this case. Indeed the Love number is defined as the
ratio between the coefficient of the leading order of the tail (i.e. the induced r`+1 tail at
infinity arising from the Q` mode) and the coefficient of the leading order to the growing
behavior (i.e. the r` tidal mode associated with P`). The vanishing of the coefficient c2
is thus equivalent to the vanishing of the Love number. The same is true for spin-1 and
spin-2 static linear perturbations around the Schwarzschild black hole in four dimensional
GR. However, in higher dimensions or in modified gravity, this boundary condition does
not prevent the field from exhibiting a tail and thus the Love number are in general non-
vanishing [28].

From that perspective, the vanishing of the Love numbers in 4-dimensional GR is a
surprising property. The goal of the following sections is to revisit this problem from the
point of view of its hidden symmetries to study whether it can be protected. While the
problem is straightforward to solve by using suitable boundary conditions, i.e. c2 = 0,
the symmetry of the system allows one to trade this physical boundary condition into a
symmetry argument, following the idea first advocated in ref. [34]. Identifying the conserved
charges and the explicit symmetry transformation which fully dictate the profile of the static
test scalar field thus provides a way to characterize the static response of the Schwarzschild
black hole and the vanishing of its Love numbers from a purely symmetry-based approach.

2.2 Sturm-Louiville problem

In order to investigate the general structures and symmetries of the model in a systematic
fashion, it is convenient to reformulate it as a Sturm-Louiville problem, i.e. as a free massless
1D field evolving in a non-trivial potential. This reformulation underlines the universality
of the approach and of our results.

To this purpose, we introduce a rescaled scalar field ψ

ψ :=
√
zϕ . (2.14)

This rescaling removes the friction term in the equation of motion. Using the prime notation
for radial derivatives, ψ′ ≡ ∂rψ, the static action becomes:

S[ψ] = 1
2

∫
drdΩ2

[
(ψ′)2 − µ2

z2 ψ
2 − 1

z
ψ∆S2ψ

]
, (2.15)

where µ2 = r2
s/4 is the horizon area up to a numerical factor. Decomposing the field in

spherical harmonics,4 ψ(r, θ, φ) =
∑
`,m ψ`,m(r)Y m

` (θ, φ), the static action becomes a sum
4Even if the scalar field is assumed to be real, its decomposition on spherical harmonics is not. Due

to the reality conditions satisfied by the spherical harmonics, Y m
` = (−1)mY −m

` , the modes of a real field
satisfy ψ`,m = (−1)mψ`,−m.
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of decoupled harmonic oscillators corresponding to each multipole

S[ψ] = 4π
∑
`,m

1
2

∫
dr
{
|ψ′`,m|2 − V`(r)|ψ`,m|2

}
, (2.16)

where the potentials are given by

V`(r) := µ2

z2 −
`(`+ 1)

z
, (2.17)

and depends only on the angular momentum label ` thanks to spherical symmetry. One
can thus investigate the dynamics of each multipole independently. The equation of motion
for a field mode ψ`,m is given by a Sturm-Liouville equation,

E`ψ`,m :=
[
d2
r + V`(r)

]
ψ`,m = 0 . (2.18)

Such a second order linear differential equations admits two independent solutions. We
recover the Legendre solutions obtained for the original unrescaled scalar field ϕ = ψ/

√
z:

ψ`(r) = c1 (ψ`)1 + c2 (ψ`)2 with

 (ψ`)1 =
√
zP`

(
2r
rs
− 1

)
,

(ψ`)2 =
√
zQ`

(
2r
rs
− 1

)
.

(2.19)

Before going further, let us point that the same strategy can be applied the static massless
scalar field on the Kerr black hole, such that it can also be recast in terms of a Sturm-
Liouville equation with potential (A.6). See appendix A for details.

2.3 Ladder operators for angular momenta

It turns out that the profile of an arbitrary `-multipole can be fully deduced from the profile
of the zero mode [34]. This will allow us to focus on the simplest sector with zero angular
momentum when discuss the symmetries of the system in the next section. This is realized
through the existence of ladder operators allowing to switch between different values of the
angular momentum. This is especially clear in terms of Sturm-Louiville operators.

Let us consider the rescaled equation of motion E`ψ` = zE`ψ` ' 0 and introduce pairs
of first order differential operators:

D+
` = z∂r + (`− 1)

2 z′ , D−` = z∂r −
(`+ 2)

2 z′ . (2.20)

They satisfy the following intertwining commutation relations

D−` E`+1 = E`D
−
` , D+

` E`−1 = E`D
+
` , (2.21)

such that they act as ladder operators between the space of solutions with different angular
momenta:

E`+1ψ = 0 ⇒ E`(D−` ψ) = 0 , E`−1ψ = 0 ⇒ E`(D+
` ψ) = 0 . (2.22)

– 7 –
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Thus, starting from the ` = 0 solution, i.e. E0ψ0 = 0, similar to highest weight vectors,
one can construct a solution in the ` sector as

ψ` = D+
`−1 . . . D

+
2 D

+
1 ψ0 . (2.23)

On the contrary, the operator D−` allows one to climb down the ladder. Let us point
that the ladder operators satisfy themselves ladder relations, showing that they can be
generated from the lowest angular momenta operator b a simple rescaling:

√
zD+

`+1 = D+
`

√
z ⇒ z

`−1
2 D+

` = D+
1 z

`−1
2 , (2.24)

√
zD−`−1 = D−`

√
z ⇒ D−` z

`
2 = z

`
2D−0 . (2.25)

Although we will not focus on this structure in the present work, we stress that these
ladder operators generate a symmetry of the test field action dubbed vertical symmetry in
ref. [34]. Finally, let us point out that a similar ladder structure can be constructed which
connect the solutions for different spins. See refs. [34, 35] for details. This concludes the
overview of the problem. We now turn to the original part of the present work and move
to the general symmetries of the system.

3 Schrödinger symmetry for Sturm-Liouville systems

Any static linear perturbations around a Schwarzschild and Kerr black holes follows an
equation of motion which can be recast into a Sturm-Liouville operator of the form (2.18).
In the following section, we point out the relation between the conservation of the Wron-
skian of pairs of solutions to the e.o.m. and the existence of an infinite tower of conserved
charges for the system. In particular, we show that within this infinite dimensional charge
algebra, one can identify a finite dimensional subalgebra generating a Schrödinger global
symmetry of the Sturm-Liouville system for which we derive the explicit finite symmetry
transformations.

