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1 Introduction

Recently, the AdS/BCFT (boundary conformal field theory) duality [1, 2] has attracted
lots of attention in the context of the black hole information problem [3, 4] and quantum
gravity, by combining with the so-called double holographic model [5]. This stems from the
interesting property of the holographic triality of this setup (see figure 2). According to this
triality, the AdS/BCFT setup can be related to the double holographic model considered in
recent studies on the black hole information paradox, in which an AdS black hole is coupled
to an auxiliary, non-gravitational holographic CFT, often called a bath, which captures
the Hawking radiation. It has been shown that although the complete theory of quantum
gravity is a mystery still, one can describe the von Neumann entropy (or fine-grained
entropy) of a subregion R in the bath in the framework of semi-classical gravity picture.
This is called the island prescription for the von Neumann entropy of Hawking radiation
R [5–9]:1

S (R) = min Ext
I

[
SQFT (R ∪ I) + Area (∂I)

4G(d)
N

]
, (1.1)

where boldface indicates the true von Neumann entropy of R in the full quantum description
(i.e., in the complete theory of quantum gravity), while the quantities which are not bolded
represent the entropies calculated in the semi-classical description. This convention will

1For further discussion on the lsland formula and black hole information problem see e.g. [51–88].
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always be adopted in this paper. This formula instructs us that when calculating the fine-
grained entropy of a subregion R of the nongravitating region, one should carefully account
for the contribution of degrees of freedom in a particular region of the gravitational part, a
surprising region called island. Interestingly, the work of [10, 11] (see also [5, 12, 13, 64])
shows that, in fact the island formula (1.1) in the “black hole + radiation” setup is equivalent
to the holographic entanglement entropy formula in the AdS/BCFT setup. This allows us to
investigate various problems related to the concept of “island” in the black hole information
problem in the simple AdS/BCFT setup.

It is worth emphasizing again that since we do not yet have an authentic theory of
quantum gravity, we are actually describing the behavior of systems with islands in a semi-
classical picture of gravity. Nevertheless, it is interesting to investigate the entanglement
details between the different parts of the system more specifically in such a semi-classical
picture. However, previous work usually focused on the entanglement entropy of a subregion
of the system (although see [76, 77]). In this paper, our research interest is to further study
the partial entanglement entropies (PEEs) of the various parts in the subsystem in the
context involving island in this semi-classical picture.

The idea of PEE came from an attempt to express the entanglement entropy in a
more refined way as the sum of the contributions of each local degree of freedom in the
subregion [17]. We can first define the entanglement contour fA (x) as a density function of
entanglement entropy S (A), satisfying

S (A) =
∫
A
fA (x) dx, (1.2)

where x represents the spatial coordinates of region A. Then the partial entanglement
entropy (PEE) sA (Ai) of some finite size subset Ai of A is defined as

sA (Ai) ≡
∫
Ai

fA (x) dx. (1.3)

One can see that the PEE sA (Ai) captures the contribution from Ai to entanglement entropy
S (A). The concepts of the PEE and the entanglement contour have a range of applications in
studying the entanglement structures in condensed matter theory [17, 18, 44, 45]. Moreover,
they have enlightening significance in the holographic framework [14, 19, 41–43]. However,
so far the fundamental definition of the PEE based on the reduced density matrix has
not been established. Rather, it is required to satisfy a series of reasonable conditions
according to its physical meaning [17, 40], which are, however, not sufficient to uniquely
determine the PEE in general. [18, 19] proposed a PEE proposal, which claims that the
PEE can be obtained by an additive linear combination of subset entanglement entropies.2

Recently, [14] further developed the preliminary discussion of the relationship between
entanglement contour and bit threads [20–22] in [18], and showed that, in the holographic
framework, the PEE proposal can be naturally derived using the language of bit threads.

2In fact, there exist other proposals for the PEE, see e.g. [17, 19, 40, 42, 46–49]. Although these proposals
came from different physical motivations, the PEE calculated by different approaches are highly consistent
with each other [19, 40, 42, 47, 49].
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More specifically, the PEE is explicitly identified as the flux of the component flow in a
locking bit thread configuration [15, 16].

In this paper, we will show that, using the method of calculating PEE from the
viewpoint of holographic bit thread developed in [14], it is natural to study the PEE aspects
in the AdS/BCFT setup. Based on the holographic triality of AdS/BCFT setup mentioned
above, in a sense we are equivalently studying the PEE aspects of the double holographic
model or the more general “brane gravity + CFT” models. Our work reveals specific
details of the entanglement between different subregions of the system involving island,
which may provide further insights into the black hole information paradox. Moreover, our
work shows that when considering the PEE of a subregion in a holographic BCFT in the
island phase, just as one needs to be careful to distinguish between the ideas of fine-grained
entropy and semi-classical entropy, we also need to redefine the fine-grained PEE, which
should be distinguished from the semi-classical PEE. More specifically, we consider the
appropriate definition of the fine-grained PEE of a specified subregion in BCFT in three
cases, in which the subregion includes the whole boundary, no boundary at all, and only
part of the boundary respectively. Interestingly, similar to the island rule of entanglement
entropy (1.1), we proposed the island rules of the fined-grained PEE, which also give the
prescriptions in terms of the semi-classical entropies.

The structure of this paper is as follows: in section 2, we review the background
knowledge about AdS/BCFT setup and its holographic triality. In section 3, we use the
locking bit thread configuration to describe the specific entanglement details between
different subregions in an island phase of the AdS/BCFT setup in the semi-classical picture.
In section 4, we define the concept of fine-grained PEE in the context involving island, and
propose its island rules. The conclusion and discussion are given in section 5. In addition,
for convenience, we include the review of bit threads in the appendix.

2 Background review

2.1 The basics of AdS/BCFT

In the AdS/CFT correspondence, a d + 1 dimensional AdS space (AdSd+1) is dual to a
d dimensional CFT [23–25]. In particular, the SO(2, d) symmetry of AdSd+1 geometry is
equivalent to the conformal symmetry of the CFTd. When there exists a d− 1 dimensional
boundary for a d dimensional CFT such that the appearance of the boundary breaks SO(2, d)
into SO(2, d − 1), this CFT is called a BCFT. In [1, 2], it was proposed that AdS/CFT
correspondence can be generalized to AdS/BCFT correspondence: the holographic CFT on a
manifold M with a boundary ∂M is dual to the gravity on an asymptotic AdS space N with
a boundary ∂N = M ∪Q, where Q is a codimensional-1 surface in the bulk. The Q brane
is also called an ETW (end-of-the world) brane or equivalently a Randall-Sundrum (RS)
brane [32–34] in the recent context, and it can be intuitively imagined as extended from the
boundary of the BCFT, i.e., ∂M , see figure 2. In the standard AdS/CFT correspondence,
the Dirichlet boundary condition is usually adopted at the AdS boundary M , where the
CFT lives. The point of the AdS/BCFT correspondence is that, the Neumann boundary
condition is imposed on another boundary Q of the bulk manifold N , which allows the
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metric of Q to fluctuate, and thus makes it to be dynamical. This makes it possible, as we
will review below, for Q brane to be described by a gravitational theory. The gravitational
action of this setup is given by

IG = 1
16πGN

∫
N

√
−g (R− 2Λ) + 1

8πGN

∫
Q

√
−h (K − T ), (2.1)

where hab is the induced metric and constant T is the tension of the Q brane, respectively,
which corresponds to adding some boundary matter field whose stress-energy tensor is
Tab = −Thab. The extrinsic curvature and its trace on Q are

Kab = ∇anb, K = habKab, (2.2)

where na is a unit normal vector to Q. The Neumann boundary condition on Q is
computed as:

