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Abstract: In this paper we identify a new family of black holes and solitons that lead
to the exact integration of scalar probes, even in the presence of a non-minimal coupling
with the Ricci scalar which has a non-trivial profile. The backgrounds are planar and
spherical black holes as well as solitons of SU (2) × SU (2) N = 4 gauged supergravity
in four dimensions. On these geometries, we compute the spectrum of (quasi-)normal
modes for the non-minimally coupled scalar field. We find that the equation for the radial
dependence can be integrated in terms of hypergeometric functions leading to an exact
expression for the frequencies. The solutions do not asymptote to a constant curvature
spacetime, nevertheless the asymptotic region acquires an extra conformal Killing vector.
For the black hole, the scalar probe is purely ingoing at the horizon, and requiring that
the solutions lead to an extremum of the action principle we impose a Dirichlet boundary
condition at infinity. Surprisingly, the quasinormal modes do not depend on the radius
of the black hole, therefore this family of geometries can be interpreted as isospectral in
what regards to the wave operator non-minimally coupled to the Ricci scalar. We find both
purely damped modes, as well as exponentially growing unstable modes depending on the
values of the non-minimal coupling parameter. For the solitons we show that the same
integrability property is achieved separately in a non-supersymmetric solutions as well as
for the supersymmetric one. Imposing regularity at the origin and a well defined extremum
for the action principle we obtain the spectra that can also lead to purely oscillatory modes
as well as to unstable scalar probes, depending on the values of the non-minimal coupling.
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1 Introduction

Quasinormal modes play a very important role both in astrophysical as well as in theoretical
contexts. In the former, they dominate the ringdown dynamics of the final black hole
obtained from the fusion of compact objects, and a direct measurement of the mode
with the lowest damping helps obtaining the mass and angular momentum of the final
object [1]. In the latter, black hole quasinormal modes, within the context of holography,
allow for the computation of relaxation properties of the dual field theory living at the
boundary of AdS [2, 3]. It is well-known that even for simple black holes, as for example for
Schwarzschild-(A)dS the computation of quasinormal modes relies on numerical techniques.
These techniques are fully reliable, notwithstanding there are particular interesting cases
where the spectrum of quasinormal frequencies can be found analytically which are useful to
explore the relaxation properties of perturbations outside a black hole in an exact manner
as one modifies the parameters that define the background geometry. A partial list of such
cases is given by [4]–[16]. In this paper, we identify a new family of black holes and solitons
that allow for the exact integration of non-minimally coupled scalar probes, in the context
of SU (2)× SU (2) N = 4 gauged supergravity in four dimensions. This theory, also known
as the Freedman-Schwarz [17] model can be obtained from 10D supergravity compactified
on S3 × S3 [18, 19]. The action principle reads

S=
∫
d4x
√
−g
[
R

4 −
1
2∂µφ∂

µφ− 1
2e

4φ∂µa∂
µa+ e2

A+e2
B

8 e2φ− e
−2φ

4
(
AiµνAiµν+BiµνBiµν

)
−a

4
εµνρσ√
−g

(
AiµνA

i
ρσ+BiµνBi

ρσ

)]
(1.1)

and the axion field a can consistently be set to zero provided the following equation of
Pontryagin densities for the SU (2) gauge fields holds

εµνρσ
(
AiµνA

i
ρσ +BiµνB

i
ρσ

)
= 0 . (1.2)
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The field strength for the gauge fields are given by

Aiµν = ∂µA
i
ν − ∂νAiµ + eAεijkA

j
µA

k
ν and Bi

µν = ∂µB
i
ν − ∂νBi

µ + eBεijkB
j
µB

k
ν .

(1.3)
In this work we will focus on the computation of quasinormal modes of scalar probes

on black holes of this theory as well as on the computation of normal frequencies of the
same probe fields on the gravitational soliton recently constructed in [23], both in the
supersymmetric and non-supersymmetric cases. We will deal with solutions with vanishing
axion field, and since the self-interaction of the dilaton does not have a local extremum, the
solutions have an asymptotic structure that has less symmetry than a maximally symmetric
spacetime, although we will see the emergence of an asymptotic conformal Killing vector.

