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1 Introduction

It has been known for sometime that some gravitational backgrounds admit Killing-Stéackel
(KS) and Killing-Yano (KY) tensors, see [1]-]9], the reviews [10] and [11] and the references
within. These are used to demonstrate the separability and integrability of classical equations,
such as the geodesic, Hamilton-Jacobi and Dirac equations, on these backgrounds. A key
property of KS tensors is that they generate hidden symmetries for relativistic particles
while KY tensors generate hidden symmetries [12] for spinning particles [13] propagating
on gravitational backgrounds.

It has been shown in [14] that the conditions imposed by the gravitino Killing spinor
equation (KSE) on the (Killing spinor) form bilinears can be arranged as a twisted covariant
form hierarchy (TCFH) [15]. This means that there is a connection, D*, on the space of
spacetime forms which depends on the fluxes, F, of the theory such that the highest weight
representation of D7 Q) vanishes, where € is a collection of forms of various degrees and D7
may not be form degree preserving. Equivalently, this condition can be written as

DN =ixP+XAQ, (1.1)



for every spacetime vector field X, where P and Q are appropriate multi-forms and X
also denotes the associated 1-form constructed from the vector field X after using the
spacetime metric g, X(Y) = g(X,Y’). The proof of this result is rather general and includes
supergravities on spacetimes of any signature as well as the effective theories of strings
which include higher order curvature corrections. It also puts the conditions imposed by
the KSEs on the form bilinears on a firm geometric basis.

One consequence of the TCFH is that the form bilinears satisfy a generalisation of
the conformal Killing-Yano (CKY) equation with respect to the connection D7 . This can
be easily seen after taking the skew-symmetric part and contraction with respect to the
metric g of (1.1), and so one identifies P with an exterior derivative constructed from D7
and Q with a formal adjoint of D7 acting on €. This raises the question on whether the
form bilinears generate hidden symmetries for worldvolume actions which describe the
propagation of certain probes in supersymmetric backgrounds. This question was first
investigated in the context of 5- and 4-dimensional supergravities in [16].

The purpose of this paper is twofold. One is to present the TCFHs of ITA and IIB
supergravities and to discuss some of the properties of the TCFH connections D7, like for
example their holonomy, on generic as well as on some special supersymmetric backgrounds.
As a consequence we demonstrate that the form bilinears of these theories satisfy a CKY
equation with respect to D7 in agreement with the general result of [14]. Another purpose
of this paper is to give the KS tensors of type II branes! [19]-[27] and to use them to
prove the complete integrability of the geodesic flow of those solutions that are spherically
symmetric, i.e. those that depend on a harmonic function with one centre. In addition,
the KY tensors that square to the KS tensors of these backgrounds will be given and
the symmetries of spinning particles propagating on these backgrounds will be explored.
Furthermore we shall investigate the conditions required for the TCFH to yield symmetries
for particle and string probes propagating in common sector and D-brane backgrounds.
Finally we shall compare the results we have obtained from the point of view of KS and
KY tensors with those that arise from the TCFHs.

To investigate under which conditions the form bilinears generate symmetries for certain
probe actions propagating in type Il supersymmetric backgrounds, we shall match the
conditions required for certain probe actions to be invariant under transformations generated
by form bilinears with those imposed on them by the TCFHs. For the common sector of type
IT theories, it is shown that all form bilinears which are covariantly constant with respect
to a connection with torsion given by the NS-NS 3-form field strength generate symmetries
for string and spinning particle probes propagating on these backgrounds. Common sector
backgrounds also admit form bilinears which are not covariantly constant and instead
satisfy a general TCFH. These form bilinears may not generate symmetries for probes
propagating in common sector backgrounds but nevertheless are part of their geometric
structure. In particular the form bilinears of the fundamental string and NS5-brane solutions
that are allowed to depend on multi-centre harmonic functions have been computed. It has
been found that the type II fundamental string solution admits 27 covariantly constant

!Brane solutions have been instrumental in the understanding of string dualities [17, 18].



independent form bilinears while the type II NS5-brane solution admits 2° covariantly
constant independent form bilinears. All these forms generate (hidden) symmetries for
probe string and spinning particle actions propagating on these backgrounds.

A similar analysis is presented for all type II D-branes. In particular, the form bilinears of
all D-branes are computed. It is found that the requirement for these to generate symmetries
for spinning particle probes propagating on these backgrounds is rather restrictive. This is
due to the difficulties of constructing probe actions which exhibit appropriate form couplings.
Nevertheless all type II D-branes, which may depend on multi-centre harmonic functions,
admit form bilinears which generate symmetries for spinning particle probe actions. It turns
out that all such form bilinears have components only along the worldvolume directions of
the D-branes. A comparison of the symmetries we have found generated by the KS and
KY tensors and those generated by the form bilinears in type II brane backgrounds will be
presented in the conclusions.

This paper is organised as follows. In sections 2 and 3, we give the TCFHs of ITA
and IIB supergravities and discuss some of the properties of the TCFH connections. In
section 4, after a summary of the properties of the KS and KY tensors, we present the
KS and KY tensors of all type II branes. In addition, we prove the complete integrability
of the geodesic flow in all type II branes that depend on a harmonic function with one
centre by presenting all the independent conserved charges which are in involution. In
section 5, we demonstrate that all covariantly constant form bilinears with respect to a
connection with skew-symmetric torsion generate symmetries for certain probe string and
particle actions propagating on common sector backgrounds. In addition, we explicitly give
all the covariantly constant form bilinears for the type II fundamental string and NS5-brane
solutions. In sections 6 and 7, we identify the form bilinears which generate symmetries for
spinning particle actions propagating on type II D-brane backgrounds. In section 8, we give
our conclusions. In appendices A and B, we give all the form bilinears of type II common
sector branes and type II D-branes, respectively.

2 The TCFH of (massive) ITA supergravity

The KSEs of massive IIA supergravity [28] are given by the vanishing conditions of the
supersymmetry variations of the gravitino and dilatino fields evaluated at the locus that all
fermions are set to zero. The KSE associated with the gravitino field is a parallel transport
equation for the supercovariant connection D. In the string frame, this is given by

1 1
DM = VM —+ gHMPQFPQFll + geq:.SFM
(2.1)

1 5 PQ
—e Fpol' *T'j/T
—1—166 PQ M11+8'4!

see e.g. [29], where H is the NS-NS 3-form field strength, ® is the dilaton, and F' and G are
the 2-form and 4-form R-R field strengths, respectively. In addition, V is the Levi-Civita
connection induced on the spinor bundle and S = e®m, where m is a constant which is non-

> Py..P.
e Gp,.p "y,

zero in massive ITA and vanishes in the standard IIA supergravity. Furthermore I' denotes
the gamma matrices which satisfy the Clifford algebra relation I'y4I'p + I'pl’'4 = 2n4p and



in our conventions I'11 := I'g12...9. In what follows, we shall not make a sharp distinction
between spacetime and frame indices but we shall always assume that the indices of gamma
matrices are frame indices. It turns out that D is a connection on the spin bundle over the
spacetime associated with the Majorana (real) representation of spin(9,1). The (reduced)
holonomy of D for generic backgrounds is SL(32,R) [30], see [31-33] for the computation of
the holonomy of the supercovariant derivative of 11-dimensional supergravity.

The Killing spinors € satisfy the gravitino KSE, De = 0, as well as the dilatino KSE
which is an algebraic equation. Backgrounds that admit such Killing spinors are special
and both the spacetime metric and fluxes are suitably restricted, see [34-36] where the ITA
KSEs have been solved for one Killing spinor. The TCFHs are associated with the gravitino
KSE which we shall focus on in what follows.

Given N Killing spinors €”, r = 1,..., N, one can construct the form bilinears

o = %(6T,PA1“,A,€65>D AU A (2.2)

where (-,-)p denotes that Dirac inner product and e is a suitable spacetime frame,
gMN = napeyrel. As

Vudi, . a, = (Ve Taya,€)p + (€, Ta,..4,Vue)p, (2.3)

one can use the gravitino KSE, De = 0, and (2.1) to express the right-hand side of the
above equation in terms of the fluxes and form bilinears of the theory. In [14] has been
shown that these equations can be organised as TCFH.

Using the reality condition on ¢, there are form bilinears which are either symmetric
or skew-symmetric in the exchange of spinors €¢” and € in (2.2). As a consequence the
TCFH of the ITA supergravity factorises in two parts. A basis in form bilinears, up to a
Hodge duality? operation, which are symmetric in the exchange of the two Killing spinors
€" and €° is

6" = (", I'ne’)p, K = (. Ine’)p e, k= (¢, TnTue’)p e,
1 ~ 1
Ba— 3 <€r’ FNR€S>D eV A eR, "= 1 <€T, FNl..‘N4F11€S>D eNUA A 6N4,
1 N N
— §<€T,FN1“.N568>D e A NeTD (24)

A direct computation reveals that the TCFH is

DY,6 = VG = —iHA4pQwPQ + ie‘bSl}M — ie‘bFMpk:P + %&*GMPL__FSTPL”P{’ . (2.5)
Dikn = Vkn = _%HMNPI;’P + ie(I)SUJMN + %€®FPQEPQMN + ie‘i’FMN?T

- ﬁeq’*GMNPL.,PKPI”'P“ + éeq)GMNPQwPQ ; (2.6)

20ur convention for the Hodge duality operation is *le..,Nn,p = %wplmppeplmppm”'anp with

€012...(n—1) = —1, where n is the spacetime dimension.



1 1 -
Fikn = Vaky — 3¢ *Fypw’ N — 3¢ ®Grpor( Oy = _iHMNPkP

+ ie‘bgMNS& + ée‘bgMNFpQwPQ — %e‘I’F[M|p|wPN]
+t7 14,6 gunGp,..p, (T — i64)(;[1\4|PQR|C~PQRN], (2.7)
Dywnr = Vuwng + iHMPQg NE+ e Fankr — ie *Grip T N g
= %HMNRﬁ + %BQSQM[NK‘R] + %6 Funkr + %6 gmnFripk”
2 .15!e‘b*FMNRPl...PE,TPl'”PE’ + 5 .14!e®gM[NG|p1”_p4|TP1“‘P4R]
- %€®G[M|P1P2P3\TP1P2P3NR] - ietbGMNRPkP’ (2.8)

_ . 1 .
DI Ny Ny = Vil N, — g*HM[N1N2N3|PQR\CPQRN4] — 3H [Ny Ny WN3 Ny

+ %G(I)FMPTPNI..AN4 + ie@*GM[NlNﬂPQR\TPQRN3N4] + 2€(I>GM[N1N2N3]%N4]

= %QM[Nl*HN2N3N4]P1...P4<~.P1MP4 - E*H[MN1N2N3|PQR\C~PQRN4]

1 5!eq>*SJVIN14..N4P1...P57'P1”'P5 - %eq)gM[NlF\PQWPQNzNgm]
+ geéF[JvﬂP\TPNL..N(;] + %eq)*G[MNlNg|PQR|TPQRN3N4] +3e® gnriv, Fans kg
- %GCDQM *GNyNg Py Py T PN + ieq’*GMNl...MPkP
+ geéG[]V[NlNgNg]}Nz;] + 6<I>9M[N1 GN2N3N4]P]~9P ) (2.9)
DY TNy Ny = VMTN, . Ny — E*HM[N1N2N3|PQR|TPQRN4N5] — geq)FM[ngNg...Ng,]
- geq)*GM[NlNzN3|PQ\fPQN4N5] + 5P G [N, NaNs W N5 = _Z*H[MNlNgNg|PQR\TPQRN4N5]

Py 1

* Pi... D x FP;...P,
+ oM HyyNaNg Py P T 0 NG — T SMNy..NsP..P G

1 4. ) 15 )
+ §6q> Frun,.. N Qwpg — 5€®9M[N1 FNQ\P|€PN3N4N5] - ZGCI)F[MNl CNy...N5)

15 o, . 1 5 o
— §e¢ G[MN1N2N3|PQ\<PQN4N5] — Ze *GMN,.. NG — 66 IM[N GN2N3N4|PQRIC PQR N3]

15
+ ZeéG[IVINlNgNng4N5] + 5 garin, Gna vy Na | PIW T ] (2.10)

where for simplicity we have suppressed the 7, s indices on the form bilinears which count
the different Killing spinors. The connection D7 is the minimal connection of the TCFH,
see [14] for the definition. As it has been explained in the introduction, the above TCFH
implies that the form bilinears (2.4) satisfy a generalisation of the CKY with respect to the
connection D7. As expected k is Killing, Vrkny = 0.

A basis in the form bilinears, up to a Hodge duality operation, which are skew-symmetric

in the exchange of the two Killing spinors is

1
o' = <€T’ES>D ’ oS = 5 <€T7FNRF11€S>D 6N A ER
1
't = 3 (€",Tnrse®) p eV Aeft he S 3 (€",TnrsT11e) , eV neft ned
1
(" = Th ) p M NN (2.11)



The associated TCFH with respect to the minimal connection is

1 . 1 N 1
D]]\:/[U = VMO' = —ZHMPQLJPQ - §6¢FPQWPQN[ + EG(I)GMPQRTFPQR7 (2.12)

) ! 1 1 )
Dfong = VuONR + ZHMPQCPQNR + ieq)FMPWPNR - §€¢GM[N\PQ|7TPQR]

1 . 1 3
= Hynpgo + Zeq)SWMNR - Zeq)gM[NF\PQWTPQR] + zeq)F[M|P\7TPNR]

2
1 1 - .
- qu)*GMNRPlPZPgﬂ'PlPﬂDS - EG(DQM[NGR]H&PJTPIPQPJ
3 -
- §6®G[MN|PQ\7TPQR] ; (2.13)
F 3 -p 3 & - 3 & PQ
DymNRS == VMTNRS + §HM[N|P|7T Rs] ~ 5€ Frinwrs) — 1€ GuNiPQIC CRS)
1 1 3 -
= zeq)SCMNRS -1 4|ecb*F]LINRSPl...P4CP1"'P4 - §eq>gM[NFR\P|wPS]
3 5 1 1 -
- ieq)F[MNwRS] - Zeq)GMNRSU + ge(I)*GMNRSPQWPQ
1 3
- 16¢9M[NGR|P1P2P3\CP1P2P3S] - Zech[MN|PQ|CPQRS] ) (2.14)
- - 3 1 3 5
D, ANrs = VuANgrs + iHM[N|P|7TPRS] - §€¢FMPCPNRS + 58¢GM[NR|P|WPS]

1

3 5 1
- Ze¢*GM[NR|P1P2P3|<P1P2P3 5] = +Z€@SQJM[NWRS] + 56¢FMPCPNRS

3 3

+ §e¢9M[NF|PQ\<PQRS] — e®FrpiCF vrs) — Zeq)gM[NFRS]U
3 ~ -

- geq)gM[NGRS]PQwPQ + e(I)G[MNR\P|WPS]

1 1 5, .
+ @etbgM[N*GRS]Pl...P4CP1“'P4 - 664) GUuNRIP PPy G2 g (2.15)

D3Cny Ny = Vrlny . Ny — g*HJV[[NlNQNg\PQR|CPQRN4] — 3H M N, Ny ON3 Ny
+ 26® Far(n, vy N Na) 36X Garny v PITE Ny va) €T X Gar vy o Na | PQI T 9 )

:EQM[Nl*HN2N3N4]P1"'P4<P1IHPLL a E*H[MNlNstlPQR\CPQRNd

1 -
+ e SgrN, TN, Ny Na) QGQ*FMNL..MPQRWPQR +3¢®gnriny Fna P N v
5 ~ 1 N 5 N
+§6<I>F[MN1 7TN2N3N4]+EBCDQM[Nl*GN2N3N4]PQR7TPQR+gecb*G[MNlNzN3|PQ\7TPQN4]
3 5
- ieq)gM[NlGNstpo\ﬂ-PQNﬂ + ieéG[MN1N2|P|7TPN3N4] : (2'16)

As in the previous case, a consequence of the TCFH above is that the forms (2.11) satisfy
a generalisation of the CKY equation with respect to the connection D7. Later we shall
demonstrate that in some cases the forms (2.4) and (2.11) generate symmetries in string
and particle actions probing some ITA backgrounds.

The factorisation of the domain that the minimal TCFH connection D7 acts as in (2.4)
and (2.11) can be understood as follows. The product of two Majorana representations
Ass in terms of forms is ®2Azs = A*(R%!). Therefore the form bilinears of all spinor
span all spacetime forms. Therefore generically the TCFH connection acts on the space



of all spacetime forms. However we have seen that the TCFH connection preserves the
forms which are symmetric (skew-symmetric) in the exchange of the two Killing spinors, i.e.
it preserves that symmetrised S? (Ass) and skew-symmetrised A% (Agy) subspaces of the
product. As dim S?(Asz) = 528 and dim A?(Agy) = 496, the (reduced) holonomy of D¥
is included in GL(528) x GL(496). In fact the holonomy® of the minimal connection D
reduces further to SO(9,1) x GL(517) x GL(495) as it acts trivially on the scalars o and &
and does not mix k with the other from bilinears. Of course the holonomy of D7 reduces
even further for special backgrounds.

