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Abstract: We study lepton flavor violation (LFV) induced by one-loop box diagrams in
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by both one LQ and one scalar field, even if the tree-level contributions are suppressed.
We consider a concrete model for demonstration, and show that the vector-like fermion
masses have an upper bound for a given LQ mass when the one-loop induced processes are
consistent with the experimental limits. The vector-like fermion mass should be lighter
than 3TeV for 20TeV LQ, if a combination of the couplings does not suppress KL → µe

decay. Our findings would illustrate importance of the box diagrams involving both LQ
and physical modes of symmetry breaking scalars in TeV scale vector LQ models.
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1 Introduction

The Pati-Salam (PS) unification [1] is a compelling new physics scenario, given an ambitious
motivation as a potential pathway toward grand unified theories. In recent years, with
growing interests in empirical hints for new physics found in flavor violating observables,
significant attention has been paid to PS models and their variants with TeV scale symmetry
breaking. Indeed, a vector leptoquark (LQ), appearing as a result of the PS symmetry
breaking, has the same quantum number as a well-studied single mediator solution to the
RK(∗) [2–10] and RD(∗) [11–20] anomalies. Furthermore, such a particle could also account
for the muon g − 2 anomaly [21–25].

In the basic construction of the PS unification, there are two known difficulties in
lowering the PS symmetry breaking scale. Firstly, PS models partly unify quarks and leptons
and hence predict the common mass matrices to them, which obviously contradicts the
observed fermion spectra. Secondly, the vector LQ associated with the symmetry breaking
carries both baryon and lepton numbers and couples quarks and leptons flavor-dependently
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at the tree-level. These couplings easily induce various flavor violating processes that are
surppressed in the Standard Model (SM) [26]. In the conventional setup, the KL → µe

decay brings the most severe limit and pushes the PS breaking scale to be heavier than
1PeV [27, 28].

In recent studies, mainly stimulated by the B meson anomalies, it has been shown
that both problems can be resolved by introducing vector-like fermions mixed with the SM
chiral fermions [29–31]. When specific relations between PS conserving vector-like masses
and those originated from PS breaking are imposed, the vector LQ does not couple to a
SM lepton and quark simultaneously and thus the serious lepton flavor violating (LFV)
processes are absent at the tree-level, thereby allowing the TeV scale LQ. This solution,
however, relies on a 0.1% level tuning between the PS conserving and breaking masses to be
consistent with the strong flavor constraints [31]. We emphasize that the cancellations at
the tree-level are not ensured by any symmetry, and thus loop-corrections possibly induce
flavor violating processes in these models.

Loop-induced flavor violations in new physics models with LQs have been studied in
connection with the B anomalies, e.g. based on a PS model [29], 4321 models [32, 33],
extra dimension model [34] and composite model [35].1 In these works, it turns out that
the b → c transition correlates with the Bs mixing induced by box diagrams with two
LQs or two scalars. The RD(∗) anomaly can be explained consistently only when the
Glashow-Iliopoulos-Maiani (GIM) like mechanism [37] works for those box diagrams.

In this paper, we study another class of box diagrams which involve one vector LQ
and one scalar, and evaluate how such diagrams impact on the LFV processes. As a
demonstration, we consider a simple PS model only with vector-like copies of the SM chiral
fermions and an SU(4)C adjoint scalar field in addition to the three generations of chiral
fermions.2 In this setup, we compute all box diagrams relevant to the flavor violating
processes associated with down-type quarks and charged leptons. Although several types of
the Wilson coefficients turn out to be cancelled due to the GIM-like mechanism, we shall
find that such cancellation does not work for contributions originated from box diagrams
involving both LQ and PS breaking scalar. These contributions, thus, induce the LFV
processes which are severely constrained. We also observe that the unsuppressed pieces
are proportional to the powers of the ratio of the vector-like fermion mass to the LQ mass.
This indicates that the vector-like fermion masses are constrained from above for a given
LQ mass. Interestingly, the vector-like fermions have to reside at the TeV scale or below if
the PS symmetry breaks down at the TeV scale, which is suggested by the anomalies of the
B-meson decays.

This paper is organized as follows. In section 2, we introduce our PS model and explain
how the observed mass spectra are realized by introducing vector-like fermions in addition
to chiral ones. We also schematically explain how the box diagrams involving both LQ and

1See also ref. [36].
2Additional scalar fields are necessary to break the residual SU(2)R×U(1)B−L gauge symmetry as well as

generating neutrino masses and mixings via the see-saw mechanism. We do not discuss its explicit realization
since this would not affect the flavor violations discussed in this work. An explicit model with (10,1,3) is
studied in ref. [31].
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fields spin SU(4)C SU(2)L SU(2)R
L 1/2 4 2 1
FL 1/2 4 2 1
FR 1/2 4 2 1
R 1/2 4 1 2
fR 1/2 4 1 2
fL 1/2 4 1 2
∆ 0 15 1 1
Φ 0 1 2 2

Table 1. The matter content in the Pati-Salam model.

scalar can induce sizable LFV processes. In section 3, the box-induced contributions to
the semi-leptonic operators are evaluated and the non-vanishing coupling structures are
identified. We perform numerical analysis of the one-loop contributions in section 4 and
discuss the impact on the PS model construction. Section 5 is devoted to summary.

2 Pati-Salam model with TeV-scale vector LQ

2.1 Minimal Pati-Salam model

We consider a model with the PS gauge symmetry, SU(4)C × SU(2)L × SU(2)R. The PS
symmetry identifies the lepton number as a fourth color of SU(4)C , and SM chiral quark
and lepton fields in the same SU(2)L representation are unified into chiral fields, Li and
Ri (i = 1, 2, 3), whose representations are respectively (4,2,1) and (4,1,2) under the PS
symmetry. The electroweak (EW) doublet Higgs fields are embedded in a bi-doublet field
of SU(2)L × SU(2)R, Φ, whose representation is (1,2,2). With this minimal content, the
general Yukawa interaction is given by

−Lmin
Y = LY1ΦR+ LY2ε

TΦ∗εR+ h.c., (2.1)

where ε := iσ2 acts on the SU(2)L and SU(2)R indices and Y1 and Y2 are 3 × 3 Yukawa
matrices in the flavor space. A massive vector LQ, Xµ, appears as a result of the SU(4)C →
SU(3)C ×U(1)B−L breaking. The LQ interaction is in the form of

LX = g4√
2
Xµ

(
d
i
Lγ

µeiL + uiLγ
µνiL + d

i
Rγ

µeiR + uiRγ
µνiR

)
+ h.c., (2.2)

which is written in the flavor basis and hence diagonal and universal unless the SU(4)C
breaking effects to the fermion masses are taken into account. The CKM mixing factors
will appear in the left-handed fermion interactions once we move to the mass basis. The
interaction terms in eqs. (2.1) and (2.2) explicitly show two problems inherent in the
minimal PS model. One is that the minimal Yukawa terms in eq. (2.1) predict the same
mass matrices for quarks and leptons, i.e. mij

e = mij
d and mij

u = mij
ν . The other is that the

LQ interaction in eq. (2.2) mediates didj → eiej processes at the tree-level and triggers the
rapid LFV processes, e.g. KL → µe.
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2.2 Schematic picture of tree-level flavor violation

These problems can be resolved by introducing SU(4)C charged scalar fields and vector-like
fermions in addition to Li and Ri. Before proceeding to the general argument, we briefly
demonstrate our basic idea to create the mass splitting with a particular focus on the
down-type quarks and charged leptons. The up-type quark and neutrino masses can be
realized independently of the discussion below. For a demonstrative purpose, we only focus
on a single generation of Li and add one vector-like copy FL,R = (4,2,1) and an SU(4)C
adjoint scalar field ∆ [29, 31]. With this extended content, we can write down additional
interaction terms,

