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1 Introduction

Q-balls are a type of non-topological soliton [1–3], which are nonlinear field configurations
confined in a finite space region and are stationary, rather than static, in time. The stability
of Q-balls is usually guaranteed by some Noether charges, rather than topological charges
in the case of topological solitons [4] whose configurations can usually be static. Q-balls
can arise in a large number of field theories, the conditions for them to exist being quite
general. For instance, Q-balls can exist in a self-interacting complex scalar field theory
whose potential grows slower than the quadratic mass term away from the minimum. There
are many flat directions in the potential of the supersymmetric extensions of the Standard
Model, and these flat directions can support Q-balls [5–7]. Indeed, in these supersymmetric
models, Q-balls can naturally form in the early universe as a by-product of Affleck-Dine
baryogenesis [8–16], as they are energetically preferred states in these potentials. Q-balls
forming in the preheating period of inflation with a complex scalar field has also been studied
in [17]. Q-balls copiously generated in the early universe can survive to the present epoch
and act as a dark matter candidate [18–26]. They can also be macroscopic compact objects
with strong self-gravity, in which case they usually go under the name of boson stars [27].

While most of the literature has focused on the simplest Q-ball solutions where its
spatial profile is spherically symmetric, ref. [28] revealed the surprising existence of a tower
of composite Q-balls, which are quasi-spherical in energy density but multipolar in charge
density and whose constituent positive and negative charges swap in time. They were
dubbed charge-swapping Q-balls (CSQs), and are long-lived, meta-stable states, which exist
in theories when the simple spherical Q-ball solution exists. A CSQ can be easily prepared
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by placing positive and negative charge lumps tightly together, which quickly relaxes and
evolves to the quasi-stable CSQ configuration, as the CSQ is a meta-stable attractor solution.
As shown in the case of a U(1) scalar theory with a sextic polynomial potential, after the
initial relaxation, we end up with a CSQ that lasts about 104 oscillations in 2D and about
103 oscillations in 3D for a sextic dimensionless coupling of 1/2 (the lifetime increases
exponentially for larger sextic couplings), during which stage the charge-swapping frequency
of a CSQ remains mostly constant [29]. Afterwards, the quasi-stable CSQ suddenly decays
into an oscillon [30, 31], during which stage the remaining small charges decay exponentially
and the resulting configuration mostly oscillates along one direction in the U(1) field space.
See [32–43] for other forms of excited Q-balls and Q-ball-like configurations.

In this paper, we shall investigate formation, dynamics and longevity of CSQs in
scalar theories with a logarithmic potential (see eq. (2.2)). The logarithmic potential is a
typical quantum effective potential that naturally arises in supersymmetric extensions of
the Standard Model such as in the gravity-mediated supersymmetric breaking scenario [7, 9–
11, 13, 44] or any scenario where the quantum corrected mass term decreases with the
energy scale. The attractor nature of CSQs means that they can be generated from random
initial conditions in the early universe. As we shall see, if a U(1) scalar field forms a VEV,
say an Affleck-Dine condensate [8], in the early universe, after the Hubble scale drops
below the mass of the scalar, the condensate can fragment into positive and negative charge
lumps, which creates the perfect breeding ground for CSQs to form. Different from the
sextic polynomial potential studied in [29], which is the simplest potential that supports
Q-balls, the logarithmic potential is fascinating because it is ultra-soft, distinct from all
other potentials.

To accurately determine the lifetimes of logarithmic CSQs, we focus on CSQs with low
multipoles, which can be prepared in a more controlled form, by superimposing opposite
charge lumps such that their nonlinear cores overlap. The usual choice of periodic boundary
conditions is unsuitable for this purpose because during the initial relaxation and in the CSQ
stage perturbations, or radiation emitted by the CSQs, can introduce artificial instabilities
into the system. Instead, we shall implement the effective Higdon absorbing boundary
conditions [45, 46] in our lattice simulations. A distinct feature due to the ultra-softness of
the logarithmic potential is that the relaxation process emits far less radiation than the
case of the sextic potential. Once formed, the logarithmic CSQs are extremely stable. In
fact, we have yet to capture their decay in our long-time parallelized simulations: in 3+1D
simulations our longest run time is 4.6× 105/m or about 1.1× 105 CPU hours, and in 2+1D
the longest run time is 2.5 × 107/m or about 2 × 104 CPU hours, where m is the mass
scale in the quadratic term. CSQs with unequal opposite charges are also shown to be very
stable, at least for the relatively simple ones. We also investigate the conditions for forming
logarithmic CSQs, performing a comprehensive survey of the parameter space for formation
with frequencies, separations and velocities of the initial lumps. We see that logarithmic
CSQs are relatively easy to form, even when colliding opposite charge lumps with relatively
large impact parameters and/or initial velocities, and there are a few distinct outcomes of
CSQ formation for non-head-on collisions.

– 2 –



J
H
E
P
0
7
(
2
0
2
2
)
0
6
0

The paper is organized as follows. In section 2, we introduce the model we will study
in this paper, a U(1) scalar field with a logarithmic potential. This is a typical effective
potential where the mass term receives logarithmic quantum corrections and which, for
example, can come from supersymmetric extensions of the Standard Model. In section 3,
we show that in such a scenario an Affleck-Dine condensate, a VEV formed in the early
universe, would naturally fragment to complex CSQs, rather than single charge Q-balls.
The simulations performed in this section are in an expanding universe and with random
initial conditions. In section 4, we take a simplified approach to prepare and study CSQs
with low multipoles. This provides a controlled way to extract the most salient properties
of the logarithmic CSQs. We first outline the absorbing boundary conditions and other
numerical setups for our lattice simulations in this section, which are needed to determine
the long term stability of these CSQs. The simulations performed in this section are thus
with a different code built on the LATfield2 framework from scratch. We then investigate
the evolution and dynamics of logarithmic CSQs, and explore the attractor basin for forming
logarithmic CSQs. More complex CSQs are also explored in this section. We summarize
our results in section 5.