2 Scalar probes on black holes

The two families of black holes we will be interested in this section were constructed in [20].
The metric in both cases, namely spherical and planar, reads

ds2 = −αr2
(

1−
r2

+
r2

)
dt2 + dr2

α

(
1− r2

+
r2

) + r2dΣ2
2 , (2.1)

where Σ2 is a two-dimensional Euclidean manifold of constant curvature γ = +1, 0.
In the spherically symmetric case, γ = +1 and dΣ2

2 = dθ2 + sin2 θdϕ2 is the line element
of the round two-sphere, while the constant α, the dilaton and gauge fields read

α = 1
2
(
e2
A + e2

B

) (
H2
A +H2

B

)
+ 1

4 , (2.2)

φ (r) = − ln

 r

2
√
H2
A +H2

B

 , (2.3)

Ai[1] = −HA cos θdϕδi3 , (2.4)

Bi
[1] = −HB cos θdϕδi3 . (2.5)

In the planar case, γ = 0, dΣ2
2 = dx2 + dy2 the gauge fields vanish and

α = e2
A + e2

B

8 , (2.6)

φ (r) = − ln (r) . (2.7)

The black holes (2.1) approach the background

ds2
back = −αr2dt2 + dr2

α
+ r2dΣ2

2 , (2.8)

with the following asymptotic behavior

δgtt = O (1) , δgrr = O
(
r−2

)
. (2.9)
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Notice that the background (2.8) has an extra conformal Killing vector generated by r → λr.
The temperature of this black hole has the intriguing property of being independent of the
r+, namely a constant, and it is given by

T = α

2π . (2.10)

As we show below, a similar feature occurs with the quasinormal frequencies of the non-
minimally coupled scalar on this geometry, which do not depend on r+, leading to isospectral
geometries in what regards to such operator. Wald’s formula for the entropy yields

S = A

4G = πr2
+Vol (Σ) , (2.11)

where Vol(Σ) is the volume of the Euclidean manifold Σ2 and we have normalized the
Einstein term in the action (1.1) such that G = (4π)−1. First law

dM = TdS , (2.12)

provides the following value for the mass of the black hole

M =
αr2

+Vol (Σ)
2 . (2.13)

Here, as an avatar for the study of the stability of these black holes, we will consider a
real scalar probe, coupled to the Ricci scalar in a non-minimal manner:

�Φ− ξRΦ = 0 , (2.14)

on the background (2.1).
Given the local isometries of the spacetime, the scalar probe admits a mode separation

which is given by

Φ
(
t, r, yi

)
= Re

(∫
dω
∑
A

e−iωtHω,A (r)YA (y)
)
, (2.15)

where yi are the coordinates on the Euclidean manifold Σ2 and Yk (y) are harmonic function
on such manifold, which are labeled by the multi-index A. Concretely, for the spherically
symmetric case the harmonic functions are standard spherical harmonics, namely A = {l,m}
and they fulfil

∇2
S2Yl,m = −k2Yl,m = −l (l + 1)Yl,m , (2.16)

while for the planar case, the harmonic functions are trivially given by plane waves of
the form

YA = Y~k = Ce−i
~k·~y , (2.17)

which fulfil
∇R2Y~k = −k2Y~k = −

(
k2

1 + k2
2

)
Y~k . (2.18)

Hereafter, for brevity we introduce the notation Hω,A (r) = H (r).
Notice that since the Ricci scalar of the spacetime has a non-trivial radial profile

R = 2γ − 6α
r2 −

2αr2
+

r4 , (2.19)

– 3 –



J
H
E
P
0
7
(
2
0
2
2
)
0
2
1

the non-minimal coupling term in (2.14) cannot be seen as an effective mass term. In spite
of this fact, we will show that the equation for the radial profile of the scalar probe H (r)
can be solved in an exact manner in terms of hypergeometric functions.

Introducing the separation (2.15) on the scalar field equation (2.14) as a probe field on
the black hole metric (2.1), after performing the change of variables

r = r+

(1− x)1/2 , (2.20)

which maps the region of outer communication r ∈ [r+,+∞[ to x ∈ [0, 1[, leads to the
following equation for the radial profile

d2H (x)
dx2 + 1

x

dH (x)
dx

+
(

ω2

4α2x2 (1− x)2 −
k2

4αx (1− x)2 −
(αx− 4α+ γ)
2αx (1− x)2 ξ

)
H (x) = 0 .