−LM = L (mL + κL∆)FR + FL (ML + YL∆)FR + h.c., (2.3)

where mL and ML are the PS symmetric mass parameters. Decomposing the fermions

L =
(
νL eL
uL dL

)
, FA =

(
NA EA
UA DA

)
, (2.4)

with A = L,R and after the adjoint field develops the vacuum expectation value (VEV)
〈∆〉 = v∆/(2

√
3)diag(3,−1,−1,−1), the mass terms take the form of

−LM = dL

(
mL −

κLv∆

2
√

3

)
DR +DL

(
ML −

YLv∆

2
√

3

)
DR

+ eL

(
mL + 3κLv∆

2
√

3

)
EL + EL

(
ML + 3YLv∆

2
√

3

)
ER + · · · , (2.5)

where we only show the down-type quarks and charged leptons explicitly. When the
cancellation conditions,

mL −
κLv∆

2
√

3
= 0, ML + 3YLv∆

2
√

3
= 0, (2.6)

are imposed, it follows that only (DL, DR) and (eL, ER) have vector-like masses,

−LM =
(
ML −

YLv∆

2
√

3

)
DLDR +

(
mL + 3κLv∆

2
√

3

)
eLER + · · · , (2.7)

whereas dL and EL remain massless which are identified as the SM fermions. These massless
quark and lepton respectively originate in the different PS multiplets, L and FL. This
indicates that unlike the minimal model, they have different Yukawa couplings to the
bi-doublet scalar Φ, which in turn results in different mass matrices for the quark and lepton
after the EW symmetry breaking. The left-handed LQ couplings are now in the form of

LX = g4√
2
Xµ(dLγµeL +DLγ

µEL) + · · · . (2.8)

Since eL and DL are heavy, the LQ coupling always involves heavy fermions, not mediating
the LFV meson decays at the tree-level. It should be noted that the EW gauge interactions
remain unchanged under this exchange of the SU(2)L doublets eL and EL. The mass splitting
of the right-handed quark and lepton can be realized by introducing a corresponding vector-
like copy in an analogous way.
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EL dL

h∆X

DL DR

MD

Figure 1. A schematic picture of regenerating the d→ e transition via the interaction to the radial
mode of the PS symmetry breaking scalar h∆.

2.3 Schematic picture of loop-level flavor violation

Now we have seen that the mass splittings are generated by introducing the vector-like
fermions. Following this method and adding more vector-like families, we can realize the
observed mass spectra and well suppress the tree-level LFV processes in the three-generation
case [31]. On the other hand, this trick predicts a specific interaction structure that will
revive the LFV processes via one-loop box diagrams. To see this, we explicitly keep the
radial mode of ∆ by the replacement v∆ → v∆ + h∆ in eq. (2.5). We then obtain Yukawa
interactions of h∆,

−LM = − κL

2
√

3
h∆dLDR + 3YL

2
√

3
h∆ELER + · · · . (2.9)

Although there is no mass term in the form of dLDR and ELER, the couplings of h∆dLDR

and h∆ELER are present. Thus, the d→ e transition arises via the interaction to the radial
mode h∆,

g4κL

2
√

6MD

h∆XµdLγ
µEL, (2.10)

where we assume the vector-like fermions are heavy and integrate them out (see also figure 1).
We note that EL is a SM-like lepton. Further integrating out the LQ and h∆, we will
obtain semi-leptonic operators that give rise to various LFV processes such as KL → µe

and µ→ e conversion.
One may wonder if other box diagrams involving two LQs or two h∆ scalars can also

induce the same semi-leptonic operators. This is true indeed, but as we will show in the
rest of this paper, such contributions can be suppressed by the GIM-like mechanism. On
the contrary, the LQ-scalar box contributions via the combination of eqs. (2.8) and (2.9)
have no such suppression and thus are unavoidable. The evaluation of the LQ-scalar box
diagrams is the main aim of this paper. In the following, we will study a realistic version
of the PS extension highlighted above and perform analytical and numerical analyses to
derive quantitative limits on the model.
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2.4 Realistic model

In this section, we generalize the above discussion to accommodate the realistic quark and
lepton masses. The matter contents of the model is summarized in table 1. We introduce
NL vector-like SU(2)L doublet fermions FL,R and NR vector-like SU(2)L singlet fermions
fL,R in addition to Li, Ri and Φ. Here FL and fR possess the same quantum numbers as
those of L and R, respectively, and FR and fL are their vector-like pairs. The relevant part
of Lagrangian is given by

−LM = FL (ML + YL∆)FR + L (mL + κL∆)FR + fL (MR + YR∆) fR
+ fL (mR + κR∆)R+ · · · , (2.11)

where all couplings and masses are considered as matrices in the flavor space and the ellipsis
represents the interactions between the fermions and the Higgs bi-doublet field Φ. The
fermions are decomposed into quarks and leptons as

L =
(
νL eL
uL dL

)
, R =

(
νR eR
uR dR

)
, FA =

(
NA EA
UA DA

)
, fA =

(
NA EA
UA DA

)
, (2.12)

where the index A = L,R represents the chirality. The scalar fields obtain non-vanishing
VEVs,

〈∆〉 = v∆

2
√

3

(
3 0
0 −13

)
, 〈Φ〉 = vH

(
cosβ 0

0 sin β

)
. (2.13)

2.5 Mass matrix

We shall see the mass mixing of the fermions, which is directly linked to the coupling
structure of the LQ and scalars. We mainly discuss the flavor violating processes among
the down-type quarks and charged leptons in this paper, so that we only show the relevant
terms.3 Without loss of generality, the fermion mass terms are given by

−Lmass = dLMddR + eLMeeR (2.14)

:=

 dLDL

DL


T  m33 m3R 03×NL

mL3 mLR DdL

0NR×3 DdR
mRL


dRDR
DR

+

 eLEL
EL


T m33 m3R MeE

mL3 mLR MEE

MEe MEE mRL


eRER
ER


where DdA

is an NA ×NA diagonal matrix and mαβ (α, β = 3, L,R) is an Nα ×Nβ mass
matrix of O (vH). Here, Nα = 3 for α = 3. Note that the structure of mαβ is common to
Md andMe due to the PS symmetry. We define the mass basis for the fermions as

d̂A = U †dA
dA, êA = U †eA

eA. (2.15)

The unitary matrices, UfA
(f = e, d), diagonalize the mass matrices as

U †fL
MfUfR

= diag
(
mf

1 ,m
f
2 ,m

f
3 , · · · ,m

f
NL+NR+3

)
. (2.16)

3See ref. [31] for the full detail of the mass mixing and diagonalization including the up-type quarks
and neutrinos.
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The three lightest fermions correspond to the SM fermions and there are NL + NR ex-
tra fermions.