3 The TCFH of IIB supergravity

The KSEs of IIB supergravity [37] are again associated with the vanishing conditions of the
gravitino and dilatino supersymmetry variations. The gravitino KSE is a parallel transport
equation for the supercovariant derivative D of the theory. In the string frame, this can be
expressed [38] as

1 1 , 1 .

1 & N NoN. (3) 1 o Ny Ny ~(3)
—ﬂe ] R 3MGN1N2N30'1—§€ e 2GMN1N201
1 .
—5g TN Gy, (i), (3.1)

where H and G are the 3-form and n-form, for n = 1,3, 5, NS-NS and R-R field strengths
of the theory, respectively, ® is that dilaton and o?, i = 1,2,3 are the Pauli matrices. The
field strength G(®) is anti-self-dual.* D is a connection of the spin bundle over the spacetime
associated to two copies, GBQA;%, of the positive chirality Majorana-Weyl representation,
A, of spin(9,1). The (reduced) holonomy of D for generic IIB backgrounds is included
in SL(32,R) [30]. The KSEs of IIB supergravity have been solved for one Killing spinor
in [39, 40).

As expected from the general result in [14], the conditions imposed on the form bilinears
by the gravitino KSE, De = 0, can be organised as a TCFH. Given any two spinors €" and
€®, the form bilinears are given by

kTS — Sub <6ra,rp 6sb>D €P, k(i)rs = 6u <6Ta,rp (O’i 6S)b>D €P7

1
" = géab <€Ta7FP1P2P3 68b>D 6P1 A 6P2 A €P3 y
: 1 .
b P P P
alrs — géab <€Ta,rplp2p3 (0" €%) >D et ANe 2 Ne?,

1
b P P
T = 5 dab <€TaaFP1P2P3P4P5 €’ >D et N NeD

) 1 ; 5
T(z)rs _ g Sab <67‘a’ FP1P2P3P4P5 (O.zes)b>D P 2 NN & , (32)

%Note though that the (reduced) holonomy of the maximal TCFH connection, see [14] for definition, is
included in GL(528) x GL(496).
40ur Hodge duality conventions are as in the ITA theory.



where (o', 8),, = (@, 0" ), as the Pauli matrices are hermitian and a,b = 1,2. Note
that the forms k, &V, k) 72 7 (1) and 76 are symmetric in the exchange of € and
€® while the rest are skew symmetric.

The forms k@, 72 and 73 are purely imaginary while the rest are real. One could
multiply them with the imaginary unit ¢ so they become real but in such case the expression
for the TCFH below would have been more involved. So we shall not do this here but later
when we consider applications, we shall replace k@, 73 and 7 with ik, i7® and ir®?.

Using the gravitino KSE, De = 0, one can show that the TCFH of 1IB supergravity
expressed in terms of the minimal connection D7 is

D{ﬂfP =Vmkp = %HMPN kz(\é) 2 e GIN §\$3\/IP + E e® GOININNs J(Vll)NzNgMP

16<I> G(3) N k(l) + i e® G(5) N1N2N3 71-(2)

12 MP N1 N3N3 (33)

DLk =V kY + +1 L gy Ha VNl o — eoie® GU) RY)
. 1 4
+ 5 erij e G5 )y, — 18 i€ PG R N
) 1 i
= 5 (Sig HMPN kN + 5 (51'2 6q> G(I)N T PN — Egij 6q> GE]W) kg])

P 1
— 5 €2 e® garp GOV EQ) + 75 % e® GONINNs
{ i 7
+ E e1j o® gup G(3)N1N2N; 7T§\JI1)N2N3 + 3 e G(3)N1N2[ Wg])NlNz

4= 521 e G Nk + 112 Sig€® G NNNs o (3.4)

TM PN, N3Ns

3 3 (3 1
D]\];Iﬂ-PlePg = Vu 7"131132}93 ) HM[PIN 77532)133] —3e GM)[P Evz)PS]N

_ ‘PG(5) N1N2N3 (2)
4 M P1 P2P3]N1N2N3

- 2 e GON T, b by +3i€® garip, G k)

1 (M NiN2Ns (1) 3 o (3) NNy (1)
“12¢ *GMPngPg e 37TN1N2N3"’§€ gmip, Gp, 27TP3]N1N2

1 { 5) 2
+3e” G(p P, 7Tgato,)z\d]N o€ e GnglePsN By (3.5)

o 0) 3 N i (G) NN
DM"TPngPg =Vu Tp PPy — 5 di3 HM[P1 Tp,p N T 1 €3ij Hany N, Tp PP

3 ] 1 3
T Gy Hyip,p, k’%)] — ez e” Gfu) 7TP1)P2P3 —3die GS\/I)[P N TPy P3N

i (3) NNy _(4) : @ ~(3) ()
+§€11]€ G b QTlePzP3N1N2 3Z€1ij€ GM[Plpng

P3]

3 1
@ ~(5) N1 N2 (]) @& ~(5) NiN2N3
+ g c2ij € GM[P1P2 TPNiN2 ~ g dize” Gy (P TP, P3]N1 N2 N3

1 .
= 5 ize” GON 2 b by + 31012 €¥ gusgp, G) bpyg + 26215 €® Gl w1

(LN L *G(7

3 i
@ () ) NiN3N3
-3 esije. G IM[Py Tp,py N — 12 dire MP, P2 Ps TNy Ny N3

3 ® 3) Ny N, & ~3) N
+50e” gup, G NN v, B0 e G(P)1P2 T py MN

(3) N1N> _(J)

(3)N1 N3 N3 (4)
e’ G IM[P, 7'PQPJ]NlNQNg ieie® G[ TPgPsM]NlNQ

7
+ 1 €145
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where for simplicity we have suppressed the 7, s indices on the form bilinears that label the
Killing spinors. Although it is not manifest from the expression of TCFH above, the TCFH
preserves the form bilinears that are either symmetric or skew-symmetric in the exchange
of the two Killing spinors. Moreover all terms of the IIB TCFH can be arranged to be real.
The imaginary unit that appears in some terms can be eliminated after replacing the purely
imaginary forms £, 7 and 7@ with the real forms ik®, i7® and i7(®. A consequence
of the TCFH is that all form bilinears satisfy a generalisation of the CKY equation with
respect to the minimal connection D7. In particular k is Killing, Vi k‘}}s) = 0, as expected.



To understand the factorisation of the domain that D7 acts note that the product of
two Majorana-Weyl representations Ai% of spin(9, 1) decomposes as

@2ATs = AY R @ A3(RYY) @ AP (R™Y), (3.9)

where A~ (R%1!) is the space of anti-self-dual 5-forms on R%!. The Killing spinors lie in two
copies of Ay, i.e. A, = ®?Af. Therefore the space of all IIB form bilinears is identified
with the product ®2A§2. This can be decomposed in terms of spacetime forms as indicated
above. Indeed notice that dim ( ®% Ady) = 3232 = 4[dim (A}(R*1)) + dim (A3(R>!)) +
dim (A~ (R%!))]. The minimal connection D7 of the TCFH preserves the symmetric
S?(A3y) and skew-symmetric A2(AZ;) subspaces of ®2Ad,. As a consequence the (reduced)
holonomy of D7 for a generic background is included in GL(528) x GL(496). As in ITA
case investigated in the previous section, the (reduced) holonomy® of the minimal TCFH
connection reduces further to SO(9,1) x GL(518) x GL(496) as it does not mix k with the
other form bilinears.

4 Particles and integrability of type II branes

Before we proceed to investigate the symmetries of particle and string probes generated by
the TCFHs of type II theories, we shall summarise some of the properties of KS, KY and
CKY tensors and their applications to generating symmetries for particle actions, for more
detailed studies, see reviews [10] and [11] and the references within. We shall also present
some of the particle actions that are invariant under the symmetries generated by such
tensors. Then we shall construct the KS and KY tensors of type II brane solutions which
to our knowledge have not presented before. We shall use these to argue that the geodesic
flow of some of these solutions is completely integrable and we shall give the associated
independent conserved charges in involution.

4.1 Killing-Stéckel and Killing-Yano tensors
4.1.1 Definitions and outline of properties
A rank k conformal Killing-Stéckel (k-CKS) tensor is a symmetric (0,k) tensor d on a
n-dimensional spacetime M with metric ¢ which satisfies the equation
V(AN Ny Ny = 9(MNL NNy 5 (4.1)

where ¢ is a symmetric (0, k — 1) tensor and V is the Levi-Civita connection of g. For k = 1,
the equation reduces to that of a conformal Killing vector field. If ¢ vanishes, ¢ = 0, then d
will be a Killing-Stackel (KS) tensor.

Furthermore observe that if d and e are k— and ¢{— CKS (KS) tensors on M, then

(d ®s 6)Nl'“Nk+£ = d(Nl"'NkeNk+1"'Nk+l) ) (4.2)

is a (k4 ¢)—CKS (KS) tensor on M.

®Notice that the (reduced) holonomy of the maximal TCFH connection, see [14], is included in GL(528) x
GL(496).
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KS tensors are associated with conserved charges of test particle systems. Indeed
consider the action

1
A= 5/ dr gun M &V, (4.3)

which describes the geodesic flow® on a spacetime (manifold) M with metric g, where &
denotes the derivative of the coordinate x with respect to the affine parameter 7. It is
straightforward to show that if the spacetime M admits a KS tensor d, then

Q(d) = dny Ny, &N N2 e (4.4)

is conserved along the geodesic flow, i.e. Q(d) = 0 subject to the geodesic equations with
affine parameter 7. This charge generates the infinitesimal transformation

saM = edMp, .y, NNt (4.5)

which is a symmetry of the action (4.3) with infinitesimal parameter e.
A rank k conformal Killing-Yano (k-CKY) tensor is a k-form, a, which satisfies the
condition
k

VMOZNINZ.‘.N]C = mdaMNlme — mgM[NléaNQNk] . (46)

If v is co-closed, dae = 0, then « is a Killing-Yano (KY) form while if « is closed, da = 0, «
is a closed conformal Killing-Yano (CCKY) form. It turns out that if o is KY, then the
Hodge dual, *«, of a is CCKY form.

Furthermore, if o and g are k-CKY (k-KY) forms, then

CV(MLT"L'“’I5N)L1~-.L,€,1 ; (4.7)

is a 2-CKS (2-KS) tensor. In addition, if o and g are CCKY forms of rank k and ¢,
respectively, then oo A § is a (k + ¢)-CCKY form.

KY forms generate symmetries [12] for spinning particle actions [13]. These are
supersymmetric extensions of (4.3). Such an action is

A=-2 / dr do gurn DM i | (4.8)

where x are superfields = z(7,0), 7 is the even and 6 is the odd coordinate of the worldline
superspace, and the superspace derivative D satisfies D? = i0,. In particular, the KY form
« generates the infinitesimal symmetry

dzM = eaMNl...NkileNl o DgVE-1 (4.9)
for the action (4.8), where € is an infinitesimal parameter. The associated conserved charge is

Q) = (k+ Dan,ny..n, 0rz  Dx™N2 . .. DNk
?
Ck+1

Observe that Q(«) is conserved, DQ(«) = 0, subject to the equations of motion of (4.8).

(do) Ny Ny Ny DN D2 - DNt (4.10)

SWhen viewing the geodesic flow as a dynamical system, M is identified with its configuration space.
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Note that if the KY form « is closed, da = 0, and so « is covariantly constant (or
equivalently parallel) with respect to the Levi-Civita connection, then

Q(a) = an,Ny..n, Dz D22 ... Dk (4.11)

is also conserved subject to the field equations of (4.8), d:Q(a) = 0. This gives the
conservation of two charges Q(a) and DQ(a). The latter is proportional to that in (4.10)
with da = 0.

There are several generalisations of CKY tensors [41-46]. One of the most common ones
is to replace the Levi-Civita connection that appears in the definition (4.6) with another
connection, for example a connection with skew-symmetric torsion. Some of the properties
mentioned above extend to the generalised KY tensors. For an application of the KY forms
to G-structures see [47, 48].

4.1.2 Integrability and separability

A dynamical system with a 2n-dimensional phase space P is completely integrable according
to Liouville provided it admits n independent constants of motion, Q", r = 1,...,n,
including the Hamiltonian H, in involution. Independence means that the map @ : P — R"
is of rank n, where @ = (Q',...,Q"), and in involution means that the Poisson bracket
algebra of the constants of motion (" vanishes

{Q",Q%pe=0. (4.12)

Returning to the particle system described by the action (4.3), the conserved charges (4.4)
can be written as functions on phase space, T*M, as

Q(d) = d™ Nepn, ..o, (4.13)

where pjs is the conjugate momentum of z™. It turns out that if Q(d) and Q(e) are
conserved charges associated with KS tensors d and e, then {Q(d), Q(e)}pp is associated
with the KS tensor given in terms of the Nijenhuis-Schouten bracket

(1d, e]ng) N1 Nete-1 = kM N New1 g Nk Neree1) _ peM(NiNeea g g Nie—1) | (4.14)

of d and e. Therefore, one has

{Q(d),Q(e)}pe = Q([d; €]ns) - (4.15)

Observe that if d is a vector, then [d, e]ns = Lge, i.e. the Nijenhuis-Schouten bracket is
the Lie derivative of e with respect to the vector field d. So two charges are in involution
provided that the Nijenhuis-Schouten bracket of the associated KS tensors vanishes.
Completely integrable systems are special. There are difficulties in both finding
conserved charges in involution and in proving that they are independent. For example if
Q(d) and Q(e) are conserved charges, Q(d)Q(e) is not an independent conserved charge, as
its inclusion in the map @ : P — R" does not alter its rank. However for the geodesic flow
described by the action (4.3) that we shall investigate below, there is a simplifying feature.
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The spacetimes we shall be considering admit a non-abelian group of isometries. For every
isometry generated by a Killing vector field K., there is an associated conserved charge

Qr=KMpyr . (4.16)

Of course these charges may not be in involution. However note that the charges @), written
in phase space do not depend on the spacetime metric. They only depend on the way that
the isometry group acts on the spacetime. Typically there are many metrics for which
@, are constants of motion for the action (4.3). Of course any polynomial of @, is also
conserved and is independent from the metric of the particle system. We shall refer to
these charges as orbital to emphasise their independence from the spacetime metric. In
many occasions, it is possible to find polynomials of ), which are independent and are in
involution. Suppose that one can find n — 1 such independent (polynomial) orbital charges
in involution and the Hamiltonian,

1
H:§ﬂmmmm (4.17)

is independent from the orbital charges. Then the geodesic flow is completely integrable
because the orbital charges will Poisson commute with the Hamiltonian. Of course the
Hamiltonian depends on the spacetime metric. To distinguish the conserved charges which
depend on the spacetime metric from the orbital ones we shall refer to former as Hamiltonian.
We shall demonstrate that this strategy of proving complete integrability of a geodesic flow
based on non-abelian isometries is particularly effective whenever the non-abelian group of
isometries has a principal orbit in a spacetime of codimension of at most one. The complete
integrability of geodesic flows on homogeneous manifolds has been extensively investigated
in the mathematics literature, see e.g. [49].

4.1.3 An example

Before we proceed to investigate the KS and KY tensors and the integrability of the geodesic
flow on some type II backgrounds, let us present an example. The standard example is that
of the Kerr black hole. However more suitable for the examples that follow is to consider
R?" with a conformally flat metric

g = h|yNdisdy'dy’ , (4.18)

where |y| is the length of the coordinate y with respect to the Euclidean norm and A > 0.
A direct computation reveals that the following tensors

X . .
iy, = BE(YD) 7y a5, i (4.19)
are KS tensors provided that the coefficients a are constant and satisfy

= Qg1 (fgsir..ig)

A(jy...5g 1)k =0. (4.20)

For each of these KS tensors, there is an associated conserved charge Q(d) given in (4.13)
of the geodesic flow on R?" with metric (4.18). These generate an infinite dimensional
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symmetry algebra for the action (4.3) with metric (4.18) which is isomorphic to the Poisson
algebra of Q(d)’s up to terms proportional to the equations of motion, i.e. the algebra
of symmetry transformations is isomorphic on-shell to the Poisson bracket algebra of the
charges. The conserved charges @)(d) may neither be independent nor in involution.

Next let us turn to find the KY and CCKY tensors on R*" with metric (4.18). After
some computation, one finds that

a:hgiygp, ﬂ:h%Y/\go, (4.21)

are KY and CCKY forms, respectively, for any constant k-form ¢ on R?", where Y is either
the vector field Y = 4'0; or the one-form Y = y;dy’; it is clear from the context what Y
denotes in each case.

For each KY tensor above, one can construct the infinitesimal variation (4.9) which
is a symmetry of the action (4.8). However the commutator of two such infinitesimal
transformations does not close to an infinitesimal transformation of the same type. Typically,
the right-hand side of the commutator will involve a term polynomial in Dz as well as a
term which is linear in the velocity . A systematic exploration of such commutators in a
related context can be found in [50, 51].