Let us consider a one-dimensional field ψ depending on one coordinate x, which can
interpret as the “time” along which we describe the evolution of the field. We define the
action as

S[ψ] =
∫

dxL[x, ψ] , with L[x, ψ] = 1
2
[
(ψ′)2 − V (x)ψ2

]
, (3.1)

such that its e.o.m. is given by a Sturm-Liouville operator,

Eψ :=
[
d2
x + V (x)

]
ψ ' 0 , (3.2)

where ' denotes on shell from now on. A general solution reads ψ ' c1ψ1 + c2ψ2 in terms
of two linearly independent solutions (ψ1, ψ2). The two coefficients (c1, c2) are arbitrary
constants to be fixed by suitable boundary conditions (at infinity and at the poles of the
potential). The Hamiltonian formulation of the system is given by

p = δL

δψ′
= ψ′ , H = pψ′ − L = 1

2
(
p2 + V (x)ψ2

)
,

∣∣∣∣∣ψ′ = {ψ,H} = p ,

p′ = {p,H} = −V ψ ,
(3.3)

where the Poisson bracket is defined by the canonical pair {ψ, p} = 1.
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Let us now move on to identifying the symmetries of the system. Since the potential V
is explicitly x-dependent, the Hamiltonian is not conserved (with respect to the evolution
in the x-coordinate). So we have to identify other conserved quantities and understand the
symmetry transformations that they generate by Noether’s theorem.

3.1 Conserved Wronskian, Schrödinger algebra and central charge

A special property of the Sturm-Louiville system is that the Wronskian of two arbitrary
solutions of the equation of motion is a constant of motion. For instance, for the two linearly
independent solutions (ψ1, ψ2), we compute the derivative of the Wronskian w[ψ1, ψ2] =
(ψ1ψ

′
2 − ψ2ψ

′
1):

dxw[ψ1, ψ2] = (ψ1ψ
′′
2 − ψ2ψ

′′
1) ' V (x) (−ψ1ψ2 + ψ2ψ1) = 0 . (3.4)

In the following, we shall use the shorthand notation w := w[ψ1, ψ2] which is a number.
Thus, for an arbitrary classical solution, one can construct two conserved charges given

by its Wronskian with each of the two chosen solutions:

w1 := w[ψ1, ψ] = ψ1ψ
′ − ψψ′1 , w2 := w[ψ2, ψ] = ψ2ψ

′ − ψψ′2 . (3.5)

These charges turn out to be conjugate variables,

{w1, w2} = w . (3.6)

One can go further and construct an infinite tower of conserved charges for this system,
consisting in all the polynomials wn1

1 wn2
2 . They form a w∞ charge algebra:

{wn1
1 wn2

2 , wm1
1 wm2

2 } = w(n1m2 −m1n2)wn1+m1−1
1 wn2+m2−1

2 , (3.7)

A natural question is then whether one can identify a closed finite dimensional charge
algebra within this infinite dimensional Lie algebra. We can indeed consider the truncation
to linear and quadratic binomials. Denoting the linear and quadratic charges as

∣∣∣∣∣Y+ = w1 ,

Y− = w2 ,

∣∣∣∣∣∣∣∣
Q+ = w2

1/2 ,
Q− = w2

2/2 ,
Q0 = w1w2/2 .

(3.8)

we compute the commutators of these five constants of motion:

{Q+, Q−} = 2wQ0 , {Q0, Q+} = −wQ+ , {Q0, Q−} = wQ− , (3.9)

{Q0, Y±} = ∓w2 Y± , {Q+, Y−} = wY+ , {Q−, Y+} = −wY− , (3.10)

{Y+, Y−} = w . (3.11)

The first line corresponds to an sl(2,R) algebra (with vanishing quadratic Casimir) while
the last bracket defines a Heisenberg algebra H. We recognize the one-dimensional Schrö-
dinger algebra as the semi-direct product sh(1) = sl(2,R)nH, where the central charge is
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given by the conservedWronskian w. To our knowledge, this is the largest finite dimensional
closed algebra one can construct. See refs. [36, 37] for complementary investigations on
the symmetries of specific second order ordinary differential equations and [38–40] for a
discussion on the dynamical symmetry of time-dependent systems.

For a given solution ψ ' c1ψ1 + c2ψ2, the Wronskian are w1(ψ) = c2w and w2(ψ) =
−c1w, so that the on-shell values of the Schrödinger charges are given by

∣∣∣∣∣Y+ ' c2w ,

Y− ' −c1w ,

∣∣∣∣∣∣∣∣
Q+ ' c2

2w
2/2 ,

Q− ' c2
1w

2/2 ,
Q0 ' −c1c2w

2/2 .
(3.12)

Now, those charges are supposed to generate symmetries by Noether’s theorem. Let us thus
derive the action of the resulting finite symmetry transformations on the solution space.

3.2 Infinitesimal action on fields

The infinitesimal action of each charge on the field is given by the Poisson bracket δψ =
{wn1

1 wn2
2 , ψ}. First, the linear charges induce the following field variations:

δY+ψ = {Y+, ψ} = −ψ1 , δY−ψ = {Y−, ψ} = −ψ2. (3.13)

Those Poisson brackets are immediate to exponentiate and leads to finite translations of the
field ψ along solutions to the equations of motion. These are Galilean transformations and
we will check in the next section that they are indeed symmetries of the system. While these
transformations may seem trivial at first glance, they however encode relevant information
through the central extension of the Heisenberg algebra they form, i.e. eq. (3.11). As we
shall see in the next section, this central extension corresponds to the mass of the black
hole for the zero mode static perturbation around the Schwarzschild black hole.

Now, the sl(2,R) charges induce the following field variations:

δQ+ψ = {Q+, ψ} = −w1ψ1 , (3.14)

δQ−ψ = {Q−, ψ} = −w2ψ2 , (3.15)

δQ0ψ = {Q0, ψ} = −1
2(w1ψ2 + w2ψ1) . (3.16)

Notice that the trnasformations (3.14) and (3.15) are linear in ψ as one can see from the
definition eq. (3.5). Although these variations are not straightforward to interpret, they
considerably simplify on-shell. Indeed, for an arbitrary solution ψ ' c1ψ1 + c2ψ2, the
sl(2,R) charges act as follows:

δQ+ψ ' −c2wψ1 , (3.17)

δQ−ψ ' +c1wψ2 , (3.18)

δQ0ψ '
1
2w(c2ψ2 − c1ψ1) . (3.19)
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The first charges Q± shift the solution along one given branch while the charge Q0 squeezes
the two branches. Those infinitesimal variations clearly map solutions of the e.o.m. to other
solutions of the e.o.m. We can thus describe the action on the solution space by looking
at how the coefficients c1 and c2 are affected. We can indeed represent these as standard
2×2 matrices acting on the real 2-vector (c1, c2) in the (ψ1, ψ2)-basis:

δQ+

(
c1
c2

)
= −w

(
0 +1
0 0

)(
c1
c2

)
, (3.20)

δQ−

(
c1
c2

)
= −w

(
0 0
−1 0

)(
c1
c2

)
, (3.21)

δQ0

(
c1
c2

)
= −w2

(
1 0
0 −1

)(
c1
c2

)
. (3.22)

We recognize a basis of the sl(2,R) Lie algebra, which generates the SL(2,R) group. The
variation along δQ+ exponentiates to upper triangular matrices, δQ− exponentiates to lower
translations, while δQ0 generates dilatations. This fully describes the action of the SL(2,R)
symmetry transformations on the space of classical solutions to the field equation. We de-
scribe below how the SL(2,R) group transformations act on arbitrary fields: they form the
subgroup of the Virasoro group of conformal transformations which preserve the potential.