2 Model

As mentioned, a class of ultra-soft1 effective potentials naturally arise in the context of
gravity-mediated supersymmetric breaking scenarios, which may be phenomenologically
relevant in the very early universe. This class of potentials is characterized by a logarithmic
interaction term, which arises from including loop effects that incorporate the running of the
potential with energy scale. As the fields along the various flat directions have suppressed
couplings between themselves and with other light fields, we can restrict to one complex
scalar [8, 9]. Specifically, we consider the following model

Lϕ = −(∂µϕ)∗∂µϕ− V (|ϕ|), (2.1)

with

V (|ϕ|) = m2|ϕ|2
(

1 +K ln |ϕ|
2

M2

)
, (2.2)

where ϕ is a complex scalar field, m is the soft-breaking mass at the scale M , and K is a
coefficient that is usually taken to be −αsm2

1/2/8πm2
l̃
∼ −0.01 ∼ −0.1, with αs, m1/2 and

ml̃ being the coupling of the strong interaction, the gaugino mass and the slepton mass
respectively [9]. As we shall do shortly in eq. (2.7), we will redefine the coordinates and the
fields to absorb m and M , so our simulations will be valid for all m and M . Of course, this
potential may arise as a quantum effective potential from some other models with different
values for K, and we may take the view of being largely agnostic about the origin of this
model, as much of the dynamics of the CSQs are insensitive to moderate deviations of the
K values we choose.

1By ultra-soft, we mean that the interaction potential only differs from the mass term by a logarith-
mic factor.
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The global U(1) symmetry implies that we have a Noether current jσ in the theory

jσ = 2Im (ϕ∗∂σϕ) , (2.3)

where jσ is the charge density, and we can define a conserved charge

Q =
∫
j0dx3. (2.4)

The equation of motion for ϕ is given by

∂µ∂
µϕ = ∂V

∂ϕ∗
, (2.5)

and the energy density of this system is

ρ = T00 = (∂αϕ∗∂αϕ+ V ) + 2∂0ϕ
∗∂0ϕ. (2.6)

In the simulations and in the plots of the results, we shall use dimensionless quantities by
redefining the following quantities for convenience:

mxµ → xµ,
ϕ

M
→ ϕ. (2.7)

This is equivalent to taking the coordinates in units of 1/m, the ϕ values in units of M ,
energy densities in units of m2M2 and charge densities in units of mM2.

An important feature of this potential is that it grows slower than the quadratic mass
term, i.e., its potential provides an attractive force between “particles” in this model. This
kind of potential can support Q-ball solutions [2], as for a given total U(1) charge the
localized Q-ball solution is the minimum of the energy functional [3]. That is, in this
potential, “particles” prefer to stick together to form a spherical ball configuration rather
than dissipate to infinity, due to the attractive force. The simple (spherically symmetric)
Q-balls of this model have been studied in [9, 10], and collisions between the simple Q-balls
in this model have also been extensively studied previously [13, 47–54].

As shown in [28], the structure of a Q-ball can actually be much richer. While the
simple Q-ball solution is spherically symmetric, CSQs are composite Q-balls that are excited
and quasi-stable, with their energy densities quasi-spherical and their charge densities
multipolar. Indeed, they exist in theories where the simple Q-balls exist, and for each
theory there is a tower of CSQs with different multipoles. The most significant feature of a
CSQ is that its constituent positive and negative charges swap in time, and the swapping
frequency, which is smaller than the oscillation frequency of the field, remains mostly
constant before the CSQ decays into an oscillon. We can define the CSQ as a state where
its charge swapping frequency remains mostly constant for a prolonged period [29], at least
for low multipolar CSQs.

In section 3, we will see that complex CSQs are the natural products of the Affleck-Dine
fragmentation in the early universe. In section 4, we will investigate the properties, dynamics
and stability of CSQs with low multipoles.
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3 CSQs from Affleck-Dine fragmentation

With favorable conditions, the complex scalar field can acquire a VEV or condensate in
the early universe, which can make up a significant portion of the energy density in the
universe when the condensate starts to oscillate. In Affleck-Dine baryogenesis [8], a baryon
number can be generated by additional small A-terms in the potential, which nevertheless
become negligible at late times. Q-balls are by-products in this mechanism when the
Affleck-Dine condensate fragments. The fragmentation of the Affleck-Dine condensate is a
process where initially the condensate oscillates periodically and the (quantum) random
perturbations in the condensate get exponentially amplified via parametric resonance, and
then the perturbations re-scatter and the dynamics becomes highly nonlinearly. This
is like a preheating scenario, and can be understood numerically via lattice simulations.
By assuming spherical symmetry in Minkowski space, it was found that the Affleck-Dine
condensate first decays into an excited Q-ball solution before settling to a stable Q-ball [11].
However, as we will see in this subsection, the Affleck-Dine fragmentation is actually more
complex, and, in particular, CSQs are formed generically in this process.

To see this, we shall simulate the Affleck-Dine fragmentation in the early universe
with an expanding lattice that follows an FRW evolution driven by the average energy
density of the scalar field. (Fully numerical relativistic simulations are generally not needed,
because scalar lumps are typically not sufficiently heavy to have strong self-gravity [55, 56].)
There are currently quite a few mature codes to simulate preheating-like scenarios in a rigid
FRW universe with scalar fields. In [57], the Affleck-Dine fragmentation with a logarithmic
potential has been simulated with the HLattice code [58] that uses a highly accurate
sixth-order symplectic integrator. However, the focus in [57] was to study the production
of the stochastic gravitational wave background in the model, which interestingly has a
multiple peak structure that is linked to the sizes of the scalar lumps generated during
the fragmentation. Since the gravitational wave production is only sensitive to the energy
density changes in the fragmentation, the charge distribution was not investigated. (Also,
see [17] for an earlier study of a neutral inflaton condensate fragmenting into Q-balls.)
Here we shall re-run the simulations in [57] and plot the charge density distributions in
the fragmentation.