Next let us turn to investigate the integrability of the geodesic flow of the metric (4.18).
The geodesic equations can be easily integrated in angular coordinates. However it is
instructive to provide a symmetry argument for the complete integrability of the geodesic
equations. The isometry group of the above backgrounds is SO(2n). The Killing vector
fields are

kij = yi0; —y;0i, 1<j, (4.22)
where y; = y*. The associated conserved charges are

Qij = Q(kij) = yin; — y;pi - (4.23)

Notice that all these conserved charges are orbital as they do not depend on the metric (4.18).
As Ly,;9 = 0, one can show that ;; commute with the Hamiltonian H = %h_léijpipj, ie.
{H,Qij}ps = 0.

The conserved charges @;; are not in involution as {Q(kij), Q(kpq) }rB = Q([kij, kpgl)-
However using these, one can verify that the 2n — 1 orbital conserved charges

Dpm== > (Qy)?, m=23,...2n, (4.24)
,7>2n+1—m

are in involution. These together with the Hamiltonian H = %h‘lcsij pip; give 2n charges
in involution. Therefore the geodesic flow of the metric (4.18) is completely (Liouville)
integrable.

An alternative way to think about the complete integrability of the geodesic flow on
R?" with metric (4.18) is to consider it as a motion along the round sphere $2"~! in R?"
and as a motion along the radial direction r = |y|. For this write the metric (4.18) as

g = h(r)(dr? +r2g(5*"7 1)), (4.25)
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where g(5?"~1) is the metric on the round S?"~! sphere. It is well known that the vector
fields (4.22) are tangential to S*"~! and leave the round metric on $?*~! invariant. The
associated conserved charges are as in (4.23) and they are functions of 7*5?"~1 i.e. they do
not depend on the radial direction p, of the momentum p. One can proceed to define (4.24)
and in turn show that the geodesic flow on S?"~! is completely integrable. Notice that Do, is
the Hamiltonian of the geodesic flow on $2"~1. All these charges including the Hamiltonian
on S?"~1 are orbital as they do not depend on the metric (4.18). As there are 2n — 1
independent charges in involution associated with the geodesic flow on %71, the addition
of the Hamiltonian H = %hiléij pip; of the geodesic flow on R?" gives 2n independent
conserved charges in involution proving the complete integrability of the geodesic flow of
the metric (4.18).

This construction can be reversed engineered and generalised. In particular consider a
metric on a n-dimensional manifold M™

g(M") = dz* + g(N"1)(2), (4.26)

where z is a coordinate and g(N"~!)(z) is a metric on the submanifold N"~! of M™ which
may depend on z. Suppose now there is a group of isometries on M"™ which has as a
principal orbit N*~1. Clearly the associated conserved charges Q@ = KM p,,, for each Killing
vector field K, will be functions on T*N. If one is able to find orbital conserved charges Dy,
m=1,...,n — 1 in involution, then the geodesic flow on M"™ will be completely integrable
after the inclusion of the Hamiltonian H of the geodesic flow on M" as an additional
conserved charge. This is because H is a function on T*M"™ and so it is independent from
D,,, which are functions on T*N""!. Moreover {Dm, H}pp = 0 as D,,, are constructed as
polynomials of the conserved charges associated with the isometries on M™. This argument
will be repeatedly used to prove complete integrability of geodesic flows of brane backgrounds
and clearly can be adapted to all manifolds which have a principal orbit of codimension at
most one with respect to a group action.

4.2 D-branes
4.2.1 The KS and CCKY tensors of D-branes
The metric of type II Dp-branes in the string frame [22-27] is
, P L 9—p o
g=h"2 > nado’de’ +hz Y &;dy'dy’ (4.27)
a,b=0 ij=1

where p = 0,...,8 with p even (odd) for ITA (IIB) D-branes, ¢ are the worldvolume
coordinates, ' are the transverse coordinates and h = h(y) is a harmonic function §9,0;h =
0. Apart from the metric, the solutions depend on a non-vanishing dilaton field and an
appropriate form field strength which we suppress. For planar branes located at different
points 7, in R?7?, one takes for p < 6

N gs
LA M= (42%)
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where | - | is the Euclidean norm in RY7P and ¢, is a constant proportional to the charge
density of the branes. The solution is invariant under the action of the Poincaré group,
SO(p, 1) x RP acting on the worldvolume coordinates . If the harmonic function is
chosen such that h = h(|y|),” then the solution will be invariant under the action of SO(9—p)
group acting on the transverse coordinates y.

Considering the Dp-branes (4.27) with h = h(|y|), the KS tensors which are invariant
under the worldvolume symmetry of the solution are

l _ . .
dal---a2mi1...ik = h4(k m)(‘yD yh cee y]qajl---quil---ikn(alaz < Nagm_1a2m) (4'29)
provided that the constant coefficients a satisfy

Ay fosin)oin = Vi (asini) = 0 - (4.30)

Each of these KS tensors will generate a symmetry of the relativistic particle action (4.3). As
a result each such action on a D-brane background admits an infinite number of symmetries.
The algebra of the associated transformations is on-shell isomorphic to that of the Poisson
bracket algebra of the associated charges.

To investigate the symmetries of the spinning particles (4.8) propagating on D-branes,
it suffices to find the KY tensors of these backgrounds. For this, one begins with an ansatz
which respects the worldvolume isometries of the solutions. As the KY tensors are dual to
CCKY ones, let us focus on the latter. It turns out that

k+1—p

Ble) =h" 1 (ly]) Y Ao Advol(RP1), (4.31)

is a CCKY tensor for any constant k-form ¢ on R®™P where dvol(RP'!) is the volume form
of RP! with respect to the flat metric and Y = 5¢jyidyj. Therefore Dp-branes admit 287
linearly independent KY forms each generating a symmetry of the action (4.8) of spinning
particle probes in these backgrounds. The associated conserved charges are given in (4.10).

4.2.2 Complete integrability of geodesic flow

The geodesic flow on all Dp-brane backgrounds with h = h(|y|) is completely integrable. Of
course one can separate the geodesic equation in angular variables. Here we shall give all
the charges which are in involution. As we have already mentioned, the isometry group of
such a Dp-brane solution is SO(p, 1) x RP! x SO(9 — p). Such a group has a codimension
one principal orbit RP! x S8~P in the Dp-brane background. In particular, the Killing
vectors generated by the translations along the worldvolume coordinates are k, = 0, and
those generated by SO(9 — p) rotations on the transverse coordinates are

kij = yi0; — y;0i, 1<, (4.32)
where y; = y°. The associated conserved charges written in terms of the momenta are

Qa=0a, Qij =Q(kij) = vipj — y;pi - (4.33)

"The harmonic function is h = 1 + Iyl%l’ forp=0,...,6, h=14qlogly| for =7 and h =1+ q|y| for
p=2_8.
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These charges are not in involution. However, one can verify that the 9 conserved charges

Qa, Dm=- > (Qy)?, m=23,...,9-p, (4.34)

1,j210—p—m

are all orbital, independent and in involution. These together with the Hamiltonian of (4.3)
yield 10 charges in involution and the geodesic flow on all such Dp-brane solutions is
completely integrable.

4.3 Common sector branes
4.3.1 KS and KY tensors of common sector branes

The metric of the fundamental string solution [19] is
g = h™'napdo®do® + 6;;dy'dy’ (4.35)

where a,b=0,1 and 4,7 = 1,...8 and h is a harmonic function on R%, §90;0;h = 0. We
have suppressed the other two fields of the solution the dilaton and 3-form field strength.

As for D-branes consider the fundamental string solution with A = h(|y|) = 1+%. Such
a solution admits the same isometry group as that of D1-brane. Then one can demonstrate
that the KS tensors that preserve the worldvolume symmetry of the fundamental string are

da1~--a2mi1~--ik = h_m(|y’)yjl cee yjqaj1~~~jq,i1~~~ik77(a1a2 < Nagm_1a2m) (4'36)

provided that the constant coefficients satisfy a(;, .. ;,, y = 0. As a result

1) — Qg1 (Ggy1-0
a relativistic particle whose dynamics is described by the action (4.3) on such a background
admits an infinite number of symmetries generated by these KS tensors.

After some computation, one can verify that CCKY forms of the fundamental string

solution are
Ble) =h [y Y Ap Ado® Ada', (4.37)

for any constant k-form ¢ on R®, where Y = di;y'dy’. These give rise to 27 linearly inde-
pendent dual KY forms which generate symmetries for a spinning particle with action (4.8)
propagating on this background.

The metric of the NS5-brane solution [20, 21] is

9 = Napdo®do® + hdydy'dy’ (4.38)

where a,b=0,...,5,4,j = 1,2,3,4 and h is a harmonic function on R*. We have again
suppressed the dilaton and 3-form fields of the solution. For h = h(Jy|) = 1+ #, the
solution has the same isometry group as that of the D5-brane.

As for the fundamental string solution above, the KS tensors that preserve the world-
volume symmetry of the NS5-brane are

k . .
dal---GQmil-nik = h (|y|) yjl e y]qa’jlunquil-v~ikn(a1a2 e nagm,lagm) 9 (439)
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provided that the constant tensors a satisfy agj,. j.i1)..ix. = %jy...(jgsir...i) = 0- Therefore
the action (4.3) of a relativistic particle action propagating in this background admits an
infinite number of symmetries generated by these KS tensors.

The CCKY forms of the NS5-brane are
B(e) = h'3 (Jyl) Y A Advol(R>) (4.40)

for any constant k-form ¢ on R* where Y = 5ijyidyj and dvol(RS’l) is the volume form of
the worldvolume of the NS5-branes with respect to the flat metric. These give rise to 23
linearly independent dual KY forms that generated the symmetries of a spinning particle
with action (4.8) propagating on the background.

4.3.2 Complete integrability of geodesic flow

Consider a relativistic particle propagating on the fundamental string solution with h =
h(ly|). The worldsheet translations and transverse coordinate SO(8) rotations give rise to
the conserved charges

Qa:paa CLZO,].; QZ]:yZp]_y]p’L) i?j:17"'787 (441)
respectively. From these one can construct the following nine independent, orbital, conserved
charges

1
Qa, Dy = 7 > (Qy)?, m=2,...8, (4.42)
1,j29—m

which are independent and in involution. These together with the Hamiltonian of the
relativistic particle (4.3) lead to the integrability of the geodesic flow on the fundamental
string background.

Similarly, the conserved charges of a relativistic particle propagating on a NS5-brane
background associated with the worldvolume translations and transverse SO(4) rotations are

Qa:paa CIZO,...,5; Qij:yipj_yjpia i,j:1,2,3,4. (443)
These give rise to nine independent, orbital, conserved charges
Qa, Dm=- > (Qy)?, m=2,.. 4, (4.44)
,j25—m

which are independent and in involution. These together with the Hamiltonian of the
relativistic particle imply the complete integrability of the geodesic flow of NS5-brane.

5 Common sector and TCFHs

The simplest sector to explore the TCFH of type II supergravities is the common sector.
For this sector, all fields vanish apart from the metric, dilaton and the NS-NS 3-form field
strength H, dH = 0. A direct inspection of the TCFH of type II supergravities reveals
that some of the spinor bilinears are covariantly constant with respect to a connection with
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skew-symmetric torsion while some others satisfy a more general TCFH. The former are
well known, especially in the context of string compactifications, and have been extensively
investigated in the sigma model approach to string theory. They generate additional
supersymmetries of the worldvolume actions as well as W-type of symmetries [50, 51]. Here
we shall demonstrate that string probes on all common sector supersymmetric solutions
admit W-type of symmetries generated by the form bilinears.

5.1 Probes

Before we proceed with the details of describing how the TCFHs generate symmetries for
probes in supersymmetric backgrounds, we shall first describe the probe actions that we
shall be considering. The main focus will be on string and particle probes. The dynamics
of string probes propagating on a spacetime with metric g and a 2-form gauge potential
b [52-55] is described by the action

A= /d2pd29 (94 b)an Doa™ D_zV | (5.1)

where © = x(p,0) are real superfields that depend on the worldsheet superspace with
commuting (p°, p') and anti-commuting (6,67 real coordinates. The action above has
been given as in [56, 57], where one defines the lightcone coordinates, pt = p° + pl,
p= = —p° + p!, and the algebra of superspace derivatives is D? = i0—, Di = iﬁ# and
D.D_+ D_D4 =0. Note that the sign labelling of the worldsheet superspace coordinates
denotes spin(1, 1) chirality.

The infinitesimal symmetries of (5.1) that we shall be considering are given by

dzM = €(+)ﬁMplmpk D+1‘P1 e D+3:P’“ , (5.2)

where [ is a spacetime (k + 1)-form and ¢(*) is an infinitesimal parameter; the superscript
(+) indicates that the weight of the infinitesimal parameter e is such that the right-hand
side of (5.2) is a spin(1,1) scalar. The action (5.1) is invariant under such transformations
provided that

Vg\}_)/8P1...Pk+1 - 07 (53)
where
1
vEH) = v+ 5 (5.4)

with C = db, i.e. V%?YN = VuYN + %CNMRYR. Therefore 5 generates a symmetry

provided it is a V(*)-covariantly constant form.
One can also consider symmetries of (5.1) generated by the infinitesimal transformation

szM = e(_)ﬁMpl__ka_xpl c..D_azt (5.5)

where €(7) is an infinitesimal parameter. The condition for invariance of the action in such
a case is

vg\;)/BPl"'PkJrl =0, (5'6)
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ie. Bis a V(*)—covariantly constant form. In many examples that follow the spacetime
will admit several V(&) -covariantly constant forms which generate symmetries of the string
probe action (5.1). All V() _covariantly constant forms of the common sector backgrounds
coincide with those of heterotic supersymmetric backgrounds. In turn these can be computed
using the classification results of [58, 59] for all heterotic background Killing spinors. The
V(-)-covariantly constant forms of common sector backgrounds can also be read from
the classification results of [58, 59]. One can easily investigate the commutators of these
symmetries (5.2) and (5.5). In general these symmetries are of W-type and have been
previously explored in [50, 51] both in the context of string compactifications and special
geometric structures.

Actions of spinning particle probes are also invariant under the symmetries generated
by either V(H)— or V(=) — covariantly constant forms 8. One such worldline probe action is

A:i/deGQr+@MND+wMD_fV, (5.7)

which in addition to the metric exhibits a 2-form coupling b, where the superfields ™ =
M (7,6) depend on the worldline superspace with commuting 7 and anti-commuting (6, 67)
real coordinates; see [60] for a systematic description of spinning particle actions with form
and other couplings. The algebra of the worldline superspace derivatives is Di = D? =0,
and DyD_ + D_D, = 0. The signs on 6% are just labels - there is no chirality in one
dimension. The infinitesimal variation of the superfields is as in either (5.2) or (5.5), but now
the fields are worldline superfields and the superspace derivatives are those of the worldline
superspace. The conditions for invariance of the action above are given in either (5.3)
or (5.6), respectively.

Another class of spinning particle probes we shall be considering are described by the
action [60]

1 1
A= —5/ dr do (igMND:UMGT:BN + GCMNRD$MD.%'ND$R) , (5.8)

where g is the spacetime metric and C' is a 3-form on the spacetime - C' is not a necessarily

M s a superfield that depends on the worldline superspace

closed 3-form. Moreover x
coordinates (7,0) and D? = id,. Given a (k+1)-form 3 one can construct the infinitesimal

transformation
oM = o ﬁMplmkazvpl ...DzPx (5.9)

where « is an infinitesimal parameter. The conditions required for this action to be invariant
under the transformation (5.9) can be arranged in two different ways. One way is to require,
as in previous cases, that 8 is V(T)-covariantly constant. An alternative way to arrange the
conditions for invariance of (5.8) is

vg\}_)IBPI---Pk+1 = v[(]\—;)ﬁPL--Pk-y-l]’

W42

digC + (—1) igdC =0 . (5.10)
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These conditions and an explanation of the notation can be found in [45]. Therefore this
set of conditions implies that 8 is a V(T)-KY form. For C' = 0, one obtains that 3 is a KY
form as for the spinning particles described by the action (4.8).

5.2 IIA common sector
5.2.1 The TCFH
The TCFH of the common sector can be written as

p 7 7 p
VMON,..N, — §HPM[N1¢|P\...NP] =0, VuMON,.N, — §HPM[N1¢|P\...NP] =0, (5.11)

for ¢ = k, 7,7 and

B 1 . 1 )
VMo = —ZHMPQWPQ ; VMwNRr+ EHMPQCPQNR = 5 HMNRO (5.12)
s 1 .
VMmCNy.Ny — g*HM[NlNgNg\PQR|CPQRN4} — 3H [Ny Ny WN3 Ny =
5 5 B
EQM[Nl*HN2N3N4]P1...P4CP1WP4 - E*H[MN1N2N3|PQR|CPQRN4] : (5.13)
1 B 5 1 1
Vmo = —ZHMPQWPQ » VMWNR+ ZHMPQCPQNR = §HMNR0' , (5.14)
1 -
VN, Ny — §*HM[N1N2N3\PQR|CPQRN4} — 3H [Ny Ny WN3 Ny =
1 9
EQM[Nl*HN2N3N4}P1...P4CP1'”P4 - E*H[MN1N2N3|PQR\CPQRN4] : (5.15)

These can be easily derived from the general ITA TCFH in section 2 upon setting all other
fields apart from the metric, dilaton and NS-NS 3-form to zero.