Kab −Khab = −Thab → K = d

d− 1T, (2.3)

which can also be called the “boundary Einstein equation”. This equation will also determine
the position of the Q brane. To see this, note that in order to maintain the SO(2, d− 1)
symmetry of BCFT, the bulk spacetime N should be foliated by AdSd slices. In fact, the
bulk metric can be written as:

ds2 = dρ2 + cosh2 ρ

L
ds2
d, (2.4)

where the metric of AdSd can be expressed in terms of Poincare coordinates as

ds2
d=L2−dt2 + dξ2 + d~χ2

ξ2 , (2.5)

and ρ→∞ is the AdSd+1 boundary. Now supposing Q is at the position ρ = ρ∗, then the
extrinsic curvature on Q can be computed as:

Kab = 1
2
∂gab
∂ρ

= 1
L

tanh ρ∗
L
hab (2.6)

By (2.3), the position of Q brane should satisfy

T = d− 1
L

tanh ρ∗
L
. (2.7)

Here we present two simple examples of the position of the Q brane, which will also
be used to illustrate our idea in the next section. First, using the following coordinate
transformation

z = ξ

cosh ρ
L

, x = ξ tanh ρ

L
(2.8)

to make (2.4) return to the more familiar Poincare metric

ds2=L2−dt2 + dz2 + dx2 + d~χ2

z2 (2.9)

– 4 –
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Figure 1. (a) The holographic dual of a BCFT living on the half space. (b) The holographic dual of
a BCFT living on a disk. The ETW branes Q are depicted in green. The RT surfaces ΓR associated
with R regions are depicted in blue.

Then defining a BCFT living on the half space represented by x < 0, as shown in figure 1(a).
Then by (2.7) and (2.8), one can obtain that in this case the Q brane is given by the plane3

z = λx, where λ =

√(
d− 1
LT

)2
− 1. (2.10)

Another interesting example is the case where BCFT lives on a disk. For this, denoting
the coordinates except for the radial coordinate z as Xµ = (τ, x, ~χ), where τ = it is
the Euclidean time. Then applying the following conformal map (where cµ are arbitrary
constants) [2, 35]

X ′µ = Xµ + cµX
2

1 + 2 (c ·X) + c2 ·X2 (2.11)

z′ = z

1 + 2 (c ·X) + c2 ·X2 (2.12)

and performing a proper translation, then the BCFT on the half space defined by x < 0
can be mapped to a BCFT living on a d dimensional ball with radius rB, defined by

τ2 + x2 + ~χ2 ≤ r2
B. (2.13)

In this way, the Q brane satisfies

τ2 + x2 + ~χ2 +
(
z − rB sinh ρ∗

L

)2
= r2

B

(
cosh ρ∗

L

)2
, (2.14)

which is also a sphere, as shown in figure 1(b).
After determining the position of Q brane, [1, 2] proposed that the holographic en-

tanglement entropy formula [26–28] can be generalized to this AdS/BCFT setup. More
3The standard AdS/BCFT correspondence chooses T L < 1.
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specifically, considering a subsystem R on a time slice of a holographic BCFT, its von
Neumann entropy S (R) can be holographically computed by the following formula

S (R) = min Ext
ΓR,I

[
Area (ΓR)
4G(d+1)

N

]
, ∂ΓR = ∂R ∪ ∂I. (2.15)

That is, S (R) can be holographically calculated by the area of the minimal extremal
surface in the dual geometry homologous to the boundary region R. The minimal extremal
surface ΓR is called the RT surface in the AdS/BCFT setup, and I is a region on the
Q brane, which is also named as entanglement island in the recent context [10–13], for
reasons reviewed in the next subsection. The difference between the above formula and the
traditional holographic RT formula is that, now the RT surface calculating the entanglement
entropy of subregion R can not only be chosen as the connected extremal surface extended
from the boundary of R (i.e., ∂R), but also the disconnected type, which can anchor on
the Q brane. Therefore, we need to select the one with the smallest area among these two
kinds of extremal surface configurations.

In figure 1 we illustrate the two simple examples in which the island appears. From
now on, for simplicity, let us focus on the two-dimensional case. In the case of half-line
BCFT, we choose the subregion R on a time slice as the half line defined by x < −l,
thus its complement is an interval −l ≤ x ≤ 0, which includes the degrees of freedom of
the boundary. In this case, the RT surface computing the entanglement entropy between
R and its complement should anchor on the ETW brane, according to which, we can
holographically compute the entropy as:

S (R) = c

6 log 2l
ε

+ Sbdy, (2.16)

where ε is the UV cut off (or lattice spacing), c is the central charge of CFT, Sbdy is called
the boundary entropy, which is holographically related with the brane tension with

Sbdy = c

6arc tanh (LT ) . (2.17)

Another interesting example is that for d = 2, the ball-shaped time slice in figure 1(b)
becomes an interval with a length of 2rB , and contains two disconnected boundaries. If we
take R as half of the whole BCFT system, that is, containing only the degrees of freedom
of one of the boundaries, then from symmetry we know that, in the island phase the
corresponding disconnected RT surface should be exactly a straight line bisecting the whole
bulk, and end on the ETW brane.

2.2 Holographic triality of AdS/BCFT

The interesting holographic triality property of the AdS/BCFT correspondence has attracted
a lot of attention in the context of the black hole information problem recently [10–13].
As shown in the figure 2, the upper picture shows the usual AdS/BCFT correspondence,
that is, we can describe a d dimensional BCFT (which has a d− 1 dimensional boundary)
equivalently using an Einstein gravity on an asymptotically AdSd+1 space containing an

– 6 –
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dCFT

M

dCFT

M

M

bdy Q

1+dAdS

dGravity

Q

AdS/BCFT

AdS/CFT
Braneworld holography

Figure 2. Holographic triality of AdS/BCFT setup. Upper left: boundary perspective, with the
holographic CFTd (gray) coupled to a codimension-one conformal defect (green). Upper right: bulk
gravity perspective, with an asymptotically AdSd+1 (shaded mauve) which contains a co-dimension
one ETW brane (shaded green). Bottom: brane perspective, with a non-gravitational CFTd (gray)
glued to a gravity theory on the AdSd space (shaded green).

ETW brane (i.e., the Q brane). On the other hand, as shown in the left picture, since
the boundary condition in the AdS/BCFT setup is chosen to preserve the SO(2, d − 1)
symmetry, physics on this d − 1 dimensional boundary can be described as a CFTd−1,
which should correspond to an AdSd gravity from the usual AdS/CFT correspondence.
According to this, one can obtain a third equivalent picture, that is, a non-gravitational
CFTd is glued to a gravitational theory on the AdSd space. Naturally, this third scenario is
reminiscent of the double holographic model proposed in the recent studies of the black
hole information problem [5], in which the von Neumann entropy of the Hawking radiation
R can be computed by the island prescription (1.1). Interestingly, this connection can
be more accurately clarified through the framework of braneworld holography [10–13].
More specifically, the Neumann boundary condition imposed on the ETW brane in the
AdS/BCFT setup inspires one to relate the second picture (i.e., the bulk perspective) to
the third picture (i.e., the brane perspective) by braneworld holography [32–34]. Therefore,
in fact the ETW brane in the AdS/BCFT setup can be regarded as a RS brane or a
Karch-Randall (KR) brane [32–34], on which there is an effective description of a cutoff
CFT coupled with gravity.

The holographic triality suggests that the island formula eq. (1.1) in the “black hole
+ radiation” setup and the holographic entanglement entropy formula eq. (2.15) in the

– 7 –
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AdS/BCFT setup is actually equivalent [10–13].4 In particular, we have written the
holographic entanglement entropy formula in a similar way as the island rule. Therefore,
these two formulas, eq. (1.1) and eq. (2.15) are just two different ways of describing the same
physics in the bulk perspective and the brane perspective, respectively. For the purposes of
our work, the crucial point is that, from the perspective of braneworld holography, the I
region in eq. (2.15) in AdS/BCFT setup should be understood as an entanglement island
which provides unexpected degrees of freedom for the fine-grained entropy of a subregion R
in the non-gravitational region.