For concreteness, we shall consider the model where K = −0.1, m = 1TeV and M is
chosen to be the reduced Planck mass MP = 2.43 × 1018 GeV. We are using a standard
FRW simulation where the scalar field is evolved fully nonlinearly, and on the spacetime
side only the background metric is evolved via the Friedman equations. The initial scale
factor a = 1, and the initial box size is chosen to be 0.05H−1, H being the initial Hubble
parameter. The initial value for the static scalar condensate ϕ is chosen to be 1016GeV, the
initial momentum of the field is chosen to be 0, and the initial fluctuations of the condensate,
which come from the classicalized quantum perturbations that exited the horizon during
inflation and re-entered the horizon afterwards, are chosen to be Gaussian and of the
size |δϕ/ϕ| = 10−5. We make use of a 2563 lattice with the built-in periodic boundary
conditions, and the initial box size equals 0.05H−1, where H is the initial Hubble parameter,
and dx = 10dt ' 0.078/m. Although in the continuous limit the potential is not singular
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Figure 1. Evolution of the charge density (top row) and energy density (bottom row) in an FRW
universe with Gaussian random initial perturbations from inflation. We see that complex CSQs
can naturally arise in the early universe with the logarithmic potential. Note that, for either the
charge density or the energy density, the numerical scales for the color bars are different for the first
and the last two subplots: the numerical cutoff for the charge density is 10−4 at TimeStep 89 and
802 and is 10−3 at TimeStep 1507 and 2999; the numerical cutoff for the energy density is 50 at
TimeStep 89 and 802 and is 200 at TimeStep 1507 and 2999. 1 TimeStep ' 1.95/m. The initial box
size equals 0.05H−1, H being the initial Hubble parameter.

at ϕ = 0, numerically, it is unstable due to the logarithmic factor. To regulate it, we add
a small ε = 10−24 to the argument of the logarithmic function; we have chosen smaller
values but found no noticeable differences in the simulation results. In figure 1, we have
plotted the charge and energy density for three time instances. We find that a neutral
Affleck-Dine condensate can fragment into positive and negative charges, which quickly
form concentrated lumps, and the lumps are typically complex CSQs, rather than single
charge (excited) Q-balls. Note that in the plots the numerical scales of the color bars vary
at different time steps so as to visualize the perturbations at the time, and one TimeStep is
equal to 250dt ' 1.95/m.

Motivated by the natural production of CSQs in the logarithmic potential from the
Affleck-Dine fragmentation in the early universe, in the next section we will investigate the
properties and long-term evolution of logarithmic CSQs. Our focus will be on the CSQs
with relative low multipoles, as they are easier to construct and ideal to highlight the most
salient properties of the logarithmic CSQs in simple ways. As we will see, these CSQs are
extremely stable, so a periodic boundary condition, such as the one used in the HLattice
code, would be unsuitable for long term evolutions of these CSQs, as perturbations emitted
by the CSQ can bounce back and forth in the simulation box, polluting the determination
of its lifetime. So in the next section, we shall re-write a new code with the LATfield2
framework [59] for these purposes, to adapt absorbing boundary conditions that are essential
to evolve the system for an exceedingly long time.
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Figure 2. Regions (viewed on the z = 0 slice) used to define E, Q, Ec, Qs Q
up and Q+.

4 Properties of logarithmic CSQs

Having observed their potential role to play in the early universe, in this section we will take
a more theoretical view to investigate the properties of CSQs in the logarithmic potential.
Rather than generating them randomly in the early universe, we will now prepare them in a
more controlled way, by simply superimposing opposite charge lumps, so as to expose their
most salient features. We will see that the initial superimposed configuration will relax to
the stationary CSQ phase without shedding away too much energy, unlike the ϕ6 case [29].
To determine the long time stability of the logarithmic CSQs, we implement absorbing
boundary conditions, which effectively prevent the radiation emitted from the CSQ from
significantly perturbing and deforming the CSQ configuration. We find the logarithmic
CSQs are extremely stable both in 3+1D and in 2+1D, and we have not observed their
decay in our long term parallelized simulations. We also survey the parameter space of CSQ
formation for different initial separations, velocities and oscillation frequencies of constituent
lumps, and determine the “attractor basin” for these parameters.

To facilitate our later discussions about energy and charge integrations near the
coordinate origin where the CSQ is placed, we define the following quantities:

• E and Q: the total energy and total charge respectively in the simulation box

• Qup: the charge inside the upper half simulation box

• Q+: the charge obtained by integrating all positive charge densities over the simulation
box

• Ec: the energy inside a sphere, which will be referred to as the “central region”, with
a radius of 14 around the origin (yellow dashed circle in figure 2); the value of 14 is
chosen so as to enclose almost all the energy and charge of the CSQ.

• Qs: the charge inside the upper half of the sphere (solid black semi-circle in figure 2)
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Figure 3. Evolution of the Qs charge (see text below figure 2 for its definition) for simulations
with the periodic boundary condition and the 2nd order Higdon absorbing boundary condition. The
“error of Qs” is the error/deviation of Qs in the simulation with the periodic or absorbing boundary
condition, as compared with a reference simulation where the waves have not propagated to the
boundary of a larger simulation box at the end of the simulation.