(2.21)
Remarkably, this equation admits a solution in terms of hypergeometric functions. After
imposing ingoing boundary condition at the horizon one obtains

H (x) = C1x
− iω

2α (1− x)
α+
√

(1−6ξ)α2+2ξαγ+αk2−ω2
2α F (a1, b1, c1, x) , (2.22)

with

a1 = 1
2 −

iω

2α −
√

2ξ
2 +

√
(1− 6ξ)α2 + 2ξαγ + αk2 − ω2

2α , (2.23)

b1 = 1
2 −

iω

2α +
√

2ξ
2 +

√
(1− 6ξ)α2 + 2ξαγ + αk2 − ω2

2α , (2.24)

c1 = 1− iω

α
. (2.25)

Using Kummer identities, the ingoing solution (2.22) can be rewritten as

H (x)

=C1x
− iω

2α (1−x)
α+
√

(1−6ξ)α2+2ξαγ+αk2−ω2
2α

[Γ(c1)Γ(c1−a1−b1)
Γ(c1−a1)Γ(c1−b1)F (a1, b1,a1+b1+1−c1,1−x)

+(1−x)c1−a1−b1 Γ(c1)Γ(a1+b1−c1)
Γ(a1)Γ(b1) F (c1−a1, c1−b1,1+c1−a1−b1,1−x)

]
, (2.26)

which near infinity, as a function of the radial coordinate r, leads to

H (r) ∼r→∞
Abh
rη+

(
1 +O

(1
r

))
+ Bbh
rη−

(
1 +O

(1
r

))
(2.27)

where

Abh = Γ (c1) Γ (c1 − a1 − b1)
Γ (c1 − a1) Γ (c1 − b1) , (2.28)

Bbh = Γ (c1) Γ (a1 + b1 − c1)
Γ (a1) Γ (b1) , (2.29)

and

η± = 1±

√
(1− 6ξ) + (2γξ + k2)

α
− ω2

α2 . (2.30)
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This implies that different modes will have polynomial asymptotic expansions at infinity
in the radial coordinate, with an exponent that is frequency dependent. This is in contrast
with the asymptotically flat case for which R (r) ∼ e±iωr, and with the asymptotically
AdS case for which η± = ∆± being independent of both the angular momentum k and
the frequency ω. Since in general ω ∈ C, in order to understand the possible boundary
conditions at infinity, we will require the action principle to attain an extremum on the family
of solutions that are ingoing at the horizon. The action principle leading to (2.14) reads

I =
∫
d4x
√
−g

(
−1

2∇µΦ∇µΦ− 1
2ξRΦ2

)
, (2.31)

and its on-shell variation with respect to the scalar field leads to the boundary term

δI = −
∫
M
d4x
√
−g∇µ (∇µΦδΦ) = −

∫
∂M

d3x
√
−γn̂µ∇µΦδΦ , (2.32)

where γ is the determinant of the induced metric on the boundary, while n̂µ is its unit
normal vector. The boundary is the union of the spatial surfaces at t = ti and t = tf , with
the surface r = r0 with r0 →∞. As usual, the contribution of the former vanish since we
impose δΦ (ti, r, y) = δΦ (tf , r, y) = 0, while the latter leads to

− lim
r0→∞

r3∂rHδH|r=r0 = lim
r0→∞

η+A
2
bh

r2η+−2 + η−B
2
bh

r2η−−2 + AbhBbh (η+ + η−)
rη++η−−2

∣∣∣∣∣
r=r0

δC1 (2.33)

One can check that η+ + η− − 2 vanishes. Notice also that

2η± − 2 = ±

√
Υ− ω2

α2 , (2.34)

with Υ = (1 − 6ξ) + (2γξ+k2)
α . The exponents of the radial coordinate r in (2.33), are

such that Re (2η− − 2) < 0 and Re (2η+ − 2) > 0 on the whole complex ω-plane, ex-
cept on a subset of zero measure. One of such subsets, for Υ > 0, is defined by
B =