3.3 Finite conformal transformations

In this section, we identify the finite symmetry transformations generated by the Schrö-
dinger charges and show that these are indeed the corresponding Noether charges.

Let us start with the following Galilean transformation

x→ x̃ = x , (3.23)
ψ → ψ̃(x̃) = ψ(x) + χ(x) , (3.24)

where χ(x) is a priori an arbitrary function. We are interested in understanding when
such a field translation is a symmetry of the system. The Sturm-Liouiville action (3.1)
transforms as

∆S = S[x̃, ψ̃]− S[x, ψ] =
∫

dx
{ d

dx
(
χχ′ + 2ψχ′

)
− (χ+ 2ψ)(χ′′ + V χ)

}
. (3.25)

It is a Noether symmetry when the action variation is solely a boundary term, i.e. the
integral of a total derivative. This happens if and only if (χ′′+ V χ) vanishes, that is when
the translation parameter χ is a solution of the e.o.m. In that case, χ can be decomposed
onto the chosen independent solutions,

χ′′ + V (x)χ = 0 ⇔ χ = η+ψ1 + η−ψ2 (3.26)

where η± are real constants labelling this global symmetry. This means that this is a
two-parameter symmetry of the system. We would like to stress that these are proper
off-shell symmetries: while the symmetry parameters are constrained by the e.o.m., the
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field ψ is arbitrary and is not assumed to satisfy the e.o.m. in any measure. The Noether
charges generating this symmetry are easily computed from the total derivative term of
the Lagrangian variation and read

Y [χ, ψ] = δψ
δL

δψ′
− ψχ′ = χψ′ − χ′ψ +O(χ) ,

∣∣∣∣∣χ = ψ1 ⇒ Y+[ψ1, ψ] = w1 ,

χ = ψ2 ⇒ Y−[ψ2, ψ] = w2 .
(3.27)

Notice that we have neglected the term χχ′ which is second order in χ in the expression of
the charges. As expected, the Wronskians w1 and w2 thus generate the Galilean symmetry
transformations of the Sturm-Louiville system.

Now, let us analyse the symmetries generated by the quadratic charges given by the
squared Wronskians. We introduce conformal reparametrizations parametrized by an a
priori arbitrary function f(x):

x 7→ x̃ = f(x) ,

ψ(x) 7→ ψ̃(x̃) = f ′(x)1/2ψ(x) ,
(3.28)

where the field ψ(x) transforms as a primary field with conformal weight 1
2 . Under such

finite transformation, the action of our system transforms as

S[x̃, ψ̃(x̃)] = 1
2

∫
dx

[
(dxψ)2 −

(1
2Sch[f ] + (f ′)2(V ◦ f)

)
ψ2 + 1

2
d

dx

(
f ′′

f ′
ψ2
)]

. (3.29)

Up to a total derivative (i.e. a boundary term), this is again a Sturm-Louiville system with
a modified potential:

Ṽ = (f ′)2(V ◦ f) + 1
2Sch[f ] with Sch[f ] = f ′′′

f ′
− 3

2

(
f ′′

f ′

)2
, (3.30)

where Sch[f ] is the Schwarzian derivative5 of the function f(x). This is exactly the Vi-
rasoro group action on Sturm-Louiville operators (e.g. [77]), where we recognize the non-
trivial Schwarzian cocycle. This cocycle term signals a deformation of the action of one-
dimensional diffeomorphisms on the potential. Here we are not interested in a full descrip-
tion of the Virasoro group and its orbits, and we would like to focus on the symmetries of
the system. These conformal reparametrizations are symmetries when the action variation
is a mere boundary term,

∆S = 1
2

∫
dx
{1

2
d

dx

(
f ′′

f ′
ψ2
)
−
[1

2Sch[f ] + (f ′)2(V ◦ f)− V
]
ψ2
}
, (3.31)

which is equivalent to the potential remaining unchanged, that is if the transformation
parameter f satisfies the following functional condition:

Sch[f ] = 2V − 2(f ′)2(V ◦ f) . (3.32)
5Two key properties of the Schwarzian are given by:

Sch[f ] = 0 ⇔ f(x) = ax+ b

cx+ d
, and Sch[f1 ◦ f2] = Sch[f2] + (f ′2)2 (Sch[f1] ◦ f2) .

The first property identifies Möbius transformations as the kernel of the Schwarzian derivative, while the
second equality is the cocycle property resulting in the consistent deformation of the one-dimensional
diffeomorphisms into the Virasoro group.
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The solution to this third order differential equation is rather complicated to write in a
closed form. However, notice that depending on the form of the potential V , one can
sometimes obtain an explicit solution for the finite transformation f(x). This will be the
case for the application to black hole we shall present later in section 5.

At this stage, it is not clear that solutions to (3.32) form a SL(2,R) group. The simplest
route to show that this is indeed the case is to identify a “trivializing map” f such that the
corresponding conformal reparametrization yields a vanishing potential. This allows to map
the system with a potential onto a free field. We describe this “conformal bridge” method
in more details in appendix B. For the moment, let us briefly explain its construction. Let
us call f such a trivializing map. This map transforms the original coordinate and field
(x, ψ) onto a new system (F,Φ) such that Φ satisfies the trivial field equation d2

FΦ = 0. It
turns out that the new trivializing coordinate F is simply given by the ratio of two linearly
independent solutions, for instance, F = ψ2/ψ1. Once we work with the free system, we
readily check that it is invariant under conformal reparametrization given by standard
Möbius transformation in the coordinate:

F 7→ F̃ = M(F ) = (αF + β)
(γF + δ) with (αδ − βγ) = 1 ,

Φ(F ) 7→ Φ̃(F̃ ) = M ′(F )
1
2 Φ(F ) ,

d2
FΦ 7→ d2

F̃
Φ̃ = (γF + δ)3 d2

FΦ .