3 The bit thread description of AdS/BCFT setup

In this section, we will apply the locking bit thread configuration developed in [14–16]
to describe the details of the entanglement structure in the AdS/BCFT setup involving
island. The analysis will lead to a better understanding of the reason why the region in
Q brane selected by the disconnected RT surface is called an “island”. Furthermore, in
the framework of bit thread, the jump of the RT surface in the phase transition can be
understood in a more natural way [20].

For simplicity, we will use the two simple examples shown in the previous section to
illustrate our idea, as shown in figure 3, let us consider a fixed time slice such as τ = 0,
and denote the selected subregion in the BCFT living on the holographic boundary (i.e.,
z = 0) as R, while denote the rest of the spatial region of the BCFT system as R̃. The
prescription of AdS/BCFT correspondence tells us that, when computing the entanglement
entropy of R, one should take into account both the connected type and the disconnected
type of extremal surfaces. This is because the RT formula essentially instructs us to find a
minimal extremal surface in the bulk that can divide the bulk into two parts such that one
part completely contacts the selected boundary subregion R, and the other part completely
contacts the complement of R. Therefore, the latter type of extremal surface can also realize
this idea. Let us denote the two parts of the Q brane separated by this disconnected RT
surface as I and Ĩ respectively, with Ĩ adjacent to R̃.

Our motivation is that, in the framework of bit threads, when an entropy is characterized
by the geometric area, it can equivalently characterized by the flux of the bit threads,
namely, when an entropy can be characterized by a minimal extremal area, it implies
this entropy can be characterized by the maximal flux of the bit threads, due to the
max flow-min cut theorem [20, 21]. In the latter formulation, however, we can trace the
trajectories of the bit threads, especially their endpoints, and obtain more clear information
about the entanglement structure, which is in fact related to the partial entanglement
entropies. This idea is realized in the recently developed locking bit thread scheme [14–
16]. It has been proposed in [14] that the so-called locking bit thread configurations can

4Actually, in [10, 11], an additional correction was made to formula eq. (2.15), which resulted from adding
an intrinsic gravity term (such as DGP gravity or JT gravity) to the brane action in the framework of
braneworld holography. In this paper we focus on the traditional AdS/BCFT setup, in which we only have
a tension term in eq. (2.1), since this setup is sufficient to investigate the concept of island.
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be used to characterize the PEE structure between several subregions in a multipartite
holographic system.

It should be pointed out that in the previous work, we were applying bit thread
description in the traditional AdS/CFT framework. However, now we are facing with a
holographic BCFT setup. One major difference is that in the present case, the Q brane is
also the boundary of the bulk spacetime, on which the Neumann boundary condition is
imposed, while in the usual holographic CFT/bulk setup, the Dirichlet boundary condition
is adopted at the whole boundary of the bulk. However, based on two natural reasons,
the bit thread description should still be applicable to the holographic BCFT setup. In
particular, the locking bit thread configuration should still be able to characterize the PEE
structure of this holographic system. The first reason is due to the equivalence between the
AdS/BCFT setup and the braneworld scenario. As we have reviewed, this brane perspective
suggests that region I is actually an entanglement island, and there exist the degrees
of freedom on the Q brane, which will also contribute to the entanglement entropy. In
particular, it is possible to use the Q brane to model the black hole spacetime [11, 12, 51].
Therefore, although the Q brane is equipped with the different boundary condition, it is
also a source of gravity and hence can contribute to the entanglement entropy. The second
reason is that from the bulk perspective of the AdS/BCFT setup, the total contribution
to the holographic entropy is only the area of a minimal surface in the classical geometric
sense, unlike in the brane perspective, where one should also consider the contribution of the
bulk von Neumann entropy. Therefore, the traditional bit thread formulation can always
relate the area of a minimal surface with the maximal flux of the bit threads, without any
new modification.5

Now following the locking bit thread scheme proposed in [14], we can assign a locking
bit thread configuration to this AdS/BCFT setup to describe the entanglement structure
between the various subregions in this picture. Our setup involves four elementary regions,
R, R̃, I and Ĩ. The locking thread configuration involving four elementary regions has
been constructed in [14], which involves six independent thread bundles and six constraints.
Each constraint corresponds to the area of a minimal extremal surface associated with a
composite region or an elementary region. As shown in figure 3, we use the mauve lines to
represent the involved thread bundles.

Here is an important conceptual comment: from the third equivalent picture, when we
refer to entropies of each specified region below, they should be carefully understood as the
semi-classical entropies in the semi-classical picture (in recent literature, they correspond
to the entropies not bolded in the formulas). Here the situation of the “CFT d.o.f. +
boundary d.o.f.” composite system is similar to that of the “radiation dof + black hole dof”
composite system. Note that when ignoring the subtle effect of the latter degrees of freedom
on the von Neumann entropy (i.e., the fine-grained entropy) of a specified subregion of
the former system, the von Neumann entropy of a subregion of the former system will be
naively calculated by choosing its corresponding connected RT surface. Nevertheless, in the

5Note that this is different from recent work on discussing the island with “quantum bit threads” [96, 97],
where the authors developed a new bit thread prescription to account for the bulk quantum corrections to
the Ryu-Takayanagi formula [30, 31].
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full picture, the correct semi-classical prescription to calculate this von Neumann entropy
should be formula eq. (2.15). In the following we will use the notations that are not bolded
to represent the semi-classical entropies (in the language of the third perspective) directly
corresponding to the connected RT surfaces. For example, we denote the semi-classical
entropy of R simply as S (R). Instead, we will denote the true von Neumann entropy of
the subregion R as boldface S (R), which should be computed from the RT surface in
prescription eq. (2.15).

We use a multiflow V = {~vij} to describe this thread configuration, where each thread
bundle is represented by a component flow. More concretely, each thread bundle connecting
two subregions i and j represents the entanglement between i and j in physics, and is
characterized by a component flow ~vij . And the multiflow describing this locking thread
configuration should satisfy the following conditions [14–16]:

(1) The basic conditions of multiflow:

∇ · ~vij = 0, (3.1)
ρ(V ) ≤ 1, (3.2)

n̂ · ~vij |Ak = 0, (for k 6= i, j), (3.3)

where ρ(V ) is the thread density, in this case it should be defined as the number of
threads per unit area intersecting a small disk, maximized over the orientation of the
disk [16].

(2) The locking conditions:

On the connected minimal extremal surface γi associated with the specified region Ai,
which is proportional to the semi-classical entropy S (Ai) in our context, we have

~vij⊥γi (3.4)

ρ(V )|γi = 1. (3.5)

Next, defining
F (α)ij =

∣∣∣∣∫
α
~vij

∣∣∣∣ =
∣∣∣∣∫
α

√
hn̂α · ~vij

∣∣∣∣ (3.6)

to represent the value of the flux of the bit threads described by the component
flow ~vij passing through the α surface, where h is the determinant of the induced
metric on the surface α, and n̂α is the unit normal vector on surface α. Due to the
divergenceless property of bit threads, the F (α)ij associated with each component
flow does not depend on the surfaces the threads pass through in the bulk, and thus
can be abbreviated as Fij . In the framework of the locking bit thread scheme, the flux
Fij of each thread bundle in a locking thread configuration characterizes the amount
of the entanglement between the two regions it connects. Furthermore, when the
entropy Entropy (A) corresponding to a region A can be captured by the area of an
associated extremal surface γ (A) by the “locking rule”:

Entropy (A) = Area (γ (A))
4GN

= Fluxlocking (γ (A))
4GN

, (3.7)