{
ω ∈ R s.t. ω ≥ |α|

√
Υ ∨ ω ≤ −|α|

√
Υ
}
. If ω ∈ B, the exponents in (2.33) are

purely imaginary (or constants if the inequalities are saturated) and therefore lead to oscil-
lations (constants) as r →∞ and in consequence, it is impossible to impose an asymptotic
behavior leading to a real extremum of the action principle if ω ∈ B. We should therefore
remove such regions of the complex ω-plane. In the complement of the region B, namely
for ω ∈ (C − B), in order to obtain a genuine extremum of the on-shell action principle
on the ingoing solution at the horizon, we need to impose Bbh = 0. From the view point
of the asymptotic expansion (2.27), this corresponds to a Dirichlet boundary condition.
Considering the expression for Bbh in (2.29) we obtain the following two equations for
the spectrum

a1 = 1
2 −

iω

2α −
√

2ξ
2 +

√
(1− 6ξ)α2 + 2ξαγ + αk2 − ω2

2α = −p with p = 0, 1, 2, . . . ,

(2.35)

b1 = 1
2 −

iω

2α +
√

2ξ
2 +

√
(1− 6ξ)α2 + 2ξαγ + αk2 − ω2

2α = −q with q = 0, 1, 2, . . . .

(2.36)

– 5 –
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Equation (2.35) leads to the following purely imaginary spectrum

ωp = −
(
(2γ − 8α) ξ + 2

√
2ξ (1 + 2p)α− 4p (1 + p)α+ k2) (1 + 2p+ 21/2ξ1/2

)
4ξ − 2(1 + 2p)2 i , (2.37)

which is a valid solution of (2.35) provided

νp :=

(
1− 4ξ + (2p+ 1)2

)
α+ 2γξ + k2 − 2 (2p+ 1)α

√
2ξ

4
(
1 + 2p−

√
2ξ
)
α

< 0 . (2.38)

On the other hand, equation (2.36) leads to the following set of frequencies

ωq = −((2γ − 8α)ξ − 2
√

2ξ (1 + 2q)α− 4q(1 + q)α+ k2)(1 + 2q −
√

2ξ)
4ξ − 2(1 + 2q)2 i , (2.39)

which is instead a valid solution of (2.36) provided

νq :=

(
1− 4ξ + (2p+ 1)2

)
α+ 2γξ + k2 + 2 (2p+ 1)α

√
2ξ

4
(
1 + 2p+

√
2ξ
)
α

< 0 . (2.40)

It can be checked that both spectra (2.37) and (2.39), in the “s-wave” case (k2 = 0) lead
purely imaginary frequencies with negative imaginary part. The conditions (2.38) and (2.40)
restrict the values of the non-minimal coupling parameter that lead to non-trivial spectra.
An exhaustive exploration of these spectra is beyond the scope of this work, nevertheless,
for the spherically symmetric black holes, with k2 = l (l + 1) = 2 we find a range of values
of the non-minimal coupling ξ leading to unstable modes coming from the spectrum (2.37)
when p = 0. Figure 1 depicts both Im (ωp) and νp from (2.37) and (2.38), respectively for
a certain range of the non-minimal coupling, showing the presence of valid modes with
Im (ωp) > 0, therefore unstable. Notice that there is a valid mode for which ω = 0, which
can be interpreted as a static scalar cloud [21]. The existence of these static solutions are
usually interpreted as smoking guns for the existence of a new branch of solutions in which
the probe becomes fully backreacting (see e.g. [22]). Notice that in our case, the would-be
static backreacting solution might be non-spherically symmetric since l = 1.

We can see from equations (2.38) and (2.40) that for a massless, minimally coupled
scalar, namely for ξ = 0, it is not possible to fulfill the boundary conditions and there are no
quasinormal modes of such massless scalar probe fields on the black hole background. This
situation is similar to what occurs for a massless scalar probe on the asymptotically locally
flat, static black holes in New Massive Gravity [15]. In the present case, a non-vanishing
value of the non-minimal coupling allows for non-trivial quasinormal modes, provided (2.38)
and (2.40) are fulfilled. It is very interesting to notice that such quasinormal frequencies do
not depend on the black hole mass M = M(r+), and therefore all the black holes in the
family (2.1) for different values of r+ are isospectral in what regards the quasinormal modes
of the non-minimally coupled scalars. Notice that this is the case both, in the spherically
symmetric and planar cases recovered by setting γ = 1 and γ = 0, respectively.

– 6 –
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Imωp

νp

2 ξ

Unstable range

Spherically symmetric black holes, l=1, p=0 mode 

1.22 1.23 1.24 1.25

-0.2

-0.1

0.0

0.1

0.2

0.3

Figure 1. Frequency ωp and νp on the spherically symmetric black hole γ = 1, for the non-minimally
coupled scalar with non-minimal coupling ξ, on the mode with p = 0 and angular momentum l = 1.
The allowed modes correspond to values of ξ such that νp < 0. The modes with frequencies with
positive imaginary part are unstable. In consequence, stability sets an upper bound on the value of
the non-minimal coupling parameter.