(3.33)

These Möbius transformations form a SL(2,R) group. We can cross the bridge back
to the system with a potential: the symmetry is given by conformal reparametrizations
F−1 ◦M ◦ F , which satisfy the condition (3.32) and clearly form a SL(2,R) group. This
SL(2,R) symmetry can be understood directly at the level of the existence of the triv-
ializing coordinate F . Indeed we have an obvious freedom in choosing the two linearly
independent solutions used to define F . We can switch the ratio ψ2/ψ1 with any ratio
(αψ2 +βψ1)/(γψ2 + δψ1) as long as (αδ−βγ) 6= 0. At this point, we can anticipate on the
symmetry breaking mechanism that we will uncover in the context of the black hole tidal
modes in the next section. Indeed, when the potential admits poles, it leads to distinct
boundary conditions and asymptotic behaviors for the two solutions ψ1 and ψ2, then we
lose the freedom to consider arbitrary linear combination of those two solutions. This leads
to a spontaneous symmetry breaking from the whole SL(2,R) group down to an abelian R
subgroup.

Coming back to the symmetry (3.28) with the condition (3.32), a little work is required
to show that the charges generating these symmetries coincide with the squared Wron-
skians. Consider the infinitesimal conformal reparametrizations, with f(x) = x+ ξ(x). At
first order in ξ, the field variation reads

δψ = ψ̃(x)− ψ(x) = ξψ′ − 1
2ξ
′ψ , (3.34)

and the condition (3.32) becomes

ξ′′′ + 2V ′ξ + 4V ξ′ = 0 . (3.35)
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An amazing property is that solutions to this third order differential equation can be
constructed from solutions to the Sturm-Louiville e.o.m. Indeed if χ is a solution to χ′′ +
V (x)χ = 0, then ξ = χ2 is a solution to the symmetry condition (3.35). This means
that one can construct suitable symmetry parameters from the two linearly independent
solutions (ψ1, ψ2):

ξ(x) = α+ψ
2
1 + α−ψ

2
2 + α0ψ1ψ2 , (3.36)

in terms of three arbitrary coefficients (α+, α−, α0). Since this defines a three-dimensional
space of solutions, this provide the whole solution space for the third order differential
equation. Applying the Noether’s theorem, we compute the associated Noether charges
from the Lagrangian variation,

Qξi
[ψ] = 1

4ξ
′′
i ψ

2 − 1
2ξ
′
iψψ

′ + 1
2ξi

(
(ψ′)2 + V ψ2

)
. (3.37)

We check that these are indeed conserved charges:

Q′ξi
= 1

4
(
ξ′′′i + 2V ′ξi + 4V ξ′i

)
ψ2 +

(
ξiψ
′ − 1

2ξ
′
iψ

)
E [ψ] ' 0 , (3.38)

where the first term vanishes because of the condition (3.35) while the second term vanishes
on-shell when ψ is a solution to the e.o.m. E [ψ] ' 0. Now, a straightforward computation
shows that the three charges can be compactly written as the squared Wronskians:∣∣∣∣∣∣∣∣

Q+[ψ2
1, ψ] = w2

1/2 ,
Q−[ψ2

2, ψ] = w2
2/2 ,

Q0[ψ1ψ2, ψ] = w1w2/2 .
(3.39)

in agreement with the result of section 3.1. At this stage, we have closed the circle and
identified the finite transformations generated by the conserved charges discussed in sec-
tion 3. Before going further, let us stress that the symmetry discussed here applies to any
static field on a spherically symmetry background. In particular, the action (3.1) can also
account for massive fields as well as higher spin field.

We can now apply this structure to the problem of the static response of the Schwarz-
schild black hole. As we shall see, the Schrödinger symmetry provides the right framework
to identify the origin of the horizontal HJPSS symmetry introduced in ref. [34] for static
massless test fields.

4 Application to the static response of Schwarzschild black holes

Consider a static massless test scalar field on a Schwarzschild black hole. Each multipole
admits the following action

S[ψ`] = 1
2

∫
dr
{

(ψ′`)2 − V`(r)ψ2
`

}
, (4.1)

where we have set aside the label m without loss generality. Indeed, we consider variations
and transformations of the field which act on each mode m separately mixing them. Let us
recall that the equation of motion are given by the Sturm-Louiville equation (2.18) while
the general solution for a general multipole is given by the Legendre functions (2.19).
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4.1 HJPSS symmetry from the Schödinger symmetry

As seen in the previous section, this system possesses a set of hidden conserved charges
which form a centrally extended Schrödinger algebra. Let us write down explicitly the
infinitesimal generators and the central charge associated with these conserved charges for
the Schwarzschild black hole. Since the symmetry of the multipole ` can be deduced from
the symmetry of the zero mode, i.e. ` = 0, by mean of the ladder operators (2.20), we focus
for simplicity on the ` = 0 sector. In that case, we have

(ψ0)1 =
√
z , (ψ0)2 = 1

2
√
z log

(
r2

z

)
. (4.2)

The central charge of the Schrödinger algebra is given by the Wronskian of those two
solutions, which coincides with the mass of the black hole

w = −rs2 . (4.3)

This result echoes the many works on black hole entropy from diffeormorphisms preserving
near-horizon boundary conditions, where the resulting symmetry is generated by a Virasoro
algebra whose central charge is related to the black hole mass [46–53]. See also refs. [54–65]
for further developments on these near-horizon conformal symmetries. In that context, the
central charge then controls the entropy and the ensuing Hawking temperature. Since the
scalar field we study is meant to represent (idealized) perturbations of the Schwarzschild
metric, it is interesting to wonder if the presently uncovered Schrödinger algebra could be
interpreted as the truncation, or remnant, of the full Virasoro algebra to scalar pertur-
bations in the static approximation. This conjecture goes well beyond the scope of the
present paper and is postponed to future investigation.

Now, the generators of the sl(2,R) symmetry are given by

δQ+ = −z∂r + z′ , (4.4)

δQ− = −z log
(
r2

z

)
∂r −

1√
z

[
rs − z′ log

(
r2

z

)]
, (4.5)

δQ0 = −z log
(
r2

z

)
∂r −

1
2

[
rs − z′ log

(
r2

z

)]
, (4.6)

while the Galilean transformations do not involve differential operators,

δY+ =
√
z , δY− =

√
z log

(
r2

z

)
. (4.7)

The symmetry generators for an arbitrary `-multipole can be obtained from them using
the ladder operators (2.20) as follows

δ`i = D+
`−1 . . . D

+
1 δ

0
iD
−
0 . . . D

−
`−1 . (4.8)

At this stage, we can already compare the generators we have obtained with the ones
discussed in ref. [34]. We recognize the generator δQ+ as the generator of the HJPSS
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horizontal symmetry for ` = 0. Indeed, it leaves invariant the growing mode, i.e. (ψ0)1,
i.e. δQ+(ψ0)1 = 0, while changing the decaying mode, i.e. δQ+(ψ0)2 6= 0. The difference
in the explicit form of the generators comes from the difference of rescaling (2.14) used
in the present work and in ref. [34]. We conclude that the horizontal HJPSS symmetry
stands as a one-parameter subgroup belonging to the larger Schrödinger symmetry group
discussed here.