– 10 –
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ΓR

Figure 3. (a) The locking bit thread configuration characterizing the entanglement structure
in the AdS/BCFT setup of figure 1(a). (b) The locking bit thread configuration characterizing
the entanglement structure in the AdS/BCFT setup of figure 1(b). In both cases, there are six
independent thread bundles (represented by mauve lines) and six constraints, which are the areas of
a set of bulk extremal surfaces (in blue) in total. (c) Tracing the thread bundles passing through
ΓR, we find that actually there are four kinds of entanglement contributing to the von Neumann
entropy S (R), which are FRR̃, FRĨ , FR̃I , and FIĨ .

the entanglement structure of the system can be understood as follows: tracing the
starting and ending points of each thread bundle and its trajectory through the bulk,
then the fluxes of those bundles just passing through the extremal surface γ (A) is
considered to make contributions to the entropy of A region computed by this surface.
And the values of these fluxes describe the amounts of the entanglement contributed
to this entropy, see figure 3. Also note that we deliberately denote the entropy of A as
Entropy (A), this is because there are two types of entropies in our analysis, one is the
semi-classical entropy, denoted as S (A), the other is the real von Neumann entropy
of A region, denoted as S (A). And our locking rule eq. (3.7) applies to both cases.

As shown in figure 3, in this locking bit thread scheme, there are six independent thread
bundles in total, which are FRR̃, FRI , FRĨ , FR̃I , FR̃Ĩ and FIĨ . Our bit thread interpretation
now immediately gives us some interesting conclusions. One of the most interesting questions
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is that, in the semi-classical picture, when an island appears in calculating the fine-grained
entropy S (R) of a subsystem R, which is analogy with the Hawking radiation in the
black hole information problem, how exactly does entanglement between various subregions
contribute to S (R)? The key point is that the RT surface corresponding to S (R) should
actually be the surface

ΓR = γ
(
R̃ ∪ Ĩ

)
≡ γ

(
R̃Ĩ
)

(3.8)

in the figure.6 Note that here ΓR is also denoted in boldface to indicate that it corresponds
to the fine-grained entropy S (R), while γ

(
R̃Ĩ
)
means that in the semi-classical picture, this

minimal surface appears to compute the semi-classical entropy S
(
R̃Ĩ
)
of region R̃∪ Ĩ. Then

tracing the thread bundles passing through ΓR, we find that actually there are four kinds of
entanglement contributing to the von Neumann entropy S (R), which are FRR̃, FRĨ , FR̃I ,
and FIĨ , as shown in figure 3. This phenomenon actually leads to such an understanding:
when calculating S (R), it seems that we are dividing the whole system into two groups,{
R̃, Ĩ

}
and {R, I}, and S (R) is essentially computing the (semi-classical) entropy between

these two groups. Since FR̃Ĩ and FRI represent the internal entanglement in these two
groups respectively, they do not contribute to the entanglement entropy between these
two groups, as shown in figure 3(c). This interpretation is consistent with the holographic
entanglement entropy formula eq. (2.15), in which I and R is implicitly regarded as an
union. This interpretation also makes it clearer to name the I region as an entanglement
island on the brane in the AdS/BCFT setup. Just as in the context of the black hole
information problem, as indicated by the island rule formula eq. (1.1), in calculating the
true von Neumann entropy of R in the semi-classical picture, a somewhat unexpected island
region should be regarded as an alliance with R to make a contribution.

Following [14], we can calculate the component flow fluxes (CFFs) of each thread bundle
by specifying a set of constraints for this system, which correspond to the areas of the
extremal surfaces. The standard choice is to take a set of extremal surfaces as shown in
figure 3, i.e., {

γ (R) , γ
(
R̃
)
, γ (I) , γ

(
Ĩ
)
, γ

(
R̃Ĩ
)
, γ

(
RR̃

)}
. (3.9)

In particular, γ
(
R̃Ĩ
)
≡ ΓR. Also note that a region and its complement in the entire system

share the same extremal surface, for example, γ
(
R̃Ĩ
)

= γ (RI). This is also equivalent to
saying that we are constructing a locking thread configuration that can lock a specified set of
boundary subregions

{
R, R̃, I, Ĩ, R̃Ĩ, RR̃

}
, and thus can characterize the entanglement

structure between these subregions [14, 15]. Here are two conceptual comments: one may
worry about whether the extremal surfaces associated with the subregions on the brane,
such as γ

(
Ĩ
)
in the figure has appropriate physical meaning in the semi-classical picture.

Actually, in the framework of braneworld holography, this kind of extremal surfaces can
indeed be associated with the entropies of the gravitational system on the brane [36–39].
In addition, in figure 1(a), when the subregion is taken as the infinite half-line system,

6Note that in this paper we will often implicitly omit the union symbol, for example R̃ ∪ Ĩ is abbreviated
as R̃Ĩ.
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the corresponding extremal surface associated with its semi-classical entropy is an infinite
straight line in the bulk.

Hence these specified extremal surfaces are associated with the semi-classical entropies
S (A) through the following formula:

S (A) = Area (γ (A))
4G(d+1)

N

= Fluxlocking (γ (A))
4G(d+1)

N

. (3.10)

In particular, as we have analyzed,

S (R) = Area (ΓR)
4G(d+1)

N

= Area (γ (R ∪ I))
4G(d+1)

N

≡ S (RI) (3.11)

Then, according to the locking conditions, we can obtain the equations depicting the
entanglement structure of the island phase as follows:

FRR̃ + FRĨ + FR̃I + FIĨ = S
(
R̃Ĩ
)

= S (R)
FRR̃ + FRI + FRĨ = S (R)
FRR̃ + FR̃I + FR̃Ĩ = S

(
R̃
)

FRI + FR̃I + FIĨ = S (I)
FRĨ + FR̃Ĩ + FIĨ = S

(
Ĩ
)

FRI + FRĨ + FR̃I + FR̃Ĩ = S
(
RR̃

)
(3.12)

To analyze the structure of the solution, let us write them in the form of matrix equation as



1 1 1 0 0 0
1 0 1 1 1 0
1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1
0 1 1 1 0 1





FIĨ
FR̃Ĩ
FRĨ
FR̃I
FRR̃
FRI


=



S
(
Ĩ
)

S (R)
S (I)
S
(
R̃
)

S (R)
S
(
RR̃

)


(3.13)

The determinant of the matrix is not zero and the matrix has full rank, therefore, the
solution of the equations exists and is unique. We immediately obtain the solution as



FIĨ
FR̃Ĩ
FRĨ
FR̃I
FRR̃
FRI


=



1
2 0 1

2 0 0 −1
2

1
2 −

1
2 0 1

2 0 0
0 1

2 −
1
2 −

1
2 0 1

2
−1

2
1
2 0 0 −1

2
1
2

0 0 0 1
2

1
2 −

1
2

0 −1
2

1
2 0 1

2 0





S
(
Ĩ
)

S (R)
S (I)
S
(
R̃
)

S (R)
S
(
RR̃

)


(3.14)
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or 

FIĨ
FR̃Ĩ
FRĨ
FR̃I
FRR̃
FRI


=



1
2

(
S
(
Ĩ
)

+ S (I)− S
(
RR̃

))
1
2

(
S
(
Ĩ
)

+ S
(
R̃
)
− S (R)

)
1
2

(
S (R) + S

(
RR̃

)
− S

(
R̃
)
− S (I)

)
1
2

(
S (R) + S

(
RR̃

)
− S

(
Ĩ
)
− S (R)

)
1
2

(
S
(
R̃
)

+ S (R)− S
(
RR̃

))
1
2 (S (R) + S (I)− S (R))


(3.15)

Interestingly, one can see that as expected, the correlation between R region and R̃ region
is characterized by

FRR̃ = 1
2

(
S
(
R̃
)