It is also illuminating to rewrite the second order equation for the radial profile of
the non-minimally coupled scalar probe in a Schroedinger-like form. This is achieved by
introducing the tortoise coordinate r∗ for the metric (2.1)

r∗ = 1
2α ln

(
r2 − r2

+

)
→ r =

√
r2

+ + e2αr∗ , (2.41)

which maps r ∈]r+,∞[ to the whole real line, i.e. r∗ ∈]−∞,+∞[. Notice that we have been
able to explicitly solve r in terms of r∗, which is not possible for Schwarzschild black hole.
Using this fact, we can obtain the potential of the Schroedinger-like equation explicitly in
terms of r∗. Introducing

F (r) = H (r)
r

, (2.42)

leads to
− d2F

dr2
∗

+ U (r∗)F = ω2F , (2.43)

with

U (r∗) =
α
[
r2

+
(
2 (1− 4ξ)α+ 2γξ + k2) e2αr∗ + e4αr∗ ((1− 6ξ)α+ 2γξ + k2)](

r2
+ + e2αr∗

)2 .

(2.44)
Notice that this potential always vanishes in the near horizon region, namely when r∗ → −∞.
Even more, when ξ = 0 as r∗ →∞ the potential approaches a positive constant and has
a Heviside-like shape, being a monotonically increasing function of r∗. As mentioned
above, for the minimally coupled case it is impossible to find quasinormal modes, which is
consistent with the basic fact that Schroedinger equation on a Heviside potential cannot

– 7 –



J
H
E
P
0
7
(
2
0
2
2
)
0
2
1

have solutions that approach zero at x→∞ and that represent purely “outgoing” modes
travelling towards the left as x→ −∞.

In what follows we move to the problem of computing the spectrum for a non-
minimally coupled scalar probe on the gravitational solitons recently constructed in [23]
in N = 4 SU (2) × SU (2) gauged supergravity, both in the supersymmetric and
non-supersymmetric cases.

3 Spectrum of probe scalars on solitons

As shown in [23], N = 4 SU(2) × SU (2) gauged supergravity has the following soliton
solution

ds2 = −ρdt2 + g (ρ) dϕ2 + dρ2

g (ρ) + ρdy2 , (3.1)

where

g (ρ) = α

(
ρ−m− q2

ρ

)
, (3.2)

m and q being integration constants, α is related with the gauge couplings and ϕ is identified
with period βϕ given by

βϕ = 4π
g′ (ρ0) . (3.3)

Here g (ρ0) = 0, ρ ≥ ρ0 and the constants α, q, the gauge fields and the dilaton are given by

α = 1
2
(
e2
A + e2

B

)
, q2 = 8

(
Q2
A +Q2

B

)
e2
A + e2

B

, (3.4)

Ai[1] = QA
ρ
dϕδi3 , Bi

[1] = QB
ρ
dϕδi3 , (3.5)

φ (r) = −1
2 ln ρ . (3.6)

For general values of the integration constants m and q, the non-minimally coupled scalar
probe does not admit a solution in a closed form. Nevertheless, for the case q = 0 and m
arbitrary, as well as for the case m = 0 and q arbitrary, the non-minimally coupled scalar
field can indeed be solved in terms of hypergeometric functions, consequently boundary
conditions can be imposed in a closed manner, leading to a discrete set of frequencies.
Hereafter we refer to these special cases as soliton-1 and soliton-2, which are defined by the
metric (3.1), with g (ρ) given by

gsol1 (ρ) = α (ρ−m) , (3.7)

gsol2 (ρ) = α

(
ρ− q2

ρ

)
, (3.8)

respectively.The soliton-2 spacetime leads to a supersymmetric configuration that preserves
1/4 of the supersymmetry [23].