The role of the other generators is also interesting. In contrast to the HJPSS symmetry,
we see that the generator δQ− leaves the decaying mode invariant, i.e. δQ−(ψ0)2 = 0, while
modifying the growing mode, i.e. δQ−(ψ0)1 6= 0. From that point of view, the reasoning
developed in ref. [34] is not fully satisfactory. Rejecting the decaying branch (ψ0)2 because
it spontaneously breaks the symmetry δQ+ is not the correct criterion since one can argue
the same for the growing branch w.r.t. the symmetry generated by δQ− . Thus, the question
is what is special in the symmetry δQ+?

As we shall see, the two other sl(2,R) symmetries δQ− and δQ0 are spontaneously
broken at the horizon. Selecting only the well-defined symmetry reduces the SL(2,R)
group to a one-parameter sub-group generated by δQ+ .

4.2 Symmetry breaking at the horizon

To understand this symmetry breaking, let us come back to the definition of the symmetry.
A symmetry maps solutions to the e.o.m. onto other solutions to the same e.o.m. At the
level of the action S[ψ], symmetries describe field variations which do not change the
bulk value of S[ψ]. Thus it might seem that all classical solutions related by a symmetry
transformation have the same value of the action. This is a naïve point of view and
symmetry transformations actually induce boundary terms which contribute to the action
variation. Here, it turns out that if we stretch the domain of definition of the field to the
horizon at r = rs, some of the Schrödinger symmetry transformations actually produce
infinite boundary terms and are not valid symmetry anymore. This leads to a spontaneous
symmetry breaking due to the horizon.

In order to discuss more concretely this symmetry breaking, notice that the action
for the static linear perturbations is actually playing the role of the potential for the
dynamical linear perturbations. Consider indeed the dynamical perturbations ϕ(t, r, θ, φ)
and the background

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2 . (4.9)

Rescaling the field as ψ(t, r, , θ, φ) =
√
zϕ with z = r2f(r), the action for the dynamical

rescaled perturbation is given by

S[ψ] = 1
2

∫
dtdr sin θdθdφ

[
− 1
f2 (∂tψ)2 +

{
(∂rψ)2 − µ2

z
ψ2 − 1

z
ψ∆S2ψ

}]
. (4.10)

Now, focusing on the static problem, i.e. ∂tψ = 0, the profile of the perturbation is dictated
by the spatial part of this action which corresponds to the potential of the dynamical per-
turbation. Indeed proceeding to the Legendre transform, the momenta and the hamiltonian

– 16 –



J
H
E
P
0
7
(
2
0
2
2
)
1
1
2

of the dynamical scalar field are given by

π = δŁ
δ∂tψ

, H[ψ] = K[ψ] +V [ψ] =
∫

dr sin θdθdφ
{
f2π2 +

[
(∂rψ)2− µ

z2ψ
2− 1

z
ψ∆S2ψ

]}
.

(4.11)
Here, K[ψ] is the kinetic energy while V [ψ] plays the role of the potential which coincides
with the action for the static scalar field. Therefore, the allowed configurations of the static
perturbation are given by the minima of the potential V [ψ], i.e:

Vmin := V (ψmin) <∞ ,
δV

δψ

∣∣∣∣
ψmin

= 0 . (4.12)

Now, considering the symmetry of the action V [ψ] for the static perturbations, the off-shell
symmetries transform the shape of the potential, while the on-shell symmetries map the
minima of the potential V [ψ] into another one, as expected for a dynamical symmetry.
Therefore, our criteria amounts at demanding for two minima ψ1

min and ψ2
min related by a

symmetry transformation, the transformation of the potential satisfies

∆Vmin = V (ψ2
min)− V (ψ1

min) = Bon shell <∞ (4.13)

where B is the boundary term induced by our symmetry. Now, the symmetry is broken
if there is two admissible solutions of the equation of motion which are not related by a
symmetry transformation. In our case, this translates into demanding that the different
values of the minimum of the potential one can reach with our symmetry remains finite,
i.e. (4.13). This difference is precisely given by the on-shell value of the boundary term
induced by the symmetry. Therefore, the criteria we will use in order to select the well
defined symmetry transformations is that it does not diverge on-shell. In particular, it can
be non-vanishing or zero.

In order to apply this criteria, we now come back to the infinitesimal transformation
of the action in order to evaluate the on-shell values of the boundary term. Let us omit
the subscript ` for simplicity. The sl(2,R) infinitesimal transformations shift the action by
a boundary term explicitly given by

δξS =
∫ r∗

rs

drdB
dr , with B(r) :=

(
V ξ + ξ′′

2

)
ψ2 (4.14)

where we integrate from the horizon rs to some finite radius r∗. In order for these sym-
metries to be well-defined, the boundary term has to remain finite in the range [rs, r∗].
Using (3.35) and evaluating the boundary on a general solution, i.e. ψ ' c1ψ1 + c2ψ2, we
find that

B(r) '
[
α+

(
ψ′1
)2 + α−

(
ψ′2
)2 + α0ψ

′
1ψ
′
2

]
(c1ψ1 + c2ψ2)2 . (4.15)

At this stage, the divergences arise only from the behavior of the second branch ψ2, its
derivative ψ′2 and the potential V at the horizon. Finiteness of this boundary term then
imposes that

α− = α0 = 0 , and c2 = 0 . (4.16)
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From this symmetry criterion, only the one-parameter symmetry transformation labelled
by α+ survives, which corresponds to the generator δQ+ . This provides the justification to
only consider this sub-group of symmetry. Moreover, the symmetry argument also imposes
that c2 = 0, showing that this residual symmetry is only consistent with a purely growing
branch. Let us stress that the symmetry breaking criterion discussed here is based on
the transformation of the action and not the transformation properties of the solution as
in ref. [34]. This allows one to capture the key difference between the different sl(2,R)
transformations on the physical system.