4.1 Absorbing boundary condition

The physical models concerned are in an infinite space. However, in our numerical simula-
tions, we can only have a finite grid. Previously, the logarithmic model has been studied
with a periodic boundary condition [28]. While that approach is sufficient to establish the
existence of CSQs as quasi-solitons, it would be insufficient to determine the long term
stability of CSQs for two reasons. First, when we initially prepare the CSQs, we superimpose
lumps of positive and negative charges (of which single Q-ball solutions would be one of the
simplest choices) closely together and let the system relax to a CSQ. As CSQs are attractor
solutions under the time evolution [28, 29], this is found to be an effective method to obtain
CSQs. However, the relaxation process emits some amount of radiation. With a periodic
boundary condition, the initial radiation would bounce back and forth in the box, which
introduces destabilizing perturbations that are not in the physical system we are interested
in. Second, as CSQs are quasi-stable, they emit further radiation as time goes by, which
will also bounce within the box. Without reasonable methods to alleviate the unwanted
radiation arising from the limitation of a lattice simulation, the long term stability of the
CSQs can not be reliably established. This is especially true for the logarithmic potential,
which, as we shall see, gives rise to extremely stable CSQs.

We shall make use of 2nd order Higdon’s absorbing boundary conditions [45, 46] for
our simulation grid. Higdon’s absorbing boundary conditions are designed based on the
idea that a boundary condition that absorbs specific outgoing plane waves entirely will
also absorb other plane waves partially and that we can use multiple of these conditions to
improve the absorbing effect:

M∏
j=1

(
∂

∂t
± cj

∂

∂xi

)
ϕ|xi=a = 0 (4.1)

where a is the location of the boundary and the cj ’s are tunable constants that should be
adjusted for particular problems. For example, the differential operator labelled by j in
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the above formula can exactly absorb plane waves moving in the xi direction with a phase
velocity equal to cj , with the + (−) sign for waves moving to larger (smaller) xi direction.
Although higher order Higdon’s methods have better absorbing effects, they are also more
difficult to implement, due to the presence of higher order differential operators, and
also computationally more expensive, and the second order Higdon’s absorbing boundary
condition is already rather effective for our purposes:(

∂2

∂t2
± (c1 + c2) ∂

∂xi∂t
+ c1c2

∂2

∂(xi)2

)
ϕ|xi=a = 0. (4.2)

which will be the boundary condition we use later.
To showcase the effectiveness of the 2nd order Higdon’s absorbing boundary condition,

in figure 3, we compare the initial evolution of Qs, i.e., the total charge in the y ≥ 0 half
central region (see the text below figure 2), for three different boundary conditions: 1)
periodic boundary condition; 2) 2nd order Higdon’s absorbing boundary condition with
c1 = c2 = 1; 3) the reference simulation in which the lattice is chosen large enough such
that the perturbations have not reached the boundary at the end of the test period, and
which is taken to be the bona fide evolution. All the physical setup and other numeric
parameters are chosen to be the same for the three evolutions. As we see in figure 3, in the
beginning, the three simulations are the same as the perturbations have not propagated to
the boundary; soon after, we can see that the periodic boundary condition and absorbing
boundary condition deviate from the reference case, with the absorbing boundary much
better than the periodic boundary. Additionally, we can see that the deviations from the
reference case modulate with time, especially for the periodic boundary, which is due to the
fact that the initial burst of radiation bounces back and forth in the simulation box and
the CSQ is affected the most when the bounced radiation hits and passes through it. Note
that, thanks to the ultra-soft interactions of the logarithmic potential, the deviations from
the reference case is relatively small during the initial test period, even for the periodic
boundary condition. However, in the long run, without proper absorption of radiation,
the perturbations can accumulate and significantly affect the physical configurations. In
figure 4, we see that, after a time evolution of 2× 107, while the CSQ configuration still
holds up very well for the Higdon’s absorbing boundary condition, the periodic boundary
condition introduces significant noise for the CSQ configuration just after a time evolution
of 1× 105.

4.2 Numerical setup

An interesting feature of the model with a logarithmic potential eq. (2.1) is that it has the
Gaussian profile as its exact simple Q-ball solution [60]:

ϕ(t,x) = e
ω2−1

2K
+ D−1

2 eK
|x|2

2 eiωt, (4.3)

where D is the number of the spatial dimensions and we have chosen the units according
to eq. (2.7). The K parameter is chosen to be −0.1 through out this section. For a
Q-ball generated in the preheating like scenario, ω will be close to m, as determined by
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Figure 4. Charge density at t = 2× 107 with Higdon’s 2nd order absorbing boundary condition
(left plot) and at t = 1× 105 with the periodic boundary condition (right plot) in a 2+1D simulation.
We see that with a periodic boundary condition the CSQ configuration becomes quite noisy after a
moderate amount of time.

the resonance frequency, but here we will not restrict ourselves to this. We shall use this
Gaussian profile as the constituent charge lumps (and its time derivative as the constituent
momentum lumps), but it is worth emphasizing that this is not necessary, and other charged
lumps can also be used in the construction. To get the simplest dipole CSQ configuration,
we can superimpose two opposite charge lumps initially close to each other in symmetric
locations along the y-axis in the center of the simulation box, and then let the configuration
relax to the CSQ. The length of the simulation box is at least three times (often five
times) that of the central CSQ region where most of the energy density is located within,
depending on the parameters of the initial lumps. That is, we adjust the box size when
the initial lumps become noticeably larger. If unstated, simulations in the following are
performed in 3+1D.