– 8 –
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Defining ϕ = βϕ
2πφ, the coordinate φ will have period 2π, and the metric (3.1) reduces to

ds2 = −ρdt2 +
β2
ϕ

4π2 g (ρ) dφ2 + dρ2

g (ρ) + ρdy2 . (3.9)

Given the isometries of this spacetime we write the following separation ansatz for a
scalar probe

Φ = Re
(∑

n

∫
dωdke−iωt+iky+inφHω,k,n (ρ)

)
. (3.10)

The Ricci scalar of (3.9) has a non-trivial profile and it is given by

R = g (ρ)
2ρ2 − g

′′ (ρ)− 2g′ (ρ)
ρ

. (3.11)

Introducing the notation Hω,k,n (ρ) = H (ρ), the equation for the non-minimally cou-
pled scalar

�Φ− ξRΦ = 0 , (3.12)

leads to the following ODE for the radial dependence

2ρ2g2β2
ϕH
′′+2gρβ2

ϕ (gρ)′H ′+
(
gβ2

ϕ

(
2g′′ρ2+4g′ρ−g

)
ξ−2ρ

(
4π2n2ρ+gβ2

ϕ

(
k2−ω2

)))
H = 0 .
(3.13)

Here the prime denotes derivative with respect to ρ. In what follows we analyze this
equation for both soliton-1 and soliton-2 spacetimes, separately.

3.1 Non-supersymmetric soliton

For the family of solitons defined by the function soliton-1 in (3.7), we have ρ0 = m, and
g′ (ρ0) = α, therefore βϕ = 4π

α . Introducing the coordinate x such that

ρ = ρ0
1− x , (3.14)

which maps ρ ∈ [ρ0,∞[ to x ∈ [0, 1[, leads to an equation for the radial profile that can be
integrated in terms of hypergeometric functions. Imposing regularity at the origin ρ = ρ0
(x = 0) leads to the following solution

H (ρ (x)) = C1x
|n|
2 (1− x)

1
2

(
1−
√

(1−6ξ)+n2+ 4(k2−ω2)
α

)
F (α1, β1, γ1, x) , (3.15)

with

α1 = 1
2
(
1 + |n|+

√
2ξ
)
− 1

2

√
(1− 6ξ + n2) + 4 (k2 − ω2)

α
, (3.16)

β1 = 1
2
(
1 + |n| −

√
2ξ
)
− 1

2

√
(1− 6ξ + n2) + 4 (k2 − ω2)

α
, (3.17)

γ1 = 1 + |n| .
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As in the previous section, using Kummer identities allows to rewrite (3.15) as

H (ρ(x)) =C1x
|n|
2 (1−x)

1
2

(
1−
√

(1−6ξ)+n2+ 4(k2−ω2)
α

)
×[Γ(γ1)Γ(γ1−α1−β1)

Γ(γ1−α1)Γ(γ1−β1)F (α1,β1,α1+β1+1−γ1,1−x) (3.18)

+(1−x)γ1−α1−β1 Γ(γ1)Γ(α1+β1−γ1)
Γ(α1)Γ(β1) F (γ1−α1,γ1−β1,1+γ1−α1−β1,1−x)

]
(3.19)

which leads to the following two leading terms on each branch of the asymptotic behavior
as x→ 1

H (x) ∼
x→1

A1 (1− x)δ− +B1 (1− x)δ+ , (3.20)

with

δ± = 1
2

1±

√
(1− 6ξ) + n2 + 4 (k2 − ω2)

α

 , (3.21)

and

A1 = Γ (γ1) Γ (γ1 − α1 − β1)
Γ (γ1 − α1) Γ (γ1 − β1) , (3.22)

B1 = Γ (γ1) Γ (α1 + β1 − γ1)
Γ (α1) Γ (β1) . (3.23)

Since the exponents in the asymptotic behavior (3.20) are ω dependent, we must be careful
when imposing the boundary conditions. Again, the boundary term coming from the on-
shell variation of the action principle (2.31)–(2.32) leads to a single contribution at infinity
coming from the surface x = x0 → 1. In terms of the coordinate x, the non-supersymmetric
soliton spacetime reads

ds2 = − ρ0
1− xdt

2 + 4ρ0x

1− xdφ
2 + ρ0

αx (1− x)3dx
2 + ρ0

1− xdy
2 , (3.24)

while the boundary term of the on-shell variation of the action reads

lim
r→∞

∫
d3x
√
−γn̂µ∇µΦδΦ

∼ lim
x→1

(
δ2
−A

2
1 (1− x)2δ−−1 + δ2

+B
2
1 (1− x)2δ+−1 +A1B1 (δ+ + δ−) (1− x)δ++δ−−1

)
δC1

(3.25)