We can proceed the same way with the Galilean symmetry. The infinitesimal shift of
the action induced by this transformation reads

δχS =
∫ r∗

rs

drdB
dr , with B(r) := (χ+ 2ψ)χ′ . (4.17)

Evaluating it on-shell, we obtain

B(r) ' (η+ψ
′
1 + η−ψ

′
2) [(η+ + 2c1)ψ1 + (η− + 2c2)ψ2] . (4.18)

Imposing finiteness of this term, we recover the condition c2 = 0 and the additional con-
dition η− = 0. Therefore, only the Galilean symmetry generated by δY+ survives this
criterion. From the above discussion, we conclude that the Schrödinger algebra of the
system breaks down to the abelian sub-algebra

{Q+, Y+} = 0 . (4.19)

This algebra encodes the symmetry protecting the physical solution which is not divergent
at the horizon. In the 4-dimensional case, this abelian global symmetry also protects the
vanishing of the static Love numbers for the Schwarzschild black hole. Using the on-shell
values of the conserved charges (3.12), we obtain the equivalence

c2 = 0 ⇐⇒ Q+ = Y+ ' 0 . (4.20)

The interesting outcome of this result is that the value of the conserved charged can be
computed far away from the black hole. Therefore, the symmetry criterion allows one to
check the properties of the field at the horizon solely from the symmetry satisfied in the
asymptotic region, as first advocated in ref. [34].

Finally, having identified the sub-group which generates the well-defined transforma-
tions of the system, we can wonder if we can write explicitly the associated finite trans-
formations. Let us focus on the zero mode. For the symmetry δQ+ leaving invariant the
growing branch, the associated reparametrization function f(r) shall satisfy the following
differential equation

(ψ0)1 ◦ f = (f ′)
1
2 (ψ0)1 , where (ψ0)1 = z (4.21)

and where we have reintroduced the subscript ` = 0 to avoid confusion. The solution is
given by

fλ(r) = λrsr

(λ− 1)r + rs
, (4.22)

where λ is a real constant which parametrizes this symmetry transformation. It can be
checked that this function also solves the condition (3.32) when restricting the potential
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V to its expression (2.17) in the case ` = 0. We can therefore write down explicitly the
set of finite off-shell symmetry transformations for the zero mode. They are compactly
written as

r → r̃ = λrsr

(λ− 1)r + rs
, (4.23)

ψ0 → ψ̃0(r̃) =
√
λrs

(λ− 1)r + rs
ψ(r) + η+

√
r(r − rs) , (4.24)

and parameterized by the two real constants (λ, η+). Notice that in this simple case, the
reparame-trization of the radial coordinate (4.23) is a special conformal transformation
which leaves the horizon invariant, i.e. fλ(rs) = rs. Nevertheless, finding the explicit
form of the finite symmetry transformations for an arbitrary multipole ψ` turns out to
be much more complicated as they involve non-linear third order differential equations.
This concludes the discussion on the symmetry breaking and the residual abelian global
symmetry dictating the profile of the massless static test scalar field on the Schwarzschild
black hole.

Let us point that the present discussion is based on a specific choice for the boundary
term of the action (4.1). Indeed, the same Lagrangian with different boundary terms can
describe the same bulk behavior with different boundary physics, such that the choice of
boundary term has to be understood as part of the definition of the theory [41, 42]. In the
present discussion, the boundary term has been chosen to vanish. Introducing a suitable
boundary term to our Lagrangian might allow one to restore the full Schrödinger symmetry
but one should then provide an interpretation for these new boundary degrees of freedom.
A lot of progress has been done in this direction, and it would be interesting to revisit the
symmetry-breaking discussed here using the well-developed edge modes machinery [43].

5 Discussion

We have shown that any static linear perturbations around a Schwarzschild black hole
possess an infinite tower of conserved charges. These charges are constructed from the
conserved Wronskians (3.5) which stand as a special property of the Sturm-Liouville equa-
tion dictating the dynamics. From this infinite dimensional charge algebra (3.7), we have
shown that one can identify a finite dimensional subset forming a one dimensional centrally
extended Schrödinger algebra sh(1) = sl(2,R) n H. These Schrödinger charges generate
suitable Galilean transformations (3.24) and conformal reparametrization of the field and
the coordinate, i.e. (3.28), which stand as global Noether symmetries for the static linear
perturbations. We stress that our analysis is very general as it holds for any d-dimensional
spherically symmetric background, while it can include massive and higher spins fields
(suitably rescaled and decomposed in spin-weighted spherical harmonics).

We have further shown that the rather complicated SL(2,R) finite symmetry transfor-
mation satisfying (3.32) can be understood in a straightforward manner using the so-called
conformal bridge. This map transforms the system (x, ψ) with a potential V onto the free
system (F,Φ). The new trivializing coordinate F is constructed as the ratio of the two lin-
early independent solutions for ψ, i.e. F = ψ2/ψ1. In this alternative picture, the SL(2,R)
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finite symmetry simply amounts at the freedom to define this new trivializing coordinate
up to a standard Möbius transformation (3.33). From that perspective, it is always possible
to trivialize the static response of the black hole by identifying this trivializing coordinate.
In terms of this privileged coordinate, the hidden symmetry discussed here simply descends
from the standard Schrödinger symmetry of the free particle. See appendix B for details.

In the second part of this work, we have used this structure to revisit the static response
of the Schwarzschild black hole from a symmetry-based perspective. Following refs. [28,
31, 32], we have adopted the test field approximation and consider for simplicity the case
of a massless static scalar field on the Schwarzschild black hole. We have derived the
infinitesimal generators of the Schrödinger symmetry for this system and shown that one of
the sl(2,R) transformation, i.e. (4.4), reproduces the horizontal HJPSS symmetry recently
presented in ref. [34]. For each multipole, this symmetry leaves the growing branch of the
solution invariant. This result clarifies the origin of this HJPSS symmetry and in particular
the associated explicit finite transformation at the level of the action (4.1). Moreover, the
generality of our set-up shows that this symmetry also holds for more general spherically
symmetric backgrounds as well as for massive test fields. Let us point that in the free
field representation, this HJPSS symmetry takes an even simpler form as it amounts at the
invariance of the field under translation along the trivializing coordinate (B.20).

We have further argued that the symmetry criterion used in ref. [34] has to be im-
proved. Indeed, from the three sl(2,R) generators, one of them, i.e. (4.5), leaves the
decaying branch of the solution invariant while the growing branch spontaneously breaks
this symmetry. Therefore, the action of the symmetry generators on the solution is not suf-
ficient to select the symmetry protecting the regularity of the field at the horizon. Instead,
we have proposed to use the transformation of the action to discriminate the different
symmetries. Demanding finiteness of the on-shell boundary term (4.14) induced by the
symmetry transformations at the level of the action provides the right symmetry criterion.
It automatically imposes that the only well-defined symmetry transformations are gener-
ated by δQ+ , in agreement with the HJPSS result, as well as by δY+ . As a consequence,
the Schrödinger symmetry is broken down at the horizon to an abelian symmetry. This
residual global symmetry protects the regularity of each multipole of the static scalar field
at the horizon.