It is clear from the TCFH that k" = k™S + k", 7% = 775 £ 775 and 7375 = 775 £ 77
are covariantly constant

v(i)kirs _ V(i)ﬂirs _ v(i),rirs =0, (516)

with respect to the connections
1
vE =v+ SH - (5.17)

These are the forms that have mostly been explored in the literature. Although the rest
do not satisfy such a straightforward condition they are nevertheless part of the geometric
structure of the common sector backgrounds. A consequence of the TCFH above is that the
(reduced) holonomy of the connection® of a generic common sector background is included in
SO(9,1) x SO(9, 1) x GL(255) x GL(255). The subgroup SO(9, 1) x SO(9, 1) is the holonomy
of the connections V& as expected for the common sector. Here in addition we have
demonstrated that the holonomy of the TCFH connection factorizes because of the way
that it acts on the 2- and 4-form bilinears yielding the GL(255) x GL(255) subgroup.

8Note that the TCFH connection as stated above is not the minimal on k and k.

- 21 —



5.2.2 Probe hidden symmetries generated by the TCFH

After identifying the 3-form coupling C' = db of the probe actions (5.7) and (5.1) with
the 3-form field strength H of common sector backgrounds, C' = H, the conditions on
the form bilinears k¢, 7% and 7" imposed by the TCFH (5.16) coincide with those
in (5.3) and (5.6) as required for the invariance of these probe actions. Therefore the

V&) -covariantly constant form bilinears k¥, 7% and 7% generate symmetries for
the particle (5.7) and string (5.1) probe actions. These are given by the infinitesimal

transformations

5$M — e(ﬂz)(k:l:TS)M 656M — €(i)(7r:trs)MPQD:|:CCPD:|:xQ,

daM = e(i)(Tirs)MNlmN[lDile co.DyxM (5.18)

()

where €5’ are the infinitesimal parameters.

Similarly after identifying C' with H the spinning particle probes described by the
action (5.8) are invariant under symmetries generated by the VH)_covariantly constant
forms kTS, w775 and 77", The infinitesimal variations are given as in (5.18) after replacing
the worldsheet superfields with the worldline ones and the superspace derivative D, with
D. The V(- )-covariantly constant forms k=", 77"% and 7" also generate symmetries but
for the spinning particle probe with action given in (5.8) but now with coupling C' identified
with —H, C' = —H.

The interpretation of the rest of the form bilinears satisfying the TCFH condi-
tions (5.12)—(5.15) as generators of symmetries of worldvolume probe actions is not apparent.
For generic common sector backgrounds, these bilinears do not generate symmetries for
the probe actions we have considered here. Nevertheless, they may generate symmetries
for probes on some special backgrounds, as some terms in the TCFH may vanish and
so the remaining TCFH conditions can be interpreted as invariance conditions of some
worldvolume probe action.

5.2.3 Hidden symmetries of probes on common sector IIA branes

We have demonstrated that particle and string probes in common sector backgrounds exhibit
a large number of symmetries generated by the V()-covariantly constant forms k%S, %7

and 7E"S

. To present some examples, we shall explore the symmetries generated by the
form bilinears of the fundamental string and NS5-brane. For this, we have to compute the
form bilinears of these two backgrounds.

To begin, let us assume that the worldsheet directions of the fundamental string are
along 05. Then the Killing spinors of the solution can be written as € = hfieo, where ¢q is
a constant spinor that satisfies the condition I'gI'sI'11€g = £€g with the gamma matrices in
a frame basis.” The metric of the solution is given in (4.35) after changing the worldvolume
directions from 01 to 05 and taking h to be any harmonic function on R®, e.g. h can
be a multi-centred harmonic function as in (4.28) for p = 1. The choice of worldsheet

directions we have made for the string above may be thought as unconventional. However,

9This will be the case for the conditions on the Killing spinors of all brane solutions that we shall
investigate from now on.
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it turns out that such a choice is aligned with the basis used in spinorial geometry [61]
to construct realisations of Clifford algebras in terms of forms; for a review on spinorial
geometry techniques see [62]. We shall use spinorial geometry to solve the condition on €
and so this labelling of the coordinates is convenient.

Indeed choosing the plus sign in the condition on €y and using the realisation of spinors

in terms of forms!?

write eg = 1 + e5 A A, where n and A are constant Majorana spin(8)
spinors. Then the condition I'gI'sI"11€g = ¢ restricts  and A to be positive chirality
Majorana-Weyl spinors of spin(8), i.e. n,A € Ay = A®(R{ey, 2, e3,e4)). Thus the most

general solution of I'gI'sI'11€9 = €q is
eo="n+e AN, (5.19)

where 7 and \ are positive chirality Majorana-Weyl spinors of spin(8).

Using (5.19) one can easily express all the form bilinears of the fundamental string
background in terms of the form bilinears of n and . The explicit expressions have been
collected in appendix A. Using these one finds that

1

k+7"s — 2h—%<nr,ns><60 _ €5>7 LTS — h—%(/\r7)\s>(60 + 65),
s — 2 <77Tarij778>(60 o 65) A et A ej, TS — h—%<)\r’1ﬂij)\s>(60 + 65) A et A ej,

2. _1 ) .
717 = Eh_ﬂnr, Tijnen®) (e — ) Aet Aed Aef Ael,

2 . ,
T = gh_%@r, Tijee*) (¥ +ed) nef ned Aeb el (5.20)
where (€2, €% ¢?) is a pseudo-orthonormal frame for the metric (4.35), i.e. g = —(e%)% +

(€3)2 4+ 3;(e)?, and (-, -) is the spin(8)-invariant (Hermitian) inner product on AJ. Both
k*"s are along the worldvolume directions and Killing. This implies that both k and & are
Killing as well. This is expected for k but not for k. Nevertheless k is Killing because the
fundamental string is a special background. Observe that the V(- (V(-)-) parallel form
bilinears are left- (right-) handed from the string worldvolume perspective as indicated by
their dependence on the worldsheet lightcone directions.

It remains to compute the bilinears of spin(8) Majorana-Weyl spinors n and A. These can
be obtained using the decomposition of the product of two positive chirality Majorana-Weyl

representations Ag in terms of forms on R® as
Ag ® A; = AO(Rs) <) A2(]R8) &) A4+(R8) , (5.21)

where A**(R®) are the self-dual 4-forms on R®. As 5 and A are in A and otherwise
unrestricted, their bilinears span all 0-, 2- and self-dual 4-forms in R®. As a consequence,
the string probe (5.1) and particle probe (5.7) actions are invariant under 27 independent
symmetries.

°Tn spinorial geometry the Dirac spinors of spin(9, 1) are identified with A*(CS). The Gamma matrices
are realised on A*((CS) using the exterior multiplication and inner derivation operations with respect to a
Hermitian basis (e1,...,es5) in (C5. The Majorana spinors satisfy the reality condition I'g7se * € = €. For
more details see e.g. appendix B of [62].
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Next let us turn to the symmetries of probes on the NS5-brane background. Choosing
the worldvolume of the NS5-brane along the 012567 directions, the Killing spinors € = ¢y of
the background satisfy the condition I's4g91'11€9 = t€p, where €q is a constant Majorana
spinor. The metric of the solution is given in (4.38) after changing the worldvolume
directions from 012345 to 012567 for similar reasons as those explained for the fundamental
string above and after taking h to be a harmonic function on R* as in (4.28) for p = 5.
Choosing the plus sign, the condition I's4g9I'11€9 = €¢ can be solved using spinorial geometry.
It is convenient to first solve this condition for Dirac spinors and then impose the reality
condition on €. The solution can be expressed as

e=n"+tesu NN +es An® +es NN, (5.22)
where n and X\ are positive chirality Weyl spinors of spin(5,1), i.e. n,A € Azrﬁ) =
AV (C(eq, eq,e5)). Imposing the reality condition on €, I'g7g9 * € = €, one finds that

M= —Ter(nh)*, M= -Te ()" . (5.23)

So the Killing spinor € is completely determined by the (complex) positive chirality spin(5,1)
spinors n! and n?.

Using (5.22), one can easily compute all the form bilinears of the NS5-brane background
and express them in terms of the form bilinears of ' and 72. All these can be found in

appendix A.

+)

In particular the V(&)-covariantly constant spinor bilinears are

k'S = ARe(n'", Tan**)pe®, k" = 4Re(n*",Tan®*)p €%, (5.24)
2

" = gRe@ylr, Tapen™*)pe® A el A e — 4Re(n!" T M) p (3 Aet — B Ae) Ael
—AIm(n'" Ten')p (3 N e® + et Aed) ne?
—AIm(n'" T A p (3 ne —et AeB) Ael, (5.25)

)
)
2
T = gRe<7727’, Capen™ ) p e A €® A €€ 4+ 4Re(n?" , ToA2)p (2 Aet + B A ed) A et
+4Im (> Ton®)p (3N e® — et Aed) N e
+4Im(n* T A p (3 A e + et Aed) Ae?, (5.26)
2
TS = kT A3 net AP e — gRemlr, Cape M) p (€3 net —eB ned) Ae? Ael Aef
2
- §Im<n”, Capen™*)p (3N eB + et Aed) e Aeb A et
2
- §Im<n”, Cape M) p (3 ne® —et AeB) Ae? Ael A el
4
- gRe<nl’“, Tayast)p € Ao N e, (5.27)
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2
T =k A At NS A+ gRe<n2T, Tape X p(e3 Aet + B ned) net Aeb Aet
2
+ §Im<n2T, Cape?®)p(e3 A e® —et Aed) Ae? Ael Al

2
+ §Im<772”, CapeAZ)p(e3 ne? +et Aed) Aet Aed Aef

+ %Re(n%, Fal,,,%n%)p e A NeM (5.28)
where a,b,c = 0,1,2,5,6,7 are the worldvolume directions, (e?,e3,e?, e® €?) is a pseudo-
orthonormal frame for the metric (4.38), (-, ) p is the spin(5, 1) invariant Dirac inner product
and esyg9 = 1. Both k" are along the worldvolume directions of the brane and are Killing.
This in turn implies that both &k and k are Killing as well. Again & is Killing because the
NS5-brane is a special background. The 3- and 5-forms have mixed components along both
worldvolume and transverse directions. Note that the anti-self-dual and self-dual 2-forms
along the transverse directions contribute to V() and V(=) covariantly constant forms,
respectively.

Therefore the NS5-brane form bilinears have been expressed in terms of those of two
positive chirality Weyl spin(5,1) spinors. The decomposition of two positive chirality Weyl
spin(5, 1) representations, A}, into forms on C° is given by

®?Af = AH(CP%) @ AP (CY) (5.29)

Therefore the string probe with action (5.1) and particle probe with action (5.7) are
invariant under 2° symmetries counted over the reals. To see this, observe that from the
decomposition above all 1- and self-dual 3-forms along the NS5-brane worldvolume are
spanned by these spinors. So there are 6 + 10 = 2* independent symmetries generated
by the V(H)-covariantly constant forms and similarly for the V(~)-covariantly constant
forms yielding 2° in total. These generate a symmetry algebra of W-type [50, 51]. For the
remaining form bilinears in appendix A, there is not a straightforward way to relate them
to symmetries of particle or string probe actions.

5.3 IIB common sector

5.3.1 The TCFH and probe hidden symmetries

The TCFH of IIB common sector can be written as

p 3 3 p
Var R, n, — 5 a9 =00 Varo Ty, = 5 Hu " 0y, = 0, (5:30)
for ¢ = k,m and 7. The rest of the TCFH is
Vs kS 4 i&ag Hy NN =0, (5.31)
) 31
VM ﬂg%)};‘QSPS + 1 50[[3 I{]MNI]\[2 T](D?ESPSNlNQ — 5 8045 HM[P1P2 k(Pi%TS =0 , (532)
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91 .
Vu Tl(glf)rfgs + 1 €afB *HM[Pl...P4N1N2 WgﬁrNslNQ — i ap HM[P1P2 WED/Z);;PQ -
o1 NiN2N3 _(8) 3 NiNy _(B)
+ 15808 9Mp, Hpy p) O TN N, Ny — 5 o Hipp T, - (5:33)

where o, 5 = 1,2 and €12 = 1. As it has already been explained the TCFH is real after
replacing the purely imaginary form bilinears k), 7(2) and 72 with ik®, ix(® and 7.
It is clear from the TCFH above, that the forms k* := k + k®), 7% := 7 + 7(® and

+) connection defined in (5.17).

7% := 7+ 70) are covariantly constant with respect to the V¢
As a result these form bilinears generate symmetries in the worldvolume probe actions
given in (5.1) and (5.7). These are the form bilinears that have mostly been explored in
the literature. The remaining form bilinears in the TCFH do not have such an apparent
interpretation. Nevertheless they are part of the geometric structure of the common sector
backgrounds.

A consequence of the TCFH above is that the holonomy of the connection!' D7 of a
generic common sector IIB background is included in SO(9, 1) xSO(9, 1) x GL(256) x GL(256).
As in the ITA case, the subgroup SO(9,1) x SO(9,1) is the (reduced) holonomy of the V(*)
connections while the subgroup GL(256) x GL(256) arises from the way that the TCFH
connection acts on the 7(®) and 7(® form bilinears. Therefore the holonomy of the IIB TCFH
connection factorises as that of the ITA theory. However note that the holonomy of the ITA
common sector minimal connection is included in SO(9,1) x SO(9,1) x GL(255) x GL(255).
The difference is that the action of D7 on the IIA 0-form bilinears o and & is via a partial
derivative and so the holonomy is trivial. However if instead we had considered the maximal
TCFH connections, see [14], of the ITA and IIB common sector both would have reduced

holonomy contained in SO(9,1) x SO(9,1) x GL(256) x GL(256).

5.3.2 Hidden symmetries of probes on common sector IIB branes

As an example, we shall explicitly give the symmetries of string and particle probes on
the 1IB fundamental string and NS5-brane backgrounds. For this one has to calculate the
form bilinears of these solutions. Starting with the fundamental string and choosing the
worldsheet along the 05 directions as in the ITA case, the Killing spinors of the background
are € = hfieo, where the constant spinor e, € = (&}, €2), and the two components of €
satisfy the conditions

F05e(1) = :I:e(l), F05e(2) = I}:e% . (5.34)

Both €} and €3 are Majorana-Weyl spin(9, 1) spinors. The metric of the solution is described
in (4.35) after changing the worldsheet directions from 01 to 05 and h is taken to be a
general harmonic function on R®, given in (4.28) for p = 1. To solve the above condition,
we shall again use spinorial geometry [61]. In particular choosing the plus sign in (5.34)
and writing eg = 1+ e5 A A, where n (\) is a doublet of chiral (anti-chiral) Majorana-Weyl
spin(8) spinors, one finds that

e=n"=n, g=es AN =esA]\, (5.35)

"Note that this is not the minimal connection on k and k®.
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i.e. the condition on the Killing spinor implies A! = n? = 0. One can use the solution (5.35)
to express the bilinears of the Killing spinors in terms of those of independent spin(8)
spinors 1 and A. The results can be found in appendix A.

In particular one finds that the V(¥)-covariantly constant form bilinears can be ex-
pressed as

1

k—H"S — 9K~ 2 <77T,T}s>(60 o 65), k—rs — h—%(}\’l’7)\s>(€0 4 65),
T = W7 D) (e — ) Ael Al m T = WXL DA (e ef) Ael Al

s = %h*%@yr, Di ) (e —eP) nelt Ao Ael

S = %h*%w, Ti A (2 4+ D) At A Aet (5.36)
where (e, €%, e?) is a pseudo-orthonormal frame for the metric (4.35) and (-, -) is the spin(8)
invariant inner product. As in the ITA case both k*"* are along the worldvolume directions
and Killing which in turn implies that k and k®) are Killing as well. The latter property is a
special property of the IIB fundamental string solution. In addition, as in the ITA case, the
VH) — (V(5)—) parallel form bilinears are left- (right-) handed from the string worldvolume
perspective as indicated by their dependence on the worldsheet lightcone directions.

It remains to find the form bilinears of the spin(8) spinors n and A. These can be
identified from the decomposition of the product of two chiral A?é) and two anti-chiral Ag
Majorana-Weyl representations of spin(8). It is well known that

AL @ AT = AO(R®) @ A%(R®) @ A*E(RY) . (5.37)

Therefore these bilinears span all constant 0-, 2- and self-dual or anti-self-dual 4-forms on R®.
As a result, the probe actions (5.1) and (5.7) admit 27 independent symmetries generated
by these forms. Commutators of symmetries generated by V(&)-covariantly constant forms
have been examined in [50, 51] and it was found that they are of W-type. After some
investigation it has been found that the remaining form bilinears do not generate symmetries
in particle and string probe actions like (5.1), (5.7) and (5.8).