Our code in this section makes use of the LATfield2 package [59] which provides
a rudimentary framework for rapid development of parallel codes for classical lattice
simulations, by defining objects such as lattice sites and fields on lattice. The Runge-
Kutta 4th order method is used to evolve the system in time and spatial derivatives are
approximated by 4th order finite differences. As mentioned, we use a 2nd order Higdon’s
absorbing boundary condition to absorb out-going waves to reduce unphysical in-going
reflection of waves, with the absorbing parameters chosen to be c1 = c2 = 1. As the CSQ
is prepared in the origin and along the y axis, for a dipole CSQ, the field is symmetric
with respect to the x-y and y-z plane, and its real (imaginary) component is symmetric
(anti-symmetric) with respect to the z-x plane. To speed up the simulations on top of
the parallelization, we only simulate the first octant with positive x, y, z and implement
mirroring boundary conditions on the x-y, y-z and z-x planes; see figure 5. This provides a
speed-up of a factor of 8 for 3+1D simulations and a factor 4 for 2+1D simulations, where
we simulate the first quadrant. Similar arrangements can also be made for higher multipole
CSQs such as the quadrupole one.
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Figure 5. Thanks to the symmetry of a dipole (and as well as quadrupole) CSQ, we only simulate
the first octant with x, y, z > 0 and implement mirroring boundary conditions on the x-y, y-z and
z-x planes, which provides a speed-up factor of 8.

A numerical subtlety when preparing the initial lumps is that the potential eq. (2.2)
contains a logarithm ln|ϕ|2. While the potential itself is not divergent at |ϕ| = 0, thanks
to the |ϕ|2 factor in front, numerically, we may encounter problems, especially with the
exponential profile eq. (4.3), which gives rise to small numbers due to the eK|x|2/2 factor
with negative K and large |x|, exceeding the double precision. To overcome this, a small
regulator ε is added in, ln(|ϕ|2 + ε), when numerically evolving the equations of motion,
with ε chosen to be 1× 10−60 times smaller than the maximum value of the |ϕ| field. We
have varied this ratio from 1× 10−70 to 1× 10−50 and found no noticeable differences in
the simulation results.

4.3 Stability of CSQs

As we have shown, CSQs may be formed in the early universe from fragmentation of some
VEV in a preheating-like process. For this reason, we will focus on the 3+1D simulations
in this subsection. As a fiducial example, we will investigate the properties of a dipole
CSQ evolved from superimposing a Q-ball with ω = 1.2 and an anti-Q-ball with ω = −1.2
(cf. eq. (4.3)), with an initial separation between their centers equal to 2. We will see that
the properties of CSQs in the logarithmic potential are qualitatively similar to that in the
ϕ6 potential [29], but they are much more stable.

First, let us visualize the charge-swapping behavior of the CSQ in more details. In
figure 6, we plot the evolution sequence of the charge density of the dipole CSQ in about
one charge-swapping period, that is, the process of the positive charge lump becoming
negative and then turning back to being positive. In figure 7, we also plot the evolution of
various charges defined in the text below figure 2. The purple line is the total charge of the
whole region Q and is always zero as expected, since the two initial constituent Q-balls have
opposite charges. The red dot-dashed line, denoted by Qup, is the total charge obtained
by integrating over the up half simulation box, while the blue solid line, denoted by Qs,
which closely trails the red dot-dashed line, is the total charge obtained by integrating over
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(a) t = 2. (b) t = 12. (c) t = 22. (d) t = 32.

(e) t = 42. (f) t = 52. (g) t = 62. (h) t = 72.

Figure 6. Evolution sequence of the charge density of a dipole CSQ. The energy density, which
is not plotted, remains mostly spherically symmetric. The red and blue color denote positive and
negative charges respectively. This sequence is extracted after the CSQ has evolved for a period of
1000. The plots cover about 1/8 of the whole 3D lattice.
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Figure 7. Evolution of various charges. See figure 2 and the text below for the definitions of the
quantities Qs, Qup, Q+ and Q.

the half spherical region defined in figure 2. The dashed yellow line, denoted by Q+, is the
total charge obtained by summing all the positive charges in the simulation box. We see
that most of the charges are within the CSQ, and the charge swapping period of the CSQ
is much longer than the oscillation period of the field, the latter of which gives rise to the
small wiggles on the large modulation that is mostly sinusoidal. We emphasize that while
the charge density of the CSQ is dipolar and swapping, its energy density is approximately
spherically symmetric.

The ultra-solfness of the logarithmic potential means that its relaxation process is
quite different from that in the ϕ6 potential [29]. For the ϕ6 case, after superimposing
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two charge lumps, the initial configuration quickly sheds away a significant amount of
energy and settles down to the CSQ plateau. For the logarithmic case, however, we can
barely see a relaxation process, and only a very small amount of energy ebbs away in the
beginning. Also, during the relaxation, the lump in the ϕ6 case does not have a well-defined
swapping frequency. However, the lump in the logarithmic case starts to swap charges
with a well-defined changing swapping frequency (within a relatively broad band) from the
beginning, and the charge swapping frequency changes slowly for a relatively long time
before settling down to a constant band. More interestingly, due to the ultra-solfness of
the potential, the logarithmic CSQ is extremely stable. (This is of course when a CSQ can
stably form from certain initial conditions, such as the ones we use in this subsection; outside
the attractor basin of a CSQ, a swapping lump disintegrates very quickly; see section 4.5.)
Despite the acceleration of the simulation with parallelization and only evolving the octant,
we have not captured the decay of the logarithmic dipole CSQs in 3+1D or in 2+1D. In
figure 8, we plot the evolution of energies and the charge-swapping period of the dipole
CSQ. We see that in 3+1D the logarithmic CSQ’s lifetime is longer than

(lifetime)3+1D
logCSQ & 4.6× 105/m. (4.4)

To achieve such a long simulation with a 2563 lattice for the first octant, we have used
about 1.1× 105 CPU hours. In 2+1D, the logarithmic dipole CSQs have similar properties,
and their lifetimes are found to be longer than

(lifetime)2+1D
logCSQ & 2.5× 107/m, (4.5)

which is achieved by about 2 × 104 CPU hours. Furthermore, we have also checked the
stability of the quadrupole ones, and found that they are also stable to a similar time scales;
specifically, in 2+1D, the quadrupole logarithmic CSQ’s lifetime is longer than 2.3× 107/m,
which takes 1.8× 104 CPU hours to simulate. We emphasize that for such long simulations
to be reliable, it is essential to utilize absorbing boundary conditions to absorbing outgoing
radiation at the boundary of the simulation box.