We are interested in the approximate forms of the unitary matrices with η := mαβ/v∆ �
1.4 Hence we only keep the leading contribution by neglecting O(η) corrections. Assuming
the elements of DdL

and DdR
are larger than the other elements, the masses of the chiral

three families (dL, dR) are mostly given by m33 ∼ O(η). Then, (dL, dR) does not mix with
the vector-like families at the leading order in η and can be regarded as SM-like. On the
other hand, the charged leptons (eL, eR) do not correspond to the SM families due to the
vector-like masses MEe and MeE . The vector-like masses for the charged leptons can be, in
general, decomposed as(

MeE

MEE

)
=: VL

(
DeL

03×NL

)
W †R,

(
MEe MEE

)
=: WL

(
0NR×3 DeR

)
V †R, (2.17)

where DeA is a diagonal NA × NA matrix with real positive entries, VA and WA are
(3 +NA)× (3 +NA) and NA ×NA unitary matrices and A denotes the opposite chirality of
A (i.e. A = R,L for A = L,R). Hence, the unitary matrices are approximately given by

UdL
=

13 0 0
0 0 1NL

0 1NR
0

 , UdR
=

13 0 0
0 1NR

0
0 0 1NL

 , (2.18)

UeL =
(

VL 0(3+NL)×NR

0NR×(3+NL) WL

)
P, UeR =

(
0(3+NR)×NL

VR
WR 0NL×(3+NR)

)
P,

with

P :=

 0 0 1NL

13 0 0
0 1NR

0

 . (2.19)

The matrix VL (VR) represents the mixing within the SU(2)L doublets (singlets) in the
left-handed (right-handed) sectors, while the matrix WL (WR) is the mixing within the
SU(2)L singlets (doublets) in the left-handed (right-handed) sector. The vanishing blocks of
UeAP

−1 reflect the fact that the SU(2)L doublet and singlet do not mix each other without
the VEV of Φ. These blocks have non-vanishing entries of O(η) in fact. With the unitary
matrices UdA

and UeA in this form, the mass matrices are approximately diagonalized as

U †dL
MdUdR

=

m33 m3R 0
0 DdR

mRL

mL3 mLR DdL

 =: Dd, U †eL
MeUeR =

m̃33 m̃3R 0
0 DeR m̃RL

m̃L3 m̃LR DeL

 =: De,

(2.20)

where

V †L

(
m33 m3R
mL3 mLR

)
VR =:

(
m̃L3 m̃LR

m̃33 m̃3R

)
, W †LmRLWR =: m̃RL. (2.21)

4If the O (vH) entries are at most the bottom quark mass, we find η . 10−3 for v∆ ∼ 4 TeV.
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Neglecting the sub-dominant effects suppressed by η, the mass matrices of the SM down-type
quarks and charged leptons are determined by m33 and m̃33, respectively. Their singular
values should be consistent with the SM fermion masses. The other elements of mαβ and
m̃αβ give only sub-dominant effects to the mixing matrices as far as the vector-like fermions
are sufficiently heavier than the EW scale.

2.6 Couplings with the vector LQ and scalars

The SU(4)C gauge symmetry is broken by the VEV of the adjoint scalar ∆. The massive
gauge boson Xµ associated with the SU(4)C → SU(3)c × U(1)B−L breaking arises as a
vector LQ. If ∆ is the only source of the SU(4)C symmetry breaking, the LQ mass, mX is
given by

mX = 2√
3
g4v∆, (2.22)

where g4 denotes the SU(4)C gauge coupling. This relation is modified if other scalars
contribute to the SU(4)C breaking.

The LQ couplings are given by the gauge interactions of the LQ to the fermions

LX = g4√
2
Xµ
(
dLγµeL + dRγµeR

)
+ h.c. (2.23)

= Xµ
(
d̂LĝLγµêL + d̂RĝRγµêR

)
+ h.c.,

where the LQ couplings in the mass basis are expressed in terms of the fermion mixing
matrices,

ĝL = g4√
2

ΩL, ĝR = g4√
2

ΩR, with ΩL := U †dL
UeL , ΩR := U †dR

UeR . (2.24)

For a practical purpose, it is useful to decompose the unitary matrices VL,R as

VL =:
(
V3L XL

YL VL3

)
, VR =:

(
XR V3R
VR3 YR

)
, (2.25)

with which we find ΩL,R to be

ΩL =

XL 0 V3L
0 WL 0
VL3 0 YL

 , ΩR =

XR V3R 0
VR3 YR 0
0 0 WR

 . (2.26)

It should be noted that we neglected the O(η) contribution above. The 3× 3 matrix XA in
VA represents the overlap of the SM charged leptons êiA with the first three PS multiplets
Li and Ri which the SM down-type quarks d̂iA mostly originate in. Thus, it follows from
eq. (2.26) that XA stands for the LQ couplings to two SM fermions. As a reminder, taking
XA = 0 corresponds to the exact cancellation in eq. (2.6).

After the SU(4)C breaking, the adjoint scalar ∆ is decomposed into a singlet scalar h∆
and an SU(3)c adjoint scalar ∆8:

∆ = 1
2
√

3

(
v∆ + h∆√

2

)(3 0
0 −13

)
+
(

0 0
0 ∆8

)
, (2.27)
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where 1n denotes an n× n identity matrix. The Yukawa couplings involving h∆ and ∆8
are given by

−L∆ =
∑

f=d,e

√
3
8h∆Q

f
B−LfLY∆fR + ∆8dLY∆ dR + h.c., (2.28)

where Qd
B−L = −1/3 and Qe

B−L = +1 are the B−L charges. The Yukawa couplings in the
mass basis are given by

Ŷ f
∆ =

(
UfL

)†
Y∆U

f
R, f = d, e. (2.29)

There is a close relation between the Yukawa coupling matrices in the gauge basis and the
fermion mass matrices,

Y∆ =
√

3
2v∆

(Me −Md) . (2.30)

Using this relation, the Yukawa matrices in the mass basis are expressed as

Ŷ e
∆ =

√
3

2v∆

(
De − Ω†LDdΩR

)
+O (η) . Ŷ d

∆ =
√

3
2v∆

(
ΩLDeΩ†R −Dd

)
+O (η) . (2.31)

The flavor violating couplings are thus induced via

Ω†LDdΩR ∼

 0 0 V †L3DdL
WR

W †LDdR
VR3 W

†
LDdR

YR 0
0 0 Y †LDdL

WR

+O (mαβ) , (2.32)

ΩLDeΩ†R ∼

 0 0 V3LDeLW
†
R

WLDeRV
†

3R WLDeRY
†
R 0

0 0 YLDeLW
†
R

+O (mαβ) . (2.33)

One can see that the tree-level couplings of h∆ and ∆8 to the SM families are suppressed
by η.

3 Flavor violations from box diagrams

In this section, we look at box contributions to the flavor violating processes, using the LQ
and scalar couplings to the fermions derived in the previous section.

3.1 Tree-level constraints

We first summarize the constraints set by considering only the tree-level LQ exchange,
which motivate us to impose a primary suppression condition. It follows from eq. (2.26)
that the LQ couplings to the SM fermions are given by XL and XR. With these couplings,
the tree LQ exchange induces the semi-leptonic operators in the form of

Leff = g2
4

2m2
X

∑
A,B=L,R

(XA)ik(X†B)lj(diAγµekA)(elBγµd
j
B), (3.1)

– 9 –
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ekel

dj di

X/G X/G

Figure 2. The box diagram involving LQ and Goldstone boson.

leading to various LFV processes, e.g. KL → µe, Bd → τe, Bs → τµ and µ→ e conversion.
We show in appendix B a rough estimate of experimental bounds on XL and XR, assuming
mX = 5TeV and g4 = 1. This set of bounds suggests that if all elements of XA have
comparable size, each matrix element should satisfy∣∣∣(XL)ij

∣∣∣ , ∣∣∣(XR)ij
∣∣∣ . O(10−3). (3.2)

This limit motivates us to impose a condition for the suppressed flavor violation:

(i) XL = XR = 0.