+ S (R)− S
(
RR̃

))
, (3.16)

which is the expression of their mutual information in the semi-classical picture. Furthermore,
the correlation between R and I in this picture can be explicitly characterized by

FRI = 1
2 (S (R) + S (I)− S (R)) , (3.17)

which is the sum of the semi-classical entropies of R and I minus the true von Neumann
entropy of R. Note that this value is obviously always positive, this is because in the island
phase, we have

Area (γ (R)) > Area
(
γ
(
R̃Ĩ
))
, (3.18)

and thus by (3.10), we have S (R) > S (R), and thus

FRI > 0. (3.19)

4 The PEE aspects of island phase

In this section, based on the “PEE=CFF” prescription proposed in [14], we discuss how
to appropriately redefine the concept of PEE in the context of island phase. Partial
entanglement entropy (PEE) sA (Ai), as its name implies, measures the contribution from
a part of region Ai in A to the entanglement entropy of A. In particular, if we take a set
of Ai satisfying they do not overlap with each other and exactly compose A, we expect∑
i
sA (Ai) = S (A). However, in the current context involving island, we need to be very

careful with the concept of PEE, because there are two kinds of entropies. It turns out
that, similarly, we should distinguish two types of partial entanglement entropy, i.e., the
semi-classical PEE and the fine-grained PEE.

Although the idea of PEE is very natural, in fact the fundamental definition of the
PEE based on the reduced density matrix has not been established. Rather, in general it is
required to satisfy a series of reasonable conditions according to its physical meaning [17].
However, a reasonable definition of PEE can be schematically expressed as [40]

sA (Ai) = P
(
Ai ↔ Ā

)
(4.1)

This is well understood, because the contribution of Ai to the entanglement entropy of A can
be naturally understood as the amount of the entanglement between Ai and the complement
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F O G
θ

( )a ( )b

Figure 4. (a) The boundary perspective of the BCFT setup in figure 1(a), and we choose A = R̃∪B.
(b) The set of the extremal surfaces (in blue) involved in the locking scheme corresponding to
this setup.

of A, i.e., Ā. In fact, in [14], we further argue that in a locking thread configuration
describing the entanglement details of the system, the PEE P

(
Ai ↔ Ā

)
can be identified

with the CFF (component flow flux) FAiĀ. To emphasize its physical meaning, let us denote
FAiĀ ≡ F

(
Ai ↔ Ā

)
. Then the “PEE=CFF” prescription says

sA (Ai) = F
(
Ai ↔ Ā

)
(4.2)

This is essentially because F
(
Ai ↔ Ā

)
can indeed describe the amount of the entanglement

between Ai and the complement of A. Furthermore, this prescription is nicely consistent
with the so-called PEE proposal, which is proposed to compute the PEE by an additive
linear combination of subset entanglement entropies [18, 19].

However, we will reveal some of the quirks and subtleties of the concept of PEE in
the context with island. In this section we will present several examples to illustrate the
PEE aspects of the system in island phase. Interestingly, similar to the island rule of
entanglement entropy in the semi-classical picture, we also obtain the island rules of PEE.

4.1 The island rule of PEE for subregion containing the entire boundary

In this subsection we consider a subregion which includes the entire boundary degrees of
freedom in the holographic BCFT system. More explicitly, let us consider the BCFT setup
in figure 1(a), but investigate it in the boundary perspective of the three equivalent scenarios,
see figure 4(a). We will select A as a subsystem containing the whole boundary degrees of
freedom, which is denoted as B. As shown in figure 4, we choose A = R̃ ∪B (such that the
complement of A is Ā = R), then we can ask how much the two components R̃ and B of A
contribute to the von Neumann entropy of A, i.e., S (A) = S

(
Ā
)

= S (R) (where we have
used that the whole system is in a pure state). Let us denote these two contributions as
sA

(
R̃
)
and sA (B), and marked in bold, because they should be understood as fine-grained
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R
B

R
II

A −A I
=R A =R A

Figure 5. (a) The naive form of fine-grained PEE for subregion containing the entire boundary.
(b) The island rule of fine-grained PEE for subregion containing the entire boundary.

PEEs, which satisfy
sA

(
R̃
)

+ sA (B) = S (A) (4.3)

Now, naively, one may think that sA

(
R̃
)
can still be expressed as the form of the

entanglement between R̃ and the complement of A, i.e., Ā, and similarly, sA (B) can be
expressed as the correlation between B and Ā, as shown in figure 5(a). That is, naively,
one may hope the following forms are possible:

sA

(
R̃
)

= P
(
R̃↔ Ā

)
= P

(
R̃↔ R

)
sA (B) = P

(
B ↔ Ā

)
= P (B ↔ R)

(4.4)

However, in the analysis of the previous section, we have found that when the system is
in island phase, the true RT surface calculating the true entanglement entropy between A
and Ā = R is actually ΓR, and if we check the thread bundles passing through ΓR, we will
find that in this semi-classical picture, the contribution to S (A) collected by R̃ region is
actually F

(
R̃↔ R

)
plus F

(
R̃↔ I

)
, on the other hand, the contribution of B to S (A)

should be F
(
Ĩ ↔ R

)
plus F

(
Ĩ ↔ I

)
, that is

sA

(
R̃
)

= F
(
R̃↔ R

)
+ F

(
R̃↔ I

)
≡ F

(
R̃↔ R ∪ I

)
sA (B) = F

(
Ĩ ↔ R

)
+ F

(
Ĩ ↔ I

)
≡ F

(
Ĩ ↔ R ∪ I

) (4.5)

One can see that it does not match the naive form in eq. (4.4) in general. However, the
present form in eq. (4.5) can nicely conform to eq. (4.3).

Based on the above considerations, here we propose the island rule of the fine-grained
PEE in terms of semi-classical entropy, in analogy with the island rule of fine-grained
entropy. More specifically, in a subsystem A that includes the boundary degrees of freedom
(or the degrees of freedom of brane gravity in the brane perspective), the fine-grained PEE
of a spatial subregion Ai that excludes the boundary degrees of freedom can be expressed as

sA (Ai) = sA−I (Ai) , (4.6)
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where the entropy without bold is called semi-classical PEE, which can be equivalently
expressed in the traditional form, i.e.,

sA (Ai) = P
(
Ai ↔ Ā

)
= F

(
Ai ↔ Ā

)
, (4.7)

and the subscript A− I indicates that in the effective description, one should exclude the
island part from A system, such that the complement will become Ā ∪ I. In other words,
we have

sA−I (Ai) ≡ P
(
Ai ↔ Ā ∪ I

)
= F

(
Ai ↔ Ā ∪ I

)
. (4.8)

It is easy to verify that back to our previous example, taking the subsystem as A = R̃ ∪B
and Ai as the subregion R̃ that includes the entire spatial region except the boundary, then
according to this island rule eq. (4.6), we can recover eq. (4.5). However, we would like to
point out that the island rule eq. (4.6) here is more general, because one can take Ai as
only part of R̃. This is inspired by the entanglement structure revealed by the bit thread
configuration.

