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1 Introduction

In the range of validity of perturbative QCD, two main kinematic regimes need to be
distinguished when factorizing out the so-called hard sub-processes for which perturbation
theory can be applied. For a given observable with the hard scale Q at a given squared

– 1 –



J
H
E
P
0
7
(
2
0
2
2
)
0
8
0

center-of-mass energy s, the Bjorken regime applies when Q2 ∼ s. It is then characterized
by a single large momentum scale which allows for an expansion of the cross-section in
powers of Q2 � Λ2

QCD as well as the resummation to all orders of logarithmically enhanced
contributions of the form (αs lnQ2)n. On the other hand, the Regge limit, in which

√
s�

Q, involves an expansion in powers of xBj ∼ Q2/s and the resummation of (αs ln xBj)n. In
the latter, although no constraint on Q2 is imposed at the outset, an energy dependent hard
scale Q2

s(x), the so-called saturation scale, is expected to emerge as a result of non-linear
gluon dynamics that causes the saturation and unitarization of the cross-section [1].

Twist expansion has been successful in the study of hadronic structure at large Q2

but moderate xBj where the partonic interpretation is manifest. However, this approach
is expected to break down at sufficiently small xBj or Q2 ∼ Q2

s(x), where gluon saturation
effects, neglected in the Bjorken limit, play an important role in taming the rapid rise of
the gluon density when x → 0. In the saturation regime, it turns out that the relevant
degrees of freedom are strong classical gauge fields rather than point-like quarks and gluons.
These strong classical fields are the building blocks of the semi-classical approaches to
small-x factorization such as the Color Glass Condensate (CGC) effective theory [2–5].
Such approaches fully account for the relevant multiple gluon scattering effects, and gluon
recombination effects are embedded into the Balitsky, Jalilian-Marian, Iancu, McLerran,
Weigert, Leonidov, Kovner (B-JIMWLK) evolution equation [6–8] as well as in the Balitsky-
Kovchegov equation [6, 9, 10] in the mean field approximation.

These frameworks for high energy scattering suffer, however, from instability issues
at Next-to-Leading Logarithmic (NLL) accuracy because of insufficient resummation of
logarithms of Q, leading up to negative cross sections [11, 12]. This problem is in fact
already a significant feature of the linear component of small-x evolution and was first
diagnosed in the BFKL equation at Next-to-Leading-Logarithmic (NLL) accuracy in the
late 1990’s where the kernel appeared to be more singular than its Leading-Logarithmic
(LL) part in the collinear and anti-collinear regions of the gluon emission kernel [13, 14].
Several ad hoc bottom-up corrections of the BFKL and BK evolution equations have been
suggested to postpone the instabilities to higher perturbative corrections and to higher
values of s [15–21], but none has eradicated the issue in a first principle top-down approach
which would be more amenable to systematic higher order calculations.

In this article, we set to address this question at the level of the cross-section and discuss
the gluon distribution whose derivation was outlined in a prior publication [22] alongside the
perturbative impact factor. Our approach amounts to revisiting high energy factorization
which will allow for a systematic treatment of the collinear regions. The purpose is to build
a framework which improves the CGC formalism to make sure it also spans the Bjorken
limit in its entirety rather than its x→ 0 limit. This does not require taking into account
terms that are simultaneously suppressed by powers of the energy and of the hard scale,
but it does require the resummation of terms one would otherwise neglect in one limit
or in the other. We focus on the inclusive Deep Inelastic Scattering (DIS) cross section
where Q2 and s are the only available scales and we propose a framework with a built-in
expansion in powers of xBj/Q

2 which amounts to performing a partial twist expansion that
systematically resums to all orders the higher twists that are enhanced at small xBj in
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particular when saturation sets in. The leading term we obtain spans by construction the
leading term in both the Bjorken regime and the Regge limit, by virtue of it containing
the leading power of xBj and of 1/Q, respectively. This extrapolation enables a top-down
understanding of how the Q→∞ limit of the Regge result compares to the xBj → 0 limit
of the Bjorken result. We show how these two limits actually do not commute in the semi-
classical descriptions of the Regge regime, and how this can lead to an insufficient account
of the collinear corner of phase space, which explains the aforementioned instabilities which
were only noticed numerically at NLL accuracy for reasons we will explore.

The article is structured as follows. In section 2, we lay the basis of our semi-classical
framework inspired by the small-x description of high energy scattering in the so-called
shock wave approximation, and we detail how our approach goes beyond this approxima-
tion. In section 3, we apply our framework to the gluon mediated inclusive Deep Inelastic
Scattering cross section in full generality. In section 4, we factorize the cross section further
within xBj/Q

2 accuracy and we find and discuss a new expression for an unintegrated gluon
distribution with explicit dependence on x. In section 5, we expand our approximated ex-
pression in powers of the hard scale and recover the full known leading twist expression
for gluon-induced DIS in the Bjorken limit. In section 6, we take the x = 0 limit of our
approximated expression and we recover the full known eikonal expression for DIS in the
Regge limit. We argue in particular that these two limits only commute when one makes
a strong assumption on the behavior of parton distributions at small x. The consequences
of this non-commutation and how our approach addresses the issue is then discussed in
section 7.

2 Background field method for high energy scattering

2.1 The classical target gauge field

At high energy, the scattering of a dilute projectile such as a virtual photon on a hadronic
target is dominated by the exchange of soft gluons that can be described by classical fields
which solve the Yang-Mills equation of emotion, as prescribed by the color glass condensate
(CGC) theory [2–5]. In this context, it is customary to use the light cone variables (aka
Sudakov variables) defined as follows.

For any 4-momentum k, we may write:

k− ≡ n1 · k = k0 − k3√
2

, k+ ≡ n2 · k = k0 + k3√
2

, (2.1)

where the light cone vectors n1 and n2 are defined as

n1 ≡
1√
2

(1, 0, 0, 1), n2 ≡
1√
2

(1, 0, 0,−1). (2.2)

Working in D ≡ d + 2 ≡ 4 + 2ε dimensions, the remaining d transverse components
will be denoted by bold characters in Euclidean space and with a ⊥ subscript in Minkowski
space. This way, for any (k, `) we have:

k · ` ≡ kµ`µ = k+`− + k−`+ + (k⊥ · `⊥)
= k+`− + k−`+ − (k · `). (2.3)
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The hadronic target at very high energies moves close to the light cone, i.e., x− = (t −
z)/
√

2 ∼ 0, and can be described by a classical current Jµ ≡ Jµa ta [2–5]

J−(x) ≈ J−(x+,x), and J+ ≈ J i ≈ 0 , (2.4)

that generates a gauge field which only depends on light cone time x+ and the transverse
coordinate x. In such a framework, it turns out that both covariant ∂ ·A = 0 and light cone
A+ = 0 gauges share a common solution. Indeed, it immediately follows from A+ = Ai = 0
and the independence on x− that ∂ · A = ∂+A− = 0. The equation of motion for the
field reads [

Dµ, F
µ−] = −∂iF i− = −∂2A− = J−. (2.5)

where

Fµν ≡ ∂µAν − ∂νAµ − ig[Aµ, Aν ] and Dµ ≡ ∂µ − igAµ , (2.6)

denote the field strength tensor and the covariant derivative. Here, it is understood that
F ≡ Fata and A ≡ Aata, where ta are generators of SU(Nc) with a = 1 . . . N2

c − 1. With
the above choice of gauges the current is covariantly conserved since D+J− = ∂+J− = 0.
Furthermore, note that although A− obeys a Poisson equation, it is an exact solution of the
Yang-Mills equations. The background field method for high energy scattering then relies
on effective Feynman rules in the presence of this classical target field. The possibility to
include non-zero transverse gluon fields in this framework is worth acknowledging, despite
the obvious fact that such gluons are pure gauges. Indeed, the existence of a residual gauge
freedom in A+ = 0 light cone gauge allows us to perform any gauge transformations with
the form

A−(x+,x)→ Ωx(x+)A−(x+,x)Ω−1
x (x−)− 1

ig
Ωx(x+)∂−Ω−1

x (x+)

Ai(x+,x)→ − 1
ig

Ωx(x+)∂iΩ−1
x (x+), (2.7)

where Ωx(x+) is an element of the gauge group SU(3) that preserves the condition A+ = 0.
Although it would provide a useful tool for double checking, it is not necessary for our
purposes to include transverse gluons which are not pure gauges. Indeed, transverse gluons
contribute to inclusive DIS in two ways: they will form transverse gauge links in the
distribution, and they will provide the ∂−Ai and non-Abelian parts of the field strength
tensor F−i. The former can easily be accounted for via path independent transverse gauge
links evaluated at constant light cone time x+, as shown in ref. [23], with the help of the
identity

ΩxΩ−1
y = [x,y]x+ ≡ Pλ exp

[
−ig

∫ x

y
dz(λ) ·A(x+, z(λ))

]
(2.8)

where z(λ) ≡ (z1, z2) defines a trajectory in the transverse plane, that starts at y and
ends at x, and parametrized by the real number 0 < λ < 1. The latter are discussed in
appendix A.

Throughout this article, we will stick to a gauge and sub-gauge choice where only A−
is non-zero.
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2.2 Quark propagator in the target field: the shock wave approximation

In order to clarify the difference between our framework and the usual CGC effective theory,
in this section we will detail the derivation of the effective quark propagator in the external
target field.

Let us first analyze the propagator order by order in the background field. At the 0th
order, the quark propagator DF is the standard free propagator D0:

D
(0)
F (x, y) = D0(x− y) ≡

Γ
(
D
2

)
2πD

2

i(/x− /y)
[−(x− y)2 + i0] D

2
. (2.9)

Including one scattering, one has:

D
(1)
F (x, y) =

∫
dDz1D0(x− z1)ig /A(z1)D0(z1 − y). (2.10)

Again, D = 4 + 2ε stands for the number of dimensions, not to be confused with the Dirac
propagator denoted DF and D0.

In semi-classical descriptions of QCD in the Regge limit, i.e. s→∞, the key assump-
tion is known as the shock wave approximation. In A+ = 0 light cone gauge, the classical
target gluon field Aµ(z1) = A−(z+

1 , z1)nµ2 is assumed to be very peaked around z+
1 = 0

as a result of Lorentz contraction. Thus, we can neglect any dependence on z+
1 in the

propagators, and factorize

[D0(x− z1)γ+D0(z1 − y)]z+
1 =0 (2.11)

from the quantity
U (1)

z1 ≡
∫

du+igA−(u+, z1), (2.12)

where we relabeled the internal variable z+
1 as u+. Writing that

[D0(x− z1)γ+D0(z1 − y)]z+
1 =0 =

∫
dz+

1 δ(z+
1 )D0(x− z1)γ+D0(z1 − y), (2.13)

we obtain
D

(1)
F (x, y) =

∫
dDz1 δ(z+

1 )D0(x− z1)γ+U (1)
z1 D0(z1 − y). (2.14)

The reason for the U (1)
z1 notation will become clear shortly.

Let us finally consider the effective propagator of a fermion with two scatterings with
the external field:

D
(2)
F (x, y) =

∫
dDz2 dDz1D0(x− z2)ig /A(z2)D0(z2 − z1)ig /A(z1)D0(z1 − y) (2.15)

=
∫

dDz2 dDz1

∫ dDp2
(2π)D

dDp1
(2π)D

dDp0
(2π)D e−ip2·(x−z2)−ip1·(z2−z1)−ip0·(z1−y)

×D0(p2)ig /A(z2)D0(p1)ig /A(z1)D0(p0). (2.16)
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Recall that the external field reads Aµ(z) = A−(z+, z)nµ2 , hence,

ig /A(z2)D0(p1)ig /A(z1) = ig /A(z2)
i/p1

p2
1 + i0 ig

/A(z1)

= igA−(z2)
iγ+/p1γ

+

2p+
1

(
p−1 −

p2
1

2p+
1

+ i0p+
1

) igA−(z1) (2.17)

= igA−(z2) iγ+

p−1 −
p2

1
2p+

1
+ i0p+

1

igA−(z1),

where we used that γ+/p1γ
+ = 2p+

1 γ
+. This observation makes it clear that inserting more

scatterings does not change the Dirac structure, that is

/p2γ
+
/p0 (2.18)

to all orders in gA. Hence, the scalar propagation factorizes from the Dirac structure in
the fermionic propagator.

Let us now take the p−1 integral, using the standard Cauchy pole integral

∫
dp−1

e−ip−1 (z+
2 −z

+
1 )

p−1 −
p2

1
2p+

1
+ i0p+

1

= −2πi
[
θ(p+

1 )θ(z+
2 − z

+
1 )− θ(−p+

1 )θ(z+
1 − z

+
2 )
]

e
−i

p2
1−i0

2p+
1

(z+
2 −z

+
1 )
.

(2.19)
The p1 integral is then reduced to a Gaussian, with the phase

− ip
2
1 − i0
2p+

1
(z+

2 − z
+
1 ) + ip1 · (z2 − z1). (2.20)

First, note that the first term in that phase is suppressed in the Regge limit, where 1/p+
1 ∼

1/
√
s → 0. In this limit, it is then reasonable to approximate the Gaussian by a delta

function by neglecting the quadratic term. Integrating w.r.t. p1 will yield (2π)dδ(d)(z2−z1).
This is easy to generalize to all orders in gA: each intermediate propagator yields a δ

function, which means that all gluon fields are evaluated at exactly the same transverse
position z1 .

Similar considerations can be made for the two external propagators. Because of the
γ+ matrix, the numerator of the p2 and p0 propagators do not depend on p−2 and p−0 .
This means that the same integral as in eq. (2.19) can be taken for p−2 and p−0 as well.
Furthermore, since the gluon fields do not depend on − positions, the + momentum is
conserved throughout the scattering, so p+

2 = p+
1 = p+

0 ≡ p+, as expected in the eikonal
approximation. Performing the p−2 and p−0 integrations with eq. (2.19), along with the
result of the p−1 integral, will yield two possible cases: either x+ > z+

2 > z+
1 > y+ and

p+ > 0, or x+ < z+
2 < z+

1 < y+ and p+ < 0. We will focus on the former case by restricting
ourselves to studying the propagator for x+ > y+.

– 6 –



J
H
E
P
0
7
(
2
0
2
2
)
0
8
0

To sum up the progress so far, at (gA)2 order, the Dirac propagator reads

D
(2)
F (x, y)

∣∣∣
x+>y+

=
∫

ddz1

∫ x+

y+
dz+

2

∫ z+
2

y+
dz+

1 igA
−(z+

2 , z1)igA−(z+
1 , z1)

×
∫ dDp2

(2π)D
dDp0
(2π)D (2π)δ(p+

2 − p
+
0 )D0(p2)γ+D0(p0) θ(p+

1 ) (2.21)

× e−ip
+
2 x
−+ip−2 (x+−z+

2 )+ip2·(x−z1)+ip+
0 y
−−ip−0 (z+

1 −y
+)+ip0·(z1−y).

The last two steps are based on the observation that in the shock wave approximation,
the target gluon fields as seen from the projectile are very peaked around light cone time
0+ because of a large separation between typical life times of quantum fluctuations and
scattering times. This enables us to write

x+ − z+
2 ∼ x

+, z+
1 − y

+ ∼ −y+ (2.22)

in the phases, and thus completely factorize out the following quantity from the first line
in eq. (2.21):

[x+, y+](2)
z1 ≡

∫ x+

y+
dz+

2

∫ z+
2

y+
dz+

1 igA
−(z+

2 , z2)igA−(z+
1 , z1). (2.23)

This quantity is exactly the second power in the (gA)-expansion of the Wilson line

[x+, y+]z1 ≡ P+ exp
[
ig

∫ x+

y+
dz+A−(z+, z1)

]
. (2.24)

A recursion on the number of scatterings can be used in order to prove that the effective
fermionic propagator in its entirety can be cast into:

DF (x, y)|x+>y+ =
∫

ddz1 e−ip
+
2 x
−+ip−2 x

++ip2·(x−z1)+ip+
0 y
−+ip−0 y

++ip0·(z1−y)

× [x+, y+]z1

∫ dDp2
(2π)D

dDp0
(2π)D (2π)δ(p+

2 − p
+
0 )D0(p2)γ+D0(p0)θ(p+

1 ).