It is instructive to see the spectra of the oscillations of the CSQ. To this end, we pick
two representative points, and plot the evolution of the scalar field at these points and their
corresponding Fourier spectra in figure 9. In the top left plot, the field evolution at the
origin, i.e., the center of the CSQ, has been plotted, which has an oscillating real part with
a frequency larger than the charge-swapping frequency and a vanishing imaginary part due
to the dipole symmetry of the CSQ. The bottom left plot shows the Fourier spectrum of
this point’s time evolution for the time from t = 0 to t ∼ 2.7×104. We see that the peaks of
the spectrum are odd multiples of a base frequency ω ≈ 1.16, and decrease according to the
power law of e9.5ω−4.7. The reason why there are only odd multiples of the base frequency
is related to the ϕ→ −ϕ symmetry in the potential [61]. (For the regularized logarithmic
potential, the leading nonlinear term in the equation of motion starts at ϕ3 due to the Z2
symmetry, which does not support even multiples of the base frequency; for a potential
without the Z2 symmetry, the leading nonlinear term in the equation of motion starts with
ϕ2, which supports all multiples of the base frequency.) The two plots in the right column
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Figure 8. Long term evolution of the energy and charge-swapping period of the logarithmic CSQ
in 3+1D. The black line in the left plot, which is essentially invisible, is the total energy obtained
by integrating the whole simulation box, while the blue line, denoted by Ec, is the energy of the
central region (see figure 2). Note that since we are only simulating the first octant, the energy in
the left plot in only 1/8 of the CSQ’s total energy. This is achieved by about 1.1× 105 CPU hours.

show the evolution of the field and its Fourier spectrum at a point in the outer region of
the CSQ. At this point, both the real and imaginary part of the field oscillate in a more
complicated way, and the peaks of the spectrum become broader. Also, the dominant peak
has two sub-peaks (see the inset of the bottom right plot in figure 9), which arises because
the real and imaginary part of the field have slightly different dominant frequencies, and
the difference between the frequencies of the two sub-peaks is approximately the charge-
swapping frequency of the CSQ. To see this, note that the field oscillation can be modeled
to leading order by ϕr ≈ Ar(x) cos(ωrt), ϕi ≈ Ai(x) cos(ωit + φ0), where ϕr and ϕi are
respectively the real and imaginary part of the scalar field, with ωr and ωi their dominant
frequencies respectively (see figure 9). As ωr and ωi are quite close to each other, we can
approximate the 0-th component of the current with j0 ≈ ArAi(ωr +ωi) sin((ωr−ωi)t−φ0),
which means that the difference ωi − ωr is approximately the charge-swapping frequency.

A significant difference between the spectrum plot in the logarithmic potential and
that in the ϕ6 case is that the spectra in the logarithmic case is much noisier. This may be
easily understood in terms of the form of the potential. While the ϕ6 case only has two
nonlinear terms in the equation of motion, the regularized logarithmic potential leads to an
equation of motion with an infinite number of nonlinear terms, and these nonlinear terms
are large and alternating in signs so as to reproduce the ultra-soft logarithmic interaction.
So compared to the ϕ6 case, the higher order nonlinear terms in the logarithmic case can
feed many higher order oscillation modes in the spectra, hence more “noise” near the peaks.

Figure 10 illustrates another important difference between the logarithmic case and the
ϕ6 case. In the model with the ϕ6 potential, we observed [29] that a unique dipole CSQ can
be obtained with different initial lumps (simple Q-balls with different frequencies/energies
or deformed Q-balls or Gaussian lumps) and with different initial separations. Extra energy
in the initial configuration will just dissipate away in the initial relaxation process, leaving
a CSQ with the same energy and the same charge swapping frequency. As we see in
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Figure 9. Evolution of the field and its Fourier spectrum at two spatial points. The left column is
at the center of the CSQ and the right column is at a point in the outer region of the CSQ. In the
Fourier spectrum plots, the vertical dashed magenta lines show the base frequency and the vertical
dashed gray lines show the odd multiples of the base frequency. In the inset of the bottom right
plot, we can see two sub-peaks for the dominant peak, the difference between the two sub-peaks
being the charge-swapping frequency of the CSQ.

figure 10, the situation is rather different in the case of a logarithmic potential, again due
to the ultra-soft-ness of the interacting potential. In these plots, we superimpose together a
simple Q-ball and a simple anti-Q-ball with different initial frequencies, and examine the
resulting CSQ. From the right plot, we see that the resulting CSQ can have vastly different
charge-swapping frequencies, depending on the initial frequencies of the Q-balls. This is an
important feature of the logarithmic potential, and probably suggests that the attractors in
the logarithmic case form a continuous attractor manifold.

In the left plot of figure 10, we trace the dependence of the dominant frequency of Re(ϕ)
and Im(ϕ) (at the same edge point as that in figure 9) on the different initial frequencies of
the constituent Q-balls, and find that the dependence is approximately linear. The slopes
of the two linear scalings are very close, and the dominant frequency of Re(ϕ) is always
slightly smaller than the initial frequency of the constituent Q-balls, while that of Im(ϕ) is
always slightly larger. Of course, the linear scalings are not exact; otherwise the nonlinear
dependence of charge-swapping frequency ωswap on the initial Q-ball frequencies (the right
plot of figure 10) can not be reproduced, as the difference between the dominant frequency
of Re(ϕ) and Im(ϕ) is approximately the charge-swapping frequency.
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Figure 10. Dependence of frequencies of the dipole CSQ on the initial frequencies of the constituent
Q-balls. These frequencies are obtained by performing Fourier transforms on all the datas from t = 0
to t = 2680 and extracting the dominant peak frequency for each initial frequency. The left plot
shows the dominant frequencies of the field components at point (0,6,0). Quasi-linear scaling laws
are observed for the dominant frequencies of Re(ϕ) and Im(ϕ) on the initial frequencies of Q-balls.
The right plot shows the dependence of the charge-swapping frequencies on the initial frequencies
of the Q-balls. One can check that the difference between the dominant frequencies of Re(ϕ) and
Im(ϕ) is to a good approximation the charge swapping frequency of the CSQ.