Whether one can consider this symmetry as explaining the vanishing of the Love num-
bers for the 4-dimensional Schwarzschild black hole depends on what we ask. Indeed, a
static massless scalar field on a d-dimensional Schwarzschild black hole will also possess
a Schrödinger symmetry. One can again identify the sub-group of symmetry protecting
the regularity of the field at the horizon, but in that case, the Love numbers will not be
vanishing anymore. The relation between the regularity of the field at the horizon and
the vanishing of the Love numbers is a peculiar feature of the dimension 4 case which is
not explained by the present symmetry. With this word of caution, it is nevertheless true
that the abelian symmetry identified in this work provides a symmetry protection for this
specific property of the 4-dimensional Schwarzschild black hole.

At this stage, let us point several open directions to be explored. First, the symmetry
criterion we have used depends crucially on our choice of boundary term for the action (4.1),
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which vanishes in the present case. Whether one can restore the full Schrödinger symmetry
at the horizon by adding a suitable boundary term and give a consistent interpretation in
terms of edge modes is an interesting direction to be pursued. However, a limitation to
do so is that the present symmetry works only for a given multipole, such that adding a
covariant boundary term to the scalar field action which could restore the symmetry for all
the multipoles remains elusive at this point.6 From a more general point of view, it should
be possible to view the present symmetry transformation acting on the static field ψ`(r) as
the truncation of a more general symmetry acting on the full field ψ(r, θ, φ). Such a more
complete picture will be discussed elsewhere.

Another interesting question to be explored is whether we can understand the origin
of this Schrödinger symmetry for the test fields from the symmetries of the Schwarzschild
mechanics. Indeed, we have seen that the explicit finite symmetry transformations for
the zero mode, given by (4.23), stands as special conformal reparametrization of the ra-
dial coordinate. A natural question is how the Schwarzschild background transforms un-
der such conformal reparametrization? It has been shown recently in ref. [44] that the
Schwarzschild-(A)dS mechanics possesses a set of dynamical symmetries under the Poincaré
group SL(2,R)nR3, extending previous results in ref. [45]. In particular, the Schwarzschild
background was shown to be covariant under the Möbius symmetry transformation pro-
vided the metric functions transform with a suitable conformal weight.7 Therefore, at least
for the zero mode, the specific transformation (4.23) is also a conformal symmetry of the
background. What prevents us from generalizing this conclusion is that the symmetry for
the higher multipoles are not Möbius transformations but more complicated reparametriza-
tion of the radial coordinate. Once more, finding the more general symmetry acting on the
test field ψ(r, θ, φ) and not only on each multipole would be desirable, as it might provide
the key to understand if this observation hides a deeper connection with the symmetry of
black hole mechanics recently discussed in ref. [44].

Finally, let us point that the Schrödinger symmetry is only broken down at the horizon.
Then, the fact that a static linear scalar perturbation on the Schwarzschild black hole pos-
sesses a non-relativistic conformal invariance and that the associated central charge (4.3)
coincides with the Schwarzschild mass is reminiscent of the many works exhibiting emer-
gent near horizon conformal symmetries for black holes [46–65]. Whether the current
Schrödinger algebra can be understood as some type of truncation of these more general
charges algebra associated with diffeomorphism compatible with the horizon suggests an
interesting direction to be explored. In particular, it might allows one to connect our results
with complementary works such as ref. [32].
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A Sturm-Liouville equation for static perturbations on Kerr

In this appendix, we show that the static linear perturbations around a Kerr black hole,
modelled by a massless test scalar field, can be also recast in term of a Sturm-Liouville
equation. Moreover, we provide the explicit form of the solutions for the scalar field profile.
This shows that the general symmetry discussed in this work and the argument developed
above holds for the rotating black hole case.

Consider the Kerr black hole metric

ds2 = −∆
ρ2

(
dt− a sin2 θdφ

)2
+ sin2 θ

ρ2

[
(r2 + a2)dφ− adt

]2
+ ρ2

∆ dr2 + ρ2dθ2 (A.1)

where the functions (∆, ρ) are given by

∆ = r2 − 2Mr + a2 , ρ2 = r2 + a2 cos2 θ. (A.2)

The parameter M encodes the mass of the black hole and J = aM its angular momentum.
Consider the action for massless test scalar field given by

S[ϕ] = 1
2

∫
d4x

√
|g|gµν∂µϕ∂νϕ . (A.3)

We are interested in the static case, i.e. ∂tϕ = 0. Introducing the rescaled field ψ =
√

∆ϕ
and performing a decomposition in spherical harmonics, i.e.

ψ(r, θ, φ) =
∑
`,m

ψ`,m(r)Y`,m(θ, φ) with Y`,m := eimφPm` (cos θ) , (A.4)

the action decomposes into

S[ψ] =
∑
`,m

S`,m with S`,m = 1
2

∫
dr
{
|∂rψ`,m|2 − V`,m|ψ`,m|2

}
(A.5)

where the potential reads

V`,m(r) = M2 − a2

∆2 + a2m2

∆2 −
`(`+ 1)

∆ . (A.6)

It follows that the profile of a given mode ` of the static linear perturbation satisfies the
following Sturm-Liouville equation

ψ′′`,m + V`,mψ`,m = 0 . (A.7)

The explicit solution is given by the two branches

ψ`,m(r) =
√

∆
[
c1P

µ
`

(
r −M√
M2 − a2

)
+ c2Q

µ
`

(
r −M√
M2 − a2

)]
(A.8)

where the parameter µ is complex and given by

µ = iam√
M2 − a2

. (A.9)

The two branches correspond to the Legendre functions of the second kind and one can
check that the second branch diverges at the outer horizon of the Kerr black hole. Thus, the
problem of the static response of the Kerr black hole within the test field approximation
can be recast in term of a Sturm-Liouville equation. It follows that the general results
presented in section 3 apply to the static linear perturbations of the Kerr black hole.
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B Alternative realization of the symmetry

In this appendix, we present an alternative realization of the Schrödinger symmetry for the
static linear perturbations of black holes which allows one to connect with the standard
Schrödinger symmetry of the free particle.

To see this, let us first recall that one can transform the action for a one dimensional
field in a inhomogeneous potential into the action of the free particle. For the time-
dependent harmonic oscillator, this conformal mapping is the well-known Arnold trans-
formation [66–70]. When the pulsation is a constant, this map reduces to the Niederer
transformation [71]. Such conformal bridge between a system with a non-trivial potential
and the free particle have been generalized to more complex systems. See refs. [72–74] for
details, refs. [75, 76] for recent applications to cosmological systems and ref. [44] for black
hole mechanics.