On the other hand, the fine-grained PEE of the boundary degrees of freedom should be

sA (B) = sA−I (B − I) , (4.9)

where
sA−I (B − I) ≡ P

(
B − I ↔ Ā ∪ I

)
= F

(
Ĩ ↔ Ā ∪ I

)
, (4.10)

and we thus return to eq. (4.5) again.
The island rule of fine-grained PEE in this case is depicted in figure 5(b).
It is interesting to specifically calculate the values of the fine-grained PEEs sA

(
R̃
)

and sA (B), and the amount of the entanglement between R and the island I, i.e., FRI in
this case. For this purpose, we can explicitly calculate the area of each extremal surface
(which corresponds to the semi-classical entropy) in the locking scheme characterizing the
entanglement structure in this BCFT setup. In the Poincare metric eq. (2.9), which in the
case of AdS3 is

ds2=L2−dt2 + dz2 + dx2

z2 , (4.11)

the formula for the length d of the geodesic between two points (t1, x1, z1) and (t2, x2, z2) is

(t1 − t2)2 + (x1 − x2)2 + (z1 − z2)2

2z1z2
+ 1 = cosh d

L
(4.12)

As shown in figure 4(b), we mark the four key points as

E = (t = 0, x = l cos θ, z = l sin θ)
F = (t = 0, x = −l, z = ε)
G = (t = 0, x = l cos θ, z = ε)
O = (t = 0, x = 0, z = ε)

(4.13)

From eqs. (2.7)(2.10), we know the value of θ in the figure as

tan θ = z

x
= 1

sinh ρ∗
L

(4.14)
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The quantity θ, or equivalently ρ∗
L , actually characterizes the degrees of freedom of the

boundary of the BCFT. To see this, rewriting eqs. (2.7), (2.10), one can find that in d = 2,
we have

tanh ρ∗
L

= LT = tanh 6Sbdy
c

, (4.15)

or
ρ∗
L

= 6Sbdy
c

. (4.16)

Anyway, by formula eq. (4.12), for example, we can calculate the area of the extremal
surface (i.e., the length of the geodesic) corresponding to the semi-classical entropy S

(
Ĩ
)

of Ĩ by

cosh dOE
L

= 1 + l2cos2θ + (l sin θ − ε)2

2εl sin θ = l

2ε sin θ , (4.17)

thus
dOE = L ln l

ε sin θ . (4.18)

Then we have
S
(
Ĩ
)

= dOA

4G(d+1)
N

= c

6 ln l

ε sin θ , (4.19)

where the central charge of the CFT2 is

c = 3L
2G(d+1)

N

, (4.20)

with d = 2. Similarly, we can obtain

S
(
R̃
)

= dOF

4G(d+1)
N

= c

3 ln l

ε
, (4.21)

which is a famous result. And

S (R) = S
(
R̃Ĩ
)

= dEF

4G(d+1)
N

= c

6 ln 2l
ε

+ c

6 ln (1 + cos θ)
sin θ . (4.22)

One can check that it is exactly the same as eq. (2.16) reviewed in section 2.1, in particular,
the second term is exactly equal to Sbdy. Next we note that the extremal surfaces corre-
sponding to S (R), S

(
RR̃

)
and S (I) are actually infinite straight lines in the bulk. The

entropy of a half-line subsystem in the 2d CFT is also a typical result, which is

S (R) = S
(
RR̃

)
= 1

4G(d+1)
N

· L log Λ
ε

= c

6 log Λ
ε
, (4.23)

where Λ is the IR cut off inside the bulk. To obtain the length of the geodesic corresponding
to S (I), we use the formula eq. (4.12) to obtain

dEG = L ln l sin θ
ε

, (4.24)

thus
S (I) = 1

4G(d+1)
N

(
L ln Λ

ε
− dEG

)
= c

6 ln Λ
l sin θ . (4.25)
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Now it is straightforward to obtain the values of sA

(
R̃
)
and sA (B). By eqs. (3.14),

(4.5), we have

sA

(
R̃
)

= 1
2
(
S (R) + S

(
R̃
)
− S

(
Ĩ
))

(4.26)

sA (B) = 1
2
(
S (R) + S

(
Ĩ
)
− S

(
R̃
))
, (4.27)

subsequently, we obtain

sA

(
R̃
)

= c

6 ln 2l
ε

+ c

12 ln 1 + cos θ
2 (4.28)

sA (B) = c

12 ln 2 (1 + cos θ)
sin2θ

. (4.29)

Moreover, we can specifically obtain the amount of the entanglement between R and the
island I as

FRI = 1
2 (S (R) + S (I)− S (R)) = c

12 ln Λ2

2l2 (1 + cos θ) (4.30)

4.2 The island rule of PEE for subregion containing no boundary

We can also consider the case that the subsystem does not contain the boundary degrees of
freedom. For example, we still consider the setup in figure 4, but focus on the subsystem R.
The concept of PEE becomes even more interesting. In general, in the existing literature
about PEE, when we focus on the entanglement entropy of a subsystem R (which will be
analogous to the specified radiation region in the context of black hole information problem),
one will take X as a subset Ri ⊂ R of R region and then talk about the contribution of X
to this entropy, i.e., the PEE sR (X). However, in the context with island, in fact X can
also be taken as the island I. This is simply because we have

S (R) = FRR̃ + FRĨ + FR̃I + FIĨ . (4.31)

Therefore, at least formally we have the following island rule

sR (I) = FR̃I + FIĨ = F
(
I ↔ R̃ ∪ Ĩ

)
≡ sR+I (I) , (4.32)

where the subscript R + I represents the union of R and I, and in the last equation, we
have applied the formula eq. (4.7). This result is a bit of a surprise, but it reflects the spirit
of the island rules. In the context with island, we know that the semi-classical description
has some quirk, that is, at least superficially, there exists an unexpected region called island
contributing to the true entanglement entropy of R. Actually, our work is to quantify the
amount of this apparent contribution of island for the true entanglement entropy of R.

Similar to the formula eq. (4.6), for a subregion Ri in R, we also have

sR (Ri) = F
(
Ri ↔ R̃ ∪ Ĩ

)
≡ sR+I (Ri) . (4.33)

Again, this is due to the entanglement structure inspired by the bit thread configuration.
In particular, if we take Ri = R, we obtain

sR (R) = FRR̃ + FRĨ (4.34)
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Indeed, in the semi-classical picture, it does not make the full contribution to the fine-grained
entropy of R.

Similarly, from eqs. (3.14), (4.32), (4.34), we can express the fine-grained PEEs as the
linear combination of the semi-classical entropies as follows:

sR (I) = 1
2 (S (R) + S (I)− S (R)) (4.35)

sR (R) = 1
2 (S (R) + S (R)− S (I)) . (4.36)

Then substituting results in eqs. (4.22), (4.23), (4.25), we obtain

sR (I) = c

12 ln 2 (1 + cos θ)
sin2θ

= 1
2Sbdy + c

12 ln 2
sin θ . (4.37)

Interestingly, this is a finite value. In addition, we have

sR (R) = c

12 ln 2l (1 + cos θ)
ε2 . (4.38)

It is worth emphasizing again that sR (I) represents the amount of the contribution of
the island I to the true entanglement entropy of R region in the semi-classical picture.
Naturally, a tantalizing idea is to firstly develop a concrete method to realize the bulk
reconstruction in terms of the information of PEEs (rather than entanglement entropies) in
the AdS/CFT duality, then consider extending the method into the AdS/BCFT case. Along
this line, it is possible to use the information of the PEEs of the island region to further
investigate the detailed entanglement structure of Hawking radiation, or, more specifically,
how exactly the island region encodes the information of the entanglement wedge associated
with the Hawking radiation under consideration.

4.3 The island rule of PEE for subregion containing part of boundary

As reviewed in subsection 2.1, we can consider another interesting case, in which the selected
subregion contains only a part of boundary degrees of freedom. As shown in figure 6(a),
let us consider the simplest symmetrical case to illustrate our idea. We now investigate
the system in the boundary perspective, and denote the boundary degrees of freedom in
the left and right as Bl and Br respectively. We then focus on the subsystem A = R̃ ∪Br.
One interesting thing is that in this case the boundary degrees of freedom have been split
into two parts as B = Bl ∪Br, and it turns out that this division of degrees of freedom is
exactly corresponding to the division of the degrees of freedom on the Q brane as Q = I ∪ Ĩ.
The reason is as follows.