Next let us turn to investigate the form bilinears of the IIB NS5-brane. Choosing the
worldvolume along the directions 051627, the Killing spinors € of the solution are constant,
€ = €, and satisfy the condition I'sygge’ = +e! and I'sug9e? = Fe2, where both €' and €2
are Majorana-Weyl spin(9,1) spinors. Choosing the first sign, one can solve the above
conditions using spinorial geometry [61]. As in the ITA case, it is best to first solve the
condition for € complex and then impose the reality condition. The solution is

e =n'teuAN, E=esAn’+ean)?, (5.38)
where n!, \! are positive chirality spin(5,1) spinors, i.e. nt, A\ € A®(C(eq, ez, e5)), and

n%, \? are negative chirality spin(5, 1) spinors, i.e. n%, A2 € A°d4(C(ey, eq, e5)). Moreover the
reality condition on the €' and €2 spinors implies that

M= —Ter(nh)*, M= -Te(n*)*. (5.39)
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Using (5.38), one can easily compute the form bilinears in terms of those of ' and 7.

These can be found in appendix A.

Using the expressions of the form bilinears in appendix A, one finds that the V(F)-

covariant constant bilinears are

kTS =4Re(n'", Tan'®)pe®, k™™ = 4Re(n” ,Tan*)p e, (5.40)

78 = —4Re(n!", T A1) p e A (3N et — 8 A €?) — AIm(n!", Ton'*) p e@A (31 €8 + e A €9)
—AIm (", T A p et A (2 A e —et Aed)

—i—gRe(nlr, Capen™*) pe® A e’ A e, (5.41)

7 = 4Re(n”", Tad*)p e A (2 Aet + 3 A e?) +4Im(n®" , Tun®)pe® A (e3 N ed — et Ae?)
+4Im(n*" T A*)pe® A (e3 A e + et Aed)

—i—%Re(nQr, Cape’”) pe A e A e, (5.42)
7S —4Re(n'" Tan')pe® Aed3 net AeB A e + %Re(nlr, Cayoast ) D™ A A e

—gRe@]lr, Cape M) pe? Al AeC A (3 net —eB ned)

—%Im(nlr, Capen*)pe® AP AeC A (3 N ed + et AeY)

—;Im@]lr, Cape AN pe? Al AeC A (B ne —et Aed), (5.43)

4
TS — —4Re<772T,Fa7728>D6a A 63 A 64 A 68 A 69 + 5Re<,r]2r’Falma5n2s>Deal A A eas

2
+§Re<7727", Cape A2V pe? Aeb AeC A (e Aet 4+ eB Ae?)

+§Im<7727", Capen®*)pe® A el A el A (3 ned —et Ae?)

—i—glm(n%, Cape A2V pe? AP AeC A (B ne + et Aed), (5.44)
where (e, e3,e* €®, e%) is a pseudo-orthonormal frame of the NS5-brane metric (4.38) and
(-,-)p is the spin(5,1) invariant Dirac inner product. Clearly k* are Killing which implies
that both k and &) are Killing as well. As in all previous common sector branes, the latter
generates an additional symmetry for particle and string actions on NS5-brane backgrounds.
The 3- and 5-form bilinears above have mixed components along both the worldvolume
and transverse directions, and the anti-self-dual and self-dual 2-forms along the transverse
directions contribute to V{H)- and V(-)- covariantly constant forms, respectively.

We have expressed the V&)-covariantly constant bilinears in terms of the bilinears
of the chiral and anti-chiral spin(5,1) spinors n' and n?, respectively. To determine those
note that

@?AT = AH(C%) @ A3E(CY) . (5.45)

Therefore these span all 1-forms and 3-forms on the worldvolume of the NS5-brane. In
particular, they generate 2° independent symmetries, counting over the real numbers, for
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the spinning particle and string probe actions in (5.1) and (5.7). The algebra of these
symmetries is of W-type [50, 51]. An investigation reveals that the remaining bilinears do
not generate symmetries for the (5.1) and (5.7) probe actions.

6 IIA D-branes

There is no classification of IIA supersymmetric backgrounds. So to give more examples for
which the TCFH can be interpreted as invariance condition for probe particle and string
actions under symmetries generated by the form bilinears, we shall turn to some special
solutions and in particular to the D-branes.!? It is convenient to organise the investigation
in electric-magnetic brane pairs as the non-vanishing fields that appear in TCFH are the
same. The TCFH for each D-brane pair can be easily found from that of the ITA TCFH
given in (2.5)—(2.10) and (2.13)—(2.16) upon setting all the form field strengths to zero
apart from those associated to the D-brane under investigation.

6.1 DO- and D6-branes
6.1.1 DO-branes

The Killing spinors of the DO-brane are given by € = hféeo, where € is a constant spinor
restricted as ['gI'116g = *¢€p, the worldline is along the 0-th direction and h is a multi-
centred harmonic function as in (4.28) for p = 0. Choosing the plus sign and using spinorial
geometry [61], one can solve this condition by setting

€0 :T]—€5AF1177, (61)

where n € A*(R(ey,...,eq)) and the reality condition is imposed by T'g7s9 * n = 7. Using
this, one can compute the form bilinears. These are given in appendix B.

As expected k is a Killing vector. As a result k generates a symmetry in all probe
actions (5.1), (5.7) and (5.8) after setting the form couplings to zero. It also generates a
symmetry in the probe action of [16] with the 2-form coupling; the DO-brane 2-form field
strength F' = Fy; e® A €' is invariant under the action of k. An investigation of the TCFH
for the rest of the form bilinears using that Fy; # 0 reveals that these do not generate
symmetries for the probe actions we have been considering. Because of this we postpone a
more detailed analysis of the TCFH for later and in particular for the D6- and D2-branes.

6.1.2 D6-brane

Choosing the transverse directions of the D6-brane along 549, the Killing spinor € = hféeo
satisfies the condition

5491160 = *eo, (6.2)

where € is a constant spinor and h is a multi-centred harmonic function as in (4.28) with
p = 6. To solve this condition with the plus sign using spinorial geometry, set

€ ="n+es AN A, (6.3)

12 A consequence of this investigation is that we shall find all form bilinears of the type II D-brane solutions.
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where n, A € A*(C(ey, ea,e3,e5)). Then the condition (6.2) gives
F5F117] = —in, F5F11)\ =i\, (64)

One can proceed to expand n and X as n = ' +e5 An? and A = A! + e5 A A? in which case
the conditions (6.4) give n? = il'11n! and A2 = —il';3 A}, where nt, A\ € A*(Cley, ea, e3))
are the independent spinors. However if one proceeds in this way the form bilinears will not
be manifestly worldvolume Lorentz covariant, as the 0-th direction will be separated from
the rest. Because of this, we shall not solve (6.4) and do the computation with n and .
After the computation of the form bilinears, one can substitute in the formulae the solution
of (6.4) in terms of n' and A!. However this is not necessary for the purpose of this paper.
It remains to impose the reality condition on €y. This gives n = —il'g7g * A or equivalently
A = —il'g78 * 1. The form bilinears are given in appendix B.
The TCFH for k on a background with a 2-form field strength is

1 ~ 1 -
Vukyn = ge‘prQCPQMN + Ze(DFMNO‘ . (6.5)

As expected k generates isometries and so symmetries in all the probe actions (5.7), (5.1)
and (5.8) with vanishing form couplings. It also generates a symmetry for the probe action
of [16] with the 2-form coupling, as the D6-brane 2-form field strength F = 1 Fj; e’ A el is
invariant under the action of k. In what follows we shall be mostly concerned with the
symmetries generated by the form bilinears for the probe action (5.8). The invariance of
this action imposes the weakest conditions on the form bilinears amongst all probe actions
that we have been investigating.

Next consider the % and w bilinears on a background with a 2-form field strength. The
TCFH for these is

1 1
Py = geq)gMNFPQwPQ - 56®F[M|P|WPN] ) (6.6)

~ 1
kaN — §€¢)FMPW
3 3 5 1 5
Vuwng + € Fapnkp = Zeq)F[MNkR] + ieq)gM[NFR]PkP
1

1A 5|€¢*FMNRP1...P57'P1'”P5 : (6.7)

For k to generate symmetries in probe action (5.8) with C' = 0, it must be a KY tensor.
As for D6-branes Fj; # 0, the term proportional to the spacetime metric in the first of the
equations above must vanish. This requires that w;; = 0. Then from the expressions of the
form bilinears of D6-brane in appendix B and (6.4), one concludes that k = 0. Therefore k
does not generate symmetries for the probe action (5.8).

Similarly for w to generate a symmetry for probe action (5.8) with C' = 0, one finds
from the last TCFH above that & = 0. Then from the expressions for the D6-brane form
bilinears in appendix B, this implies that w;; = 0 or equivalently

(", Tur)p =Im(n",n°)p =0. (6.8)
Then

1
W= 5Wab e Neb = h_%Re@]T, Lapn®) pe® A e, (6.9)
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is a KY form and generates a (hidden) symmetry for the probe action (5.8) with C' = 0.
Note that there are Killing spinors for which w # 0 even though w;; = 0. Indeed, take
n"=n*=14e +e5A (il —iey).

The TCFH for the bilinears @ and m is

- 1 1 3
VMONR + QQ(DFMPWPNR =— Zeq)QM[NFIPQ\WPQR] + Ze(bF[MIPITFPNR} ’ (6.10)
3 - 1
VMTNRS — §e¢FM[NwRS] =-T. 4,€¢*FMNRSP1...P4CP1'”P4
3 . 3 -
- 56(1)9M[NFR\P\WPS] - ieq)F[MNWRS} - (6.11)

For @ to be a KY form and so generate a symmetry in the probe action (5.8) with C' =0,
Tai; = 0. As it can be seen from the D6-brane bilinears in appendix B after using (6.4),
this implies that @ = 0 and so @ does not generate any symmetries. Turning to m, one finds
that this is a KY tensor provided that & = 0 which implies that 7,;; = 0 or equivalently

(", Tel'sA®) p =Im(n", Tan®)p =0. (6.12)
The remaining components of 7,

™= %ﬂabcea ANeP Aef = éh_%Re@]T, Lapen®) pe A e’ Ael, (6.13)
generate a (hidden) symmetry for the probe action (5.8) with C' = 0. There are Killing
spinors such that they satisfy (6.12) and 7 # 0, e.g. " = 1 4+ e; +ies A (1 —e1) and
n*=i(l—e1) —es A(1+eq).

From now on to simplify the analysis that follows on the symmetries generated by
TCFHs for all ITA D-branes, we shall only mention the components of the form bilinears
that are required to vanish in order for some others become KY forms. In particular, we
shall not give the explicit expressions for the vanishing components of the form bilinears
and those of the KY forms in terms of the Killing spinors as we have done in e.g. (6.12)
and (6.13), respectively. These can be easily read from the expressions of the form bilinears
of D-branes given in appendix B.

The TCFH for the bilinears ¢ and 7 is

. 1 3
VMTNRS — §€¢FMPCPNRS = ~e® v FlpoiCT Ry

8
3
— e®FanpiC¥ NRrs) — Zeq)gM[NFRS}Ua (6.14)
. 1
Vrlny..Ny + 2¢ P Fygn, TNy Na vy = Eeq)*FMNl...NwQRWPQR

- 5 _
+3e% g [N1 FN2\P|7TPN3N4] + §6¢F [MN;TNaN3Ny) -
(6.15)

A similar analysis to the one presented above reveals that @ does not generate symmetries in
the probe actions we have been considering. While for ¢ to be a KY form, and so generate
a (hidden) symmetry for the probe action (5.8) with C' = 0, one requires that 7 = 0. This

~ 31—



in turn implies that (445 = 0. So there is the possibility that ¢ = ical_we“l A= Aet s
a KY form. But one can verify after some computation'? that there are not Killing spinors
such that (qpi; = 0 with ¢ # 0.

The TCFH for ¢ and 7 is

e 1 1 5
Vir(ng..Ny + 56¢)FMPTPN1...N4 == §€¢9M[N1FIPQ\TPQN2N3N4} + §€¢F[M|P|TPN1...N4]
+ 36(1)9M[N1FN2N3]€N4] ; (6.16)

5 ~ 1
v]\47—]\/1...]\/5 - 56¢FM[N1<:NQ...N5] = geq)*FMNl...Ng)PQwPQ

— 5% gnriv Fva P CF Ny Navs] — Z€¢F[MN15N2...N5] :
(6.17)

For ¢ to generate a symmetry, the above TCFH requires k, = 0 and Tabeij = 0. These
imply that ¢ = 0 and so this bilinear does not generate a symmetry. It turns out that 7 is
a KY form provided that Eabm- = 0. As a result 7455 = 0. The remaining non-vanishing
components of 7, 7 = éTalm% e A -+ A e% potentially generates a (hidden) symmetry of
the probe action (5.8) with C' = 0. But after some computation one can verify that there
are no Killing spinors such that 7,4.;; = 0 and 7 # 0.

It is clear from the TCFH in (6.5)—(6.7), (6.10), (6.11), (6.14), (6.15), (6.16) and (6.17)
that the holonomy of the minimal connection reduces for backgrounds with only a 2-form
field strength. In particular, the (reduced) holonomy of the minimal connection reduces to
a subgroup of SO(9,1) x GL(55) x GL(165) x GL(330) x GL(462). For completeness we
state the TCFH on the scalar bilinears

1 1
Vue = —Zeq)FMPk‘P, Vuo = _ge@FPQﬁ'PQM - (6.18)

These give a trivial contribution to the holonomy of the minimal connection.

To summarise the results of this section, we have concluded as a consequence of
the TCFH that there are Killing spinors such that k, w and 7, which have non-vanishing
components only along the worldvolume directions of the D6-brane, are KY forms. Therefore
they generate symmetries for the probe described by the action (5.8) with C' = 0 in a
D6-brane background. This is the case for any multi-centred harmonic function h that the
D6-brane solution depends on.

6.2 D2 and D4-branes
6.2.1 D2 brane

Choosing the worldvolume directions of the D2-brane along 051, the Killing spinors € =
lf%eo of the solution satisfy the condition

Losi€0 = %€, (6.19)

13To prove this one uses spinorial geometry techniques and the freedom to choose a pseudo-orthonormal
frame to find a representative for n'”. Then one solves for all conditions arising from (4p;; = 0. This restricts
n** and leads to ¢ = 0. It is a lengthy computation that will not be presented here. See also section 7.2 for

a similar computation.
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where € is a constant spinor and h is given in (4.28) for p = 2. To solve this condition with
the plus sign using spinorial geometry, set

eo="n+es AN, (6.20)
to find that the remaining restrictions on n and \ are
F177 =n, Fl)\ = /\, (621)

where 7, A € A*(R(eq, e2, e3, e4)); the reality condition is imposed with T'g7g9 * n = 7 and
Fg7s0 * A = A. As in the D6-brane case, the remaining condition on 7 and A can be solved
by setting n = n' +e; An' and A = A + e; A ML) where !, Al € A*(R{ea, e3,e4)) label the
independent solutions of (6.19). However, we shall perform the computation of the form
bilinears using (6.20) as otherwise their expression will not be manifestly covariant along
the transverse directions of the D2-brane, e.g. the 6-th direction will have to be treated
separately from the rest. The form bilinears of the D2-brane can be found in appendix B.

D2-branes exhibit a non-vanishing 4-form field strength Gpi1s; # 0. As the probe actions
we have been considering do not exhibit such a coupling, the only remaining coupling is
that of the spacetime metric. Therefore for the form bilinears to generate a symmetry, they
must be KY forms. To investigate which of the form bilinears are KY, we shall organise
the TCFH according to the domain that the minimal connection acts on. As expected
the TCFH

~ 1
Vukn = — eq)*GM]\fplmp4CPl'”P4 + geq)GMNpQwPQ, (6.22)

4-4!
implies that k£ is a Killing 1-form. As a result it generates symmetries in all probe
action (5.7), (5.1) and (5.8) after setting b = C' = 0.

Next observe that

~ 1 ~
Vikn — Eeq)GMPQRCPQRN =

N 1 N
e®gunGp,..p, M — EGQ)G[M|PQR|CPQRN] ;
(6.23)

4 - 4!