B.1 Conformal bridge and Möbius symmetry

Let us briefly review the construction of the conformal bridge. Consider the field redef-
inition

ψ(x) = (F ′)−1/2Φ ◦ F (x) , (B.1)

where the function F (x) satisfies

Sch[F ] = −2V (x) . (B.2)

Upon performing this field redefinition, the action for the self-interacting field ψ(x) (3.1)
takes the form of the action for the free particle up to a boundary term; see eq. (3.32).
The effect of this field redefinition amounts at encoding the physical information on the
potential V (x) in the new coordinate F (x). The explicit form of this coordinate is obtained
by solving the condition (B.2). Given two solutions to the e.o.m., i.e. d2

xψ + V ψ ' 0, say
(ψ1, ψ2), an explicit solution is given by

F =
{
ψ1
ψ2
,
ψ2
ψ1

}
. (B.3)

This coordinate can be understood as trivializing the motion. Indeed, the equation of
motion on ψ is equivalent to a free motion for the field Φ:

∂2
xψ + V ψ ' 0 ⇔ ∂2

FΦ ' 0 . (B.4)

This allows one to solve the differential equation in a very simple manner. Indeed the free
system equation ∂2

FΦ = 0 admits two independent solutions, the constant and the linear
solutions,

∂2
FΦ ' 0 ⇔ Φ(F ) ' C1 + C2F , (B.5)

where (C1, C2) are real constants to be fixed by suitable boundary conditions. They cor-
respond to the two independent solutions of the original field equation:

Φ1 = 1 ⇒ ψ1 = (F ′)−
1
2

Φ2 = F ⇒ ψ2 = (F ′)−
1
2F .

(B.6)
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We can now discuss how the Schrödinger symmetry of the self-interacting system is realized
in this alternative picture.

Starting with δQ+ , we know that the finite conformal reparametrization it generates
leaves ψ1 invariant. In other words, we are looking for reparametrizations f(x) such that:

ψ1 ◦ f = (f ′)
1
2 ψ1 . (B.7)

It turns out that there is a one-parameter family of such functions which we identify as
translations in the trivializing coordinate F . Let us define these translations as fλ such that

F (fλ(x)) = F (x) + λ . (B.8)

Differentiating this relation, we obtain:

f ′λ F
′ ◦ fλ = F ′ . (B.9)

Remembering that ψ1 is expressed in terms of F , we easily show that this equation is
exactly the same as above:

ψ1 ◦ f = (f ′)
1
2 ψ1 ⇔ (F ′)−

1
2 ◦ f = (f ′)

1
2 (F ′)−

1
2

⇔ F ′ = f ′ F ′ ◦ f . (B.10)

Similarly, exchanging the roles of ψ1 and ψ2, we can conclude that the finite symmetries
generated by δQ− are the translations in 1/F . Finally, the symmetry δQ0 generates dilata-
tions inversely acting on ψ1 and ψ2, i.e. functions fλ such that:

ψ1 ◦ fλ = λ(f ′)
1
2ψ1 and ψ2 ◦ fλ = 1

λ
(f ′)

1
2ψ2 . (B.11)

These are simply identified as dilatations in the trivializing coordinate

F (fλ(x)) = λF (x) . (B.12)

We see that the SL(2,R) group of symmetry, i.e. of conformal reparametrization stabilizing
the potential, is simply the group of Möbius transformations on the trivializing coordinate
F , which is generated by translations, dilatations and the inversion of F . This symmetry
of the free field Φ(F ) reads

F → F̃ = M(F ) , with M(F ) = aF + b

cF + d
, (B.13)

Φ→ Φ̃(F̃ ) = (M ′)1/2Φ(F ) , (B.14)

where (a, b, c, d) are real constants satisfying ad − bc 6= 0. This somewhat surprising fact
is natural from the point of view of the definition of F as the ratio of two independent
classical solutions, which can thus be redefined after arbitrary linear redefinitions of the
chosen two solutions (as long as the Wronskian remains the same).

– 24 –



J
H
E
P
0
7
(
2
0
2
2
)
1
1
2

B.2 Trivializing the static response of black hole

Let us now construct this alternative representation of the dynamics and discuss the
Schrödinger symmetry in that case. By construction, the trivializing coordinate is given by

R`(r) = (ψ`)1
(ψ`)2

= Q`(2r/rs − 1)
P`(2r/rs − 1) (B.15)

such that there is one such coordinate for each `-multipole. Notice that in this new co-
ordinate, the horizon located at rs is pushed to R` → −∞. Now, the dynamics of each
multipole is simply given by

d2
R`

Φ` = 0 , where Φ`(R`) = (R′`)1/2ψ`(r) . (B.16)

The profile of the `-multipole reduces to

Φ`(R`) = C1 + C2R` (B.17)

such that the decaying mode which diverges at the horizon corresponds to the linear term
while the growing one is given by the constant mode. In this representation of the dynamics,
the rather complicated form of the SL(2,R) symmetry simplifies to

R` → R̃` = αR` + β

γR` + δ
, (B.18)

Φ→ Φ̃(R̃`) = Φ(R`)
γR` + δ

. (B.19)

The infinitesimal sl(2,R) generators are given by

δQ+ = −∂R , δQ− = −R2∂R +R , δQ0 = −R∂R + 1
2 . (B.20)

We can now compute the explicit shift of the action induced by these sl(2,R) transforma-
tions. They shift the value of the static action by a boundary term. The symmetry criterion
amounts at imposing finiteness of this boundary term. The general finite transformation
is given by

S̃[Φ̃`]− S[Φ`] =
∫ R∗

−∞
dRdB

dR , with B(R) := f ′′

f ′
Φ2
` , (B.21)

where we integrate from some finite but large radius R∗ down to the horizon. Computing
explicitly the boundary term, we obtain

B(R) = f ′′

f ′
Φ2 = −2γ (C1 + C2R)2

(γR+ δ) . (B.22)

When restricting the integration to a bulk region, the boundary term remains finite which
implies that the full SL(2,R) symmetry is realized. Yet, at horizon, when R → −∞,
the boundary term remains finite only for C2 = 0. Finiteness of the boundary term
thus imposes that the linear mode, which represents the decaying branch in the standard
picture, is absent. The symmetry is therefore spontaneously broken by the horizon. The
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only sl(2,R) transformation which survives is given by δQ+ which amounts at a translation
in R. Finally, the Galilean symmetry reads

R→ R̃ = R , (B.23)
Φ→ Φ̃(R̃) = Φ(R) + η+ + η−R , (B.24)

whose infinitesimal generators are given by δY+ = −1 and δY− = −R. The boundary term
generated by this last symmetry reads

B(R) = χ′(χ+ 2ψ) = η− [(η+ + 2C1) + (η− + 2C2)R] . (B.25)

Again, restricting to the a bulk region, this boundary term remains finite everywhere.
However, demanding finiteness of this term at the horizon imposes η− = 0. Thus, only
δY+ survives this symmetry criterion. We recover the result of section 4.2 showing that
the Schrödinger symmetry breaks at the horizon down to an abelian sub-group generated
by (Q+, Y+).
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