Given this condition, the unitarity of VA requires that NA ≥ 3 and

V3AV
†

3A ' V
†
A3VA3 ' 13. (3.3)

Note that the exchange of h∆ and ∆8 does not cause any flavor violation at the tree-level,
since their Yukawa couplings always contain the heavy fermions as seen in eqs. (2.31), (2.32)
and (2.33). Therefore, once the condition (i) is imposed, the model is free from the flavor
violation at the tree-level.

3.2 Box contributions

We shall here look at box-diagram contributions to the semi-leptonic operators. Let us
start with the box diagrams involving two LQs (figure 2). Under the condition (i), the LQ
couplings to two SM fermions are vanishing (i.e. XA = 0), so that we can only consider the
vector-like fermions in the loop. In the diagrams where the internal fermion mass is not
picked up, the external fermions maintain the chirality. Such contribution is given in the
form of

(g4)4 ∑
I,J≥4

f(me
I ,m

d
J ;mX ,mX)

[
Ω†A
]
lI

[
ΩA

]
Ik

[
ΩB

]
jJ

[
Ω†B
]
Ji
, (3.4)

where A,B = L,R and I, J = 4, 5, · · · , NL +NR + 3 run only over the vector-like fermions.
Given the unitarity of the LQ couplings ΩA, this equation reminds us of the well-known
GIM mechanism. Hence, we now suggest another suppression condition,

(ii) vector-like fermion masses are universal: md
I =: mD and me

I =: mE for I ≥ 4.
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This condition corresponds to DdL
' mD1NL

, DdR
' mD1NR

, DeL ' mE1NL
and DeR '

mE1NR
up to O (η) contributions. Under the conditions (i) and (ii), the loop function

f(me
I ,m

d
J ;mX ,mX) can be pulled out of the summation over the internal fermion species

and then we recognize the GIM-like suppression:∑
I≥4

[
Ω†A
]
lI

[
ΩA

]
Ik
∼
[
V †L3VL3

]
lk
∼ δlk, (3.5)

where eq. (3.3) is used. One can also show that the unitarity assures a similar suppression
in the other combination

∑
J≥4

[
ΩB

]
jJ

[
Ω†B
]
Ji
∼ δji. The flavor violating processes with

i 6= j or k 6= l are therefore suppressed by the unitarity of ΩA.
When the internal fermion mass is picked up, the chirality of the external fermions is

flipped and different coupling combinations, e.g. Ω†LDdΩR, appear in the Wilson coefficients.
Such contribution contains the factor,

mD

∑
I≥4

[
Ω†A
]
lI

[
ΩA

]
Ik
∼ 0, (3.6)

where the condition (ii) is assumed. This result reflects the fact that there is no mix-
ing between SU(2)L singlet and doublet fermions. Thus, any sizable flavor violation
is not induced via the box diagram involving two LQs once the conditions (i) and (ii)
are imposed.

We next examine the box diagrams with h∆ or ∆8 in the loop. We have the diagrams
involving one LQ and one scalar (figure 3) and the diagrams involving only scalars (figure 4).
These diagrams generate the semi-leptonic operators,

iLeff = C ij,kl
V LL

(
d
j
Lγµd

i
L

) (
e lLγµe

k
L

)
+ C ij,kl

V RR

(
d
j
Rγµd

i
R

) (
e lRγµe

k
R

)
(3.7)

+ C ij,kl
V RL

(
d
j
Rγµd

i
R

) (
e lLγµe

k
L

)
+ C ij,kl

V LR

(
d
j
Lγµd

i
L

) (
e lRγµe

k
R

)
+ C ij,kl

SLL

(
d
j
Rd

i
L

) (
e lRe

k
L

)
+ C ij,kl

SRR

(
d
j
Ld

i
R

) (
e lLe

k
R

)
+ C ij,kl

SRL

(
d
j
Ld

i
R

) (
e lRe

k
L

)
+ C ij,kl

SLR

(
d
j
Rd

i
L

) (
e lLe

k
R

)
,

where the flavors of the quarks or leptons are different (i 6= j or k 6= l). Under the conditions
(i) and (ii) and assuming mh∆ = m∆8 for simplicity, the Wilson coefficients are given by

C ij,kl
V AA = 3m2

Em
2
D

8v4
∆m

2
X

Υli
AΥ∗ kjA

[
3
16G1 (mE ,mD;mX ,mh∆)− g

2
4v

2
∆

m2
X

G0 (mE ,mD;mX ,mh∆)
]
,

(3.8)

C ij,kl

V AA
= 0, (3.9)

C ij,kl
SAA = 9m3

Em
3
D

512v4
∆m

4
X

Ψ lk
A

Ψ ji

A
F̃0(mE ,mD;mh∆ ,mh∆), (3.10)

C ij,kl

SAA
= 3m2

Em
2
D

4v4
∆m

2
X

Υli
A

Υ∗ kjA

[
− 3

16G1(mE ,mD;mX ,mh∆)+ g2
4v

2
∆

m2
X

G0(mE ,mD;mX ,mh∆)
]

+ m3
Em

3
D

8v4
∆m

4
X

Ψ lk
A

Ψ∗ jiA F̃0(mE ,mD;mh∆ ,mh∆), (3.11)
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ek

el

dj

di

h∆X/G

ek

el

dj

di

h∆ X/G

ek

el

dj

di

h∆ X/G

ek

el

dj

di

h∆X/G

ek

el

dj

di

∆8
X/G

Figure 3. The box diagrams involving scalars and LQ/Goldstone.

ekel

dj di

h∆h∆

ekel

dj di

h∆h∆

Figure 4. The box diagrams involving only scalars.

where the loop functions F̃0, G0 and G1 are defined in appendix A. The diagrams with
one LQ and one scalar contribute to CV AA and CSAA, while the diagrams with two h∆
contribute to CSAA and CSAA. Note that the box diagrams involving one LQ and one
Goldstone boson are vanishing because of the GIM-like suppression.

The box contributions are expressed in terms of the combinations of the unitary
matrices,

ΥA := Ω†AP3ΩAP3Ω†A, ΨA := Ω†AP3ΩAP3Ω†AP3ΩA, ΨA := ΩAP3Ω†
A
P3ΩAP3Ω†

A
, (3.12)

where P3 := diag (0, 0, 0, 1, · · · , 1) is a projection matrix to the vector-like families. Ψ and Ψ
originate from the diagrams only with the scalars. Using eq. (2.26), the explicit structures
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are given by

ΨL =

 0 0 V †L3WRY
†
LWR

W †LYRW
†
LVR3 W

†
LYRW

†
LYR 0

0 0 Y †LWRY
†
LWR

 , (3.13)

ΨR =

 0 V †R3WLY
†
RWL 0

0 Y †RWLY
†
RWL 0

W †RYLW
†
RVL3 0 W †RYLW

†
RYL

 , (3.14)

ΨL =

 0 0 V3LW
†
RYLW

†
R

WLY
†
RWLV

†
3R WLY

†
RWLY

†
R 0

0 0 YLW
†
RYLW

†
R

 , (3.15)

ΨR =

 0 V3RW
†
LYRW

†
L 0

0 YRW
†
LYRW

†
L 0

WRY
†
LWRV

†
3L 0 WRY

†
LWRY

†
L

 . (3.16)

Since the top-left 3 × 3 blocks are zero, the flavor violating processes via these coupling
structures are suppressed under the conditions (i) and (ii).