(2.25)

Finally, rewriting the δ function as

(2π)δ(p+
2 − p

+
0 ) =

∫
dz−1 ei(p

+
2 −p

+
0 )z−1 , (2.26)

and using
eip
−
2 x

++ip−0 y
+ =

∫
dz+

1 δ(z+
1 ) eip

−
2 (x+−z+

1 )+ip−0 (y+−z+
1 ), (2.27)

we recognize the free propagators in the coordinate space and we obtain

DF (x, y)|x+>y+ =
∫

dDz1δ(z+
1 )D0(x− z1)[x+, y+]z1D0(z1 − y). (2.28)

It is not customary to stop at this point. The last step is to use once more the fact that
gluon fields are peaked around light cone time 0+. Indeed, say the gluon fields have an

– 7 –
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effective support ε+ in light cone time. If x+ > ε+, we can extend [x+, y+]z1 → [∞+, y+]z1

with no cost because all fields beyond ε+, and a fortiori beyond x+, are null. A similar
extension to −∞+ can be performed provided that y+ < −ε+. The large separation of light
cone times one assumes when using semi-classical small xBj physics provides the jusification
for which |x+|, |y+| � ε+. Using this extension yields the usual infinite length Wilson line
operators

[x+, y+]z1 → Uz1 ≡ [∞+,−∞+]z1 , (2.29)

and the standard effective propagator

DF (x, y)|x+>0>y+ =
∫

dDz1δ(z+
1 )D0(x− z1)γ+Uz1D0(z1 − y). (2.30)

Let us summarize the derivation above. The effective propagator in the shock wave ap-
proximation is obtained following three essential assumptions: i) that we can neglect the
quantum phases to approximate the intermediate propagators between scatterings by δ

functions (2.20), ii) the existence of a large enough separation of light cone times to neglect
all scattering times w.r.t. any interaction time in the projectile wave functions (2.22), iii)
and that we can extend finite length Wilson lines into infinite ones without loss of preci-
sion (2.29). All three of these assumptions rely on the same observation: that the classical
target fields A−(x+,x) are very peaked around x+ = 0. The purpose of this article is to
go beyond this approximation, by keeping a generic dependence on x+ in the target fields.

2.3 Quark propagator in the target field: beyond shock waves

In this article, we will use a very similar framework to the one described in the previous
subsection and we will thus decompose gluon fields between classical and quantum fields
in the space of + momenta. Indeed, in the Bjorken limit the non-perturbative matrix
elements describe partons being emitted collinearly to the target, hence with small +
momentum components, and in the Regge limit the projectile partons have such high
+ momentum components that + momentum transfer from the target can be neglected.
Either way, + momentum is strongly ordered and it is thus adequate to split the gluon fields
according to their momenta along this direction. This motivates us to build our framework
in view of factorizing observables in rapidity space, similarly to what was successfully
performed in [24].

The difference with standard semi-classical small xBj physics lies in the fact that we will
get rid of the assumption that the target field is peaked around x+ = 0. This assumption
was relaxed in several studies of semi-classical small-x schemes beyond the shock wave
approximation, although non-zero transverse fields as well as non-trivial dependence on
x− have since been incorporated in these schemes [25–32]. The purpose of this article
is to focus on corrections to this assumption with a different approach. In [25–30], a
fixed variable L+ for the so-called longitudinal extent of the target was introduced, and
corrections were considered via an expansion in powers of L+ of all effective Feynman rules.
Similarly in [31, 32] a systematic expansion of effective propagators in powers of 1/

√
s is

performed. Our approach differs in several ways. Firstly, we will not perform an expansion
around fields peaked at x+ = 0. Instead of expanding universal building blocks like the

– 8 –
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quark propagator around the shock wave approximation, we will expand a given observable
in terms of a physical variable involved: we will keep the gluon fields to be fully general
functions of x+ for the first part of this computation and in the second part we will then
expand our results in a process-dependent fashion. This makes our approach more similar
to that of [33–39] and [40] where specific observables or distributions are studied rather
than universal effective quantities, but more general in its first step and less reliant on the
implicit hypothesis discussed in section 7. For the first part of this article, we will stick
to the following two hypothesis in light cone gauge: the gluon field does not depend on
x−, and it can be written is such a way that its only non-zero component is A−. Because
of these two approximations, we can perform most of the same steps as in the previous
derivation and write in momentum space:

DF (`′, `) = D0(`)(2π)DδD(`− `′) + i
/̀′γ+/̀

2`+ [Gscal(`′, `)−G0(`)(2π)DδD(`− `′)]. (2.31)

Here, the first term corresponds to the free propagator (in the absence of scatterings) and
in the second term we factorized out the Dirac matrix structure like before to isolate a
scalar propagator Gscal. This term contains at least one scattering, hence the subtraction
of the free scalar propagator G0(`) ≡ 1/(`2 + i0). The scalar propagator is defined via a
recursive relation in the number of gluon insertions (see figure 1):

Gscal(`′, `)−G0(`′)(2π)DδD(`′ − `) (2.32)

= 2g
∫

dDx
∫ dDk

(2π)D ei(`′−k)·xG0(`′) (k ·A)(x)Gscal(k, `).

It can be rewritten in a more compact form in coordinate space where

Gscal(x, x0) ≡
∫ dD`

(2π)D
dD`0
(2π)D e−i(`′·x)+i(`·x0)Gscal(`′, `) (2.33)

is the solution of the Klein-Gordon equation in a potential

[−�x + 2igA(x) · ∂x]Gscal(x, x0) = δD(x− x0) , (2.34)

or similarly

Gscal(x, x0)
[
−←−�x0 − 2ig←−∂ x0 ·A(x0)

]
= δD(x− x0) . (2.35)

With the help of the simple relation

i
/̀γ+/̀

2`+ G0(`) = D0(`)− i γ
+

2`+ , (2.36)

whereD0 is the free propagator introduced in eq. (2.9), it is finally possible to cast eq. (2.31)
into

DF (`′, `) = i
γ+

2`+ (2π)DδD(`′ − `) + i
/̀′γ+/̀

2`+ Gscal(`′, `). (2.37)
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Figure 1. Diagrammatic illustration of the scalar propagator in a background field.

The first term in this equation is reminiscent of the so-called instantaneous term, or
Coulomb term, in light front perturbation theory (LFPT). It usually plays the role of
a gauge invariance restoring counterterm.

It can be convenient to make use of basic properties of the scalar propagator to in-
troduce another object. Because the target field does not depend on x−, the propagator
depends only on the difference of x− coordinates. As a result, we can write

Gscal(x, x0) ≡
∫ dp+

2π
e−ip+(x−−x−0 )

2ip+ (x|Gp+(x+, x+
0 )|x0). (2.38)

For more insight about the mathematical properties of G in another physical context, the
reader is referred to [41]. As a direct consequence of eq. (2.34), the new object on the r.h.s.
satisfies the Schrödinger equation[

i
∂

∂x+ + ∂2
x

2p+ + gA−(x)
]

(x|Gp+(x+, x+
0 )|x0) = iδ(x+ − x+

0 )δd(x− x0), (2.39)

and a similar relation for x0. This relation is particularly useful to recover the shock wave
limit: by neglecting the ∂2

x
2p+ term, one would be left with the equation which defines a

finite length Wilson line between x+ and x+
0 at the fixed transverse coordinate x = x0:

(x|Gp+(x+, x+
0 )|x0)→ δd(x− x0) θ(x+ − x+

0 ) [x+, x+
0 ]x , (2.40)

for p+ > 0 and a similar relation for p+ < 0.
Prolonging this line into an infinite one as described in the previous section would help

recover the well-known propagator with a few subtleties we will not discuss here in the
shock wave limit.

3 Gluon mediated Deep Inelastic Scattering

3.1 Kinematics

Let us consider the DIS subprocess γ∗(q) + proton (P )→ X. We will use the standard DIS
variables:

s = (P + q)2 , Q2 = −q2 , xBj = Q2

2P · q . (3.1)
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Owing to the optical theorem, the total cross-section is related to the forward scattering
amplitude γ∗(q) + proton (P )→ γ∗(q) + proton (P ):

σγ
∗

T,L(xBj, Q
2) = 1

4P · q2Im

 Aγ
∗(q)p(P )→γ∗(q′)p(P ′)
T,L

i(2π)DδD(q′ + P ′ − q − P )


q′=q, P ′=P

, (3.2)

where AT , resp. AL is the amplitude for the transition from a transverse (resp. longitu-
dinal) photon to a transverse (resp. longitudinal) photon. Note that in the forward limit
there is no transverse-to-longitudinal or longitudinal-to-transverse transition. With a slight
abuse of notations, we will write:

σγ
∗

T,L(xBj, Q
2) = xBj

Q2 Im
Aγ
∗(q)p(P )→γ∗(q)p(P )
T,L

i(2π)DδD(0) . (3.3)

We will focus on computing the imaginary part of the amplitude as requested in the relation
above. For readability, the γ∗(q)p(P ) → γ∗(q)p(P ) superscript will be omitted from now
on. The DIS structure functions will be recovered via their relation to the cross section of
the subprocess and thus to the forward amplitude, see e.g. [42]:

FT,L(xBj, Q
2) = xBj

πe2 Im AT,L
i(2π)DδD(0) . (3.4)

Finally, we will define the hadronic tensor to be the real part of the forward amplitude
with open photon indices, i.e. by

AL = εµLWµνε
ν∗
L , AT = 1

d

∑
λ=1...d

εµλWµνε
ν∗
λ . (3.5)

In our D = d+2 dimensional regularization scheme where the incoming photon has d trans-
verse polarizations, the 1/d prefactor to the transverse contribution comes from averaging
over photon helicities. We choose the frame in which the photon and proton momenta are
alined with the z axis, that is,

q = q+n1 −
Q2

2q+n2 and P = P−n2 + m2

2P−n1 , (3.6)

respectively. From here on, we shall neglect the proton mass m.
In Landau gauge for QED and in the considered frame, the longitudinal polarization

vector may be chosen to be

εL = 1
Q

(
q+n1 + Q2

2q+n2

)
, (3.7)

while the transverse polarizations form a basis of the d-dimensional transverse Minkowski
subspace. They satisfy the orthogonality and completeness relations:

ελ · ε∗λ′ = δλλ′ and
∑

λ=1...d
εµλ · ε

∗ν
λ = −gµν⊥ . (3.8)
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Figure 2. Depiction of the hadronic tensor in gluon mediated DIS.

3.2 The photon wave functions

The hadronic tensor for gluon mediated DIS reads (cf. figure 2)

Wµν = e2

µd−2

∑
f

q2
f

∫ dD`
(2π)D

∫ dDk
(2π)D 〈P |tr [γνDF (`+ k, `)γµDF (−q + `,−q + `+ k)] |P 〉 ,

(3.9)

where µ is the dimensional regularization parameter. For readability, we will not write it
explicitly until the end of the computation. DF (` + k, `) is the quark propagator in the
background field A−(x+,x). This propagator, as written explicitly in eq. (2.31), each con-
tain two terms: one with Gscal and one with a δ function. In appendix C and in appendix D,
QED gauge invariance and the cancellation of the instantaneous terms are proven. Even-
tually, we can write Wµν in such a way that no instantaneous term contributes, and that
the QED Ward-Takahasi identity qµWµν = Wµνqν = 0 is satisfied.

In terms of the scalar propagator, eq. (3.9) finally reads:

Wµν = e2 ∑
f

q2
f

∫ dD`
(2π)D

∫ dDk
(2π)D trc [Gscal(−q + `,−q + `+ k)Gscal(`+ k, `)]

× 1
4`+(q − `)+ trs

[
(/q − /̀)γ+(/q − /̀− /k)γν(/̀+ /k)γ+/̀γµ

]
. (3.10)

It is most convenient to replace εµ by εµ − qµε+/q+ when computing contractions, or
equivalently to substitute γµ → γµ−nµ2/q/q+ in Wµν . The same trick can be performed for
the second photon Lorentz index ν. This operation is free thanks to the Ward-Takahashi
identity but allows for a more efficient computation of the contributions from longitudinal
photons.

The Dirac trace contains structures that should be familiar to readers who are experi-
enced in LFPT. Indeed, structures of the form γ+(/b − /a)/ε/aγ+ are exactly what generates
the numerators in LFPT light cone wave functions, in a specific light cone gauge and with
the appropriate arbitrary conventions for helicities and spinors. We can separate the Dirac
trace in eq. (3.9) into two such structures sandwiched between γ− matrices, by simply
writing γ+ = γ+γ−γ+/2 for both γ+ matrices.
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Introducing

z ≡ `+

q+ ≡ 1− z̄ , (3.11)

and making use of + momentum conservation during the scattering with the external field,
which implies that k+ = 0, we can finally introduce the following objects:

φL/λ(z, `) ≡ γ+/̀
(
/εL/λ −

/q

q+ ε
+
L/λ

)
(/q − /̀)γ+ . (3.12)

For the longitudinal contribution, the following relation makes the computation of the
explicit expression for φL straightforward:(

/εL −
/q

q+ ε
+
L

)
=
(
ε−L −

q−

q+ ε
+
L

)
γ+ = Q

q+ γ
+, (3.13)

Consequently, all one needs to use is the trivial relation

γ+/uγ+ = 2u+γ+, (3.14)

for any 4-vector u. We find:

φL(z, `) = 4zz̄q+Qγ+. (3.15)

In the transverse case, one has

φT = γ+(zq+γ− + /̀⊥)/εT (z̄q+γ− − /̀⊥)γ+. (3.16)

Using the fact that for any transverse vector u,

γ+/u⊥γ
+ = γ−/u⊥γ

− = 0, (3.17)

we get:
φλ = 2z̄q+γ+/̀⊥/ελ − 2zq+/ελ/̀⊥γ

+. (3.18)

It can be rewritten in a way that can be more convenient in some contexts, and closer to
the light cone wave functions found in LFPT, using the following: for any u and v,

/u/v = (u · v) + 1
2[/u, /v]. (3.19)

Then,

φλ = q+ {[/̀⊥, /ελ]− 2(z − z̄)(`⊥ · ελ)
}
γ+. (3.20)

We are now left with the following traces:

TL(z, `,k) ≡ trs
[
γ−

2 φL(z, `)γ
−

2 φ∗L(z, ` + k)
]
, (3.21)
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and

TT (z, `,k) ≡ 1
d

∑
λ

trs
[
γ−

2 φλ(z, `)γ
−

2 φ∗λ(z, ` + k)
]
, (3.22)

while the amplitude reads

AT,L = e2 ∑
f

q2
f

∫ dD`
(2π)D

∫ dDk
(2π)D

1
4`+(q+ − `+) TT,L(z, `,k)

× trc [Gscal(−q + `,−q + `+ k)Gscal(`+ k, `)] . (3.23)

Trivial algebra leads to:

TL(z, `,k) = 32z2z̄2(q+)2Q2. (3.24)

For the transverse case, using eq. (3.8) contracted with g⊥µν leads to:

TT (z, `,k) = 8(q+)2
(

1− 4
d
zz̄

)
` · (` + k). (3.25)

We thus recovered the numerators one finds in photon wave functions in the LFPT descrip-
tion of DIS. However, the so-called energy denominators are not explicit in the current form
of our expressions. In LFPT, eq. (3.24) and eq. (3.25) would involve the following additional
denominators:

`2 + zz̄Q2, (` + k)2 + zz̄Q2, (3.26)

which can be related to differences in light cone energies:

`2 + zz̄Q2 = 2zz̄q+
(
E−` − E

−
`−q − E

−
q

)
, (3.27)

with E−` ≡ `2/(2`+), E−`−q ≡ (`−q)2/(2(`− q)+), and E−q ≡ (q2 + q2)/(2q+). In the shock
wave approximation, these differences of energies appear from light cone time integrals
from −∞ to 0:

1
E−` − E

−
`−q − E

−
q − i0

= −i
∫ 0

−∞
dx+eix

+(E−
`
−E−

`−q
−E−q −i0). (3.28)

This is allowed provided that the propagation time between the photon splitting and the
scatterings with the target is much longer than the scattering time, see eq. (2.22). In the
present framework, this light cone time separation is not assumed, thus the emergence of
energy denominators is non trivial. This question is answered through a related observation
we will prove in the end of this section: the dipole size in the wave functions which appear
in the amplitude is the size of the quark-antiquark dipole at the light cone time of the first
scattering with the target, and the light cone denominator corresponds to this size at this
time. This goes beyond the shock wave approximation, where all scatterings occur at the
same time, by enforcing an ordering in − momenta which is otherwise absent. In other
words, any gluon fluctuation in the target is bound to happen at shorter times than the
photon splitting time.
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3.3 Operator algebra and energy denominators

We will now prove the emergence of light cone energy denominators by extracting free
propagators from the scattering operators Gscal. The main idea is to identify the first A−
insertion that will set the first interaction time with the target which will allow to integrate
the prior free propagators as is done in the shock wave framework, only instead of inte-
grating the photon time down to the origin the integral is bounded by the first interaction
time z+

1 and the final one z+
2 . It is convenient to work temporarily in position space

Gscal(`2, `1) =
∫

dDx1

∫
dDx2 ei`2·x2−i`1·x1 Gscal(x2, x1) . (3.29)

There,

Gscal(`2, `1)Gscal(−q + `1,−q + `2) =
∫

dDx1

∫
dDx2 ei`2·x2−i`1·x1

×
∫

dDy1

∫
dDy2 e−i(−q+`2)·y2+i(−q+`1)·y1 Gscal(x2, x1)Gscal(y1, y2) . (3.30)

In the hadronic tensor, the hard wave functions do not depend on the − components of
the momenta `1 = ` and `2 = `+ k, which means the `−1 and `−2 integrals will set x+

1 = y+
1

and x+
2 = y+

2 . In other words, the propagators are evaluated between the same light cone
times in reverse order. It thus means that one propagator will be retarded and the other
one will be advanced.