QRN3N4} + 2eq)GM[Nl NoNs ];?N4]

~ 1
Vuin,..Ny + §€¢*GM[N1N2\PQR|TP
1
= —§€¢9M[N1*GN2N3\Pl...P4|TP1'"P4N4]

5 1
+ Tzeé*G[MNlN2|PQR|TPQRN3N4] + Z€¢*GMN1...N4P/‘CP

5 ~ ~
+ ZG(I)G[MNIN2N3]€N4] + eq)gM[NlGNQNgNAdeP . (624)

5 -
VMTN;..Ns — ie(b*GM[NlNgNgJPQ\CPQN4N5} + 56(I>GM[N1N2NSWN4N5]

15 z
- _ge(b*G[MN1N2N3\PQ\CPQN4N5]

; o . 15
B ZGCI)*GMN1...N5O' - Ee(bgM[N1*GN2N3N4\PQR|CPQRN5} + Ze¢G[MN1N2N3wN4N5]

+5e® grr vy Gy Ng Ny P ) 5 (6.25)
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1

VMWNR - E€¢GMP1P2P37—P1P2P3NR — 5 4'eCD.gM[NG\Pl._.P4|7_P1"'P4R]
1 1
—3¢ Gunpppym N — € Gunrek” (6.26)

and so the minimal connection acts on the domain of k, ¢, 7 and w form bilinears. Using
that for D2-branes Go15; # 0 and the explicit expression for the form bilinears in appendix B,
one finds that the TCFH implies that the form bilinears k, ¢ and 7 cannot be KY tensors.
So these do not generate a symmetry in probe actions. On the other hand for w to be a KY
tensor, the TCFH implies that 744.;; = 0. This in turn implies that w;; = 0. As a result
w = swape® A e is a KY form and generates a (hidden) symmetry in the probe action (5.8).
The condition 74p.;; = 0 on the Killing spinors and the expression for wg, in terms of Killing
spinors can be easily read from the expressions of these form bilinears in appendix B. There
are Killing spinors such that 74.;; = 0 and w # 0. For example set " = A" and n® = \°
with (n",n®) # 0.
The TCFH on the remaining form bilinears is

VMTNRS — geq)GM[N|PQ|CPQRS] = *ieéGMNRSO' + ée@*GMNRSPQ@PQ

- ie(bgM[NGRWngPg,|CP1P2P3S] - Zeq)G[MMPQ\CPQRS] ) (6.27)
Vv + 3¢ Gy no P Nan] €2 Gy Na s PO T N
= ée¢9M[N1*GN2N3N4]PQRﬁPQR + §€¢*G[MN1N2N3|PQ|7~TPQN4}

- ;eégM[N1GN2N3\PQ|7rPQN4] + geq)G[MNlNQ\P|7TPN3N4] ; (6.28)
VMANRS + ge(bGM[NR|P|‘I)PS] - %6¢*GM[NR|P1P2P3|<P1P2PSS}
= —ge(DQM[NGRS]PQ@PQ + e Gunrip @ g + %eégM[N*GRS]Pl...R;Cpl"'P4

- éetb*G[MNIﬂPngPg\CP1P2P3S] : (6.29)
VMONR — %eq)GM[N|PQ|7~TPQR] = _%eq)*GMNRPngP;ﬂTPlPQP:a

- T126¢9M[NGR}P1P2P3ﬁP1P2P3 - %GCDG[MMPQVTPQR] : (6.30)

Requiring that these form bilinears must be KY tensors, the above TCFH together with
the explicit expressions for the D2-brane form bilinears in B reveal that ( = ™= © = 0.
For m to be a KY form, the TCFH implies that (;jq, = 0 which in turn gives m;;, = 0.
The remaining non-vanishing component of 7w, 7 = %Wabce“ Ael Aec, is a KY tensor and
generates a (hidden) symmetry in the probe action (5.8) with C'= 0. Again the expression
of the conditions (;j,» = 0 and that of 7 in terms of the Killing spinors can be found in
appendix B. There are Killing spinors such that (;j, = 0 and m # 0. Indeed set A" = —7",
A =mn®and n" =n® =1+ eas+e1 A (1 + e234).
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It is clear that the holonomy of the minimal connection of the TCFH with only
the 4-form field strength reduces. In particular, the reduced holonomy is included in
SO(9,1) x GL(517) x GL(495). For completeness we give the TCFH on the scalars as

1 Py..Ps QR

B 1
\ YV ﬁ*GMPl‘..PsT , Vo= EGCI)GMPQRWP ’ (6.31)

which give a trivial contribution in the holonomy of the minimal connection.

To summarise the results of this section, we have shown that there are choices of Killing
spinors such that w and 7, with non-vanishing components only along the worldvolume
directions of the D2-brane, are KY tensors. Therefore these bilinears generate (hidden)
symmetries for a probe described by the action (5.8) with C' = 0 on all D2-brane backgrounds,
including those that depend on a multi-centred harmonic function h.

6.2.2 D4 brane

Choosing the transverse directions of the D4-brane as 23849, the Killing spinors € = h_%eg
of the solution satisfy the condition

Iaggag€0 = tep (6.32)

where € is a constant spinor and h is a harmonic function as in (4.28) for p = 4. To solve
this condition with the plus sign using spinorial geometry write

co=n"+esu At +es AN +es AN2, (6.33)
where 7, A € A*(C(es, e1, €2)). Substituting this into (6.32), one finds that
Tont = —n', Todl = -1, (6.34)

and similarly for n?> and A2. The reality condition on e implies that n' = gy * n? and
M = Tg7 * A2. The remaining conditions (6.34) can be solved by setting n! = p — ea A p,
where p € A*(es5, e1), and similarly for the rest of the spinors. However as for the D2-brane,
we shall not do this as otherwise the expression for the form bilinears will not be manifestly
covariant in the worldvolume directions because the 6-th direction will have to be treated
separately from the rest. The form bilinears of the D4-brane can be expressed in terms of
those of  and X spinors. Their expressions can be found in appendix B.

As in the D2-brane case, the form bilinears generate symmetries in the probe actions
we have been considering provided that they are KY forms. This condition requires that
certain terms in the TCFH must vanish. Using that for the D4-brane solution G 7# 0
and the explicit expression of the form bilinears in appendix B, one finds after a detailed
analysis of the TCFH that only k, ¢, 7, @ and 7 can be KY tensors while the rest of the
bilinears vanish. In particular, as expected, k is Killing and so generates a symmetry for
the probe actions we have been considering.

For C~ to be a KY tensor, the TCFH requires that k= 0, Tijarasas = 0 and 74, a5 = 0.
These imply that fijalm = 0. The non-vanishing component of ¢, ¢ = %fal._,meal Ao ANet
generates a (hidden) symmetry for the probe action (5.8) with C' = 0. Similarly for
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7 to be a KY form, the TCFH requires that w = 0 and fijab = 0. These imply that
T = éraln_m e’ A--- ANe® is a KY form and generates a (hidden) symmetry for the probe
action (5.8) with C = 0.

For & to be a KY form the TCFH requires that 7;;, = 0, which in turn implies that &;; =
0. The remaining component of & = %(Dabea A el is a KY tensor and generates a symmetry
for probe action (5.8) with C' = 0. There are Killing spinors such that 7;;, = 0 while @ # 0.
Indeed take n'" = 21 + ye; — ea A (x1 4+ ye1) and n** = —ixl + iye; — ex A (—izl +iyey),
z,y € C— {0} and \I" = \!* = 0.

Similarly for 7 to be a KY form, the TCFH requires that (q;j, = 0, which in turn gives
Taij = 0. Then m = %ﬂabcea Aeb Aefis a KY form and generates a (hidden) symmetry
for the probe action (5.8) with C' = 0. In all the above cases, the explicit expressions
for the vanishing conditions on some of the components of the form bilinears, as well as
the expressions of KY forms in terms of the Killing spinors, can be easily read from the
results of appendix B and so they will not be repeated here. For ¢, 7 and 7 we have not
verified whether there exist Killing spinors such that these are non-vanishing KY forms. A
preliminary investigation has revealed that they do not exist.

To summarise the results of this section, there are Killing spinors such that k, and @
with non-vanishing components only along the worldvolume directions of D4-brane, are
KY tensors. Therefore, they generate (hidden) symmetries for the probe described by the
action (5.8) with C' = 0 on any D4-brane background depending of a harmonic function h
as in (4.28) for p = 4.

6.3 DS8-brane

To derive the TCFH on D8-brane type of backgrounds set all the ITA form fields strengths
to zero apart from S. Then the ITA TCFH in section 2 reduces to

1 ~ 1 . 1
VM5 = Ze(I)SkM, VMkN = XGCDSCUMN, VMkN = Zeq)gMNS&, (6.35)
1 ~ 1
VMwNR = ie(PSgM[NkR] s VMONLLNG = 5!eq’*SMNl,,,Mpl,,,p5TP1“'P5 ,  (6.36)
1 .
VMTNL.Ns = = 4,€¢*5MN1...N5P1‘..P4CP1"'P“, Vuo =0,
1
VMONR = Z€¢S7~TMNR, (6.37)
1 P - 3 ) ~
VMTNRS = 1° SCMNRS VMTNRS = 1€ SIMINWRS] »
Varlny..Ny = €PSgnN TNy NNy - (6.38)

It is clear from this that k, ¢, 7, @ and 7 are KY tensors and generate a (hidden) symmetry
of the probe action (5.8) with C' = 0. Note that all these form bilinears k, ¢, 7,0and
have components only along the worldvolume directions of the D8-brane. Notice also that
the (reduced) holonomy of the minimal TCFH connection is included in SO(9, 1).

To find an explicit expression of the form bilinears of D8-brane solution choose the
worldvolume directions along 012346789. The Killing spinors € = lféeo of the solution
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satisfy the condition I'seg = +ep, where € is a constant spinor and h =1+ Y, q¢|y — ye|.
Taking the plus sign, this condition can be solved using spinorial geometry by setting

eo=n+esAn, (6.39)

where n € A*(R{eq, e2, e3, e4)) after imposing the reality condition I'g7gg * 7 = 7. Using the
solution for €y above, one can easily compute the form bilinears of D8-brane in terms of
those of . Their expressions can be found in appendix B. Imposing the condition that the
remaining form bilinears k, ¢, w and # must be KY forms, the TCFH together with their
explicit expressions in B imply that they should vanish. Therefore they do not generate
symmetries for probe actions. However as a consequence of the TCFH above k, ¢, w and 7
are CCKY forms and so their spacetimes duals are KY forms.

7 TCFH and probe symmetries on I1IB D-branes

As in the ITA, there is no classification of IIB supersymmetric backgrounds. So we shall
turn to IIB D-branes to give more examples of backgrounds for which the TCFH can
be interpreted as the condition for invariance of particle and string probe actions under
symmetries generated by the form bilinears. The computation will again be organised in
D-brane electric-magnetic pairs. The TCFH for each pair can be easily found from that of
the IIB TCFH given in (3.3)-(3.8) upon setting all the form field strengths to zero apart
from those associated to the D-brane under investigation.

7.1 D1- and D5-branes

7.1.1 The TCFH of D1- and D5-branes

To illustrate the construction of symmetries for probes propagating on D1- and D5-brane
backgrounds using the IIB TCFH, we shall present the D1- and D5-brane TCFH. This is
casily derived from (3.3)-(3.8) upon setting G() = G®) = 0. After a re-arrangement of
terms so that e® G can be interpreted as torsion of a TCFH connection, one finds

rs 1 3 1)rs 1 p 1)rs
Varky = 5 e G KT = et GON NN (e
L)7 1 rs l 1 j)Trs
Vi k}” = 5 Si1e® Gg\:;)PN kN + 5 Elij e® Ggg})N is Wgz)leQ

1
- . [} (3)N1N2N3 rs
~ 12 dine” G TMPN;N5N3

+ —eij 2 gup G(3)N1N2N3 WE\JH)TNSQNS, + 5 €14 e® G(3)N1N2 (M 7.((])?”5

12 P]N1 N>
rs e 0aB) N (s _ L axq0 NiN2Ns _(1)rs
Vm TP, PyPs 3e GM[P1 7TP2P3]N - Ee MPy P> P3 TNy N2 N3

3 o (3NN _(D)rs ®HB3) N _(Drs
T3¢ gmip Gp, " TN N, T3¢ Gipp, Tpn

(i)rs & ~(3) N _rs 7 ® ~B)NNy _()rs
Vu TPiPyPsy — 3511 ¢ GIW[Pl //TP2P3]N + 551” € GM TP, P,PsN, N,
—3ie "€<I) G(3) k(J)TS = —— ) eq) *G(7) N1N2N3 s
lig M[PP; VP3] 12 3l MP,PyPs N1 NaNj
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3 rs
+§5i1 eq)gM[p1 Gg’)NlNQ WPS]N1N2+36116 G[PP TPy M]N
i NiN,N. ()rs ; (3) N1Ny _(J)rs
e GO gy e TPy Naa — 1615 Gl TE P v
3¢ 3 3) j)rs
— 5 €145 €<1> gM[P; G;Q)Ps]N k( JIrs + 24 €1ij € GfP1P2P3 kj(\j}] s
(3) (1)rs L auq() 1rs
VT p, —5e” GM[P Pg) PN T ¢ " *Giip,..p k(
15 o0 N _(rs @ ()N, N, _(D)rs @ 3 ()rs
+ 2 c G[P1P2 TPy Py Ps MIN 5" gup GP? o P3PyPs]N1N2 10e™ gnip GP2P3P4 Ps]

(i)rs d ~(3) N _rs 91 '1> (7) NiN> _(j)rs
VM Tp, p,—50ie€ GM[P Tp,.. Ps]N + = 5 €lij € *GM[Pl...P4 v 7TPj5]N1N2
rs 7 3 rs
—10ieyije GM[P1P2 ng)mPS *511 ® *GSVJ)PI P5N kN 456 e® gM (P GEDz)NlNZ TP3 Py Ps]N1 N>

3 rs 3 rs
*511 € G(p) p2N TP3P,PsM]N — 1081 e gMm [P GEDQ)P3P4 kPg,]

(3) OIE . ® ) N _()rs
+10ieq45€ G[P1P2P3 P]4P M~ 15ierij e gup, Gp, p, 7TPJ4P5]N
o1 * (7) N1 N2N3 _(j)rs 31 @+ NiNo _(j)rs
+ — B €1ij gmp, "Gp, Py 12 AZJVQNS 5 €145 € G[P1 t 27T1\]4]N1N2 . (7.1)

Clearly the (reduced) holonomy of the TCFH connection for generic backgrounds with only
G®) non-vanishing is included in x2S0(9, 1) x2 GL(256). The TCFH connection acting on
7 and 7Y is the same as that acting on 7 and 7™ but it is different from that acting on
k and k().

The difficulties that one encounters when interpreting the TCFH above as invariance
conditions for a particle probe described by an action,'# like (5.8), for symmetries generated
by the form bilinears are twofold. One is that the TCFH connection contains terms that
involve double and higher contractions of indices between the G3) field strength and the
form bilinears. The other is that the right-hand side of the TCFH involves terms that
contain the spacetime metric. Terms such as these do not occur as invariance conditions
for actions like (5.8) under symmetries generated by spacetime forms, see (5.10). The
only option is to set both such terms to zero. As G®) is given for each solution, this puts
restrictions on the form bilinears and, in turn, on the choice of Killing spinors used to
construct these bilinears.

7.1.2 D1l-brane

To find the form bilinears of the D1-brane, choose the worldsheet along the directions 05.
1

The Killing spinors of the solution are € = h™ 8¢y, where the constant spinor ¢y = (e, €3)! is

a doublet of Majorana-Weyl spin(9, 1) spinors satisfying the additional condition

Tos0160 = *ep (7.2)

and h is a harmonic function on R® as in (4.28) for p = 1. The metric of the D1-brane is
given in (4.27) for p = 1. Choosing the plus sign in the condition above the components

14 A probe with action (5.8) is chosen because it gives the weakest invariance conditions on the couplings
and on the forms that generate the symmetries.
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of the doublet ¢y are restricted as I’05e(1] = 6% and I’05e(2) = 6(1]. As in previous cases, these
conditions are solved using spinorial geometry [61]. After a short computation, one finds that

e=nt+es AN, eE&=n—es AN, (7.3)

where 1 € A?é) = A(R(ey, e2,€e3,e4)) and A € A?é) = A°%(R(eq, eq, e3,e4)) are chiral and
anti-chiral Majorana-Weyl spin(8) spinors, respectively. The form bilinears of € can be
computed in terms of those of 7 and A. The result can be found in appendix B.

For the D-string, the non-vanishing components of G are proportional to G((]?S)i' Using

these, and the expression for the form bilinears in appendix B, one concludes from the
TCFH that

1 rs s 1
Varkp — 5 GONEY™T =0, vy kD" - 5¢" GONEE =0. (7.4)

Therefore both k* = k+k™M are covariantly constant with respect to the connection V&) as
in (5.17), but now with torsion e® G®). As d(e® G(®) = 0, k* generate symmetries for the
probe actions (5.1) and (5.7), where the coupling b is given by e® G3) = db. Furthermore k*
(k~) generates a symmetry for the probe action (5.8), where the coupling C' is C' = e® G(3)
(C = —e®G®)). Note that both k* have components along the worldsheet directions of the
D-string.

It can be shown that the remaining form bilinears do not generate symmetries for the
probe actions (5.1), (5.7) and (5.8). The details of this analysis is similar to those explained
for ITA D-branes and they will not be presented here.

7.1.3 D5-brane

Choosing the transverse directions of the D5-brane as 3489, the condition on the Killing
spinors € = h_%eo for the D5-branes is

I's4g901€0 = £eo, (7.5)

where ¢y = (€}, €2)! is a doublet of constant Majorana-Weyl spin(9, 1) spinors and h is a
harmonic function as in (4.28) for p = 5. This condition with the plus sign can be solved
using spinorial geometry to yield

Eé:771—1-634/\)\1—|-€3/\772+64/\)\2, 6(2):n1—|—634/\)\1—63/\772—e4/\)\2, (7.6)

where n', A\l (n?,\?) are positive (negative) chirality spinors of spin(5,1). The reality
condition on ¢y implies that A' = —T'¢7 * n' and A2 = —I'g; * n%. Using this, one can
calculate the form bilinears of the D5-brane solution. These have been presented in
appendix B.