The situation is different in the diagrams involving both LQ and adjoint scalars, denoted
by ΥL and ΥR, which are given by

ΥL =

V
†
L3WRV

†
3L 0 V †L3WRY

†
L

0 W †LYRW
†
L 0

Y †LWRV
†

3L 0 Y †LWRY
†
L

 , ΥR =

V
†
R3WLV

†
3R V †R3WLY

†
R 0

Y †RWLV
†

3R Y †RWLY
†
R 0

0 0 W †RYLW
†
R

 .
(3.17)

We find that the SM top-left blocks are 3× 3 unitary matrices and cannot be vanishing.
Note that one of the two indices of Υli

L,R represents quark flavor and the other represents
lepton flavor. Thus, even if the SM blocks in Υli

L,R are diagonal, it does not indicate that
the flavor violating processes with i 6= j or k 6= l are vanishing. Indeed, we will see in the
next section that the rapid KL → µe decay is caused by taking Υli

L,R = δli.
The above results can be understood as follows. Without the SU(2)L breaking effects,

the Yukawa couplings of ∆ with the SM leptons eL,R are schematically given by

∆
(
eLYeLER + ELYeReR

)
+ h.c., (3.18)

where ER (EL) is the SU(2)L doublet (singlet) heavy lepton. Hence, the SM leptons with
different chirality cannot participate in the same Yukawa couplings of ∆ without the SU(2)L
breaking effects. As a result, the non-vanishing box contributions with two scalars are
proportional to Y †eL

YeL or Y †eR
YeR which are diagonal under the condition (ii). Thus, those

diagrams do not induce the flavor violating interaction. On the other hand, once the LQ
interactions of the SM down quarks dL,R

Xµ
(
gdL

dLγµEL + gdR
dRγµER

)
+ h.c., (3.19)
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are considered, the SM down-type quarks can interact with the SM charged leptons via the
vector-like leptons. Such contribution has the coupling structure of YeRgdR

or Y †eL
gdL

, which
corresponds to ΥL,R, and hence is non-vanishing. ΥL,R is also understood as a generalized
version of g4κL in eq. (2.10).

As a side remark, we comment on the flavor violation in four-quark and four-lepton
operators. Based on our finding in this section, the unsuppressed coupling structures
ΥL,R are obtained only from the box diagrams with one LQ and one h∆ (or ∆8). Such
diagrams only show up in the didj → ekel processes and do not induce the four-quark and
four-lepton operators. The latter operators are only generated from the box diagrams with
two LQs or two h∆, providing the coupling structures of ΩAΩ†A, ΩAΩ†

A
, Ψ, or Ψ which only

contain flavor-conserving or vanishing elements for the SM fermions. Therefore, the flavor
violations from the four-quark and four-lepton operators, such as neutral meson mixing and
three-body lepton flavor violating decays `→ `′`′`′′ (`, `′, `′′ = e, µ, τ ), are suppressed under
the conditions (i) and (ii).

4 Phenomenology

We evaluate the LFV processes, especially the leptonic meson decays and µ→ e conversion,
assuming the condition (i) and (ii). We see that there is an upper limit on the vector-
like fermion mass for a given LQ mass when experimental bounds on those processes
are respected.

4.1 Flavor violating leptonic decays of neutral mesons

Rare meson decays Mij → e−k e
+
l , where Mij is a meson composed of djdi, are the key

processes induced from the semi-leptonic operators of our interest. In general, the partial
decay width of Mij → e−k e

+
l is given by

Γ(Mij → e−k e
+
l ) = f2

Mβ

16πmM

[(
m2
M −m2

l −m2
k

)
aij,kl − bij,kl

]
, (4.1)

aij,kl =
∑

A=L,R

∣∣∣mMS
ij,kl
A −mlV

ij,kl
A +mkV

ij,kl

A

∣∣∣2 , (4.2)

bij,kl = 4mkmlRe
[(
mMS

ij,kl
L −mlV

ij,kl
L +mkV

ij,kl
R

) (
mMS

ij,kl
R −mlV

ij,kl
R +mkV

ij,kl
L

)∗]
,

(4.3)

V ij,kl
A := Cij,klV RA − C

ij,kl
V LA

2 , Sij,klA := Cij,klSRA − C
ij,kl
SLA

2 , (4.4)

where fM and mM are a decay constant and mass of a meson M , and

β :=
√

1− 2m
2
l +m2

k

m2
M

+ (m2
l −m2

k)2

m4
M

. (4.5)

Here, we used

〈0|djγµγ5di|Mij〉 = ifMP
µ
M , 〈0|djγ5di|Mij〉 = −ifMmM , (4.6)

– 14 –



J
H
E
P
0
7
(
2
0
2
2
)
0
2
2

M mM [GeV] τM [×1012 ·GeV−1] fM [GeV]

K 0.4976 7.773× 104 0.1552
Bd 5.280 2.308 0.1920
Bs 5.367 2.320 0.2284

Table 2. Values of masses mM , lifetimes τM and decay constants fM of the mesons M =
K,Bd, Bs [38, 39].

observable upper limit (i, j), (k, l) Ref.

BR (KL → µe) 4.7× 10−12 (1, 2), (1, 2) [38]
BR (Bd → µe) 1.0× 10−9 (1, 3), (1, 2) [38]
BR (Bd → τe) 2.8× 10−5 (1, 3), (1, 3) [38]
BR (Bd → τµ) 1.4× 10−5 (1, 3), (2, 3) [38]
BR (Bs → µe) 5.4× 10−9 (2, 3), (1, 2) [38]
BR (Bs → τe) — (2, 3), (1, 3) [38]
BR (Bs → τµ) 4.2× 10−5 (2, 3), (2, 3) [38]

Table 3. LFV decay modes of neutral mesons. The leptonic indices (k, l) are added with its
counterpart (l, k).

where PµM is a four momentum of a meson M and mM := m2
M/(mdi

+mdj
) with mdi

being
mass of quark di. Since the LQ is much heavy compared to the meson, the RG corrections
of the strong coupling constant are included by replacing in eq. (4.6), [30]

mM → mMRM (mX), (4.7)

where

RM (mX) := R (mM ,mc; 3)R (mc,mb; 4)R (mb,mt; 5)R (mt,mX ; 6) , (4.8)

with

R(µ1, µ2;nf ) :=
(
g3(µ1)
g3(µ2)

) 8
11−2nf /3

. (4.9)

Here we assume that all the new particles are much heavier than the top quark and as
heavy as mX . The branching fractions are given by

BR (Mij → ekel) ' τM
{

Γ(Mij → e−k e
+
l ) + Γ

(
Mij → e+

k e
−
l

)}
. (4.10)

In our calculation, we use the values of the meson parameters and the experimental upper
bounds in tables 2 and 3, respectively.
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4.2 µ-e conversion

When the quark flavor diagonal pieces in eq. (3.7) are non-vanishing, µ-e conversion can
also provide a leading constraint. The conversion rate is given by [40]

Γconv = 4m5
µ


∣∣∣∣∣∣
∑

N=p,n

(
C̃NV LVN + mN C̃

N
SLSN

)∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑

N=p,n

(
C̃NV RVN + mN C̃

N
SRSN

)∣∣∣∣∣∣
2
 ,
(4.11)

where

C̃NV L =
∑

q=u,d,s
CqV Lf

q
VN
, C̃NSL =

∑
q=u,d,s

CqSLf
q
SN

+ 2
27f

N
G

∑
Q=c,b,t

CQSL, (4.12)

C̃NV R =
∑

q=u,d,s
CqV Rf

q
VN
, C̃NSR =

∑
q=u,d,s

CqSRf
q
SN

+ 2
27f

N
G

∑
Q=c,b,t

CQSR. (4.13)