The interactions with the target field may occur at any light cone time between x+
1 and

x+
2 , which correspond to the times of the photon splitting into the quark-antiquark pair

and the merging of the latter back into the photon, respectively. Starting from eq. (3.30),
our goal is to integrate over these two times in a similar fashion to eq. (3.28) but with
an upper bound related to the time of the first scattering instead of 0. To do so, we may
identify the first and final dipole-target interactions.

Let us focus first on the first interaction. We begin by writing the retarded quark and
the advanced anti-quark propagators as

GRscal(x2, x1) = GR0 (x2 − x1)− 2ig
∫

dDx3G
R
scal(x2, x3)A−(x3)∂+

3 G
R
0 (x3, x1) (3.31)

and

GAscal(y1, y2) = GA0 (y1 − y2)− 2ig
∫

dDy3G
A
0 (y1, y3)A−(y3)∂+

3 G
A
scal(y3, y2) . (3.32)

Here, it is sufficient to define the retarded (resp. advanced) propagators GA,R(x2, x1)
by imposing x+

2 > x+
1 (resp. x+

2 < x+
1 ). These relations enable us to extract the first

interaction on the quark (retarded propagator GR) and antiquark (advanced propagator
GA). It is now necessary to distinguish two cases: either the quark or the antiquark
scatters first. Considering only the product of the second terms in the r.h.s. of eq. (3.31)
and eq. (3.32), the distinction can be made by writing 1 = θ(x+

3 − y
+
3 ) + θ(y+

3 − x
+
3 ) in

the integrand, and by simplifying both terms separately. Let us consider the θ(y+
3 − x

+
3 )

contribution for a while.
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For any x+
3 such that max

(
y+

3 , y
+
1

)
> x+

3 > min
(
y+

3 , y
+
1

)
one can use the following

relation:

G0(y1, y3) = sgn(y+
1 − y

+
3 )
∫

dDu δ(u+ − x+
3 )G0(y1, u) 2∂+

u G0(u, y3) . (3.33)

It is generalized to the full scalar propagator in appendix B, but we only need the free
case for this computation. As stated before, we will focus for the moment on the product
between the second terms in the r.h.s. of eq. (3.31) and eq. (3.32) with a θ(x+

3 − y+
3 )

function. Following the discussion at the beginning of this section, we have x+
1 = y+

1 so
y+

3 < x+
3 < y+

1 . The contribution to this term from the antiquark propagator can be
rewritten using eq. (3.33)

− 2ig
∫

dDy3G
A
0 (y1, y3)A−(y3)∂+

3 G
A
scal(y3, y2)θ(x+

3 − y
+
3 )

= 4ig
∫

dDu δ(u+ − x+
3 )
∫

dDy3G
A
0 (y1, u)∂+

u G
A
0 (u, y3)A−(y3)(∂+

3 G
A
scal)(y3, y2). (3.34)

Using eq. (3.32) with u instead of y1 eq. (3.34) yields

− 2ig
∫

dDy3G
A
0 (y1, y3)A−(y3)∂+

3 G
A
scal(y3, y2)θ(x+

3 − y
+
3 ) (3.35)

= −2
∫

dDu δ(u+ − x+
3 )GA0 (y1, u)∂+

u [GAscal(u, y2)−GA0 (u, y2)].

Then, using again eq. (3.33) allows to cast the second term in the brackets into a coun-
terterm to the first term in eq. (3.32). Also integrating the partial derivative by parts,
we get:

− 2ig
∫

dDy3G
A
0 (y1, y3)A−(y3)∂+

3 G
A
scal(y3, y2)θ(x+

3 − y
+
3 ) (3.36)

= −GA0 (y1, y2) + 2
∫

dDy3 δ(y+
3 − x

+
3 )(∂+

3 G
A
0 )(y1, y3)GAscal(y3, y2),

where we renamed the local variable u back to y3 for more readable notations. Combining
the above result with the θ(y+

3 −x
+
3 ) contribution that can be obtained in a similar fashion

yields

trcGRscal(x2, x1)GAscal(y1, y2) = NcG
R
0 (x2, x1)GA0 (y1, y2)− 4ig

∫
dDx3

∫
dDy3δ(x+

3 − y
+
3 )

× trc
[
GRscal(x2, x3)

(
A−(x3)−A−(y3)

)
GAscal(y3, y2)

]
(∂+

3 G
R
0 )(x3, x1)(∂+

3 G
A
0 )(y1, y3).

(3.37)

We now isolated the first scattering on the target, which will occur at light cone time
x+

3 = y+
3 . Note that the first term in the r.h.s. is a disconnected contribution where the

photon never interacts with the target and it will thus be subtracted. Using the cyclicity
of the trace, we can now perform the same steps as from eq. (3.31) to eq. (3.37), this
time on GAscal(y3, y2)GRscal(x2, x3), in order to make the last scattering appear as well. The
result reads

GAscal(y3, y2)GRscal(x2, x3) = GA0 (y3, y2)GR0 (x2, x3) + 4ig
∫

dDx4

∫
dDy4δ(x+

4 − y
+
4 )

×GAscal(y3, y4)
[
A−(y4)−A−(x4)

]
GAscal(x4, x3)(∂+

y4G
A
0 )(y4, y2)(∂+

x4G
R
0 )(x2, x4). (3.38)
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Figure 3. Illustration of the 4 topologies contributing to eq. (3.39) where the first and last in-
teractions with the background field are extracted. The gray boxes represent higher order gluon
exchanges with the target as shown in figure 1.

Plugging eq. (3.38) into eq. (3.37) and using the fact that trc(A−) = A−a trc(ta) = 0, we
conclude:

trGRscal(x2, x1)GAscal(y1, y2)

= 16g2
∫

dDx3

∫
dDx4

∫
dDy3

∫
dDy4δ(y+

3 − x
+
3 )δ(x+

4 − y
+
4 )

× (∂+
x3G

R
0 )(x3, x1)(∂+

x4G
R
0 )(x2, x4)(∂+

y3G
A
0 )(y1, y3)(∂+

y4G
A
0 )(y4, y2) (3.39)

× tr
{[
A−(y3)−A−(x3)

]
GAscal(y3, y4)

[
A−(y4)−A−(x4)

]
GRscal(x4, x3)

}
,

where we subtracted the disconnected contribution. We finally found the form we set out
to derive: the first and last interactionswith the target, respectively occurring at light
cone times x+

3 = y+
3 and x+

4 = y+
4 , have been isolated. There are 4 contributions, which

are depicted in figure 3, given that each of them could occur either on the quark or on
the antiquark, hence the [A−(y3) − A−(x3)][A−(y4) − A−(x4)] structure. To the small x
expert, this is reminiscent of the structures encountered when performing the so-called
dilute perturbative expansion of the non-perturbative Wilson line operators into Reggeons
which appear in the shock wave approximation, see e.g. [43].

With Reggeons defined in terms of the infinite length Wilson line in the adjoint repre-
sentation as

Ra(x) = fabc

gCA

(
lnUadj

x

)bc
, (3.40)
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the proper perturbative expansion of the dipole operator reads:

1− 1
Nc

tr(Ux1U
†
x2) = παs

Nc
[Ra(x1)−Ra(x2)] [Ra(x1)−Ra(x2)] +O(g3). (3.41)

Treating the target perturbatively in eq. (3.39) would amount to replacing Gscal → G0 and
readily finding this exact structure. Note that it already appears in a more complicated
form in full generality in this equation. Keeping in mind that the target fields do not depend
on x− in the present framework and that light cone times are identical (x+

3,4 = y+
3,4), the

coordinates at which the fields are evaluated in the differences only differ by their transverse
components. In a way, this difference of target fields with only a transverse separation,
along with the propagators ending at the light cone times of those fields, is a generalization
of the following property for straight Wilson lines on the light cone:

∂

∂x+ [ y+, x+]x1 [ x+, z+]x2 = −ig[ y+, x+]x1

[
A−(x+,x1)−A−(x+,x2)

]
[ x+, z+]x2 , (3.42)

where instead of the Wilson lines we have non-trivial propagators. In fact, this relation
will be used in the Regge limit to relate the amplitude to its shock wave formulation in
section 6. Because of our additional assumption that transverse target fields are gauged
away, as is standard in small x physics, we also have the following relation:

A−(x+,x)−A−(x+,y) =
∫ 1

0
ds d

dsA
−(x+,y + sr)

= −ri
∫ 1

0
ds ∂iA−(x+,y + sr) (3.43)

= −
∫ x

y
dzi(s)F i−(x+, z(s)) (3.44)

where

z(s) = x + sr, r = x− y (3.45)

and

F i−(x+, z) = ∂iA−(x+, z) (3.46)

Now that we have introduced the scattering coordinates (x3, x4, y3, y4), we can finally
take the Fourier transform over the initial coordinates (x1, x2, y1, y2) in eq. (3.30). Let us
now show how it will lead to a more physical version of eq. (3.28) where the upper bound
is the light cone time of the first scattering, which will result in the energy denominators
along with a non-zero phase. For the x1 and y1 integrals, we will need the following:∫

dDx1dDy1e−i(`1·x1)+i(−q+`1)·y1(∂+
x3G

R
0 )(x3, x1)(∂+

y3G
A
0 )(y1, y3) (3.47)

=
∫ x+

3

−∞
dx+

1

∫ y+
3

−∞
dy+

1 e−i`
−
1 x

+
1 +i(−q−+`−1 )y+

1

×
∫ dk−1

2π
dk−2
2π

e−ik−1 (x+
3 −x

+
1 )−ik−2 (y+

1 −y
+
3 )−i`+1 (x−3 −y

−
3 )+i`1·(x3−y3)−iq+y−3

4
(
k−1 −

`2
1−i0
2`+1

)(
k−2 −

`2
1−i0

2(−q++`+1 )

) .
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Figure 4. Diagrammatic representation of eq. (3.43).

Using the pole integral eq. (2.19) leads to:

1
4θ(`

+
1 )θ(q+ − `+1 )

∫ x+
3

−∞
dx+

1

∫ y+
3

−∞
dy+

1 e−i`
−
1 x

+
1 +i(−q−+`−1 )y+

1 (3.48)

× e
−i

`2
1−i0

2`+
1

(x+
3 −x

+
1 )−i

`2
1−i0

2(−q++`+
1 )

(y+
1 −y

+
3 )−i`+1 (x−3 −y

−
3 )+i`1·(x3−y3)−iq+y−3

.

In the full cross section, we have to integrate w.r.t. `−1 and `−2 , keeping in mind that the hard
wave functions do not depend on these variables. This integral will then set x+

1 = y+
1 and

the conditions on light cone times imposed by the fact that one propagator was retarded
and the other one was advanced now sets x+

1 < min(x+
3 , y

+
3 ). One is then left with the

integral ∫ min(x+
3 ,y

+
3 )

−∞
dx+

1 ei(E
−
`1
−E−

`1−q
−E−q −i0)x+

1 = ei(E
−
`1
−E−

`1−q
−E−q )min(x+

3 ,y
+
3 )

i(E−`1 − E
−
`1−q − E

−
q − i0)

(3.49)

which is the equivalent of eq. (3.28) with the additional condition that the photon splitting
time x+

1 has to occur before the first scattering time min(x+
3 , y

+
3 ). We now have an energy

denominator, along with a phase which would not appear in the shock wave approximation.
In a similar fashion, the integration w.r.t. x2 and y2 involves the complex conjugate energy
denominator:∫ +∞

max(x+
4 ,y

+
4 )

dx+
2 ei(E

−
q +E−

`2−q
−E−

`2
+i0)x+

2 = −ei(E
−
q +E−

`2−q
−E−

`2
)max(x+

4 ,y
+
4 )

i(E−q + E−`2−q − E
−
`2

+ i0)
, (3.50)

where the light cone time x+
2 of the quark-antiquark pair merging into a photon now has

to occur after the last scattering time max(y+
4 , x

+
4 ). We finally have two relations:∫ d`−1

2π

∫
dDx1dDy1e−i(`1·x1)+i(−q+`1)·y1(∂+

x3G
R
0 )(x3, x1)(∂+

y3G
A
0 )(y1, y3)

= 1
4i

θ(`+1 )θ(q+ − `+1 )
q+

2`+1 (q+−`+1 )`2
1 − q− − i0

e−i`
+
1 x
−
3 +i`1·(x3−y3)−i(q+−`+1 )y−3 (3.51)

×
[
θ(x+

3 − y
+
3 )e
−iq−y+

3 −i
`2
1−i0

2`+
1

(x+
3 −y

+
3 )

+ θ(y+
3 − x

+
3 )e
−iq−x+

3 −i
`2
1−i0

2(q+−`+
1 )

(y+
3 −x

+
3 )
]
,
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and ∫ d`−2
2π

∫
dDx2dDy2ei(`2·x2)−i(−q+`2)·y2(∂+

x4G
R
0 )(x2, x4)(∂+

y4G
A
0 )(y4, y2)

= 1
4ie

i`+2 x
−
4 +i(q+−`+2 )y−4 −i`2·(x4−y4) θ(`+2 )θ(q+ − `+2 )

q+

2`+2 (q+−`+2 )`2
2 − q− − i0

(3.52)

[
θ(x+

4 − y
+
4 )e

iq−x+
4 −i

`2
2−i0

2(q+−`+
2 )

(x+
4 −y

+
4 )

+ θ(y+
4 − x

+
4 )e

iq−y+
4 −i

`2
2−i0

2`+
2

(y+
4 −x

+
4 )
]
.

Note that for x+
3 → y+

3 and x+
4 → y+

4 as is set by the δ functions in eq. (3.39), the brackets
in eq. (3.51) and in eq. (3.52) simply reduce to e−iq−x+

3 and eiq−x+
4 , respectively. Plugging

these two relations into eq. (3.39), then renaming local variables with 3 (resp. 4) subscripts
with 1 (resp. 2) subscripts for more readability, we obtain:∫ d`−1

2π
d`−2
2π Gscal(`2, `1)Gscal(−q + `1,−q + `2)

= g2
∫

dDx1

∫
dDx2

∫
dDy1

∫
dDy2δ(y+

1 − x
+
1 )δ(x+

2 − y
+
2 )e−iq−(x+

1 −x
+
2 )

× e−i`
+
1 x
−
1 −i(q

+−`+1 )y−1 +i`+2 x
−
2 +i(q+−`+2 )y−2 +i`1·(x1−y1)−i`2·(x2−y2) (3.53)

× trc
{
GRscal(x2, x1)

[
A−(x1)−A−(y1)

]
GAscal(y1, y2)

[
A−(y2)−A−(x2)

]}
× θ(`+1 )θ(q+ − `+1 )

q+

2`+1 (q+−`+1 )`2
1 − q− − i0

θ(`+2 )θ(q+ − `+2 )
q+

2`+2 (q+−`+2 )`2
2 − q− − i0

.