As for D1-branes, let us define k¥ = k + k(). The TCFH together with the expression
of the form bilinears for this background in appendix B give

Vi ks = Vi k- (7.7)

Therefore k* satisfy the KY equation with respect to the connection V&) as in (5.17) with
torsion +e®G®). A consequence of this is that k* generate symmetries in the particle probe
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action (5.8) with 3-form coupling £e®G®). Note that the second condition in (5.10) required
for this is also satisfied as i+ d(e®*G®)) = 0 and 5+ G®) = 0 because k* have components
only along the worldvolume directions of the D5-brane. A similar investigation reveals that
k2 and k®) do not generate symmetries for the probe actions we are considering.

Next define #* = 7 + 7(1). The TCFH can be re-organised as a KY equation with
respect to a connection with skew-symmetric torsion provided that the term proportional
to the spacetime metric g vanishes. For this the ﬁzj\tm' ; components of the 3-form bilinears
should vanish. In particular, #1 is a KY form with respect to V(*) connection provided that

(' T A p = Im(n'" , Tun'®)p =0, (7.8)
and similarly 7~ is a KY form with respect to V(=) connection provided that
(0?7, LA p = Im(n*", Tan*)p =0 . (7.9)
The remaining non-vanishing components of 7+ are
atrs _ %h_l/“ Re <771T7Fabc7715>D A A e,
I % h~1/4Re <772T, Fabcn25>D e® Nel A el . (7.10)

The conditions (7.8) and (7.9) may impose additional restrictions on #* above. Focusing in
7+, let us solve (7.8). For this note that spin(5,1) = sl(2, H) and that the positive chirality
representation of spin(5,1) can be identified with HZ. Therefore up to a spin(5, 1) rotation,
we can choose without loss of generality nl’" = 1. Setting 7715 = wl + ye1o + fers + zeos,
w,y, f,z € C, the first condition in (7.8) implies that y = f = z = 0. Thus '* = wl. Then
it follows that the second condition in (7.8) implies that # = 0. A similar argument also
implies that (7.9) gives #~ = 0. Therefore the form bilinears #* do not generate symmetries
for the spinning particle probe action (5.8). In addition an investigation reveals that 72
and 73 do not generate symmetries for the probe actions we have been considering. The
same applies for all four 5-form bilinears.

To summarise the results of this section, we have demonstrated that there are Killing
spinors such that the form bilinears k% are KY forms with respect to connections with
skew-symmetric torsion proportional to +e®G®). Tt turns out that these forms k* generate

symmetries for the probes described by action (5.8) with form coupling C' equal to +e®G(®).

7.2 D3-brane

Choosing the worldvolume directions of the D3-brane as 0549, the Killing spinors, € = h_éeo,
of this solution satisfy the condition

F0549€(1) = :|:6(2), (711)
where €y = (e}, €2)! is a doublet of constant Majorana-Weyl spinors of spin(9,1) and h a
harmonic function as in (4.28) with p = 3. This condition with the plus sign can be solved

using spinorial geometry as

6(1):7]1+645/\)\1+64/\772+€5/\)\2, 63:in1+ie45/\)\1—ie4/\172—ie5/\)\2, (7.12)
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where ', Al € A®Y(C(eq, e2,e3)) (n?, A2 € A°44(C(eq, ez, e3))) are positive (negative) chiral-
ity Weyl spinors of spin(6). Furthermore the reality condition on € implies that

= —ilgrgxnt, AN =ilgrgx AL . (7.13)
Using these, one can easily express the form bilinears of the D3-brane solution in terms of
those of the n and A spin(6) spinors. The form bilinears can be found in appendix B.

As the probe actions (5.1), (5.7) and (5.8) do not exhibit a 5-form coupling, the only
coupling one should consider is that of the spacetime metric. For the form bilinears to
generate a symmetry for the probe described by the action (5.8), they must be KY tensors.
To see whether this is the case, let us begin with the 1-form bilinears k and k2. The
TCFH'" gives

1
Varkp = e G N N a0

Vo k(2)r5 _ 1 e® G(5) NiN2Ns _r

12 Ny NoNs - (7.14)

Clearly both are KY tensors and so generate symmetries for the probe action (5.8) with
C = 0. Using that the components Gl(ll) ayi and G,ff) a5 Of the 5-form field strength of the
D3-brane solution do not vanish and the expressions for the bilinears in appendix B, one
can show that the remaining two 1-form bilinears do not generate a symmetry for the probe
actions we have been considering.

Next let us turn to the 3-form bilinears 7 and 7). The TCFH on a D3-background

reads

L 2 o6) NN _(rs L o A0) N (s
VMTRRR — 1€ Cuip 7 ThEMNN, = T3¢ Guppp” BN (T15)
(2)rs e ) NiNoN, _ 1 a5 N
VM”P1P2P3+’ Gup P TR PN NN = 5¢€ Giipipyps EN - (7.16)

For either 7 or 7(2) be KY forms, the connection term involving G® in the TCFH must
‘@)

iiabe = 0 which in turn implies that

vanish. For , this requires that 7,
Re <n1",rijnls> = Re <>\1’",Fij>\ls> =0,
Re <171T, Fij)\15> + Re <>\1T, F¢j7715> =0,
Im <n1’“,rij,\18> —Im <A1’”,rijn15> -0. (7.17)
Imposing the above conditions, the non-vanishing components of 7 are
w8 =—4h” 4Im< >(eo eYNnetne?
44k~ Im <)\1’" /\15> (@ +e)netned
4R ( < Lr )\15> Re <)\1T, n15>) O ned et
+4h71 (Im <n1r, )\15> + Im <)\1", 1715>) One’ned. (7.18)

15WWe have replaced k(2)77r(2> and 7® with ik:(2)7i7r(2) and i7® so that the TCFH for the D3-brane and
later for the D7-brane to be manifestly real.
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The conditions (7.17) may impose additional restrictions on the components of 7 above.
Indeed as spin(6) = su(4) and the positivity chirality representation of spin(6) is identified
with the fundamental representation of su(4), one can choose without loss of generality
n'" = al, a € C, up to a spin(6) rotation. As the isotropy algebra of n'" = al is su(3),
one can again choose without loss of generality 7' = b1+ ceqa, b,c € C. Then the first
condition in (7.17) for i = 1,7 =2 and i = 1,j = 7 implies that a¢c = 0. Taking a # 0, i.e.
n'" £ 0, we find that ¢ = 0. Therefore ' = bl. Then, one can demonstrate using the
first condition in (7.17) for i = 1 and j = 6 that the component of 7"¢ which depends on
(n,m) vanishes. A similar argument implies that the component of = which depends on
(A, \) vanishes as well. To prove that the remaining components of 7 vanish, we utilise the
result we have proven above that we can always choose " = al and n®* = bl. Then the
last two equation in (7.17) for ¢ = 1 and j = 6 imply that the remaining components of
7 vanish. The same conclusion holds in the case that '” = 0. Therefore the conditions
in (7.17) imply that 7 = 0 and so it does not generate a symmetry in the spinning particle
action (5.8) with C' = 0.

Similarly for 7(2) to be a KY form, Tijabe = 0. The conditions on the spinors are given
as in (7.17) after replacing Re with Im and vice versa. After imposing these conditions, the
non-vanishing components of 72) are

7r<2)rs:_4h—%Re<1r >(60 Y Nelt ned
+4h71 Re (A7, A1) (¢ +
— 4~ (Tm ("7, A1) = Tm (A7, ') ) €” A e A e
+4h7% (Re (", A1) + Re (A7, 5"*) ) e? A e® A e? . (7.19)

ey Nnet ne?

A similar argument as that used to determine the component of 7 implies that 7(2) = 0.
Therefore 7(2) does not generate symmetries for the spinning particle action (5.8) with
C=0.

Next let us focus on the two remaining 3-form bilinears 7 and 73

. It turns out
that they do not generate symmetries for the probe action (5.8) that we are considering.
In particular for 7™ to be a KY form, the TCFH requires that 7(® = 0. This in turn
implies that 71 = 0. To establish the latter the Hodge duality properties of the transverse
components of 73 have to be used.

To find the conditions for 7 and 7(2) be KY forms, the TCFH for these bilinears on a
D3-brane background is
Vu 7y p+10€ GS\/[)[P1P2P3N ”g)zgg]zv = —5e’ IM[P GEDSQ)P3P4N1N2 ”ED?]?%NQ

15 (5) @)rs
5 (DG[Pl 7rP5M]N, (7.20)

2)rs rs
Vum 1(31) —10e” GMPI Py p3N TpyPsIN = 5e® aMmp GEDQ)Pg P4N1N2 P5]N1N2
15 re
@G%r p N T - (7.21)

It turns out that for 7 to be a KY tensor, 7(2) = 0. Using the chirality of n' and 7? as
spin(6) spinors, one concludes that 7 = 0, and so there are no symmetries generated by this
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5-form bilinear. Similarly, 7(2) does not generate any symmetries for the probe action (5.8)
we have been considering.

Finally, let us turn to investigate the TCFH of 7(!) and 7 on a D3-brane background.
One finds that

Vi 71(311).i25 +5¢e? G%?[Pl._.m kg;)]rs - g e® GE\E/)[)[P1 Py M ngi)zszs]m N>

- g e guip, G p) N BN =3 G L B (7.22)
Var T e, = 5" Giip p Ky + g e Gt Th NN

3O o G K 860G 4 2o

Focusing on the former condition, 7(!) is a KY tensor provided that k() = 0 and Tl.(j’,zab =0.
Using the chirality of 7% and A2 as spin(6) spinors, one finds that (M = 0. A similar
calculation for 7 reveals that 7(3) = 0. These two forms do not generate symmetries for
the probe action (5.8).

To summarise the results of this section, we have demonstrated that there are Killing
spinors such that the form bilinears k and k(®) of the D3-brane background are KY forms
and so generate (hidden) symmetries for the probe described by the action (5.8) with C' = 0.

These forms have components only along the worldvolume directions of the D3-brane.

7.3 D7-brane

Choosing the transverse directions of the D7-brane as 49, the Killing spinor ¢ = h_ée() of
the solution satisfies the condition

Tyoch = +e, (7.24)

where €y = (¢}, €2)! is a constant doublet of Majorana-Weyl spin(9, 1) spinors and h =
1+ > ,qlog|ly — ye|. This condition with the plus sign can be solved using spinorial
geometry as

=n+tesANN, € =in—ies AN, (7.25)

where 1 (\) is a positive, n € A®(C(ey, ea, e3,¢e5)), (negative, A € A°9(Cley, ea,e3,¢5)),)
chirality spin(7,1) Weyl spinors. The reality condition on € implies that

A= —’iFﬁ?g *1 . (726)

Using the above expression for the Killing spinors, the form bilinears can be easily computed
and can be found in appendix B.
The TCFH for the form bilinears k and k) gives

1 TSs Ts 1
VM k;DS = 5 eq) G(l)N Wg\%wp 3 kag) = _5 e@ G(l)N W}ﬂ\?MP . (727)

As a result, they are both KY forms. Therefore both generate symmetries for the probe
action (5.8) with C' = 0. It can be shown that the remaining two 1-form bilinears k(") and
k®) do not generate symmetries for the probe actions we are considering.
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Similarly the TCFH of 7 and 72 on D7-brane background reads
rs 1 N _(2)rs 1 2)rs
VMTE pypy = 5t G TPy 3¢ garm G RE)™

2)rs 1 TS 1) prs
VMWg’l)Png ) e® GON 7iip p,pyn —3€® gy GSDz) kpy - (7.28)

For these to be KY forms, it is required that the terms of the TCFH that explicitly contain
the spacetime metric must vanish. As the form field strength for the D7-brane G() £ 0, for
7 this leads to the condition £ = 0, or equivalently,

Im (n",Tan®)p =0 (7.29)
Therefore
2
7 = gh—i Re (", Dapent®) p € A €® A e, (7.30)

is a KY form and generates a (hidden) symmetry for the particle probe described by the
action (5.8) with C' = 0. There are Killing spinors such that (7.29) is satisfied and 7 # 0,
eg.n" =1and n® = eja.

Similarly the condition for 7(2) to be a KY form is

Re (11", Ty p =0 . (7.31)
As a result
2
7_‘_(2)rs _ _ghfi Im <’I’]T, Pabc778>D LN eb A eC’ (732)

is a KY form and generates a (hidden) symmetry for the particle probe described by the
action (5.8) with C' = 0. Again there are Killing spinors such that 7(?) above is non-
vanishing, e.g. " = il and n°® = e;3. The remaining two 3-form bilinears 7) and 7(3) do
not generate symmetries for the probe action we have been considering.

It remains to investigate whether any of the 5-form bilinears generate symmetries for
probe action (5.8). To begin consider 7 and 7(2). The TCFH for these in a D7-background is

L $u (9 NiNaNs _(2)rs @ (1) _(2)rs
Vutp p = ¢ “Garpps TN NN, T 10€7 gup Gy TRl b s
(2) L a9 NiNa2N3 _r ® (1)
VMTPl”T}5 = Ee *GMPLNP5 LR Y NoN, — 10e€ gmip, Gp, W;ZP4P5} . (7.33)

For 7, the vanishing of the last term in the first TCFH that contains the metric leads to the
(2)
abc
Tijabe Vanishes as a consequence of 7

(2)

abe*

condition 73’ = 0. This condition in turn implies that 7 = 0. In particular observe that

2) _

ave = 0 and 74,45 vanishes because it is worldvolume

dual to 7;". To show the latter, one has to use the spin(7,1) chirality of the spinors 7.
Similarly for 73 to be a KY form, one finds that mg. = 0. An argument similar to the
one presented above implies that 7 =0
To summarise the results of this section, we have demonstrated that there are Killing
spinors such that the form bilinears k, ¥, 7 and 7@ of the D7-brane background are
KY forms and so generate (hidden) symmetries for the probe described by the action (5.8)
with C' = 0. All these forms have components only along the worldvolume directions of the

D7-brane.
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8 Concluding remarks

We have presented the TCFH of both ITA and IIB supergravities and demonstrated that
the form bilinears satisfy a generalisation of the CKY equation with respect to the minimal
TCFH connection in agreement with the general theorem in [14]. Then prompted by
the well-known result that KY forms generate (hidden) symmetries in spinning particle
actions, we explored the question on whether the form bilinears of some known supergravity
backgrounds, which include all type II branes, generate symmetries for various particle and
string probes propagating on these backgrounds.

We have also explored the complete integrability of geodesic flow on all type II brane
backgrounds. We have demonstrated that if the harmonic function that the solutions
depend on has at most one centre, i.e. they are spherically symmetric, then the geodesic
flow is completely integrable. We have explicitly given all independent conserved charges
in involution. We have also presented the KS, KY and CCKY tensors of these brane
backgrounds associated with their integrability structure.

Returning to the symmetries generated by the TCFH, supersymmetric type II common
sector backgrounds admit form bilinears which are covariantly constant with respect to
a connection with skew-symmetric torsion given by the NS-NS 3-form field strength. All
these bilinears generate (hidden) symmetries for string and particle probe actions with
3-form couplings. The type II fundamental string and NS5-brane background form bilinears
have explicitly been given. Common sector backgrounds admit additional form bilinears
which satisfy a TCFH but they are not covariantly constant with respect to a connection
with skew-symmetric torsion. Although these forms are part of the geometric structure of
common sector backgrounds, their geometric interpretation is less straightforward.

Moreover we found that there are Killing spinors in all Dp-brane backgrounds, for
p # 1,5, such that the associated bilinears are KY forms and so generate (hidden) symmetries
for spinning particle probes. All these form bilinears have components only along the
worldvolume directions of the Dp-branes. A similar conclusion holds for the D1- and
D5-brane solutions, only that in this case the form bilinears are KY forms with respect to a
connection with skew-symmetric torsion that is determined by the 3-form field strength
of the backgrounds. These form bilinears have non-vanishing components only along the
worldvolume directions of the D-branes and generate (hidden) symmetries for particle
probes described by the action (5.8) with a non-vanishing 3-form coupling.

It is fruitful to compare the KY forms we have obtained from the TCFH with those that
are needed to investigate the integrability of the geodesic flow in type II brane backgrounds.
TCFH KY forms exist for any choice of the harmonic function that the brane solutions
depend on. Moreover, as we have mentioned, these KY forms have non-vanishing components
only along the worldvolume directions of D-branes. It is clear from this that although
they generate symmetries for particle probes propagating on D-brane backgrounds these
symmetries are not necessarily connected to the integrability properties of such dynamical
systems. This is because it is not expected, for example, that the geodesic flow of brane
solutions which depend on a multi-centred harmonic function to be completely integrable.
Indeed the KS and KY tensors we have found that are responsible for the integrability of the
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geodesic flow on spherically symmetric branes also have components along the transverse
directions of these solutions. As the brane metrics have a non-trivial dependence on the
transverse coordinates, this is essential for proving the integrability of the geodesic flow.
Therefore one concludes that although the form bilinears of supersymmetric backgrounds can
generate symmetries in string and particle probes propagating in these backgrounds, they
are not sufficient to prove the complete integrability of probe dynamics. Nevertheless the
TCFH KY tensors, when they exist, are associated with symmetries of probes propagating
on brane backgrounds which are not necessarily spherically symmetric.