The values of nucleon form factors for light quarks are collected in table 4. The form factor for
gluon is related to those for light quarks via the QCD trace anomaly, fNG = 1−

∑
q=u,d,s f

q
SN

.
We ignore the vector-like quark contributions to C̃NSL and C̃NSR through the trace anomaly
since these are suppressed by the vector-like quark masses. In our model, the scalar and
vector coefficients are loop-induced and given in terms of the Wilson coefficients of the
semi-leptonic operators given in eq. (3.7),

Cdi
V L = 1

2(Cii,21
V LL + Cii,21

V RL), Cdi
V R = 1

2(Cii,21
V RR + Cii,21

V LR), (4.14)

Cdi
SL = 1

2mdi

(Cii,21
SLR + Cii,21

SRR), Cdi
SR = 1

2mdi

(Cii,21
SRL + Cii,21

SLL), (4.15)

where the index i is not summed. The current (future) limit is set on the conversion rate
per capture rate [41–44],

BR (µ→ e)Au(Al) = Γconv
Γcapt

< 7× 10−13
(
6× 10−17

)
. (4.16)

4.3 Simplified analysis

We shall compare the box-induced LFV processes with the experimental limits. For
concreteness, we consider NL = NR = 3 which is the minimal option to realize XL = XR = 0.
We neglect the sub-dominant effects suppressed by η, and thus all flavor violating processes
are induced via Υij

L,R which corresponds to the SM blocks of ΥL,R. In this case, Υij
L,R are

3× 3 unitary matrices and are treated as free parameters in our study. We further assume
that the SM down-type fermions are in the mass basis for a given Υij

L,R, i.e.

m33 ' diag (md,ms,mb) , m̃33 ' V †L3mLRVR3 ' diag (me,mµ,mτ ) . (4.17)

We consider for simplicity the relations between the mass parameters

mVL := mE = mD, mh∆ = mX , (4.18)
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fuVp
fdVp

fuVn
fdVn

f sVp
= f sVn

2 1 1 2 0
fuSp

fdSp
fuSn

fdSn
f sSp

= f sSn

0.0191 0.0363 0.0171 0.0404 0.043

Target Sp Sn Vp Vn Γcapt [106 · s−1]

Au 0.0614 0.0918 0.0974 0.146 13.07
Al 0.0155 0.0167 0.0161 0.0173 0.705

Table 4. Values of vector [40] and scalar [45] nucleon form factors. The coefficients SN , VN where
N = p, n are calculated in ref. [46]. The capture rates are given in refs. [46, 47].

where the LQ mass mX is related to v∆ and g4 via eq. (2.22). In our analysis, the input
parameters are thus

mX , mVL, Υij
L , Υij

R, (4.19)

and g4 = 1 is fixed, which is consistent with the strong coupling constant at the TeV scale.
Among the LFV meson decays, KL → µe is the most sensitive to new physics contribu-

tions. The branching fraction is given by

BR (KL → µe) ' τKmKf
2
K

16πm4
X

|C0|2
(

1−
m2
µ

m2
K

)2 ∑
A=L,R

∑
p=1,2

∣∣∣Υ2p
A

∣∣∣2 ∣∣∣∣mKΥ1p
A
− mµ

2 Υ1p
A

∣∣∣∣2 ,
(4.20)

where p = 2, 1 for p = 1, 2 and the electron mass is neglected. The coefficient C0 is defined as

C0 := 9m4
VL

16v4
∆

(1
4G1(mVL,mVL;mX ,mX)−G0(mVL,mVL;mX ,mX)

)
. (4.21)

With the sizable chiral enhancement proportional to mK , we find the branching fraction
to be

BR (KL → µe) ' 3.5× 10−5 ×
∣∣∣Υ2p

A Υ1p
A

∣∣∣2 ( |C0|
1/(16π2)

)2 (5 TeV
mX

)4
, (4.22)

while without the chiral enhancement,

BR (KL → µe) ' 3.0× 10−9 ×
∣∣∣Υ2p

A Υ1p
A

∣∣∣2 ( |C0|
1/(16π2)

)2 (5 TeV
mX

)4
. (4.23)

Hence there should be O
(
10−7) and O (10−3) suppression from the couplings and masses

with and without the chiral enhancement, respectively. It is illuminating to give the scaling
of the loop function C0 with mVL � mX ,

|C0| '
m4

VL
8π2m4

X

(
7
4 + logm

2
VL

m2
X

)
. (4.24)
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In this limit, the branching fraction is proportional to (mVL/mX)8. The mass splitting of
the LQ and the vector-like fermions will help to suppress the branching fraction.

The µ-e conversion rate per capture rate on the gold target is given by

BR(µ→ e)Au =
m5
µ

ΓAu
captm

4
X

|C0|2

 ∑
A=L,R

|Υ2i
A |2

∣∣∣∣∣∣
∑

N=p,n

∑
i=1,2,3

1
2Υ1i

Af
di
VN
VN−

mN

mdi

Υ1i
A
fdi
SN
SN

∣∣∣∣∣∣
2
 ,

(4.25)
where f bVN

= 0 and f bSN
= 2fNG /27. In the vector-dominant case, i.e. |Υ2i

AΥ1i
A
| � |Υ21

A Υ11
A |,

we have

BR (µ→ e)Au ' 3.7× 10−9 ×
( |C0|

1/(16π2)

)2 (5 TeV
mX

)4 ∑
A=L,R

|Υ21
A Υ11

A |2, (4.26)

and in the scalar-dominant case, i.e. |Υ2i
AΥ1i

A
| � |Υ21

A Υ11
A |,

BR (µ→ e)Au ∼ 7× 10−7 ×
( |C0|

1/(16π2)

)2 (5 TeV
mX

)4 ∑
A=L,R

∣∣∣∣∣∣
∑
i

Υ2i
AΥ1i

A

fdi
Sp
/mdi

fdSp
/md

∣∣∣∣∣∣
2

, (4.27)

where fdi
Sp
∼ fdi

Sn
is used. It should be noted that the lighter quark has larger contribution

in the scalar-dominant case due in part to a factor of 1/mdi
.

We consider three simplified cases:

(a) Υij
L = Υij

R = δij , (b) Υij
L =

0 1 0
0 0 1
1 0 0

 , Υij
R =

0 0 1
0 1 0
1 0 0

 , (4.28)

and

(c) Υij
L =

0 0 1
1 0 0
0 1 0

 , Υij
R =

0 0 1
0 1 0
1 0 0

 . (4.29)

In the case (a), there is a large contribution to KL → µe via Υ11
A Υ22

A
, while µ-e conversion

is not induced because Υ2i
AΥ1i

A = Υ2i
AΥ1i

A
= 0. In the case (b), KL → µe and Bd → µe are

not induced and, moreover, the chiral enhanced contributions to Bs → µe are vanishing,
which suggests that the LFV meson decays only provide weak constraints. By contrast, the
µ-e conversion process is induced in this case since Υ23

L Υ13
R = Υ22

R Υ12
L = 1. In the case (c),

KL → µe and µ→ e conversion are absent while Bd, Bs → µe are chiral enhanced. Since
KL → µe and µ→ e conversion give much stronger bounds than the others, the limits on
the case (c) will be the weakest.