In the present case, we can write this equation in a more compact way, introducing back
z ≡ `+1 /q+ = `+2 /q

+ ≡ 1− z, the notation x12 ≡ x1 − x2, and using the fact that

1
q+

2`+1,2(q+−`+1,2)`2
1,2 − q− − i0

= 2zz̄q+

`2
1,2 + 2zz̄Q2 . (3.54)

Then, ∫ d`−1
2π

d`−2
2π Gscal(`2, `1)Gscal(−q + `1,−q + `2)

=
∫

dDx1

∫
dDx2

∫
dDy1

∫
dDy2δ(y+

1 − x
+
1 )δ(x+

2 − y
+
2 )

× e−izq+x−12−iz̄q
+y−12+i`1·(x1−y1)−i`2·(x2−y2)−iq−x+

12 (3.55)

× trc
{
GRscal(x2, x1)

[
A−(x1)−A−(y1)

]
GAscal(y1, y2)

[
A−(y2)−A−(x2)

]}
× αs

π

z2z̄2(q+)2θ(z)θ(1− z)
(`2

1 + 2zz̄Q2)(`2
2 + 2zz̄Q2)

.

Through a bit of involved operator algebra for the scalar propagator, we finally managed to
accomplish two things. On the one hand, we extracted the so-called energy denominators,
in the last line in eq. (3.53). This will allow us to reconstruct the complete wave functions
in the next section. On the other hand, we have an explicit dependence on the time of
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the first scattering of the quark-antiquark pair with the target. Whereas in the shock
wave framework (see section 2.2) we would have entirely decoupled those times from the
photon splitting time, we now have a naturally imposed ordering between splittings and
scatterings.

3.4 The hadronic tensor: full result

We will now combine the wave functions from section 3.2 with the energy denominators and
operators from section 3.3. It is convenient to introduce the (d+1)-dimensional propagator
from eq. (2.38) in order to integrate out the − components of the coordinates:
∫

dx−2 dx−1 eix
−
2 `

+
2 −ix

−
1 `

+
1 GRscal(x2, x1) = (2π)δ(`+2 − `+1 ) 1

2i`+1
(x2|G`+1 (x+

2 , x
+
1 )|x1), (3.56)

with the Fourier transform

(x2|G`+1 (x+
2 , x

+
1 )|x1) ≡

∫ dd`2
(2π)d

dd`1
(2π)d ei(`2·x2)−i(`1·x1)(`2|G`+1 (x+

2 , x
+
1 )|`1). (3.57)

After a few trivial integrals, the amplitude reads:

AT,L = e2g2(2π)δ(0+)
∑
f

q2
f

∫ 1

0

dz
2π

∫ dd`1
(2π)d

∫ dd`2
(2π)d

×
∫

dx+
1

∫
dx+

2

∫
ddx1

∫
ddx2

∫
ddy1

∫
ddy2 (3.58)

× e−iq−(x+
1 −x

+
2 )ei`1·(x1−y1)−i`2·(x2−y2) zz̄q

+TT,L (z, `1, `2 − `1)
(`2

1 + zz̄Q2)(`2
2 + zz̄Q2)

× trc
{

(x2|GRzq+(x+
2 , x

+
1 )|x1)

[
A−(x+

1 ,x1)−A−(x+
1 ,y1)

]
×(y1|GA−z̄q+(x+

1 , x
+
2 )|y2)

[
A−(x+

2 ,y2)−A−(x+
2 ,x2)

]}
,

The δ(0+) term might seem worrisome at first glance, but the reason for its existence is
that we are currently computing a forward amplitude in view of using the optical theorem
as in eq. (3.3). In said theorem, a (2π)DδD(0) factor, to which the present δ(0+) term
contributes, is removed from the forward amplitude.

With the energy denominators, it is possible to relate TT,L to the well known photon
wave functions. It is more conveniently seen in coordinate space. Using the standard
integrals ∫ ddk

(2π)d
ei(k·r)

k2 + zz̄Q2 = 1
(2π) d

2

(
Q
√
zz̄

|r|

) d
2−1

K d
2−1(Q

√
zz̄|r|) (3.59)

and ∫ ddk
(2π)d

ei(k·r)

k2 + zz̄Q2 ki = iri

(2π) d
2

(
Q
√
zz̄

|r|

) d
2

K d
2
(Q
√
zz̄|r|), (3.60)
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to perform the `1 and `2 integrations with explicit expressions for TL and TT , we get:

ΦL(z,x1 − y1,x2 − y2)

≡
∫ dd`1

(2π)d
dd`2
(2π)d ei`1(x1−y1)−i`2·(x2−y2) TL(z, `1, `2 − `1)

(`2
1 + zz̄Q2)(`2

2 + zz̄Q2)
(3.61)

= 32z2z̄2 (q+)2Q2

(2π)d

(
zz̄Q2

|x1− y1| |x2 − y2|

)d
2−1

K d
2−1(Q

√
zz̄|x1 − y1|)K d

2−1(Q
√
zz̄|x2 − y2|),

and

ΦT (z,x1 − y1,x2 − y2)

≡
∫ dd`1

(2π)d
dd`2
(2π)d ei`1(x1−y1)−i`2·(x2−y2) TT (z, `1, `2 − `1)

(`2
1 + zz̄Q2)(`2

2 + zz̄Q2)
(3.62)

= 8
(
q+)2

(2π)d
(

1− 4
d
zz̄

)
(x1 − y1) · (x2 − y2)

(
zz̄Q2

|x1 − y1| |x2 − y2|

) d
2

×K d
2
(Q
√
zz̄|x1 − y1|)K d

2
(Q
√
zz̄|x2 − y2|).

In D = d + 2 = 4 dimensions, we would recognize photon wave function overlaps, see
e.g. [44]:

ΦL(z,x1 − y1,x2 − y2) = 8
(
q+)2

(2π)2

{
4z2z̄2Q2K0(Q

√
zz̄|x1 − y1|)K0(Q

√
zz̄|x2 − y2|)

}
≡ 4

(
q+)2

Ncq2
fe

2 Ψf
L(x1 − y1, z,Q)Ψf∗

L (x2 − y2, z,Q), (3.63)

and

ΦT (z,x1 − y1,x2 − y2) = 8
(
q+)2

(2π)2 (z2 + z̄2)(x1 − y1) · (x2 − y2)
|x1 − y1| |x2 − y2|

× zz̄Q2K1(Q
√
zz̄|x1 − y1|)K1(Q

√
zz̄|x2 − y2|)

≡ 4
(
q+)2

Ncq2
fe

2 Ψf
T (x1 − y1, z,Q)Ψf∗

T (x2 − y2, z,Q). (3.64)

The physics of the amplitude in the present framework is particularly interesting in coordi-
nate space as a comparison to the shock wave approximated result [44]. In the latter, the
wave functions are evaluated at the same dipole size in the wave function and in its complex
conjugate. This dipole size is that of the quark-antiquark pair at light cone time 0, where
the scattering occurs in its entirety. Meanwhile, the dipole sizes in the wave functions in
eq. (3.63) and eq. (3.64) are actually distinct. In fact, it can be seen in eq. (3.58) that
these dipole sizes correspond precisely to the transverse separation of the quark-antiquark
pair at the times of the first and last scatterings with the target. The connection with
QCD factorization is however more explicit in momentum space, to which we will stick
from now on.
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x+1

x2

x+2

y2

y1

x1

F i−

Fj−

Figure 5. Illustration of the generalized dipole operator U ij .

With full wave functions in the amplitude, the only remaining step is to introduce the
proper non-perturbative target matrix elements. Using eq. (3.43) to relate the differences
of gluon fields to field strength tensors, we can identify the proper generalization of the
dipole operator in momentum space as follows (see figure 5 for an illustration):

U ij(z, q, `1, `2)≡
∫

dx+
1 dx+

2

∫
ddx1ddx2ddy1ddy2

∫ 1

0
dsds′e−iq−(x+

1 −x
+
2 )+i`1·(x1−y1)−i`2·(x2−y2)

× trc
{

(x2|GRzq+(x+
2 , x

+
1 )|x1)F i−(x+

1 , sx1 + s̄y1)

× (y1|GA−z̄q+(x+
1 , x

+
2 )|y2)F j−(x+

2 , s
′x2 + s̄′y2)

}
, (3.65)

with s̄ ≡ 1− s and s̄′ = 1− s′. This distribution appears explicitly in the amplitude after
the use of eq. (3.43). With an integration by parts involving the (x1− y1)i and (x2− y2)j
prefactors from that equation, eq. (3.58) becomes:

AT,L =− e2g2(2π)δ(0+)
∑
f

q2
f

∫ 1

0

dz
2π

∫ dd`1
(2π)d

∫ dd`2
(2π)d

× U ij(z, q, `1, `2) ∂

∂`i1

∂

∂`j2

zz̄q+TT,L (z, `1, `2 − `1)
(`2

1 + zz̄Q2)(`2
2 + zz̄Q2)

. (3.66)

In what follows, we will further simplify the non-perturbative tensor U ij by performing a
partial twist expansion which will enable us to reduce the number of variables, leading to
a new gluon distribution.

4 The unintegrated gluon distribution from a partial twist expansion

In the previous section, we have factorized out the hard subamplitude from the target
matrix elements in full generality. In this section, we will now study these matrix elements
more closely, and we will extract a more useful form for them which will be valid up to
xBjΛ2

QCD/Q
2 corrections, hence at leading power accuracy both in the Regge limit and in

the Bjorken limit. The action 〈P |U ij |P 〉 of the generalized dipole operator U ij on diagonal
target states is a function of momenta q and P , transverse momenta `1 and `2, as well as
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X = x1+x2

Figure 6. Approximation of the (non-eikonal) scalar propagator inside the target by a Wilson
line (times a free propagator) in the PTE scheme evaluated at the mean transverse position X =
(x2 + x1)/2.

the number z which corresponds to the longitudinal momentum fraction of the quark in
the photon wave function. From q and P , neglecting the target mass corrections, we can
build the following Lorentz scalars: Q2 = −q2, W = (q + P )2, or equivalently xBj and Q.
`1 and z are remnants of an incomplete factorization with the hard part and they will be
reabsorbed into it later on. Finally, `1 − `2 represents an intrinsic transverse momentum
in the target, which means it is at most of order Qs in the saturated Regge limit.

4.1 Partial twist expansion (PTE)

Let us consider a single propagator in the operator: (x2|GRp+(x+
2 , x

+
1 )|x1) as illustrated in

figure 6 and extract an extremal phase from it. For example, we may use the integral form
of the Schrödinger equation:

(x2|GRp+(x+
2 , x

+
1 )|x1) = (x2|G(0)R

p+ (x+
2 , x

+
1 )|x1) (4.1)

+ ig

∫ x+
2

x+
1

dx+
3

∫
ddx3(x2|G(0)R

p+ (x+
2 , x

+
3 )|x3)A−(x3)(x3|GRp+(x+

3 , x
+
1 )|x1),

which is a direct consequence of the integrated Klein-Gordon equation eq. (3.31). The free
propagators (xn|G(0)

p+ (x+
n , x

+
1 )|x1) are Gaussians in the transverse separation:

(x2|G(0)R
k+ (x+

2 , x
+
1 )|x1) = −i

(
−ik+

x+
2 − x

+
1

) d
2 e

i k+

2(x+
2 −x+

1 )
[(x2−x1)2+i0]

2k+(2π) d
2

θ(k+). (4.2)

These Gaussians describe quantum diffusion in the transverse plane and peak at (x2 −
x1)2 ∼ 2(x+

2 − x
+
1 )/k+. Parametrically, k+ ∼ q+ and for the target matrix elements of the

operator we are studying now, x+
2 −x

+
1 ∼ 1/P−. This means that during propagation, the

change in the transverse position of a parton is of order 1/(P−q+). In other words,

(x2 − x1)2 ∼ xBj/Q
2. (4.3)

This quantity is xBj-suppressed in the eikonal limit, and it is twist suppressed in the Bjorken
limit. We can thus safely expand all transverse positions around the average position

x1 + x2
2 ≡X , (4.4)
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without losing accuracy in either limit. Then in the leading approximation one can factorize
a Wilson line with phases using the integrated Schrödinger equation. We shall refer to this
classical expansion as the “partial twist expansion” (PTE) in what follows.

More explicitly, we consider first the second term in the r.h.s. of eq. (4.1), expand it
around A−(x3) ' A−(x+

3 ,X) then use eq. (4.1) itself again:

ig

∫ x+
1

x+
2

dx+
3

∫
ddx3(x1|G(0)R

p+ (x+
1 , x

+
3 )|x3)A−(x3)(x3|GRp+(x+

3 , x
+
2 )|x2)

' ig
∫ x+

1

x+
2

dx+
3 A
−(x+

3 ,X)
∫

ddx3(x1|G(0)R
p+ (x+

1 , x
+
3 )|x3) (4.5)

×
[
(x3|G(0)R

p+ (x+
3 , x

+
2 )|x2)

+ ig

∫ x+
3

x+
2

dx+
4

∫
ddx4(x3|G(0)R

p+ (x+
3 , x

+
4 )|x4)A−(x4)(x4|GRp+(x+

4 , x
+
2 )|x2)

]
.

The first term in the bracket can be simplified using the composition law for the propaga-
tors: ∫

ddx3(x1|G(0)R
p+ (x+

1 , x
+
3 )|x3)(x3|G(0)R

p+ (x+
3 , x

+
2 )|x2) = (x1|G(0)R

p+ (x+
1 , x

+
2 )|x2). (4.6)

Then the first iteration allows to identify the following term:

(x1|GRp+(x+
1 , x

+
2 )|x2) = (x1|G(0)R

p+ (x+
1 , x

+
2 )|x2)

[
1 + ig

∫ x+
1

x+
2

dx+
3 A
−(x+

3 ,X)
]

+ . . . , (4.7)

where the dots represent the second term in the bracket above. Here, one can recognize
the perturbative expansion of a gauge link. Step by step, the approximation where all
gluon fields are evaluated at X and the use of the integrated Schrödinger equation allows
to reconstruct the full link as illustrated in figure 6, and one eventually finds:

(x1|GRp+(x+
1 , x

+
2 )|x2) ' θ(p+) (x1|G(0)R

p+ (x+
1 , x

+
2 )|x2)

[
x+

1 , x
+
2

]
x1+x2

2
. (4.8)

In a similar fashion, we obtain

(y2|GAp+(x+
2 , x

+
1 )|y1) ' θ(−p+) (y2|G

(0)A
p+ (x+

2 , x
+
1 )|y1)

[
x+

2 , x
+
1

]
y1+y2

2
. (4.9)

Comparable so-called classical approximations were derived in previous works [25–30], but
in there the approximations were taken further by assuming p+ is large and systematically
expanding all factors including free propagators G0 in order to compute corrections to the
leading power in the Regge limit. Because our purpose is to provide expressions which are
correct in both Bjorken and Regge regimes, we will not take these additional steps which
would only yield approximated results in the Bjorken limit. Because the Gaussians in the
propagators impose that x1 ' x2 ' (x1 + x2)/2 and the same condition for y1,2 positions,
we can also approximate

F i−(x+
1 , sx1 + s̄y1) ' F i−

(
x+

1 , s
x1 + x2

2 + s̄
y1 + y2

2

)
, (4.10)
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and
F j−(x+

2 , s
′x2 + s̄′y2) ' F j−

(
x+

2 , s
′x1 + x2

2 + s̄′
y1 + y2

2

)
. (4.11)