It can be checked that Re (2δ− − 1) < 0 almost on the whole complex ω-plane, except
at a set of zero measure which we remove since for such cases it is impossible to attain
a well-defined variational principle, as we did in the previous section for black holes. In
the remaining set Re (2δ+ − 1) > 0 and δ+ + δ− − 1 = 0. Therefore, in order to make the
boundary term to vanish when evaluated on-shell on the branch that is regular at the origin,
we must impose

A1 = Γ (γ1) Γ (γ1 − α1 − β1)
Γ (γ1 − α1) Γ (γ1 − β1) = 0 . (3.26)
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Figure 2. The panels show the spectra of stable and unstable modes of the non-minimally
coupled scalar probe on the background of the non-supersymmetric soliton. Valid solutions for the
quantization equation leading to the frequencies require νp < 0, therefore in both panels, to the left
of the vertical black line, there are no allowed modes given our boundary conditions.

Notice that this is actually a Dirichlet boundary condition as can be seen from (3.20). The
spectrum is therefore obtained from

γ1 − α1 =
√

(1− 6ξ + n2)α+ 4 (k2 − ω2) +
√
α
(
1 + |n| −

√
2ξ
)

2
√
α

= −p , (3.27)

γ1 − β1 =
√

(1− 6ξ + n2)α+ 4 (k2 − ω2) +
√
α
(
1 + |n|+

√
2ξ
)

2
√
α

= −q , (3.28)

with q and p in {0, 1, 2, . . .}. One can also check that the second quantization condition (3.28)
cannot be fulfilled, nevertheless the quantization condition (3.27) leads to the spectrum

ωp = ±1
2

√
2α (|n|+ 2p+ 1)

√
2ξ + 4k2 − 2 (|n| (1 + 2p) + 4ξ + 2p (1 + p))α , (3.29)

which is a valid solution of (3.27) provided

νns := |n|+ 1−
√

2ξ + 2p < 0 . (3.30)

As in the case of the black hole, for the non-supersymmetric soliton requiring regularity at
the origin and Dirichlet boundary condition at infinity leads to an eigenvalue problem with
a void spectrum when ξ = 0. Nevertheless, the presence of the non-minimal coupling leads
to non-trivial probe modes.

The spectrum of the scalar on the non-supersymmetric soliton can be of diverse nature.
Depending on the values of the parameters, it could be void, purely oscillatory namely
with real frequencies (3.29) or unstable. The different behavior can be seen as separated by
thresholds in the value of the non-minimal coupling ξ. Figure 2 shows two possible spectra.

3.2 Supersymmetric soliton

The 1/4 supersymmetric soliton is given by the metric (3.9) with the function g (ρ) given by

gsol2 (ρ) = α

(
ρ− q2

ρ

)
. (3.31)
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In this case the smooth origin of the spacetime is located at ρ = ρ0 = q and the equation
for the radial profile of the non-minimally coupled scalar probe has the following solution
which is regular at the origin

H (x) = C1x
|n|
2 (1− x)

1
4−

1
4

√
(1−6ξ)+4n2+ (k2−4ω2)

α F (α2, β2, γ2, x) , (3.32)

where in this case the coordinate x is conveniently chosen as

ρ = ρ0

(1− x)1/2 . (3.33)

Here, the parameters of the hypergeometric function in (3.32) are given by

α2 = −1
4

√
1− 6ξ + 4n2 + 4 (k2 − ω2)

α
+ 1

2

(
|n|+ 1 + 1

2
√

1 + 2ξ
)
, (3.34)

β2 = −1
4

√
1− 6ξ + 4n2 + 4 (k2 − ω2)

α
+ 1

2

(
|n|+ 1− 1

2
√

1 + 2ξ
)
, (3.35)

γ2 = 1 + |n| . (3.36)

Using Kummer identity in (3.32) leads to the following leading terms of the two branches
of asymptotic behavior

H (x) ∼x→1 A2 (1− x)λ− +B2 (1− x)λ+ , (3.37)

with

λ± = 1
4 ±

1
4

√
(1− 6ξ) + 4n2 + (k2 − 4ω2)

α
, (3.38)

and

A2 = Γ (γ2) Γ (γ2 − α2 − β2)
Γ (γ2 − α2) Γ (γ2 − β2) ,

B2 = Γ (γ2) Γ (α2 + β2 − γ2)
Γ (α2) Γ (β2) . (3.39)

As in the previous section, when the variation of the action is evaluated on the solution
that is regular at the origin, one obtains a boundary term that vanishes iff