Similar to the previous example, we have

S (A) = FRR̃ + FRĨ + FR̃I + FIĨ , (4.39)

and we want to construct the fine-grained PEE satisfying

sA

(
R̃
)

+ sA

(
Ĩ
)

= S (A). (4.40)
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Figure 6. (a) The island rule of fine-grained PEE for subregion containing only a part of boundary
degrees of freedom. The setup is the same as in figure 1(b). (b) The set of the extremal surfaces
involved in the locking scheme corresponding to this setup.

It is clear that from eq. (4.39), the contribution of R̃ region and Br to the fine-grained
entropy of A should be respectively

sA

(
R̃
)

= F
(
R̃↔ R

)
+ F

(
R̃↔ I

)
≡ F

(
R̃↔ R ∪ I

)
sA (Br) = F

(
Ĩ ↔ R

)
+ F

(
Ĩ ↔ I

)
≡ F

(
Ĩ ↔ R ∪ I

) (4.41)

Then it is natural to make an identification with

Bl ∼ I, Br ∼ Ĩ , (4.42)

and by the semi-classical “PEE=CFF” prescription, we have simply

sA

(
R̃
)

= sA
(
R̃
)

(4.43)

sA (Br) = sA (Br) . (4.44)

Similarly, we calculate the areas of the extremal surfaces involved in the locking scheme
characterizing the entanglement structure of this setup in the semi-classical picture. As
shown in figure 6(b), the coordinates of the key points can be obtained from the trajectories
of the BCFT boundary eq. (2.13) and the brane eq. (2.14):

E = (t = 0, x = −rB, z = ε)
F = (t = 0, x = rB, z = ε)
G =

(
t = 0, x = 0, z = rB

(
sinh ρ∗

L + cosh ρ∗
L

))
=
(
t = 0, x = 0, z = rB

cos θ+1
sin θ

)
O = (t = 0, x = 0, z = ε)

, (4.45)

where again we use tan θ = 1
sinh ρ∗

L
, and θ is again the angle between the brane and the

BCFT system at the boundary. Then from eq. (4.12),

cosh dEG
L

=
r2
B +

(
rB

cos θ+1
sin θ − ε

)2

2εrB cos θ+1
sin θ

+ 1, (4.46)
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thus
dEG = dFG = L ln 2rB

ε sin θ , (4.47)

thus
S (I) = S

(
Ĩ
)

= c

6 ln 2rB
ε sin θ . (4.48)

Similarly,

S (R) = S (RI) = c

6 ln rB (cos θ + 1)
ε sin θ = c

6 ln rB
ε

+ c

6
ρ∗
L
≡ c

6 ln rB
ε

+ Sbdy, (4.49)

and

S (R) = S
(
R̃
)

= c

3 ln rB
ε
, (4.50)

S
(
RR̃

)
= c

3 ln 2rB
ε
, (4.51)

which correspond to the familiar semicircular geodesics. Then with eqs. (4.41), (3.14), we
obtain in this case

sA

(
R̃
)

= 1
2
(
S (R) + S

(
R̃
)
− S

(
Ĩ
))
, (4.52)

sA (Br) = 1
2
(
S (R) + S

(
Ĩ
)
− S

(
R̃
))
, (4.53)

thus

sA

(
R̃
)

= c

6 ln rB
ε

+ c

12 ln 1 + cos θ
2 (4.54)

sA (Br) = c

12 ln 2 (1 + cos θ)
sin2θ

. (4.55)

Interestingly, we find that the value of sA (Br) is the same as that of the sA (B) in the
first case, see eq. (4.29). And

FRI = 1
2 (S (R) + S (I)− S (R)) = c

12 ln 2rB2

ε2 (1 + cos θ) = c

6 ln rB
ε

+ c

12 ln 2
1 + cos θ . (4.56)

4.4 Insights into the black hole information problem

In this subsection we discuss the further applications of our work to the black hole information
problem. As mentioned earlier, the AdS/BCFT setup can actually model the “black hole +
radiation system” in the context of this problem. One of the most direct and interesting
examples is in [51] (see also [52]), which simulated a two-sided black hole coupled to an
auxiliary radiation system by a holographic BCFT system in the thermofield double state
by applying the AdS/BCFT correspondence. This setup is similar to the one in figure 1(b)
in which the boundary of a half plane is mapped to the boundary of a disk, except that
now we map the half plane on which the BCFT lives to the Euclidean plane with the disk
removed, as shown in figure 7(a). It was argued that in the limit that the number of local
degrees of freedom on the boundary of this BCFT is large compared to the number of local
degrees of freedom in this bulk CFT itself, the ETW brane extending from the boundary
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( )a ( )b

τ
x

x
z

R RR R

I

I I

Figure 7. (a) A holographic BCFT setup (from the boundary perspective) that models a two-sided
2d black hole (in green) coupled to a pair of symmetrical auxiliary radiation systems (in grey). (b)
The RT surface (in blue) calculating the true entanglement entropy of R can anchor on the ETW
brane (in green, which simulates a black hole) to form an island.

of the disk can simulate a black hole because the brane itself has causal horizons. In this
way this setup models a two-sided 2d black hole coupled to a pair of symmetrical auxiliary
radiation systems.

Note that this system is not an evaporating black hole, but one the auxiliary radiation
system has the same temperature as the black hole such that the two systems are in
equilibrium. Furthermore, in a particular conformal frame, this system has a static
energy density. However, the calculation in [51] showed that, for a subsystem R =
(−∞, −x0] ∪ [x0, ∞) consisting of the union of two symmetric half-lines in each CFT,
the entanglement entropy still evolves with time and undergoes a typical phase transition
characterized by Page curve, similar to the ones discussed in [5–7]. This phase transition
is essentially because in AdS/BCFT correspondence, the RT surface calculating the true
entanglement entropy of R can be in an island phase, i.e., the RT surface can anchor on
the ETW brane, as shown in figure 7(b).

Our work provides a clearer picture for the island phase of entanglement entropy in such
“black hole + radiation” systems. In figure 7(b), although there is no net energy exchange
between the black hole and the radiation system, the information from black hole “escapes”
(or is “encoded”) into the radiation system R. As can be seen from eq. (4.31), actually the
island region I inside the black hole also contributes to the fine-grained entropy of subsystem
R. In other words, it is not only sR (Ri), but also sR (I) contribute to S (R). Another
power of bit thread interpretation is that it provides a continuous viewpoint of the phase
transition between the two types of RT surface configurations involving in the calculation
of the von Neumann entropy of subsystem R. Actually, one of the initial motivations of bit
thread formulation is that it is possible to describe this kind of apparent jump of the RT
surface configurations in terms of bit threads [20]. For example, considering a combined
system AB of two separated regions A and B, the RT surface calculating its entanglement
entropy can jump under continuous deformations of AB. However, unlike the minimal
surfaces, the threads do not jump under these continuous deformations. That is, in the
framework of bit threads, no matter what kind of RT surface configuration is presented in
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the holographic bulk, the locking bit thread configuration describing the entanglement of the
system actually has the same structure. Therefore, the change of the thread configuration
is continuous at the critical point of “phase transition”.

An interesting problem is to compute the evolution of the fine-grained PEE of this
“black hole + radiation” setup with time by using our prescription in terms of the combi-
nation of various semi-classical entropies. However, this may involve the covariant form
of RT formula [28, 29], and the covariant form of bit thread formulation is still under
development [20], so a more careful investigation of this issue would be left for further work.
On the other hand, it is also possible to argue that our prescription is independent of the
bit thread formulation and is still correct even for time-dependent situations.