These approximations allow us to perform explicit integrals over some variables. Indeed,
the purely non-perturbative elements comprised of field strength tensors and finite length
Wilson lines depend only on b ≡ (x1 + x2)/2 and b′ ≡ (y1 + y2)/2 so we can integrate the
free propagators w.r.t. r ≡ x1−x2 and r′ ≡ y1−y2. In terms of these local variables, the
exponent which defines the generalized dipole operator are given by:

i`1 · (x1 − y1)− i`2 · (x2 − y2) = i(`1 − `2) · (b− b′) + i
`1 + `2

2 · (r − r′). (4.12)

Using the integrals

∫
ddrei

`1+`2
2 ·r(x2|G(0)R

zq+ (x+
2 , x

+
1 )|x1) = −iθ(x

+
2 − x

+
1 )

2zq+ e−i
(x+

2 −x+
1 )

2zq+
(

`1+`2
2

)2
+i0
, (4.13)

and∫
ddr′e−i

`1+`2
2 ·r′(y1|G

(0)A
−z̄q+(x+

1 , x
+
2 )|y2) = −iθ(x

+
2 − x

+
1 )

2z̄q+ e−i
(x+

2 −x+
1 )

2z̄q+
(

`1+`2
2

)2
+i0
, (4.14)

we can finally approximate the generalized dipole operator given by eq. (3.65), up to xBj/Q
2

corrections,

〈P |U ij(z, q, `1, `2)|P 〉 ' −
∫

dx+
1 dx+

2

∫
ddb ddb′

∫ 1

0
dsds′ei(`1−`2)·(b−b′)

× 〈P |trc
{

[x+
2 , x

+
1 ]bF i−(x+

1 , sb + s̄b′)[x+
1 , x

+
2 ]b′F j−(x+

2 , s
′b + s̄′b′)

}
|P 〉,

× θ(x+
2 − x

+
1 )

4zz̄(q+)2 e
−i(x+

2 −x
+
1 )
[

1
2zz̄q+

(
`1+`2

2

)2
−q−−i0

]
. (4.15)

Defining v ≡ b′−b and v+ ≡ x+
2 −x

+
1 then using the invariance of forward matrix elements

under translations in order to integrate out (b + b′)/2 and (x+
1 + x+

2 )/2 into δ functions,
we get:

〈P |U ij(z, q, `1, `2)|P 〉

= −(2π)d+1δ(0−)δd(0)
∫

dv+
∫

ddv
∫ 1

0
ds ds′e−i(`1−`2)·v θ(v+)

4zz̄(q+)2 e−i
[( `1+`2

2
)2

2zz̄q+ −q−−i0
]
v+

(4.16)
×
〈
P
∣∣trc{[v+, 0+]

0F
i−(0+, sv

)[
0+, v+]

v
F j−

(
v+, s′v

)}∣∣P 〉 .
We now have the δ(0) functions to complete the one from eq. (3.58) into the full δD(0)
which will be taken out by the optical theorem. It is worth noting that as expected, `1−`2
which is an intrinsic transverse momentum transferred from the target, decouples from the
hard splitting momentum (`1 + `2)/2. In practice, the latter will be reabsorbed into the
hard sub-amplitude where it belongs.
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Parton distributions are usually defined without light cone time ordering. In order to
get a more common form for our non-perturbative matrix element, let us get rid of the θ
function using the following identity which is valid for any test function f :∫

dv+θ
(
v+
)

e−iv+(k−−i0)f(v+) = i

∫ dx
x− k−

P− + i0

∫ ∞
−∞

du+

2π e−ixP−u+
f(u+). (4.17)

Renaming the dummy variable u+ back to v+ again for more consistent notations, we
finally obtain:

〈P |U ij(z, q, `1, `2)|P 〉

= −i(2π)d+1δ(0−)δd(0) 1
4zz̄(q+)2

∫ dx

x−
(

`1+`2
2

)2
+zz̄Q2

2zz̄q+P− + i0

×
∫ ∞
−∞

dv+

2π e−ixP−v+
∫

ddve−i(`1−`2)·v
∫ 1

0
dsds′ (4.18)

×
〈
P
∣∣trc{[v+, 0+]

0F
i−(0+, sv

)[
0+, v+]

v
F j−

(
v+, s′v

)}∣∣P 〉
The first line in the r.h.s. of eq. (4.18) will be absorbed into the hard parts while the second
line which depends only on intrinsic target variables x and `1− `2 defines the unintegrated
gluon distribution, as illustrated in figure 7 [22],

xGij(x,k) ≡ 1
P−

∫ dv+

2π eixP−v+
∫ ddv

(2π)d e−i(k·v)
∫ 1

0
dsds′ (4.19)

×
〈
P
∣∣trc{[v+, 0+]

0F
i−(0+, sv

)[
0+, v+]

v
F j−

(
v+, s′v

)}∣∣P 〉 ,
which is related to the generalized dipole operator (3.65) by

〈P |U ij(z, q, `1, `2)|P 〉

= −i(2π)d+1δ(0−)δd(0) (2π)dP−
4zz̄(q+)2

∫
dx xGij(x, `2 − `1)

x− xBj −
(

`1+`2
2

)2
2zz̄q+P− + i0

+O(xBj/Q
2). (4.20)

This concludes the last key step to our approach, where we have achieved a reduction of
variables in the gluon operator that now depends only on intrinsic target variables x and
k = `2− `1 while the hard loop variables z, z̄ = 1− z and ` = (`2 + `1)/2 are factored out
into a phase-space factor and a denominator that will be absorbed in the final hard matrix
element.

To sum things up so far:

• We first derived a generic cross section in the background field beyond the shock
wave approximation, in terms of the scalar propagator. This gaves us the numerator
of the γ∗ → qq̄ wave functions.

• In a second step, we extracted the denominator of these wave functions through
operator algebra without further approximation. At the same time, the times of the
first and last scattering on the target appeared explicitly, thus yielding a dynamical
longitudinal extent for our target.
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F i−(sv)

F j−(s′v)

(0+, 0)

(v+, v)

Figure 7. Diagrammatic representation of the x-dependent unintegrated gluon distribution (x-
uPDF) defined in eq. (4.19).

• Finally in this section, further analysis of the operators using a partial twist expansion
provided a more suitable approximated expression for the non-perturbative matrix
elements. We found a new distribution for the DIS cross section, to which we will
refer as an x-dependent unintegrated gluon distribution.

As we shall see in later sections, the distribution which is defined in eq. (4.19) encodes both
the so-called dipole operator and the collinear PDF. A few of its features may surprise the
attentive reader, although they are expected in hindsight.

To the expert of the Bjorken regime, it could be surprising that contrary to TMD
distributions, the transverse momentum in our distribution is not Fourier conjugated to
the transverse distance between the arguments of the field strength tensors. This property
seems to break the partonic picture of the distribution. However, this property should not
come as a surprise beyond the leading twist: in the Regge limit, the partonic interpretation
is never the correct one. Be it Reggeons or Wilson line operators, Regge physics is always
formulated in terms of object whose complexity is beyond the simple gluonic picture. Ac-
tually, as can be seen in eq. (3.41), the transverse distance x1 − x2 in the dipole operator
is not conjugated to the Reggeon momenta in the dilute limit either. Finally, it is worth
mentioning here that in the presence of transverse momenta, the partonic picture is also
broken in the Bjorken regime because of the non-cancellability of the gauge link structures.
Among all possible gluon TMD distributions, one only gets to have a partonic interpre-
tation within a given choice of gauge and subgauge conditions: the Weizsäcker-Williams
TMD distribution [45].

To the expert of the Regge limit, the gauge link structure of the distribution may feel
awkward. Indeed, in the strict eikonal limit, observables such as the DIS cross section
which involve the (fundamental) dipole operator in the CGC are described via the dipole-
type TMD distribution fD(x,k) in its x = 0 limit [46]. The gauge link structure in this
distribution involves links that extend to x+ = ±∞, while our distribution has finite links.
However the gauge link structure in the Bjorken regime, because one does not postulate
a light cone time decoupling in that limit, is actually constrained by the physics of the
process. In general, gauge links at +∞ (resp. −∞) light cone times are associated with
multiple scatterings in the final (resp. initial) state [47]. In inclusive DIS, initial and final
states correspond to photons, hence no rescattering is expected at ±∞ light cone times.
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As a result, it should come as no surprise that the gauge link structure beyond the strict
eikonal limit involves finite length gauge links even though one could naively expect to see
fD(x 6= 0,k) instead. As we shall see in section 6, we still recover the dipole operator and
thus fD(x = 0,k) and its infinite gauge links in the strict eikonal limit.

4.2 DIS cross section

Let us now summarize the results from sections 3.4 and 4.1. Using eq. (3.66) and eq. (4.20),
we get:

Im AT,L
i(2π)DδD(0) = −e2g2∑

f

q2
f Im

∫ 1

0

dz
2π

∫ dd`1
(2π)d

∫ dd`2
(2π)d

∂

∂`i1

∂

∂`j2

zz̄q+TT,L (z, `1, `2 − `1)
(`2

1 + zz̄Q2)(`2
2 + zz̄Q2)

× (2π)dP−
4zz̄(q+)2

∫
dx xGij(x, `2 − `1)

x−
(

`1+`2
2

)2
+zz̄Q2

2zz̄q+P− + i0
. (4.21)

Let us note that (Gij)∗ = Gji. From the explicit expressions in eqs. (3.24) and (3.25), we can
see that TL,T has real values and that the derivatives are symmetric under (i ↔ j, 1 ↔ 2)
exchange. This leads to an additional simplification for these expressions, because the
imaginary part we need is only embedded in a single denominator. We can indeed use:

Im 1
x− `2+zz̄Q2

2zz̄q+P− + i0
= −πδ

[
x− `2 + zz̄Q2

2zz̄q+P−

]
(4.22)

= −πδ
[
x− xBj

(
1 + `2

zz̄Q2

)]
.

One has to keep in mind that this specific value for the Feynman x variable is only valid
for inclusive DIS. For more complicated processes such as exclusive Compton scattering,
where both real and imaginary parts contribute to the amplitude, we would not set x to
this value. Concequently, taking the derivatives of the explicit expressions for the TT,L
tensors then adding the factors from eq. (3.4) finally yields the DIS structure functions in
the following form:

FT,L = g2∑
f

q2
f

∫ 1

0

dz
2π

∫ dd`
(2π)d

∫
ddk(∂iψT,L)(z, `− k/2)(∂jψ∗T,L)(z, ` + k/2),

×
∫

dxxGij(x,k) δ
[
x− xBj

(
1 + `2

zz̄Q2

)]
(4.23)

where ψT,L are the photon wave functions in momentum space. In the transverse case, their
overlap is implicitly summed over helicities. Explicitely, the structure functions then read:

FL(xBj, Q
2) = g2Q2∑

f

q2
f

∫ 1

0

dz
2π

∫ dd`
(2π)d

∫
ddk

∫
dx δ

[
x− xBj

(
1 + `2

zz̄Q2

)]
xGij(x,k)

×
16z2z̄2Q2

(
`i − ki

2

) (
`j + kj

2

)
((

`− k
2

)2
+ zz̄Q2

)2 ((
` + k

2

)2
+ zz̄Q2

)2 , (4.24)
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for the longitudinal contribution, and

FT (xBj, Q
2) = g2Q2∑

f

q2
f

∫ 1

0

dz
2π

∫ dd`
(2π)d

∫
ddk

×
∫

dx δ
[
x− xBj

(
1 + `2

zz̄Q2

)]
xGij(x,k)

(
1− 4

d
zz̄

)
(4.25)

×

 δik(
`− k

2

)2
+ zz̄Q2

− 2

(
`i − ki

2

) (
`k − kk

2

)
((

`− k
2

)2
+ zz̄Q2

)2



×

 δjk(
` + k

2

)2
+ zz̄Q2

− 2

(
`j + kj

2

) (
`k + kk

2

)
((

` + k
2

)2
+ zz̄Q2

)2


for the transverse contribution.

Eqs. (4.24) and (4.25) together with eq. (4.19) are the core results of this study. They
provide expressions which unify the gluon mediated DIS structure functions in both known
cases: the Bjorken limit and the Regge limit. In effect, these expressions are valid up to
xBj/Q

2 corrections. In the former, they are valid because of the 1/Q2 suppression, and in
the latter they are valid thanks to the xBj suppression. In the following sections, we will
proceed to show that in the Bjorken limit the standard collinear result is recovered in its
entirety including full collinear logarithms and splitting functions, then that in the Regge
limit the well known expression involving the dipole-proton scattering matrix element is
fully recovered as well.

5 The Bjorken limit: gluon contribution to one loop DIS

In the Bjorken limit, observables are factorized using QCD factorization. In the simplest
inclusive cases such as the DIS cross section it is also known as collinear factorization due
to the fact that non-perturbative matrix elements involved then describe the physics of
partons which are collinear to their mother hadron, carrying no transverse momentum.
It is obtained by putting the separation in the bilocal correlator which defines the gluon
distribution on the light cone. Equivalently, it can be obtained by neglecting the transfer
of transverse momentum from the target in the hard subamplitude, assuming that any
intrinsic transverse momentum to the hadron is negligible compared to the hard splitting
momentum and the hard scale: |k|� |`| ∼ Q in eq. (4.24) and eq. (4.25), or v → 0 in the
second line of eq. (4.19). Either way, the gluon PDF will appear from the k integral of
the unintegrated distribution Gij(x,k). With

xg(x) ≡ δij

P−

∫ dv+

2π eixP−v+〈P |F i−(v+)[v+, 0+]F j−(0+)[0+, v+]|P 〉 , (5.1)

it is easy to check that: ∫
ddk δijGij(x,k) = g(x). (5.2)
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Let us focus on the hard subamplitude, to show how the δij projection emerges. Neglecting
|k| � |`| in eq. (4.24) and eq. (4.25) yields:

FL(xBj, Q
2 →∞) = g2Q2∑

f

q2
f

∫
dx
∫

ddk xGij(x,k)

×
∫ 1

0

dz
2π

∫ dd`
(2π)d δ

(
x− xBj

`2 + zz̄Q2

zz̄Q2

)
16z2z̄2Q2`i`j(
`2 + zz̄Q2)4 (5.3)

for the longitudinal case, and

FT (xBj, Q
2 →∞) = g2Q2∑

f

q2
f

∫
dx
∫

ddk xGij(x,k)

×
∫ 1

0

dz
2π

∫ dd`
(2π)d δ

(
x− xBj

`2 + zz̄Q2

zz̄Q2

)(
1− 4

d
zz̄

)
(5.4)

×
(

δij

(`2 + zz̄Q2)2 − 4 `i`j

(`2 + zz̄Q2)3 + 4 `i`j`2

(`2 + zz̄Q2)4

)

for the transverse case. The δij projection appears from the usual substitution

`i`j → 1
d
δij`2, (5.5)

which is valid as long as the transverse integral does not involve other vectors, as it is the
case here. It is actually possible to decouple the integrals w.r.t. z and ` via the simple
change of variable `→ p ≡ `/

√
zz̄. Then we find:

FL(xBj, Q
2 →∞) = g2Q2∑

f

q2
f

∫ dx
2π

∫
ddkxδijGij(x,k)

×
∫ 1

0
dz (zz̄)

d
2−1

∫ ddp
(2π)d δ

(
x− xBj − xBj

p2

Q2

)
1
d

16Q2p2(
p2 +Q2)4 (5.6)

and

FT (xBj, Q
2 →∞) = g2Q2∑

f

q2
f

∫ dx
2π

∫
ddkxδijGij(x,k)

×
∫ 1

0
dz
[
(zz̄)

d
2−2 − 4

d
(zz̄)

d
2−1

] ∫ ddp
(2π)d δ

(
x− xBj − xBj

p2

Q2

)

×
(

1
(p2 +Q2)2 −

4
d

p2

(p2 +Q2)3 + 4
d

p4

(p2 +Q2)4

)
. (5.7)

The z integral will be taken using the standard integral∫ 1

0
dzz̄pzq = Γ (p+ 1) Γ (q + 1)

Γ (p+ q + 2) . (5.8)

For the p integral, it is convenient to note that the integrand is a function of p2 only. We
can thus integrate out the angular dependence into the volume of the hypersphere: for any
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function ϕ(p2), we have

∫ ddp
(2π)dϕ(p2) = π

d
2

Γ
(
d
2

) ∫ ∞
0

dp2

(2π)d
(
p2
) d

2−1
ϕ(p2). (5.9)

In fact, we can actually go one step further. For any function ϕ(p2), we have:
∫ ddp

(2π)d δ
(
x− xBj − xBj

p2

Q2

)
ϕ(p2) (5.10)

= θ(x− xBj)
(4π) d

2 Γ
(
d
2

) Q2

xBj

[
Q2
(
x− xBj
xBj

)] d
2−1

ϕ

[
Q2
(
x− xBj
xBj

)]
.