Figure 5 shows the values of the branching fractions in the case (a) as a function of
mX (mVL) in the left (right) panel with mVL = 20 TeV (mX = 2 TeV). The solid lines are
our predictions in this model, and the horizontal dashed lines are the experimental upper
limits. Note that the other decay modes not shown in the figures are vanishing in this
analysis. It follows from figure 5 (left) that, with mX = 20 TeV, we find an upper bound on
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Figure 5. Values of the branching fractions in the case (a). See the main text for the detail.
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Figure 6. Values of the branching fractions in the case (b). BR (Bd → τe) ' BR (Bd → τµ) and
BR (µ→ e)Au ' BR (µ→ e)Al in this case.

mVL . 3 TeV from BR (KL → µe), whereas BR (Bd → τµ) and BR (Bs → τe) are much
smaller than the experimental limits of O

(
10−5). It is remarkable that the branching

fractions are suppressed by a factor of m4
VL/v

4
∆ in C0, providing an upper bound on the

vector-like mass for a given LQ mass. When we instead fix the vector-like fermion mass,
the LQ mass scale is limit from below. One can see in figure 5 (right) that the LQ mass
should be heavier than 15 TeV with mVL = 2 TeV.

Figures 6 and 7 are similar plots to figure 5 for the case (b) and (c), respectively. In
the case (b), the values of BR (Bd → τe) (purple) and BR (Bd → τµ) (yellow dashed) are
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Figure 7. Values of the branching fractions in the case (c).

degenerate since the muon mass is still negligible compared to mb and mτ . As regards
the µ → e conversion, BR (µ→ e)Au (cyan) is slightly larger than BR (µ→ e)Al (cyan
dashed). The horizontal dashed lines are the current upper limits on the corresponding
LFV processes and the horizontal dot-dashed line is the future sensitivity to BR (µ→ e)Al.
The µ → e conversion provides the strongest constraint in the case (b), and it requires
mVL . 4.5 TeV for mX = 10 TeV while mX & 6 TeV for mVL = 2 TeV. The future
BR (µ→ e)Al measurement will improve the limits to mVL . 1 TeV and mX & 15 TeV,
respectively. We see the complementarity of LFV meson decays and the µ→ e conversion
in the case (a) and (b), however, there is no contribution to both KL → µe and µ → e

conversion in the case (c). The green, pink, cyan and purple lines are BR (Bs → µe),
BR (Bs → τe), BR (Bd → µe) and BR (Bd → τe), respectively. The current limit reads
mVL . 3 TeV for mX = 5 TeV while mX & 4 TeV for mVL = 2 TeV. Thus 5 TeV LQ is not
excluded in this case when the VL fermions are sufficiently light. This leaves the possibility
of resolving the B anomalies [31].

Let us comment on the LHC constraints on the model. In our analysis, we consider the
vector-like fermions to be heavier than 2TeV which is significantly higher than the current
LHC limits mVL & 1 TeV [48, 49]. Thus we need higher energy colliders, e.g.

√
s = 100 TeV

to explore the allowed parameter space [50–52]. Besides, there is a model-dependent bound
on the light LQ scenario, given the existence of a new neutral gauge boson Z ′ whose mass
is correlated to the LQ mass to some extent. In fact, 2 TeV LQ is excluded by the di-muon
resonance search for Z ′ [53], when the residual SU(2)R × U(1)B−L symmetry is broken
by a scalar field with (10,1,3) under the PS symmetry [31]. Thus, additional careful
consideration will be needed to achieve the LQ lighter than a few TeV.
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Figure 8. Example one-loop penguin contributions to semi-leptonic operators, (djΓdi)(ekΓel) and
(djΓdi)(`Γ`).

4.4 Comments on penguin diagrams

We comment on contributions from one-loop penguin diagrams, which may generate the
flavor violation comparable with the box contributions.5 Figure 8 shows examples of the
contributing diagrams. They fall into two categories; one violates both quark and lepton
flavor and the other violates either of them but not both. The diagrams in the first and
second lines of figure 8 belong to the first category and can generate the quark and lepton
flavor violating operators in the form (djΓdi)(ekΓel), where Γ represents an arbitrary
Lorentz structure. As discussed above, such operators lead to the KL → µe decay and
thus to the severe constraint. These contributions, however, contain a tree-level coupling,
namely Ωjk

L,R, (Ŷ e
∆)kl or (Ŷ d

∆)ji, and are always suppressed under the condition (i).
In the second category, the lepton flavor conserving processes djdi → `¯̀ are induced

via photon and VB−L penguin diagrams (the third line of figure 8) even though we require
the condition (i). Here, let us have a closer look at the coupling structure of such contri-
butions. In the diagrams with the LQ loop, the amplitudes of such processes contain the

5There are two-loop contributions: two sets of one-loop vertex corrections involving a LQ and an adjoint
scalar. However, such contributions are suppressed by the loop factor, couplings and the power of m2

VL/m
2
X

and thus expected to be smaller than the one-loop box contribution.
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following structures∑
I

(ΩL,R)jI(Ω†L,R)Ii f(me
I ,mX),

∑
I

(ΩL)jI(Ω†R)Ii g(me
I ,mX), (4.30)

where f and g are loop functions. They depend on the LQ couplings to the vector-like
families. Assuming the condition (ii), the former contribution is vanishing for i 6= j because
of the unitarity of the LQ couplings ΩL,R, eq. (3.3). The latter contribution is proportional
to (ΩL)jI(Ω†R)Ii ∝ (Ŷ d

∆)ji +O(η), and it is also vanishing. In the case of the h∆ and ∆8
loops, the amplitudes contain the following coupling structures∑

I

(Ŷ d
∆)jI(Ŷ d †

∆ )Ii f ′(md
I ,mh∆),

∑
I

(Ŷ d
∆)jI(Ŷ d

∆)Ii g′(md
I ,mh∆), (4.31)

where f ′ and g′ are different loop functions from f and g. Under the conditions (i) and
(ii), these are proportional to

∑
I(Ŷ d

∆)jI(Ŷ d †
∆ )Ii ' δji and

∑
I(Ŷ d

∆)jI(Ŷ d
∆)Ii ∝ (ΨL)ji ' 0,

respectively, and thus the djdi → `¯̀ processes do not appear. Moreover, other diagrams
belonging to the second category can also induce the lepton flavor violating processes, such
as µ→ e conversion and µ→ eγ, but one can readily show that these are suppressed in a
similar manner. We thus conclude that the conditions (i) and (ii) are sufficient to suppress
all penguin contributions in the model.

5 Summary

In this paper, we study the one-loop contributions to the flavor violating processes, especially
the LFV meson decays and µ → e conversion, in the PS model with vector-like families.
These processes are known to strongly constrain the scale of the PS symmetry breaking.
We clarify the conditions to suppress these processes up to at the one-loop level:

(i) LQ couplings to the SM families are vanishing, i.e. XL = XR ∼ 0,

(ii) Masses of vector-like down-type quarks and charged leptons are individually universal,

(iii) ΥL and ΥR have a certain structure such that KL → µe and µ → e conversion are
sufficiently small.