To find TCFH KY tensors, we have imposed a rather stringent set of conditions on
the form bilinears. In particular in several D-brane backgrounds, we set all terms of the
minimal TCFH connection that depend on a form field strength to zero. It is likely that
such a restriction can be lifted and the only condition necessary for invariance of a probe
action will be that the terms in the TCFH which contain explicitly the metric should vanish.
For this a new set a probe actions should be found that have couplings which depend on
the form field strengths of the supergravity theories and generalise (5.8) which exhibits only
a 3-form coupling. We hope to report on such a development in the future.
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A Common sector brane form bilinears

A.1 Form bilinears of ITA branes
A.1.1 Fundamental String

A direct computation using (5.19) reveals that the form bilinears of IIA fundamental

string are
T=hTE(= (AN + (VL)

s = B2 (7, ) (e — ) + R (A, A) (0 + €9)
W' = BTE (X% 4 (V) el Ae® + %h_%( — (", TigA®) + (N, Tyn®) Je' A,
= %h %<77 Tin*)) (e’ —e’) Aet Aed + %h_%()\r,Fij)\s>(eo +eP)ne N,
"= %h %((17 Ty A%y + (A7, Tin®))e Aed Ae Aed

+ 4lh %( — (0", DijreX®) + (/\T,Fijkg775>)ei Ael AeF A el
T = % é(n Cieen®) (€ — €®) Ael Aed A ek A e

+ Ih*%w,rijkwxeo +eP)neinel neF el (A.1)

where 7,7,k =1,2,3,4,6,7,8,9 are the transverse directions of the string and (€%, e, ?)

is a pseudo-orthonormal frame of the fundamental string metric (4.35), i.e g = —(e°)? +
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(€°)? 4+ 3, (¢")%. The remaining form bilinears &, k, @, #, ¢ and 7 can be obtained from the
expressions above upon setting A* to —\°.

A.1.2 NS5-brane

A direct computation using (5.22) reveals that the form bilinears of NS5-brane are

=2(Re(n'", Tan'*)p + Re(n®", Tan**)p) e, (A.2)
=2(Re(n'", Tun®*)p + Re(n®", Tan'*)p) e

+2(Re(n'", TuA?)p — Re(n*", T >\18>D) e A et

+2(Im(n"", Tun®)p — Im(n*", Tun**)p) €* A €®

+ 2(Tm(n'", T A*) p — Im(n*", T M) p) e® Ae?, (A.3)
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where a,b,c = 0,1,2,5,6,7 are the worldvolume directions, e3439 = 1 and (e?, €3, e, €8, ) is
a pseudo-orthonormal frame for the NS5-brane metric (4.38). The remaining form bilinears
&, k, @, 7, ¢ and 7 bilinears can be constructed from those above upon replacing both 72

and A?* with —n?¢ and —\?%, respectively.

A.2 Form bilinears IIB branes

All the bilinears below are manifestly real. In particular we have replaced k), 72 and 7
with k@ ix@ and ir®, respectively.

A.2.1 Fundamental string

Choosing the worldvolume and transverse directions of the IIB fundamental string as in
the IIA case, a direct computation using (5.35) reveals that the form bilinears of I1IB
fundamental string are

(", ) (e — ) + h7%<)\’", A5 (e + e9),

NI

k’f‘s — h*
1 . | . 4
¥ = ih*%(nr,Fijns)(eo —e)Ae'Ned + §h7%<)\r, i A5 ) (e +e’) Aet el
1 . .
78 = Ih_%m’", Do i) (e —eP) At Ao el
1 . .
+Eh*% T T i A (€ 4 D) At A At (A7)

where again (e, °, e') is a pseudo-orthonormal frame of (4.35). The k®) 7®) and 7¢)
bilinears can be obtained from those above upon replacing A\* with —\*.

For the remaining form bilinears a direct computation yields
s — h’%(nr,l“z‘)ﬂ e+ hﬁ%@\ra Lin®) e’ (A.8)
rDrs — —h*%<nr,1})\s>eo Aed el + %hfanr,ljijk)\‘g)@i Nel NeF
+hT3 (N, Tin®) e Ae® Aet + %hi% (X", Tien®ye Ael A et (A.9)

1 . .
F(Drs _ _gh*%@f“, TijpA*)e? Ae® Aet Aed A ek

1 ‘ '
+§h*%<nr’ iy g A% A Ne's

1 ) )
+§h_%<)\r, Fijk775>eo ANedSAe Ael AP
1 . .
+§h—%<x,rh,,,i5n$>eﬂ Ao Aels (A.10)

The k@), 7(2) and 73 bilinears can be obtained from those above upon replacing n® with —n®.
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A.2.2 NS5-brane
Choosing the worldvolume and transverse directions as in the IIA case above, a direct
computation using (5.38) reveals that the form bilinears of IIB NS5-brane are
k™ = 2Re(n'", Tan'®)p e + 2Re(n*", ran23> pe’, (A.11)
7" = —2Re(n'", T, A¥)pet A (3 net —eB ne?)
+2Re(n*" T A p et A (e3 Aet + B ne?)
—2Im(n'" Tan™*)pe® A (e3 N ed + et Ae?)
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1
—|—§Im<772r, Capen®Ype® AP AeC A (3 N ed —et Ae?)

1
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1
—|—§Im<772r, Cape)2)p e Aeb AeC A (€3 A e 4 et Aed)

+3'(Re<771r7 Fa1...a5771 >D + Re< a1 a577 > )eal Ao N et ) (A.lS)
where (e?, e3¢t e®, e%) is a pseudo-orthonormal frame of the metric (4.38). The form
bilinears k:( ), 7'('(3) and 7 can be constructed from those above after changing the sign in
front of the terms containing the inner products (n%, Qn?)p and (n%, QA\?)p for all Clifford
elements Q.
The remaining bilinears can be obtained in a similar way to find

KOs = 9(Re(n!”, 72) p — Re(n, 1) p) € + 2(Re(n'", A%) p + Re(n?", A¥) p) ¢*

2(Im(n" ) p + Im(n? ') p)

+2(Tm(n'", \*) p —l—Im(nQT A p)e? (A.14)
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T(l)rs _

(—Re 7717" TapA*)p + Re(n* , Ty M) p) e A At ned e
+( = TIm(n'", Tpn®)p + Im (" Ty *)p) e AP A &3 Aet A e?
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1
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+(—Re('", Tapn®*)p — Re(n* , Tayn**)p) e Aeb Aet AeB A e
ol
(

where the form bilinears £?), 7(2) and 7 can be obtained from those above upon changing

the sign in front of the components containing the bilinears (n%,Qn'), (n?, QA!) and
(A2, Qn'), where Q is a Clifford element.

B Form bilinears of D-branes

B.1 Form bilinears of ITA D-branes
B.1.1 DO-brane

Using the expression for the Killing spinors of the DO-brane (6.1), one finds that the

non-vanishing from bilinears of the solution are

~7"S

k"

G = —2h74 (", TiTn®) e’ Aet — h71<7]’" Tin'he nel
s — op~i (", DiT1n®) O Ae® Ael + h™ (77 Tin®)e’ Net Ael

Crs —
érs —

7_7’8

207G t), K =207 (' 773>€0 (
—2h7 (", Tun®) € + 2075 (), Fm) (
W = —2h5 (", Ty @ A €® + 2074 (1, Tanp® )e Ne', (
(
(
(

=—h"

—h~

—_

3

1
= 7h_
3

o TyTun®) e Aei ned + §h7<nﬁrijkns>ei nelneb,

| S
T (", TyuT1n®) e’ Ae® Aet Aed + gh—imT, Tien®) e Ael Aed A ek, (B.7)

[un

) A 92 A )
h=1 (0", Tyl 11n®) SNt AeT AR — Eh_% (", Tiy igmye* Ao ne't, (B.8)

1 . .
(" Tl e Aed nel Aed AeP

2 ) )
+ @hfi(nr,ﬂlmuns) AT AN, (B.9)

where 4,7,k = 1,2,3,4,6,7,8,9 and (e, €%, e’) is a pseudo-orthonormal frame of the DO-
brane metric (4.27) for p = 0.
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B.1.2 D6-brane

Using the expression for the Killing spinors in (6.3), one can easily compute the non-vanishing
form bilinears of D6-brane as follows

"= 2h_iRe<7]r n*yp, k7= 2h_iRe<nr,FanS)D e, (B.10)

k™ = —2h~ 4Re< T TS et + 2h~1Im " n*)p e’ — 2h_i1m<77T,F11)\s>D e, (B.11)

= —2h" 4Re< T T pet A e’ 2h_i1m<nr,ns)De4 Ae?

+ 2h_11m<77r ) pe® Ae? + h_iRe(nT Tapn®) pe® A€, (B.12)
0" = —2h~ 4Re< " Tal1A®) pe® A et + 2k~ 4Im<77 Tun®) pe A e’
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1
+ ghfilmmr, Capen®) pe* A e’ A et A€’

1
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1
T = —gh*%Remr, LCapc'5A%) pe® A e Nef net AeP
1
— gh_%lmmr, LCapen®) pe A e nef Aet Aed
1
+ gh*%Immr, LCapc'sA%) pe® A e NeC A’ Ae?

2
+ h_ZRe< Loiasn®) pe™ Ao Ne®, (B.18)

where a,b,c = 0,1,2,3,6,7,8 and (e?, ¢’ et e?) is a pseudo-orthonormal frame of the
metric (4.27) with p = 6.
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B.1.3 D2-brane

Using the Killing spinors (6.20), one finds that the non-vanishing form bilinears of the
D2-brane solution are as follows

o7 = hTE(— (", N + (AT %)), B = hTE (=, T TN + (A, T Tan®)) e, (B.19)
K = B3 (0, n®) + (N, 0%) € 4+ h 3 (— (7, n®) + (A, 4%)) €8

F RTINS 4+ (AT, ) el (B.20)
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where 4,7,k = 2,3,4,6,7,8,9 and (e, €% el,¢e') is a pseudo-orthonormal frame of the
metric (4.27) with p = 2.

B.1.4 D4-brane

Using the Killing spinors (6.33), one finds that the non-vanishing form bilinears of the

D4-brane solution are as follows
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where €23849 = 1, a,b,¢=0,5,1,6,7,4,7j,k =
frame of the metric (4.27) for p = 4.

B.1.5 DS8-brane
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e') is a pseudo-orthonormal

Using the Killing spinors (6.39), the non-vanishing form bilinears of D8-brane are as follows
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where a/, V', ¢ =1,6,2,7,3,8,4,9 and (e%, €°) is a pseudo-orthonormal frame of the D8-brane
metric (4.27) for p = 8.

B.2 Form bilinears of IIB D-branes

As for the common sector IIB branes, all the bilinears below are manifestly real. In

particular, £, 73 and 72 have been replaced with ik, ix® and it respectively.

B.2.1 D-string

Using the Killing spinors (7.3), one can easily compute the form bilinears of the D-string
background to find

K" = 207 1((7,0%) + (N7, A%)e® + 2071 (= (" ) + (7, A%))e? (B.39)
KBS = oh=3 (", TA) + (A", Tyn®))et , (B.40)
KO = 27T ((7 %) — (NN — 20T ((7, %) + (X7, X)) (B.41)
KT = oh 1 (— (0" TA) + (A", Tin®))e’ | (B.42)

7 = A (7, Tn®) + (N, T A%)e® A ef A ef

FhTa (= (" Tm®) + (N T AP Ael Aed | (B.43)
7T — 2R3 (— (", TiA%) + (AT, Tin))e’ A é® A ¢
1 ) )
+§h*i(<n7“, TijeA) + (N, Tipn®))el Aed ek (B.44)
aMrs — h_i(@fjfijns} — <)\T,Fij)\s>)eo ANeAel
R (7 Tm®) + (AT T A))e® Aef Aed | (B.45)
7rs — 9p i((17 DAY 4+ (X7, Tin®))el Aed Ael
1 ) )
+§h—%(—<nr, T3t A®) + (V' Tien®))el Aed A ek (B.46)
2 ) )
T= Ihi%(@?’", Lir.ian®) + (N, TipagA%))e? Ae't Ao At
2 ) )
—l—Eh*%(—(nr,Fil_.unﬂ + N Ti i A))EP Aet A Aet ) (B.47)
1 ) .
r@3)rs _ gh*i(—@yr, i) 4+ (A", Fijkns»eo AP Net Ned e
2 ) )
5T Tipia X 4 (N, Dy ign™)e Ao A e, (B.48)

[ o

TO7 = ZhTE (0 Dy agn®) — (Vi i, AT)el Al A Aelt

i

2 . .
T i) + (VT D) Al A nelt (B.A9)

1 . .
7&rs — gh_%(<nr,rijk)\8> + (W Tien®))e® A e® At ned Aeh
2 1

+§hiz(_<nrari1---i5>‘s> + (Ararh---isns»eil A Ne ) (B‘5O)

where i, j,k = 1,6,2,7,3,8,4,9 and (e°, €®, €?) is a pseudo-orthonormal frame of the D-string
metric (4.27) for p = 1.
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B.2.2 D5-brane
Using (7.6), one can find that the form bilinears of the D5-brane background are

k'S = A~ '/4 (Re <771’", Fan18>D + Re <172’", Fan28>D> e, (B.51)
"= 4h_1/4( — Re <771’", Fa)\18>D e A3 net —eB Ae?)
+Re (17", T )\23>D el

(o'
+Im<
—Im <771 I
+Im<77 r )\25> e’ N
+§ p—1/4 (Re <771”, Fabcn15> + Re <772T, Fabc7728>D) e Aeb A el (B.52)
T8 = —4h /A ( Re< Tan > + Re <772T, Fa7725>D) e“Nednet AeSae’
+§ h_1/4( —Re <n1r, Fabc)\15>D (3 net—ed ne)
+ Re <772T, FabCA25>D (63 Aet 4 e A 69) —Im <771T, Fach18>D (63 Aed+et A 69)
+Im <772r, Fabcﬁ25>D (3 ned —et ne’) —Im <7717“, Fabc)\18>D (e3ne? —et Aed)
+Im <172”, Fabc>\28>D (63 Aed + et A 68)) Ae® Ael A e
—i—é h1/4 (Re <771’", Pal..-a57715>D + Re <1727", Fa1...a57728>D) e A Ne® (B.53)
where a,b,c = 0,5,1,6,2,7 and (e%,¢e3,¢e*, €% %) is a pseudo-orthonormal frame of the

D5-brane metric (4.27) for p = 5. The formula for the form bilinears k), 7™ and 7(!) can
be obtained from that of k, 7 and 7 by changing the sign in front of the (n?, Qn?)p and

(n?,QN\?)p terms.
The rest of the form bilinears are

RO ), ), )
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o)
—Im <7)2T7 )\13>D>)e3 ANetned, (B.55)

Im <nlr, rabx28>D —Im <n2’", Pab/\15>D) e3 A et A e8) ANeAeb . (B.56)

The formula for the form bilinears k2, 7 and 7 can be obtained from that of k3, 7
and 73) by changing the sign in front of the (n', @n?)p and (n', QA?)p terms.
B.2.3 D3-brane

Using for the Killing spinors (7.12), one finds that the form bilinears of the D3-brane
solution are as follows

K = 4h7% (Re (0™ ) (0 = €%) + Re (A", A1*) (¥ + €7)
— (Re (", A1® >+Re<)\1 1)) et
- (Im <n“,A1 > Tm <)\1 >) 69) (B.57)
B = ah=3 (T (7, T2 ) + I (A7, Tin™) ) € (B.58)
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where i, j,k = 1,6,2,7,3,8 and (€, €%, e*, €?) is a pseudo-orthonormal frame of the D3-brane
metric (4.27) for p = 3. The k), 7 ), and 72 form bilinears can be obtained from k, T,
and 7, and the k), 763) and 7 form bilinears can be obtained from &, 7 and 7@
after replacing Re and Im with Im and — Re, respectively.

B.2.4 D7-brane

Using the Killing spinors (7.25), one can compute the form bilinears of the D7-brane to find

k" = 4h™5 Re (", Tan®) p €, (B.63)

2
7™ = —4h~1Im " Tan®) pe® Aet Aed + gh_% Re (", Tapent®) pe® AeP Ae€,  (B.64)
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2. _1
T = —gh_i I (1", Tapet®) pp € A e? A e Aet A e

4
+ gh_% Re (0", Ty asn’) pe™ N Ne%, (B.65)

where a,b,c = 0,5,1,6,2,7,3,8 and (e% e* €”) is a pseudo-orthonormal frame of the

metric (4.27) for p = 7. The form bilinears k@ 72 and 7@ can be obtained from k, 7 and

7 after replacing Re and Im with Im and — Re, respectively, in all the above expressions.

The rest bilinears are given by
kOIS = 4h~3 Re (7, A%) p et + 4h~1 Im (", A*) €2, (B.66)
7®rs — 2p1 Re " Ta\) e Ael Aet + 2571 Im " TaA)pet AP Ae®,  (B.67)
r@)rs — éh_% Re (", Tayas\)pe™ A--v Ae™ A et

1
+ gh_i Im (0", Loy asA’)pe™ Ao Ne™ A e . (B.68)

Again the bilinears kW, 7 and 7 can be derived from k3, 7 and 73) after replacing

Re

and Im with Im and — Re, respectively, in all three expressions above.
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