Figure 11. Charge densities of complex CSQs with unequal charges at t = 1.5× 105. In the left
plot, we initially superimpose an anti-Q-ball with ω = −2.0 and a Q-ball with ω = 2.0 but with its
amplitude deformed by a factor of 1.2, located at (0, 1, 0) and (0,−1.0, 0) respectively. In the right
plot, we initially superimpose two of these anti-Q-balls and two of these deformed Q-balls, located
symmetrically from the center with a distance of 0.5.

4.4 More complex CSQs

In the last subsection, we have mainly focused on the simplest dipole CSQ. In generic
circumstances, such as in the scenario of section 3, a CSQ may have a much more complex
multipolar structure. In this subsection, we will investigate the stability of more complex
CSQs. We find that they are still very stable, at least for the simple ones among these
complex CSQs. A new feature is that now there are also transit CSQs which are charge
swapping for a relatively long time but lose energy faster than normal CSQs.
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(a1) t = 250. (a2) t = 2000. (a3) t = 4000. (a4) t = 7000.

(b1) t = 25. (b2) t = 1500. (b3) t = 3000. (b4) t = 5000.

Figure 12. Two evolution sequences of “transit CSQs” in 3+1D. These transit states continuously
emit radiation and evolve to an unequal CSQ with only one positive and one negative charge lump.
In the first row, 4 unequal charge lumps are initially placed at a distance of 2.0 from the center,
with other parameters the same as those in the right plot of figure 11. In the second row, the initial
configuration is prepared with 25 charge lumps, rather randomly displaced.

We may prepare more complex CSQs with unequal positive and negative charges. The
simplest case is to superimpose a positive lump and a negative lump with an unequal charge,
as in the left plot of figure 11. In the right plot of figure 11, on the other hand, we have
superimposed four lumps with unequal charges. Both of these cases are still very stable,
and we find that their lifetimes are at least 1.5× 105/m, each case taking 3.2× 104 CPU
hours to simulate. These being shorter than the lifetimes in the previous subsection is due
to our limitation of time and computational resources, and it is possible that these unequal
complex CSQs are as stable as the dipole or quadrupole CSQs in the previous subsection.

On the other hand, if we prepare the initial configuration in the right plot of figure 11
with slightly larger distances between the constituent lumps, we will end up with transit
CSQs. Charges are still swapped within these transit states, but they continuously emit
larger amounts of radiation and their total energies do not plateau as normal CSQs would
do. With time, they evolve to an unequal CSQ with just one lump of positive charge and
one lump of negative charge, just like the left plot of figure 11. In fact, a transit CSQ
decaying to an unequal CSQ with two lumps is usually what we encounter when we want
to prepare more complex unequal CSQs via superposition of charge lumps. See figure 12.
While the superposition method is useful to obtain CSQs with fixed multipoles (dipole,
quadruple, etc.), it does not seem to be reliable to construct more complex CSQs. On
the other hand, as we see in section 3, complex CSQs can actually arise naturally in a
preheating-like setup, but in that case, we have little control over what kinds of complex
CSQs are produced. We leave the search for alternative methods to construct complex
CSQs for future work.
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4.5 Attractor basin of CSQ formation

As the CSQs are quasi-stable configurations, they must have an attractor basin of formation.
In this subsection, we investigate how easily logarithmic CSQs can form from colliding
simple Q-balls. Since many salient dynamical properties of logarithmic CSQs in 3D are
very similar to the ones in 2D, we will scan the parameter space in 2D for simplicity.

First, we consider the case where a Q-ball and an anti-Q-ball that have opposite
frequencies ω and −ω and no relative phase are initially placed at a distance apart with a
relative velocity, and then they collide head-on. (To get a Q-ball solution with a velocity,
we can Lorentz boost the solution in eq. (4.3).) In figure 13 we plot the parameter space
for this case where a CSQ can form. The simulation box is in a frame where the Q-ball and
the anti-Q-ball have the same speed and opposite direction. The maximum initial Q-ball
velocity (with respect to the simulation box) that can form a CSQ for the corresponding
initial distance and frequency is plotted with different colors, and the white region is where
a CSQ can not form for any velocity. For most cases in the white region of figure 13, the
Q-ball and the anti-Q-ball go through each other, due to the initial attraction and velocities,
and then scatter away. For the cases just outside the boundary of the colored region, the
Q-ball and the anti-Q-ball will form a kind of transit CSQ where the positive and negative
charges can swap a number of times before dissipating away. We can see that whether a
CSQ can form mainly depends on the initial distance between the center of the two Q-balls.
The two Q-balls should be close so that their nonlinear cores have some overlap for the
CSQ to form. Also, when the frequency ω or the distance is smaller, a large initial velocity
is allowed before they can not form a CSQ. Notice that a Q-ball and an anti-Q-ball with
appropriate phases attract each other when placed far apart, so a large initial distance is to
some extent similar to a large initial velocity. The black data points (crosses, circles and
boxes) on the right of figure 13 are the special cases where a Q-ball and an anti-Q-ball,
both of which have zero velocity initially, collide to form two CSQs moving away from
each other. (The colored region on the left is when the Q-ball and anti-Q-ball collision
results in only one CSQ.) In these cases, before two CSQs are formed and move away in
opposite directions, the positive and negative charges can swap for a number of times. The
crosses, circles and boxes correspond to the cases where the number of swaps is 5, 3 and 2
respectively. Just outside the boundary of the colored region, positive and negative charges
can also swap for a number of times, but during these swaps all the energies in the lump
are quickly radiated away.