These are the conditions at the leading order in η := mαβ/v∆.
The condition (i) is required to suppress the flavor violating processes mediated by

the tree-level LQ exchange, while the one-loop box diagrams with two LQs can induce
those processes only with the condition (i). Note that the tree-level flavor violations via
the scalar fields are suppressed independently of the condition (i), as shown in eqs. (2.32)
and (2.33). Once we impose the condition (ii) as well as the condition (i), the flavor violating
processes from the box diagrams with two LQs are suppressed due to the unitarity of the
LQ gauge couplings, in analogy with the W boson coupling in the SM. We also argued
that four-quarks, four-leptons and penguin operators are suppressed due to the unitarity.
Therefore, the flavor violating processes like neutral meson mixing, µ→ eγ and µ→ eee

are all suppressed under the conditions (i) and (ii).
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Nonetheless, the condition (iii) is necessary to alleviate the constraints from the LFV
processes induced by the box diagrams involving both vector LQ and scalars. We found that
those diagrams are not suppressed even with the conditions (i) and (ii). Such contribution
is well represented by a coupling structure ΥA (A = L,R) defined in eq. (3.17), whose SM
blocks Υij

A are the 3× 3 unitary matrices. Because of the unitarity of Υij
A , we cannot realize

Υij
A = 0 and hence the flavor violation via this coupling structure is unavoidable. As a

result, Υij
A should have a structure that sufficiently suppresses the LFV processes, especially

KL → µe and µ→ e conversion. This is what the condition (iii) means.
To evaluate the change of the limits depending on the Υij

A structure, we studied three
simplified cases given in eq. (4.28). In the case (a), the structure of Υij

A allows the chiral
enhanced KL → µe decay, and hence O (10 TeV) LQ mass is required to be consistent with
the experimental limit. It is remarkable that there are upper bounds on the vector-like
fermion masses of O (TeV) to respect KL → µe. This result would encourage direct searches
for the vector-like fermions at the LHC and other future collider experiments to test this
scenario. In the case (b), KL → µe is not induced because of the structure of Υij

A , but
µ→ e conversion arises. The resulting lower limit on the LQ mass is 6TeV currently and
it will be improved to 15TeV at the future experiment with the aluminum target. In the
case (c), both KL → µe and µ→ e conversion are absent, so Bd → µe gives the strongest
limit. Since the experimental limits are much weaker for this decay mode, 5 TeV LQ is
not excluded.

In conclusion, while we suggested the conditions (i)-(iii) to suppress the flavor violating
processes, it will be interesting to study what will be caused by the violation of these
conditions. In particular, the tree-level contributions, namely the violation of the condition
(i) is required to address the RK(∗) anomaly, so the full numerical analysis with both
tree-level and one-loop contributions is crucial. Furthermore, this model could perhaps
explain the anomaly in muon g− 2 via the loop diagrams involving LQ, vector-like fermions
and exotic scalar particles. We leave those extended studies including the violation of three
conditions for future work.
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A Loop functions

The loop functions are shown in this appendix. First, we define

Fn(m1,m2;M1,M2) :=
∫

d4p

(4π)4
p2n

(p2 −m2
1)(p2 −m2

2)(p2 −M2
1 )(p2 −M2

2 )
. (A.1)

The functions with n = 0, 1 are relevant to our study, which are given by

F0(m1,m2;M1,M2) = −i
16π2

1
M4

1
{F (x1, x2, η) + F (x2, x1, η) + F (η, x1, x2)} , (A.2)

F1(m1,m2;M1,M2) = −i
16π2

1
M2

1
{x1F (x1, x2, η) + x2F (x2, x1, η) + ηF (η, x1, x2)} , (A.3)

where x1 = m2
1/M

2
1 , x2 = m2

2/M
2
1 , η = M2

2 /M
2
1 . The function F is defined as

F (x1, x2, η) = x1 ln x1
(x1 − 1)(x1 − x2)(x1 − η) . (A.4)

In the simplified analysis in section 4, we consider the case of m := m1 = m2 and
M := M1 = M2. In this case, F0 and F1 take the simplified forms,

F0(m,M) = −i
16π2M4

2(1− x) + (1 + x) log x
(1− x)3 , (A.5)

F1(m,M) = −i
16π2M2

1− x2 + 2x log x
(1− x)3 , (A.6)

where x := m2/M2. The dimensionless functions Gn are defined as the linear combinations
of F0 and F1,

m2n−4
X Gn(mE ,mD;mX ,mh∆) := 3

8Fn(mE ,mE ;mX ,mh∆) + 11
8 Fn(mD,mD;mX ,mh∆)

+ 1
4Fn(mE ,mD;mX ,mh∆). (A.7)

We also define F̃0(mE ,mD;mX ,mh∆) := m4
XF0(mE ,mD;mX ,mh∆), where F̃0 is a dimen-

sionless function.

B Tree-level constraints

The tree-level LQ exchange induces the LFV processes. In particular, e−µ flavor violating
phenomena strongly constrain the coupling products involving the first two generations.
The prime constraints arise from the LFV meson decays, especially KL → µe. The µ−e
conversion process also brings a stringent constraint on the quark-flavor-diagonal coupling
products. In order to avoid the experimental constraints, those couplings need to be smaller
than O(10−2∼3), assuming that all the couplings have a comparable size. See table 5, where
we fix mX = 5 TeV. Furthermore one-loop induced µ → eγ can constrain the coupling
products. It however depends on the LQ couplings to the vector-like quarks [31], so we do
not discuss it further. For the more generic analysis readers are referred to ref. [54].
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coupling product upper limit process bound∣∣∣∣(ĝXdL

)
de

(
ĝXdR

)
sµ

∣∣∣∣ , ∣∣∣∣(ĝXdR

)
de

(
ĝXdL

)
sµ

∣∣∣∣ . 10−5 KL → µe [38]∣∣∣∣(ĝXdL

)
se

(
ĝXdR

)
dµ

∣∣∣∣ , ∣∣∣∣(ĝXdR

)
se

(
ĝXdL

)
dµ

∣∣∣∣ . 10−5 KL → µe [38]∣∣∣∣(ĝXdL

)
de

(
ĝXdL

)
dµ

∣∣∣∣ . 10−4 µ−e conversion [41]∣∣∣∣(ĝXdR

)
de

(
ĝXdR

)
dµ

∣∣∣∣ . 10−5 µ−e conversion [41]∣∣∣∣(ĝXdL

)
de

(
ĝXdR

)
dµ

∣∣∣∣ . 10−5 µ−e conversion [41]∣∣∣∣(ĝXdL

)
se

(
ĝXdR

)
sµ

∣∣∣∣ . 10−5 µ−e conversion [41]

Table 5. The upper limit on the coupling products from the µ−e flavor violating processes.

The h∆ and ∆8 exchanging also contributes to the flavor violating processes. The
scalar couplings with the SM fermions are generally flavor violating and linear to(

ĝXdL

)
iD
me
D

(
ĝXdR

)†
Dj
,
(
ĝXdL

)†
iD
md
D

(
ĝXdR

)
Dj
. (B.1)

As we see in the main text, the scalar couplings are related to the LQ couplings involving
heavy fermions as well as SM fermions. Taking into account the tree-level exchanging of h∆
and ∆8 and fixing mh∆ = m∆8 = 5TeV, we can also derive the experimental constraints on
the scalar couplings

1
3

√
3
8
(∣∣∣Ŷ d

∆ ij

∣∣∣) ≤
5× 10−3 10−5 10−3

10−5 1× 10−2 5× 10−3

10−3 5× 10−3 1

 , (B.2)

√
3
8
(∣∣∣Ŷ e

∆ ij

∣∣∣) ≤
 1 1× 10−3 0.5

1× 10−3 1 0.5
0.5 0.5 1

 . (B.3)

The upper bounds on the off-diagonal elements of (Ŷ d
∆)ij are estimated using K-K, B-B

and Bs-Bs mixings. The bounds on the off-diagonal elements of (Ŷ e
∆)ij are derived from

µ→ 3e, τ → ```′, by setting all diagonal elements to unity. The bounds on the diagonal
elements of (Ŷ d

∆)ij are derived from the µ-e conversion with the maximally allowed (Ŷ e
∆)eµ.

As discussed in the main text, the conditions (i) and (ii) suppress those dangerous couplings.
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