Putting everything together by using eq. (5.8), eq. (5.2) and eq. (5.10) in eq. (5.6) and
eq. (5.7), we get the final results before the expansion around 4 dimensions:

FL(xBj, Q
2 →∞) = 8 g2

π(4π) d
2

∑
f

q2
f

∫
dxθ(x− xBj)xg(x) (5.11)

×
Γ
(
d
2

)
Γ(d+ 1)

x2
Bj(x− xBj)

x4

[
Q2
(
x− xBj
xBj

)] d
2−1

and

FT (xBj, Q
2 →∞) = 2 g2

π(4π) d
2

∑
f

q2
f

∫
dxθ(x− xBj)xg(x) (5.12)

×
Γ
(
d
2

)
Γ (d)

(
d− 1
d− 2 −

1
d

)
xBj

x2 − 4
dxBj (x− xBj)

x4

[
Q2
(
x− xBj
xBj

)] d
2−1

.

In d = 2 + 2ε dimensions, introducing y ≡ xBj/x, these become:

FL(xBj, Q
2 →∞) = αs

π

∑
f

q2
f

∫ 1

xBj
dy [xg(x)]x=xBj/y

4y(1− y), (5.13)

and

FT (xBj, Q
2 →∞) = αs

π

∑
f

q2
f

∫ 1

xBj
dy [xg(x)]x=xBj/y

(5.14)

×
{

1
ε

(eγE

4π

)ε [
(1− y)2 + y2

]
+
[
(1− y)2 + y2

]
ln
[
Q2(1− y)

µ2y

]
− 1 + 4y (1− y)

}
.

The qg splitting function Pqg(y) ≡ (1 − y)2 + y2 can immediately be recognized in the
first, divergent, term in the brackets in eq. (5.14). In fact, this term is exactly canceled by
the Dokshitzer, Gribov, Lipatov, Altarelli, Parisi (DGLAP) evolution equation [48–50] for
the gluon distribution in the MS renormalization scheme. It corresponds to the collinear
divergence in the t channel, when the quark or the antiquark is collinear to the target. Using
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the evolution of the distribution simply amounts to removing this term and replacing the
dimensional regularization parameter µ by the factorization scale µF :

FT (xBj, Q
2 →∞) = g2

4π2

∑
f

q2
f

∫ 1

xBj
dy [xg(x)]x=xBj/y

(5.15)

×
{[

(1− y)2 + y2
]

ln
[
Q2(1− y)
µ2
F y

]
− 1 + 4y (1− y)

}
.

We finally recovered the well known result for the gluon contribution to DIS at one loop
accuracy [51]. Note that we found it in its entirety, despite the similarities our framework
shares with standard CGC. The small xBj limit of these structure functions will be discussed
in section 7.

6 The Regge limit: the dipole cross section

In the Regge limit, the most efficient factorization scheme for dilute-dense scattering is
the semi-classical formalism one recovers by taking the shock wave approximation in the
present framework. In the intermediate steps of the computation, it is tantamount to
neglecting the phases of type ik2x+/(2k+) since all scatterings are then assumed to occur
at light cone times x+ close to 0, and 1/k+ ∼ 1/

√
s ' 0 in the Regge power counting,

and to extending Wilson line operators to infinite times. See section 2.2. However, it is
more interesting to study how the shock wave limit is recovered from the final factorized
results eq. (4.24) and eq. (4.25). The δ function in these equations sets

x = xBj

(
1 + `2

zz̄Q2

)
. (6.1)

Provided that the quark loop variable `2/(zz̄) does not diverge fast enough to compensate
for the smallness of xBj, taking the Regge limit thus comes down to taking the x ' xBj ' 0
approximation. It is most conveniently taken in coordinate space, which is often considered
to be the suitable space for semi-classical small x effective theories. It is also more standard
to revert back to before the use of translation invariance in the definition of the gluon
distribution. Instead of eq. (4.19), we will use:

δ(0−)δd(0)xGij(x,k) (6.2)

= 1
P−

∫ dv+
1

2π

∫ dv+
2

2π eixP−(v+
1 −v

+
2 )
∫ ddv1

(2π)d
∫ ddv2

(2π)d e−ik·(v1−v2)
∫ 1

0
dsds′

×
〈
P
∣∣trc{[v+

2 , v
+
1
]
v1
F i−

(
v+

1 , sv1 + s̄v2
)[
v+

1 , v
+
2
]
v2
F j−

(
v+

2 , s
′v1 + s̄′v2

)}∣∣P 〉.
Using the Fourier transform of the hard parts, as computed explicitely in eq. (3.59)
and eq. (3.60),

TT,L(z, `1, `2 − `1)
(`2

1 + zz̄Q2)(`2
2 + zz̄Q2)

=
∫

ddr1ddr2e−i(`1·r1)+i(`2·r2)ΦT,L(z, r1, r2),
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and neglecting x based on the discussion above, we find:

lim
xBj→0

AT,L = iπe2g2(2π)Dδ(0+)
∑
f

q2
f

∫ 1

0

dz
2π

∫
ddr1ddr2

(2π)dP−
4q+ ΦT,L(z, r1, r2) (6.3)

×
∫ dd`1

(2π)d
∫ dd`2

(2π)d e−i(`1·r1)+i(`2·r2)δ(0−)δd(0)ri1rj2

[
xGij(x, `2 − `1)

]
x=0

.

The second line, studied separately along with eq. (6.2), yields:

∫ dd`1
(2π)d

∫ dd`2
(2π)d e−i(`1·r1)+i(`2·r2)δ(0−)δd(0)ri1rj2

[
xGij(x, `2 − `1)

]
x=0

= δd(r1 − r2)
P−(2π)d

∫ dv+
1

2π

∫ dv+
2

2π

∫ ddv2
(2π)d

∫ 1

0
ds
∫ 1

0
ds′ (6.4)

×
〈
P
∣∣trc{[v+

2 , v
+
1
]
v2+r1

ri1F
i−(v+

1 ,v2 + sr1
)[
v+

1 , v
+
2
]
v2

rj1F
j−(v+

2 ,v2 + s′r1
)}∣∣P 〉.

Note that the presence of a δ function which sets the dipole sizes to be equal in the hard
part is entirely due to the fact that the distribution is evaluated at null values of the
Feynman x variable, because the x variable is dependent on the transverse momenta which
integrate into the δ. Any dependence on x in the distribution would force dipole sizes to
be distinct. Using eq. (3.43) in order to relate the s integral of field strength tensors to
A− fields, then eq. (3.42) in order to relate differences of A− fields with Wilson lines to the
derivatives of Wilson lines leads to the relation∫ dv+

1
2π

[
v+

2 , v
+
1
]
v2+r1

∫ 1

0
dsri1F i−

(
v+

1 ,v2 + sr1
)[
v+

1 , v
+
2
]
v2

= −
∫ dv+

1
2π

[
v+

2 , v
+
1
]
v2+r1

[
A−(v+

1 ,v2 + r1)−A−(v+
1 ,v2)

][
v+

1 , v
+
2
]
v2

= −i
2πg

∫
dv+

1
∂

∂v+
1

([
v+

2 , v
+
1
]
v2+r1

[
v+

1 , v
+
2
]
v2

)
(6.5)

= −i
2πg

{[
v+

2 ,∞
+]

v2+r1

[
∞+, v+

2
]
v2
−
[
v+

2 ,−∞
+]

v2+r1

[
−∞+, v+

2
]
v2

}
.

Using the same steps for the other field strength tensors, for t+ = ±∞:

∫ dv+
2

2π
[
t+, v+

2
]
v2

∫ 1

0
ds′rj1F j−

(
v+

2 ,v2 + s′r1
)[
v+

2 , t
+]

v2+r1
(6.6)

= i

2πg
{[
t+,∞+]

v2

[
∞+, t+

]
v2+r1

−
[
t+,−∞+]

v2

[
−∞+, t+

]
v2+r1

}
.

Eventually, we find the usual infinite Wilson lines:

∫ dd`1
(2π)d

∫ dd`2
(2π)d e−i(`1·r1)+i(`2·r2)δ(0−)δd(0)ri1rj2

[
xGij(x, `2 − `1)

]
x=0

= δd(r1 − r2)
(2π)Dg2P−

∫ ddv2
(2π)d

〈
P
∣∣2Nc − trc

(
Uv2+r1U

†
v2

)
− trc

(
U †v2+r1Uv2

)}∣∣P 〉, (6.7)
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where we used the fact that any operator of the form [t+, t+]t is actually unity. We recognize
the real part of the standard dipole-proton scattering matrix element: the second line
involves

D(x− y) ≡ 2Re
〈
P
∣∣1− 1

Nc
tr(UxU

†
y)
∣∣P 〉. (6.8)

Note that because of the invariance of forward matrix elements under translation, it is a
function of the dipole size only. In eq. (6.7), there is an implicit δd(0) factor from the v2
integral. In general, this factor is compensated by the use of normalized matrix elements
D(x− y)/〈P |P 〉 with 〈P ′|P 〉 = 2P−(2π)d+1δ(P ′− − P−)δd(P ′ −P ). Let us plug eq. (6.7)
back into eq. (6.3), while renaming v = b and r1 = r2 = r. We can recreate the complete
δD(0) function to be removed in the optical theorem by compensating with the proton
normalization factor. With 〈. . .〉P ≡ 〈P | . . . |P 〉/〈P |P 〉,

lim
xBj→0

AT,L = 2iπe2(2π)DδD(0)
∑
f

q2
f

∫ 1

0
dz
∫

ddr (2π)d−2P−ΦT,L(z, r, r)
4q+

× 2Re
∫ ddb

(2π)d 〈Nc − trc
(
Ub+rU

†
b

)
〉P . (6.9)

With the explicit hard parts, given by eq. (3.59) and eq. (3.60), we can get the final
expression for the Regge limit of the LL transition

FL(xBj → 0, Q2) = 2
π2

∑
f

q2
f

∫ 1

0
dz
∫

ddr
(
zz̄Q2

r2

) d
2−1

z2z̄2Q4[K d
2−1(Q

√
zz̄|r|)

]2
× 2Re

∫ ddb
(2π)d 〈Nc − trc

(
Ub+rU

†
b

)
〉P , (6.10)

and the TT transition

FT (xBj → 0, Q2) = Q2

2π2

∑
f

q2
f

∫ 1

0
dz
∫

ddr
(

1− 4
d
zz̄

)
r2
(
zz̄Q2

r2

) d
2 [
K d

2
(Q
√
zz̄|r|)

]2
× 2Re

∫ ddb
(2π)d 〈Nc − trc

(
Ub+rU

†
b

)
〉P . (6.11)

In this limit, we thus managed to recover the standard results in their entirety. Let us
insist once more on the fact that these results are obtained by taking the strict x = 0 limit
in the non-perturbative distribution. The fact that the target matrix element is simply the
dipole-target scattering element relies on this approximation, because otherwise the matrix
elements would be evaluated at different positions (b, r, b′, r′) and one would find the more
involved operator

Nc − tr(Ub+rU
†
b )− tr(U

b′
U †

b′+r′
) + tr(Ub+rU

†
bUb′

U †
b′+r′

) (6.12)

in lieu of real part of the dipole. We will now elaborate on this statement in the following
section.
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7 Collinear logs at small xBj: towards a top down approach

It is particularly informative to study the leading power of 1/Q in the Regge limit of the
structure functions. It can be recovered thanks to the observation that the Bessel functions
in the hard sub-amplitude peak around r2 ∝ 1/Q2, along with the Taylor expansion of the
dipole-target matrix element [46]:

∫ ddb
(2π)d

〈
Nc − trc

(
Ub+rU

†
b

)〉
P

= rirj

2

∫ ddb
(2π)d

〈
trc(∂iUb)(∂jU †b )

〉
P

+O(|r|3) (7.1)

= rirjg2

4P−(2π)d
∫

dv+〈P ∣∣[0+, v+]F i−(v+)[v+, 0+]F j−(0+)
∣∣P 〉+O(|r|3).

Given that the hard parts only depend on r2, we can perform the substitution rirj →
r2δij/d. Finally using the definition eq. (5.1) we get the relation:

∫ ddb
(2π)d

〈
Nc − trc

(
Ub+rU

†
b

)〉
P

= (2π)2−dαsr
2

2d [xg(x)]x=0 +O(|r|3). (7.2)

A bit of algebra, detailed in appendix E, leads to an intermediate result which is reminiscent
of eq. (5.3):

lim
Q2→∞

FL(xBj → 0, Q2) = g2Q2∑
f

q2
f

∫
dx [xg(x)]x=0 (7.3)

×
∫ 1

0

dz
2π

∫ dd`
(2π)d

1
d

16z2z̄2Q2`2(
`2 + zz̄Q2)4 δ(x),

and a similar one for FT . Comparing this to its equivalent in the Bjorken limit from eq. (5.3)
reveals the proper way to obtain the small x limit of that result: by taking xBj = 0 in the
δ function which sets x as a function of xBj. This procedure can lead to issues in the case
where the proportionality factor between the two, which is comprised of loop variables,
diverges and compensates for the smallness of xBj. This factor, `2/zz̄Q2, actually diverges
in the z ∈ {0, 1} limit where the quark or the antiquark is collinear to the target, which is
precisely the limit where the DGLAP evolution equation arises. This will eventually prove
to be the reason why the collinear sector of small-x observables is incorrectly dealt with,
as we will see later in this section. Eventually, the leading twist limit of the Regge limit of
FL and FT read respectively:

lim
Q2→∞

FL(xBj → 0, Q2) = 2
3
αs
π

∑
f

q2
f [xg(x)]x=0 , (7.4)
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and

lim
Q2→∞

FT (xBj → 0, Q2) (7.5)

= αs
π

∑
f

q2
f [xg(x)]x=0

∫ 1

0
dy
{

1
ε

(eγE

4π

)ε [
(1− y)2 + y2

]

+
[
(1− y)2 + y2

]
ln
[
Q2(1− y)

µ2y

]
− 1 + 4y(1− y)

}
.

In eq. (7.5), we recognize the DGLAP qg splitting function Pqg(y) = (1 − y)2 + y2 once
again. However, the way it appears in that equation is different from the way it appeared
in eq. (5.14). Indeed, rather than the DGLAP convolution of the parton distribution with
the splitting function, we find the integral of the splitting function taken independently
from the distribution:

lim
Q2→∞

FT (xBj → 0, Q2)
∣∣∣∣
div

= αs
π

∑
f

q2
f

1
ε

(eγE

4π

)ε
[xg(x)]x=0

∫ 1

0
dyPqg(y) (7.6)

The collinear pole can thus be compensated by a collinear logarithm of the physical fac-
torization scale by renormalizing the gluon distribution if and only if:

lim
xBj→0

∫ 1

xBj
dy [xg(x)]x=xBj/y

Pqg(y) = [xg(x)]x=0

∫ 1

0
dyPqg(y). (7.7)

In other words, in order to cancel out the collinear divergence from the semi-classical Regge
limit result it is necessary to assume that, in the x = 0 limit, the parton distributions
are constant and that the splitting functions are integrable on [0, 1]. Note that similar
observations have been made in [52] in the context of Deeply Virtual Compton Scattering,
where the distribution is explicitly assumed to be a constant for the leading twist limit
matching discussed in the appendix. This leads to potential issues.

First of all, this equation is obviously only correct if the PDF is a constant at x = 0.
It can be justified, incidentally, at leading logarithmic accuracy provided that the PDF is
a power x−γ at small values of x and that γ = O(αs) has a perturbative expansion.1 The
fact that the distribution is evaluated exactly at x = 0 is the fundamental origin of the
problems of small xBj observables in the collinear corner of the phase space: the equality
above is not correct if there is any dependence on x in the parton distribution.