For Q-balls that are initially far away or collide with large initial velocities, they will
pass through each other in head-on collisions. However, it may be expected that non-head-on
collisions are more probable in realistic situations, in which case CSQs can still form for
large initial separations or velocities. In figure 14 we chart the parameter space of CSQ
formation for different initial velocities and impact parameters in non-head-on collisions.
From the results presented in figure 13, we see that CSQ formation is insensitive to ω, so
we focus on plotting the non-head-on collisions with an anti-Q-ball with ω = −1.0 and a
Q-ball with ω = 1.0. We see that in this velocity vs impact parameter plot it is the diagonal
strip that supports CSQ formation, i.e., when the initial velocity is smaller, the impact
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Figure 13. Parameter space where a CSQ can form for a head-on collision between a Q-ball
and an anti-Q-ball. The horizontal axis is the distance between the center of the initial Q-ball
and anti-Q-ball, the vertical axis is the absolute value of the frequency of the initial Q-ball and
anti-Q-ball, and the color bar denotes the maximum initial velocities allowed for a CSQ to form
(251 bins for color values). The black symbols (crosses, circles and boxes) on the right are the
special cases where a Q-ball and an anti-Q-ball with zero initial velocities collide to form two CSQs
moving in opposite directions. The crosses, circles and boxes correspond to the cases where there
are respectively 5, 3 and 2 charge swaps in the central lump before the two CSQs are formed and
move away.

parameter has to be larger, and vice versa. Not surprisingly, the results have many different
end-states for the non-head-on collisions. When the initial conditions are unfavorable, the
two balls just pass by each other. In the diagonal strip of the plot, the end state of the
collision can be two or three CSQs, or one CSQ and two simple Q-balls, figure 15. As shown
in the inset of figure 14, we find that it is actually not rare to see three CSQs or one single
CSQ as the end state. In the latter case, the positive and negative charges in the resulting
single CSQ rotate around each other, much like the Tai Chi diagram.

5 Summary

CSQs are composite Q-ball solutions that are localized and long-lived, within which positive
and negative charges swap with a well-defined frequency that is smaller than the oscillation
frequency of the field. They exist in theories where the simple spherically symmetric Q-balls
exist, and yet their fascinating properties are just starting to be uncovered. In this paper,
we have studied the properties of CSQs in a U(1) scalar model with a logarithmic potential,
which has an interesting bearing in the early universe. Indeed, we have shown that complex
CSQs can be copiously generated in the Affleck-Dine fragmentation process via parametric
resonance from small random initial perturbations. This is of course consistent with the
fact that CSQs are attractor meta-stable solutions. We have then investigated logarithmic
CSQs prepared in more controlled ways.
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Figure 14. Parameter space where CSQs can form for a non-head-on collision between a Q-ball
and an anti-Q-ball. The horizontal axis is the impact parameter between the centers of the Q-ball
and anti-Q-ball, and the vertical axis is the initial velocities of the two balls. The scattering results
are shown in figure 15: (a) two balls passing through, (b) two CSQs (green crosses), (c) one CSQs
and two simple Q-balls (red crosses), (d) three CSQs (green dots), (e) one CSQ (black crosses).
Smaller crosses mean that the resulting CSQs have noticeably less charges. The frequencies of the
Q-ball and the anti-Q-ball are 1.0 and −1.0 respectively, and the initial positions of the two balls
are at x = ± ImpactParameter/2 and y = ±10 respectively.

The logarithmic potential is special because it is ultra-soft, which means that the
logarithmic CSQs are extremely stable. We would only expect them to be quasi-stable, as
the simple Q-ball solutions have lower energies for the same charge, but in our parallelized
long-term simulations we have not seen the decay of properly prepared CSQs, either in 3D
or in 2D. This is also irrespective of whether the charge lumps in the CSQ are equal or
not. To determine the lifetimes of CSQs is challenging with long-time lattice simulations
because the lattice has a finite size. To minimize unwanted perturbations in the simulation
box, we impose the 2nd order Higdon absorbing boundary conditions. We have also charted
the attractor basin to form the CSQs from two colliding Q-balls, either head-on or non-
head-on, for three parameters: the frequency of the Q-balls, the initial separation and the
colliding velocity.

Let us summarize the main differences between the logarithmic CSQs and the sextic
CSQs [29]. First of all, the lifetime of a sextic CSQ is typically shorter than that of the
logarithmic CSQ, which allowed us to follow the whole evolution history of a sextic CSQ.
In the first relaxation stage of a sextic CSQ, a large amount of energy sheds away before
entering the CSQ stage when the characteristic charge-swapping feature appears, while for
the logarithmic case well-defined charge swapping appears from the get-go. Also, there can
be many charge-swapping frequencies for the logarithmic CSQs depending on the initial
conditions, while the sextic CSQs only have a unique charge-swapping frequency for various
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(a) (b) (c)

(d) (e)

Figure 15. Different end-states for the non-head-on collisions used to collate the data in figure 14,
the color represents the charge density. The initial data for these plots are: (a) the impact parameter
is 9.0 and the initial velocity is 0.10, (b) the impact parameter is 13.0 and the initial velocity is 0.09,
(c) the impact parameter is 9.8 and initial velocity is 0.18, (d) the impact parameter is 9.0 and the
initial velocity is 0.20, (e) the impact parameter is 11.80 and the initial velocity is 0.142.

different initial conditions. All of these are of course ultimately because of the softness of
the logarithmic potential. It is expected that these differences persist if one is to compare
the logarithmic CSQs and other CSQs with a typical polynomial potential.
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