5 Conclusions and discussions

In this paper, we investigate the PEE aspects of the holographic BCFT setups in the context
with entanglement islands, by combining two interesting dualities developed recently. The
first duality is the triality of the AdS/BCFT setup inspired by the recent research of the
black hole information paradox [10–13], in which a d dimensional BCFT can not only be
described using an Einstein gravity on an asymptotically AdSd+1 space containing an ETW
brane by the usual AdS/BCFT correspondence, but also can be viewed from the so-called
brane perspective through braneworld holography, that is, described as a non-gravitational
CFTd glued to a gravity theory on the AdSd space. In particular, it is possible to design
the holographic BCFT setup such that the effective theory on the brane is describing the
black hole physics. Another duality is the “PEE=CFF” prescription proposed in [14], where
in the framework of holographic bit threads, the partial entanglement entropy (PEE) is
explicitly identified as the component flow flux (CFF) in a locking bit thread configuration.
Combining these two insights, we study the entanglement details between a set of specified
subsystems in the presence of the entanglement island.

Our work is mutually beneficial to both sides. On the one hand, inspired by the
recent study on the black hole information problem, we study the PEE aspects in the
holographic BCFT setups. In the previous literature, PEE is often determined by the
so-called PEE proposal. However, our study shows that, when considering the PEE of a
subsystem in a holographic BCFT, just as we need to distinguish between fine-grained
entropy and semi-classical entropy carefully, we should also distinguish the fine-grained PEE
from the semi-classical PEE. Moreover, the definition of fine-grained PEE varies subtly
depending on whether the subsystem contains all or only part of the boundary degrees
of freedom. We propose the island rules for the fine-grained PEE, which instruct us to
calculate the fine-grained PEE in terms of the combination of the semi-classical entropies.
On the other hand, our study provides a bit thread description for the AdS/BCFT setup,
which characterizes the entanglement details between the different subregions in a system
with the island, and this in turn provides further insights into the context of the black
hole information problem. Our description presents the detailed entanglement between the
different parts of the gravity-bath system in the semi-classical picture, which helps us to
further understand the concept of “island”. This can be seen most clearly in the fine-grained
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PEE sR (I), which characterizes the amount of the contribution of the island region to the
fine-grained entropy S (R) of a subregion R in the bath. Furthermore, the picture of bit
threads makes it possible to view the phase transition of the entanglement entropy during
the black hole evaporation in a continuous way, because instead of using the jumping RT
surface to characterize this transition, the change in the locking bit thread configuration
is continuous.

For the future, it is interesting to consider more concrete AdS/BCFT setups modelling
the “black hole + radiation” systems (such as setups in [11, 12, 51, 79]) and calculate the
PEEs of the specified subregions therein, then it is possible to investigate the phase transition
of the PEE itself. In particular, since we have proposed a specific prescription for calculating
sR (I), it is a rewarding attempt to further investigate the physical interpretations of the
values of sR (I) in these models, which may have illuminating implications for the more
detailed entanglement structure of Hawking radiation. Furthermore, it is also interesting
to consider the PEE aspects of the case where the intrinsic gravity such DGP gravity is
added to the ETW brane in the traditional AdS/BCFT setup, which will lead to a brane
correction to the holographic RT formula [10].
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A Introduction to bit threads and locking thread configurations

Bit threads are unoriented bulk curves that end on the boundary and subject to the rule
that the thread density is less than 1 everywhere [20–22].7 In particular, this thread
density bound implies that the number of threads passing through the minimal surface
γ (A) that separates a boundary subregion A and its complement Ac cannot exceed its area
Area(γ (A)), hence the flux of bit threads Flux(A) connecting A and its complement Ac
does not exceed Area(γ (A)):

Flux (A) ≤ Area (γ (A)) . (A.1)

Borrowing terminology from the theory of flows on networks, a thread configuration is said
to lock the region A when the bound (A.1) is saturated. Actually, this bound is tight: for
any A, there does exist a locking thread configuration satisfying:

Fluxlocking (A) = Area (γ (A)) . (A.2)

This theorem is known as max flow-min cut theorem (see [22] and references therein), that
is, the maximal flux of bit threads (over all possible bit thread configurations) through a
boundary subregion A is equal to the area of the bulk minimal surface γ (A) homologous to

7When one takes the Hodge dual of bit threads one gets calibrated geometries, which mathematicians
(geometers) use to identify minimal surfaces. This is a viewpoint adopted in [108].
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A. Therefore, the famous RT formula which relates the entanglement entropy of a boundary
subregion A and the area of the bulk minimal extremal surface γ (A) homologous to A:

S (A) = Area (γ(A))
4GN

(A.3)

can be expressed in another way, that is, the entropy of a boundary subregion A is
proportional to the flux of the locking thread configuration passing through A:

S (A) = Fluxlocking (A)
4GN

. (A.4)

When the bit threads are required to be locally parallel, one can use the language of
flow to describe the behavior of bit threads conveniently in mathematics, that is, using a
vector field ~v to describe the bit threads, just as using the magnetic field ~B to describe the
magnetic field lines. The difference is that for the latter we regard the magnetic field itself
as the more fundamental concept, while for the former we consider the threads to be more
fundamental. The constraints on the bit threads can then be expressed as the requirements
for the flow ~v as follows,

∇ · ~v = 0, (A.5)
ρ (~v) ≡ |~v| ≤ 1. (A.6)

For situations involving more than one pair of boundary subregions, the concept of
thread bundles is also useful. The threads in each thread bundle are required to connect
only a specified pair of boundary subregions, while still satisfy the constraints of bit threads.
Specifically, one can use a set of vector fields ~vij to represent each thread bundle connecting
the Ai region and Aj region respectively. The set V of vector fields ~vij is referred to as a
multiflow, and each ~vij is called a component flow, satisfying (Note that in the present
paper we will define ~vij only with i < j for convenience, which is slightly different from (but
equivalent) convention adopted in [21], where the fields ~vij were also defined for i ≥ j, but
with the constraint ~vji = −~vij)

∇ · ~vij = 0, (A.7)
ρ(V ) ≤ 1, (A.8)

n̂ · ~vij |Ak = 0, (for k 6= i, j). (A.9)

It is worth noting that, since in the situation of multiflows, the threads are not necessarily
locally parallel, there are various natural ways the density can be defined, and therefore
bounded. It turns out that different definitions of the thread density will actually affect the
ability of a thread configuration to lock a set of boundary regions.

Consider a d-dimensional compact Riemannian manifold-with-boundaryM , for example,
it can be a time slice of AdSd+1 spacetime, and then divide its boundary system ∂M into ad-
jacent non-overlapping subregions A1, . . . , An, which are referred to as elementary regions,
satisfying Ai ∩ Aj = ∅,

n
∪
i=1

Ai = ∂M . Accordingly, a composite region is defined as the
union of some certain elementary regions.
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For a single boundary subregion A, the max flow-min cut theorem directly indicates
that one can find a thread configuration that can lock the specified boundary subregion
(and its complement simultaneously). In other words, there exist thread configurations that
can lock the set of two elementary regions I = {A1, Ac}, and there is typically an infinite
number of choices. However, one can further ask, can we find a locking thread configuration
that can lock an arbitrary specified set of subregions simultaneously? The question becomes
very nontrivial. Broadly speaking, it depends not only on the relative spatial position
relations between these specified subregions, but also on the properties we assign to the
bit threads, in particular, the precise definition of the thread density bound. Recently, the
authors in [16] investigated this issue in great detail. They proposed and proved several
theorems on the existence of locking thread configurations in various situations in terms of
the language of elementary regions and composite regions defined above. Details can be
found in the original literature [16].

The holographic bit thread formulation has helped uncover aspects of holographic
entanglement and the related quantities, for the recent developments of bit threads see
e.g. [14–16, 93–107]. In particular, in [15], by matching the locking thread configurations
with the so-called OSED (one-shot entanglement distillation) tensor network developed
in [89–92], the locking thread configurations are argued to provide an interesting picture
of reconstructing the spacetime, i.e., the emergence of spacetime can be regarded as the
reorganization of the boundary degree of freedom through the entanglement distillation.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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