A2 = Γ (γ2) Γ (γ2 − α2 − β2)
Γ (γ2 − α2) Γ (γ2 − β2) = 0 . (3.40)

In consequence, this implies the following two quantization conditions for the spectrum

γ2 − α2 = 1
2 + |n|2 + 1

4

√
1− 6ξ + 4n2 + 4 (k2 − ω2)

α
− 1

4
√

1 + 2ξ = −p , (3.41)

γ2 − β2 = 1
2 + |n|2 + 1

4

√
1− 6ξ + 4n2 + 4 (k2 − ω2)

α
+ 1

4
√

1 + 2ξ = −q , (3.42)
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with p and q elements of {0, 1, 2, 3, . . .}. It can be shown that the second condition cannot
be fulfilled, while the former leads to the spectrum

ω = ±
√
k2 + (1 + |n|+ 2p)α

√
1 + 2ξ − α

(
2ξ + (1 + 2p)2 + 2|n| (1 + 2p)

)
, (3.43)

which are genuine solutions of (3.41) provided

νsusy = 2 + |n|+ 4p−
√

1 + 2ξ < 0 (3.44)

Depending on the ranges of the parameters one can obtain the same qualitative spectra
as in the non-supersymmetric soliton, namely there is a range of values for the non-minimal
coupling for which the spectrum is void, while in the complementary range one can have
both stable and unstable modes. Stable oscillatory behavior can be achieved provided one
restricts the values of the non-minimal coupling.

4 Final remarks

In this paper we have found that N = 4 SU (2)× SU (2) gauged supergravity admits black
holes an solitons with sufficiently simple geometry that allows to compute the spectrum of
a non-minimal scalar probe in an exact manner. The spacetimes approach a background
at infinity which is not maximally symmetric, but possesses and extra conformal Killing
vector, which is due to the fact that the dilatonic potential of the theory does not have
local extrema. As reported in [23] the solitonic geometries are smooth at the origin and can
preserve 1/4 of the supersymmetries and can be obtained from the corresponding planar
black holes via a double analytic continuation, as it is the case of the recently reported
solitons in N = 2 gauged supergravity in four dimensions [24]. At the origin and in the
near horizon region, the boundary conditions are clear and are given by regularity and
purely ingoing modes, respectively. Due to the non-trivial geometry at infinity, the behavior
of the scalar probe in the asymptotic region is given by powers of the radial coordinate
which depend on the frequencies. In order to select a consistent boundary condition at
infinity we impose that the on-shell variation of the action functionals must vanish. This
leads to a Dirichlet boundary condition and allows to write the spectra in a closed form.
For the massless scalar probe it is impossible to fulfil these boundary conditions. For the
black holes, this is consistent with the fact that the effective Schroedinger-like potential
controlling the radial dependence of the scalar probe in terms of the tortoise coordinate,
has a Heaviside function shape. Including a non-minimal coupling allows for a non-trivial
spectrum which surprisingly, in the case of the black hole, does not depend on the value of
the mass of the spacetime. Therefore all these geometries are isospectral in what regards to
the non-minimally coupled wave operator. Given the integrability properties of this potential
it will be interesting to compare our results with the recently reported potentials coming
from a geometric approach to spectral theory in connection with SU (2) Seiberg-Witten
theory with fundamental hypermultiplets (see section 2 of [25]). Such potentials are also
given in terms of ratios of linear combinations of exponentials, and the technique elaborates
on the previous work [26] (see also the recent [27] and [28]).
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Stability of the modes is achieved for a certain range of non-minimal couplings, above
which one finds modes that are exponentially growing in time, and that are in consequence
unstable. The stable and unstable regimes are separated by solutions to the boundary
eigenvalue problem which are time independent. These solutions have the same properties
as the scalar clouds found in [21] which from the point of view of the fully backreacting
theory are branching spacetimes to a new family of solutions (see e.g. [22]).

We have been able to solve in a closed form the non-minimally coupled scalar probe on
a family of black holes and solitons of the Freedman-Schwarz model, even in the case of
1/4-BPS geometries. Such scalar probe goes beyond the field content of the theory, and it
would be interesting to see whether some of the exact results we have obtained here, are
also present in the context of gravitational perturbation theory considering only the fields
that lead to the supersymetric model even if one has to rely on numerical or perturbative
methods. We expect to report along these lines in the near future.
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