It is commonly accepted in CGC phenomenology that the BK evolution equation
allows us to restore some form of dependence on x in the parton distribution, which would
then mean that said distribution is not actually evaluated at x = 0 in practice. We
will now build an argument against this idea, or at least against some interpretations of
it. Mathematically, several notions of x variables must be distinguished, even though we
tend to consider them to be equivalent in the Regge approximation where they are all
close to 0. First, the (xi)i=1...n variables in a gauge invariant distribution with n partons
represent the intrinsic longitudinal momentum fractions inside the target hadron. They are

1In other words, it works if the PDF is a constant at x = 0 up to higher loop corrections.
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Fourier conjugated to the light cone distances between the partonic fields inside the target
and are intrinsic properties of the distribution, independently from any observable they
might couple to. Second, a process dependent xF variable represents the total fraction of
longitudinal momentum transferred from the target, as set by the hard partonic subpart
of the process to which the distribution couples. Lastly, the process dependent Bjorken
variable xBj is given as a function of the hard scale of the process and of its center-of-
mass energy. It is in principle the variable whose large logarithms can compensate for
the smallness of the coupling constant αs in the Regge limit. The basic idea of semi-
classical small-x physics is that the BK evolution equation allows to resum all powers of
αs ln(1/xBj): it yields the logarithmic dependence on a rapidity regulator η,2 which is then
set to η = ln 1/xBj. This procedure is the Regge analog of the logarithmic dependence
on a scale µF introduced by QCD factorization and the DGLAP evolution equation where
eventually one sets µF = Q.

With the current example of the inclusive DIS cross section in mind, let us study for
a while how the dependence on each of the notions of “x” variables goes.

The most straightforward one is the x variable from the definition of parton distribution
functions:

xg(x) = δij

P−

∫ dv+

2π eixP−v+〈P |F i−(v+)[v+, 0+]F j−(0+)[0+, v+]|P 〉. (7.8)

The fact that one encounters infinite length Wilson line operators in the shock wave ap-
proximation is inextricable from the fact that parton distributions are evaluated at x = 0:
the Wilson line is the leading power in the x expansion [46]. Since x is Fourier conjugated
to a longitudinal distance in the target and said distance is taken to be infinite in the shock
wave approximation, it is actually natural for x to be null in that limit. In fact, any action
of Wilson line operators on target states can be rewritten into parton distributions with
all (xi)i variables set to 0 [23, 53]. This x variable in the distribution describes an intrinsic
property of the target which does not depend on a given process, and in full generality
there is no straightforward relation between the scalar x and the energy

√
s.

The second notion of “x” variables is the process-dependent xF variable which is the
total fraction of longitudinal momentum transferred from the target as determined by the
hard subprocess. At leading genuine twist,3 and unless one is considering an exclusive
process with non-zero skewedness,4 the hard part imposes that x = xF , which is why these
two variables tend to be used interchangeably. For example in the inclusive DIS cross
section considered in this article, xF is given by xF = xBj

(
1 + `2

zz̄Q2

)
and the hard part

provides a δ(x− xF ) function. This could allow to mimick an x dependence in the parton
distribution by introducing instead an xF dependence through the evolution equation. We

2It is common to denote this variable as an x, but to avoid any confusion with the x variables that exist
in the Bjorken limit we will refrain from using this notation.

3Beyond the leading genuine twist where only one collinear gluon is extracted, we would have several xi

variables in the distribution, and the hard part would only set
∑

i
xi = xF .

4In an exclusive process, xF is related to the skewedness parameter ξ, and the relation between x and ξ
obtained from computing the hard part is not always as simple as x = ξ = xF .
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will now show that the shock wave description of the DIS cross section is also incompatible
with any dependence on this xF variable in the distribution, be it from BK evolution or not.

Let us consider the γ∗P → qq̄X amplitude in the shock wave approximation. It
reads [54]:

AL/T = zz̄eqQδ(p+
q + p+

q̄ − q+)
∫

d2x1d2x2e−i(pq ·x1)−i(pq ·x2)

× (1− Ux1U
†
x2)ϕL/T (z,x1 − x2), (7.9)

with
ϕL(z,x1 − x2) = 2K0(

√
zz̄Q2r2)(ūpqγ

+vpq̄ ) (7.10)

and

ϕT (z,x1 − x2) = −iεq⊥µr⊥ν
|r|
√
zz̄

K1(
√
zz̄Q2r2)ūpq

[
z(γµ⊥γ

ν
⊥)− z̄(γν⊥γ

µ
⊥)
]
γ+vpq̄ . (7.11)

The γ∗P → qq̄X cross section is thus given by:

dσγ
∗P→qq̄X
L/T ;L/T =

dp+
q d2pqdp+

q̄ d2pq̄
4(q+)3(2π)6 δ(p+

q + p+
q̄ − q+) (7.12)

× zz̄q2
fαemQ

2
∫

d2x1d2x2d2x′1d2x′2eipq ·(x′1−x1)+ipq ·(x′2−x2)

× 〈trc(1− Ux1U
†
x2)(1− Ux′2

U †x′1
)〉PϕL/T (z,x1 − x2)ϕ∗L/T (z,x′1 − x′2).

We can now recover the leading perturbative power of the DIS cross section without using
the optical theorem, simply by integrating w.r.t. the quark and antiquark momenta and
summing over the flavors in the loop:

dσγ
∗P→X
L/T ;L/T =

∑
f

q2
fαemQ

2

4(q+)2(2π)2

∫
d2x1d2x2〈trc(1− Ux1U

†
x2)(1− Ux2U

†
x1)〉P

×
∫

dz(zz̄)ϕL/T (z,x1 − x2)ϕ∗L/T (z,x1 − x2). (7.13)

The most crucial step here is that the integral w.r.t. pq and pq̄ have set x1 = x′1 and
x2 = x′2. Then the target matrix element becomes

〈trc(1− Ux1U
†
x2)(1− Ux2U

†
x1)〉P = 2Re〈Nc − trc(Ux1U

†
x2)〉P . (7.14)

Suppose we had introduced a dependence on xF in the distribution. Given that xF =
p−q +p−q̄ − q− = z̄p2

q+zp2
q̄+zz̄Q2

2zz̄q+ depends on the transverse momenta, we would not have been
able to set x1 = x′1 and x2 = x′2 using the momentum integrations. Instead of having a
dipole matrix element for the target, we would have found:

〈trc(1− Ux′2
U †x′1
− Ux1U

†
x2 + Ux1U

†
x2Ux′2

U †x′1
)〉P . (7.15)

In other words, using the dipole operator to describe the inclusive DIS cross section is
inherently incompatible with having any xF dependence in the non-perturbative matrix
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element. This was previously observed in a similar context in [55], in which the authors
found an incompatibility between the dipole model (the large Nc limit of the CGC) and
a so-called exact kinematics small-x factorization scheme based on a perturbative ansatz
for the target where a dependence on x is added by hand. This observation was then
confirmed with a numerical anaysis of this scheme [56]. To summarize, for inclusive DIS
gluon distributions are evaluated strictly at x = xF = 0 in the Regge limit. Indeed, x is
0 because we have infinite Wilson line operators, and xF is 0 because we have a dipole
operator in particular.

It is thus impossible to correct for eq. (7.7) with an x dependence in the distribution:
the DGLAP convolution is irremediably undone by the shock wave approximation.

Finally, the last “x” variable is the Bjorken xBj variable. This is the variable whose
logarithms the small-xBj evolution equations were initially designed to resum. In all known
non-exclusive cases xF and xBj are proportional to each other, but the proportionality
factor is not suppressed in either the Bjorken regime or the Regge limit: in our inclusive
DIS example, xF = xBj(1 + `2

zz̄Q2 ) and `2/Q2 is leading power in twist counting5 and in
eikonal counting. However, the logarithms of xF and xBj are the same at leading logarithm
of s accuracy:

ln(xF ) = − ln(s) + ln
(
Q2 + `2

zz̄

)
∼ − ln(s) ∼ ln(xBj). (7.16)

This is finally why if we know the x dependence in the PDF, we know the xBj dependence
of the inclusive DIS cross section: first the hard part sets x = xF , then the leading
logarithm of xF is noted to be equivalent to that of xBj at leading logarithmic accuracy,
which means any power dependence x−γ in the distribution will lead in practice to an
x−γBj dependence in the observable, up to higher logarithmic corrections. The converse
is not necessarily true: knowing the xBj dependence of an observable does not mean we
know the x dependence in the involved distributions without further assumptions. We can,
maybe incidentally, justify the disentanglement of the DGLAP convolution using an xBj
dependence: if xg(x) ∼x=0 x

−γ , we have

lim
xBj→0

∫ 1

xBj
dy [xg(x)]x=xBj/y

Pqg(y) = x−γBj

∫ 1

0
dy[yγPqg(y)]. (7.17)

The power of xBj obtained via BK evolution yields the x−γBj factor one would have obtained
using the more rigorous distribution [xg(x)]x=xBj

which, let us insist again, cannot be
computed using infinite Wilson line operators. For a fully consistent scheme, is it then
absolutely necessary to check order by order that the γ-th moments of the splitting functions
appear in each observable. It is also worth noting that the Pgg splitting function whose
integral is divergent will yield serious issues with disentangling the DGLAP convolution
that this consideration cannot fix.

The negative cross section problem for small-x physics was initially noticed by stud-
ies of observables at NLL accuracy. In practice, the BK resummation schemes mimic a

5Indeed ` is a hard loop momentum so it can be of order Q.
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dependence on x in order to catch the leading collinear divergences by imposing by hand
the entanglement of longitudinal and transverse variables: one can add additional ad hoc
kinematic constraints [15] in the evolution equation or directly include an additional resum-
mation of logarithms [16–21]. Such ad hoc bottom-up modifications of the resummation
scheme, albeit not providing a fully consistent picture of the collinear phase space at small
x, have proven to be successful at postponing the negativity issue of small xBj cross sections
to larger values of the hard scales at a given perturbative order.

Most of such bottom-up approaches to collinear logarithm resummation at small x rely
on imposing either one of two equivalent orderings: k− ordering in order to reconstruct
the DGLAP ladder structure, or light cone time ordering along said ladder. In effect, such
corrections allow to correct how one treats the kinematical phase space for the emission
of gluons whose transverse momenta are large enough to break longitudinal momentum
ordering along the gluon ladder: if k2 is large enough, even with k+ � `+, one may have
k− ∼ k2/(2k+)� `− ∼ `2/(2`+) which violates the − ordering between k and `. In fact, it
is possible to argue that the problem with this part of the phase space could already have
been diagnosed at LL accuracy with only quarks. Indeed at leading twist where |`| � |k|,
we can study the exact same corner of phase space for transverse momenta in the z → 0
limit. This kinematics correspond precisely to the collinear (to the target) limit where one
would derive the DGLAP kernel for quarks.

As already discussed earlier, there are two potential problems to the r.h.s. of eq. (7.7)
that corresponds to the semi-classical small-x scheme. First, it is correct only if the distri-
bution is a constant at x = 0. Second, it diverges if the splitting function is not integrable
on [0, 1]. Given the fact that this corner of phase space is the one that causes problems
for gluons, and that as we proved earlier the actual x variable appearing in DGLAP is
automatically set to be strictly null by CGC schemes, we can finally see where the issue
originates from. Indeed, the two problematic conditions are met with gluons: the gluon
distribution potentially has a non-trivial dependence on x around x = 0 if saturation ef-
fects do not completely cancel out the intercept, and in a more obvious fashion the Pgg
splitting function has poles at the end points y = 0, 1. This is the reason why difficulties
were encountered for NLL small-x studies.

Our approach has two advantages. First and foremost, the fact that our distribution
is not evaluated in the strict x = 0 approximation means that the DGLAP kernel is fully
reproduced at least within LL accuracy, as we proved in section 5. Second, the ordering
in light cone time is built into the framework because we did not allow the light cone
time decoupling which is the starting point of CGC computations. See the discussions
in section 2.3 and around eqs. (3.49) and (3.50). Applying our scheme to the evolution
equation of our distribution will naturally incorporate the desired ordering. We traded the
dipole operator which is defined only in the strict x = 0 limit for the x-dependent gluon
distribution eq. (4.19) and we thus have one more variable when compared to standard semi-
classical small-x schemes. The distribution we found depends on a transverse momentum
and on the rapidity factorization scale which allows to separate out classical target fields
in + momentum space using the BK equation, as is the case in these schemes, but also on
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the physical DGLAP − momentum variable x that is missing from them:

ϕG(k; Λ+) ≡ 1
Nc

∫
r

e−ir·k 〈trU0U
†
r〉Λ+ → GijΛ+(x,k) (7.18)

One of the main strategies adopted in previous studies to solve the problem of small-x
evolution in the collinear corner of phase-space has been to perform ad hoc modifications
to the BK evolution equation by forcing a relation between the cutoff variable Λ+ > k+ and
momenta along the other light cone direction k− = P− roughly as follows 2Λ+k− ∼ k2,
throughout the evolution. In our case, the − light cone direction is fully accounted for by
the presence of x.

What we conclude from the present discussion is that although ad hoc considerations
allow us to extend the validity of the description of observables in the shock wave approxi-
mation, we argued that we should actually fix what is being evolved instead of fixing how it
is evolved. As long as we have infinite Wilson lines, we have x = 0. In semi-inclusive cases
that involve jets xF is not integrated out at tree level so one can set a relation between
Λ+ and xF , but it does not fix the collinear corner of phase space since DGLAP involves
x rather than xF . Beyond NLL accuracy, or in any other semi-inclusive case where xF is
a convolution variable because of the presence of fragmentation functions, the relation be-
tween Λ+ and xF cannot be imposed by hand anymore. Changing how we evolve the dipole
operator or the scale at which we evaluated it does not solve the x = xF = 0 problem which
is due to the very fact that we are studying the dipole operator itself. Of course to com-
plete the picture we need to investigate quantum evolution of the x-dependent unintegrated
gluon distribution and compare to the aforementioned schemes, but the distribution found
in this article does not present the fundamental flaw of being set to x = 0 from the get-go.

8 Conclusion and outlook

In this article, we provided a semi-classical scheme inspired by small-xBj frameworks, in
view of a first principle interpolation between both major limits of perturbative QCD. We
applied this scheme to the inclusive DIS cross section and obtained the leading power of
xBj/Q

2 for this observable. Our scheme is based on a partial twist expansion (PTE) that
resums subclasses of powers of s and Q2 to all orders. We have derived the leading con-
tribution in the PTE and showed that it encompasses both Bjorken and Regge regimes,
and thus provides the desired interpolation. Our computation yields a new, unexpected,
form for an unintegrated gluon distribution with correct dependences on both transverse
and longitudinal gluon momentum components. From our interpolating formula, we per-
form a top-down analysis of the collinear limit of Regge descriptions of our observable.
We find that the shock wave approximation on which semi-classical small-xBj framework
rely is inherently incompatible with a proper account of the DGLAP equation because
of its treatment of the x variable. Much progress has been made towards including all
subleading power corrections to the shock wave approximation, so-called subeikonal cor-
rections [25–40, 57–59]. In such approaches, some of the subleading terms correspond to
the expansion in the Feynman x variables of the leading twist distribution. This would
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yield a correction to the assumption which is made in eq. (7.7): along with [xg(x)]x=0, the
second term in the Taylor expansion [ d

dxxg(x)]x=0 hides in the expressions one would find
in the collinear limit of subeikonal results. Although this does not make eq. (7.7) valid in
full generality, it would be insightful to study how such corrections would compare to an
expansion of DGLAP from our top-down approach and whether or not they could allow
to reconstruct the full equation and correct for the dangerous hypothesis in a bottom-up
approach.

In this article, we have focused on the leading order diagram in the small x limit.
However, since we encountered a quark loop at this order, we have partially tackled the
question of quantum evolution by providing a prescription for dealing with the longitudinal
structure of the target. Nevertheless, a complete picture would require the derivation of
the analog of the BK equation for the unintegrated gluon distribution which we leave for
a following work.
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A On the inclusion of non-pure gauge transverse gluon fields

This appendix aims at showing that although they contribute as gauge invariance fixing
counterterms to ∂iA− in F i−, transverse gluon fields are not necessary for the purpose of
the simple computation performed in this article beyond a consistency check. In the Regge
regime, one always assumes that one can gauge away transverse gluon fields. In the Bjorken
regime, it is not a valid assumption. However, for inclusive DIS, the leading (collinear)
distributions do not involve a transverse separation. As a result, the only contribution
from Ai fields at our perturbative order is contained in the F i− tensors that define the
PDF. Let us write the DIS cross section in the factorized form

dσ =
∫

dxH(x)eixP−z+〈P |trF i−(z+)[z+, 0+]F i−(0+)[0+, z+]|P 〉, (A.1)

where H(x) is the collinear hard part. Let us note that for any y+, u+:

tr[y+, u+]F i−(u+)[u+, y+]F i−(y+) = tr(∂iA−)[u+, y+](∂iA−)(y+)[y+, u+]

+ ∂

∂u+
∂

∂y+ tr[y+, u+]Ai(u+)[u+, y+]Ai(y+)

− ∂

∂y+ tr(∂iA−)(u+)[u+, y+]Ai(y+)[y+, u+]

− ∂

∂u+ tr[u+, y+](∂iA−)(y+)[y+, u+]Ai(u+). (A.2)
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Once plugged into the convolution, integrations by parts w.r.t. y+ in the penultimate term
and w.r.t. x+ in the last term allow to cancel the last two lines. One is left with

dσ =
∫

dxH(x)eixP−z+〈P |tr(∂iA−)(z+)[z+, 0+](∂iA−)(0+)[0+, z+]|P 〉

+
∫

dxH(x)eixP−z+
x2(P−)2〈P |trAi(z+)[z+, 0+]Ai(0+)[0+, z+]|P 〉. (A.3)

The first line of this equation can be computed without any scattering with transverse
gluon fields. We thus have an explicit expression to reconstruct the full gauge invariant
cross section while only computing the hard part with pure gauge transverse gluons: the
term with non-pure gauge transverse gluons is obtained from the Ward-Takahashi identities
and reads x2(P−)2H(x). In a nutshell, it is possible to compute the full cross section while
only including pure gauge transverse gluons in the Bjorken limit as well.

Our purpose is to have exact results in both limits, but we are not so much interested
in the interpolating region. We can therefore conclude that unless one is trying to get an
explicit proof of QCD gauge invariance for the considered observable, it is not necessary at
the considered precision to explicitly include transverse gluons which are not pure gauge
in the computation.

B Proof of eq. (3.33)

The convolution property for scalar propagators eq. (3.33) follows from the Klein-Gordon
equations. Let us start by multiplying the two equations(

−�z + 2igA−(z)∂+
z

)
Gscal(z, x0) = δD(z − x0) (B.1)

and

Gscal(x, z)
(←−
� z + 2ig

←−
∂+
z A
−(z)

)
= −δD(z − x) , (B.2)

respectively on the left by Gscal(x, z) and on the right by Gscal(z, x0). For a given u+, let
us add them up and integrate over z while imposing z+ > u+. This yields

∫
z+>u+

dDz Gscal(x, z)
(←−
� z −�z + 2ig

←−
∂+
z A
−(z) + 2igA−(z)∂+

z

)
Gscal(z, x0)

=
∫

z+>u+

dDz
[
δD(z − x0)− δD(x− z)

]
Gscal(x, x0). (B.3)

The third and last terms in the brackets cancel each other after integration by part over
z−, neglecting boundary terms at infinity. The same holds for the transverse part of the
d’Alembertian � ≡ 2∂+∂−−∂2, which cancel out between the first and second terms. We
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are thus left with the following:

[
θ(y+−u+)− θ(x+−u+)

]
Gscal(x, y) =

∫
z+>u+

dDz Gscal(x, z)
(
−2
→
∂+
→
∂−+ 2

←
∂+
←
∂−
)
Gscal(z, y)

= −
∫

z+>u+

dDz Gscal(x, z)
(

2
→
∂+
→
∂−+ 2

→
∂+
←
∂−
)
Gscal(z, y)

= −2
∫

z+>u+

dDz ∂

∂z+

(
Gscal(x, z)∂+

z Gscal(z, y)
)

= −2
∫
z+=u+

ddz
∫

dz−Gscal(x, z)∂+
z Gscal(z, y) ,

(B.4)

where we have repeatedly neglected boundary terms at z− = ±∞, z+ = +∞. Finally, for
x+ > y+ only the x+ > u+ > y+ ordering yields a non-vanishing l.h.s:

Gscal(x, y) = 2
∫
z+

dz

∫
dz−Gscal(x, z)∂+

z Gscal(z, y) . (B.5)

Similarly, for y+ > u+ > x+ we have

Gscal(x, y) = −2
∫
z+

dz

∫
dz−Gscal(x, z)∂+

z Gscal(z, y) . (B.6)

C Notes on QED gauge invariance

Let us establish a few useful relations as a corollary for the Ward-Takahashi identities.
First of all, the Klein-Gordon equations in momentum space read:

p2Gscal(p, p0) = (2π)DδD(p− p0)− 2gp+
∫ dDk

(2π)DA
−(k)Gscal(p− k, p0) (C.1)

and
Gscal(p, p0)p2

0 = (2π)4δ4(p− p0)− 2gp+
∫ d4k

(2π)4Gscal(p, p0 + k)A−(k). (C.2)

As a direct consequence of these, one has:

/pDF (p, p0) = i(2π)DδD(p− p0)− igγ+
/p0

∫ dDk
(2π)DA

−(k)Gscal(p− k, p0), (C.3)

and

DF (p, p0)/p0 = i(2π)DδD(p− p0)− ig/pγ+
∫ dDk

(2π)DGscal(p, p0 + k)A−(k). (C.4)

Let us check the Ward-Takahashi (WT) identity for the initial photon by computing qµWµν .
By writing /q = /̀− (/̀− /q), then with the help of eq. (C.4) for the first term and eq. (C.3)
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for the second term, one gets:

qµW
µν = −ie2∑

f

q2
f

∫ dD`
(2π)D

∫ dDk
(2π)D (C.5)

×
{

(2π)DδD(k)〈P |tr[γνDF (−q + `,−q + `+ k)− γνDF (`+ k, `)]|P 〉

− g
∫ dDk0

(2π)D 〈P |tr[Gscal(`+ k, `+ k0)A−(k0)γν(/̀+ /k)γ+DF (−q + `,−q + `+ k)]|P 〉

+ g

∫ dDk0
(2π)D 〈P |tr[γ

νDF (`+ k, `)γ+(−/q + /̀+ /k)A−(k0)Gscal(−q +`−k0,−q + `+ k)]|P 〉
}

A simple change of variables allows to compensate the first term in the brackets with the
second term. We will now use the explicit expression for the Dirac propagators in terms
of scalar propagators in the remaining terms. Note that it is greatly simplified by the
presence of γ+ matrices in the trace:

qµW
µν = ige2∑

f

q2
f

∫ dD`
(2π)D

∫ dDk
(2π)D

∫ dDk0
(2π)D

× trs[γν(/̀+ k̂)γ+(−/q + /̀+ /k)] (C.6)

× 〈P |
{

trc[Gscal(`+ k, `+ k0)A−(k0)Gscal(−q + `,−q + `+ k)]

− trc[Gscal(`+ k, `)A−(k0)Gscal(−q + `− k0,−q + `+ k)]
}
|P 〉.

Finally, we can see that taking the changes of variables `→ `+ k0 and k → k − k0 in the
second term casts it in a form where it explicitely cancels the first term. One is left with
qµW

µν , and the Ward-Takahashi identity thus holds. The proof for the outgoing photon
is identical, and QED gauge invariance is finally confirmed.

D Cancellation of the monopoles

Let us now prove that the instantaneous terms from the quark propagators do not con-
tribute to the amplitude. Let us start from the definition of the hadronic tensor

Wµν = e2∑
f

q2
f

∫ dD`
(2π)D

∫ dDk
(2π)D (D.1)

× 〈P |tr
[
γνDF (`+ k, `)γµDF (−q + `,−q + `+ k)

]
|P 〉.

With the help of the Ward-Takahashi identity we established in appendix C, we can sub-
situte γµ,ν → γµ,ν − nµ,ν2 /q/q+ and restrict ourselves to computing

Wµν = e2∑
f

q2
f

∫ dD`
(2π)D

∫ dDk
(2π)D (D.2)

× 〈P |tr
[(
γν − nν2

/q

q+

)
DF (`+ k, `)

(
γµ − nµ2

/q

q+

)
DF (−q + `,−q + `+ k)

]
|P 〉
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instead. The instaneaneous contribution from the first propagator DF (`+ k, `) reads:

Wµν
inst(1) = e2∑

f

q2
f Re

∫ dD`
(2π)D

i

2`+ (D.3)

× 〈P |tr
[(
γν − nν2

/q

q+

)
γ+
(
γµ − nµ2

/q

q+

)
DF (−q + `,−q + `)

]
|P 〉.

When computing the spinor trace, it is worth noticing that the first and third brackets
both have null components along the + direction. This means that in the final result, the
open + index has to be contracted with the DF contribution. In other words, only the γ−
component of the second DF propagator contributes. Since there is no momentum transfer
in that propagator, it is easy to identify it:

Wµν
inst(1) = e2∑

f

q2
f

∫ dD`
(2π)D

i

2`+ 〈P |trcGscal(−q + `,−q + `)|P 〉 (D.4)

× trs
[(
γν − nν2

/q

q+

)
γ+
(
γµ − nµ2

/q

q+

)
(−q+ + `+)γ−

]
With the spinor trace

trs
[(
γν − nν2

/q

q+

)
γ+
(
γµ − nµ2

/q

q+

)
(−q+ + `+)γ−

]
= 4(q+ − `+)gµν⊥ , (D.5)

we finally get:

Wµν
inst(1) = e2gµν⊥

∑
f

q2
f

∫ dD`
(2π)D

2i(q+ − `+)
`+

〈P |trcGscal(−q + `,−q + `)|P 〉 (D.6)

Similar steps lead to the following result for the contribution of the instantaneous term in
the second propagator DF (−q + `,−q + `+ k):

Wµν
inst(2) = e2gµν⊥

∑
f

q2
f

∫ dD`
(2π)D

2i`+
(q+ − `+)〈P |trcGscal(`, `)|P 〉. (D.7)

We finally need to cancel quantities of the form∫ d`−
2π 〈P |trcGscal(`, `)|P 〉. (D.8)

In coordinate space, the integral sets the propagator to be between two identical light cone
times. The physical argument for the cancellation of the monopoles thus relies on the fact
that there is not a big enough light cone time window for scatterings with the target to
occur, which means monopoles only contribute to disconnected diagrams. This can be seen
mathematically from the integrated version of the Schrödinger equation:

Gscal(x′, x)−G0(x′ − x) (D.9)

= 2g
∫

dDy
∫ dDk

(2π)D e−i(k·y)
∫ dD`

(2π)D e−i`·(x′−y)G0(`) (k ·A)(y)Gscal(k, x).
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Using the standard Cauchy integral from eq. (2.19), the integral over `− sets a strict
ordering between x′ and y. Similar considerations show a strict ordering for x as well,
and one can easily see that light cone times for the scatterings are strictly ordered. If the
initial and final times are equal, the r.h.s. cancels due to the absence of such an ordering
and thus G = G0. This concludes our proof: in the case of monopoles, the integral over `−
sets equal light cone times for the unique scalar propagator, which sets this propagator to
the free propagator. Disconnected contributions without scatterings with the target being
subtracted, monopoles do not contribute.

E Derivation of the leading 1/Q power of the Regge limit

The twist expansion of the dipole scattering matrix element in eq. (7.2) allows us to get
the leading 1/Q power of eq. (6.10) and eq. (6.11):

lim
Q2→∞

FL(xBj → 0, Q2) = 8
∑
f

q2
f

∫ 1

0
dz
∫

ddr αsr
2

d(2π)d [xg(x)]x=0 (E.1)

×
(
zz̄Q2

r2

) d
2−1

z2z̄2Q4[K d
2−1(Q

√
zz̄|r|)

]2
,

and

lim
Q2→∞

FT (xBj → 0, Q2) = 2Q2∑
f

q2
f

∫ 1

0
dz
∫

ddr αsr
2

d(2π)d [xg(x)]x=0 (E.2)

×
(

1− 4
d
zz̄

)
r2
(
zz̄Q2

r2

) d
2 [
K d

2
(Q
√
zz̄|r|)

]2
.

It is not too difficult to take the r and z integrals at this point. However, it is more
instructive to work in momentum space with the appropriate variables. Let us use eq. (3.59)
and eq. (3.60), then, after an integration by parts and a few trivial integrals we finally find
a form and eq. (5.4):

lim
Q2→∞

FL(xBj → 0, Q2) = g2Q2∑
f

q2
f

∫
dx [xg(x)]x=0 (E.3)

×
∫ 1

0

dz
2π

∫ dd`
(2π)d

1
d

16z2z̄2Q2`2(
`2 + zz̄Q2)4 δ(x),

and

lim
Q2→∞

FT (xBj → 0, Q2) = g2Q2∑
f

q2
f

∫
dx [xg(x)]x=0 (E.4)

×
∫ 1

0

dz
2π

∫
dd`

(2π)d δ(x)
(

1− 4
d
zz̄

)
× 1
d

(
d(

`2 + zz̄Q2)2 − 4 `2(
`2 + zz̄Q2)3 + 4 `4(

`2 + zz̄Q2)4
)
.
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In the Bjorken regime, we defined the y ≡ xBj/x variable. Because of the additional
condition that was relating the Feynman x variable to xBj and the loop variables, we could
have equivalently defined it via

`2 = zz̄

(1− y
y

)
Q2. (E.5)

Let us use the definition above in eq. (E.3) and eq. (E.4). Given the absence of angular
dependence, we can perform the angular integral for ` in a trivial way, by rewriting the
integration measure as follows:

∫ 1

0
dz
∫

dd`→ π
d
2

Γ
(
d
2

) ∫ 1

0
dz
∫ ∞

0
d`2

(
`2
) d

2−1
(E.6)

→ π
d
2

Γ
(
d
2

) ∫ 1

0
dz
∫ 1

0

dy
y2

(
zz̄Q2

) d
2
(1− y

y

) d
2−1

.

We find:

lim
Q2→∞

FL(xBj → 0, Q2) = αs
2π
∑
f

q2
f

∫
dx
∫ 1

0
dy
∫ 1

0
dz [xg(x)]x=0

× 1
Γ
(
d
2

) [Q2(1− y)
4πµ2y

] d
2−1

(zz̄)
d
2−1δ(x)

× 16
d
y(1− y), (E.7)

and

lim
Q2→∞

FT (xBj → 0, Q2) = αs
2π
∑
f

q2
f

∫
dx
∫ 1

0
dy
∫ 1

0
dz [xg(x)]x=0 (E.8)

× 1
Γ
(
d
2

) [Q2(1− y)
4πµ2y

] d
2−1 [

(zz̄)
d
2−2 − 4

d
(zz̄)

d
2−1

]
δ(x)

×
[
1− 4

d
y(1− y)

]
.

Note the dimensional regularization parameter µ whose presence was implicit until now.
Finally taking the z integral and expanding around d = 2 + 2ε ' 2, we obtain:

lim
Q2→∞

FL(xBj → 0, Q2) = 4αs
π

∑
f

q2
f [xg(x)]x=0

∫ 1

0
dyy(1− y)

= 2
3
αs
π

∑
f

q2
f [xg(x)]x=0 , (E.9)
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and

lim
Q2→∞

FT (xBj → 0, Q2) (E.10)

= αs
π

∑
f

q2
f [xg(x)]x=0

∫ 1

0
dy

×
{

1
ε

(eγE

4π

)ε [
(1− y)2 + y2

]
+
[
(1− y)2 + y2

]
ln
[
Q2(1− y)

µ2y

]
− 1 + 4y(1− y)

}

= αs
3π
∑
f

q2
f [xg(x)]x=0

[
2
ε

(eγE

4π

)ε
+ 2 ln

(
Q2

µ2

)
− 1

]
.
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