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1 Introduction

After the Run II of the Large Hadron Collider (LHC), high energy physics enters the
era of precision physics. To reduce the theoretical uncertainty in high energy physics,
it is necessary to calculate the Standard Model (SM) and SM-like models to high orders
precisely in the perturbation theory of quantum fields. A hardcore problem of perturbation
theory, is the computation of Feynman integrals of multi-loop order, or/and with multiple
kinematic scales.

There are many different ways of computing Feynman integrals [1], via integral pa-
rameterizations [2–4], sector decomposition [5–9], dimension recursion relations [10, 11],
and differential equation [12, 13]. The canonical differential equation approach, with Feyn-
man integrals with uniform transcendental weight [14], is a milestone of the computation
of Feynman integrals. By this method, the canonical differential equation for Feynman
integrals has a simple form

dI = ε(dÃ)I, (1.1)

where I is an integral basis with uniform transcendental (UT) weight. Ã is a matrix where
each entry is a sum of logarithms of so-called symbol letters. Once the canonical differ-
ential equation is obtained and rationalized, and the boundary condition is determined,
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the integral basis can be easily calculated by iterative integrations to an analytic result.
The canonical differential equation method has been used widely for the Feynman inte-
gral evaluation in Standard Model precision physics and in formal aspects of quantum
field theories.

One crucial step in applying the canonical differential equation approach is to find an
integral basis with uniform transcendental weight. Significant effort has been put in design-
ing methods and algorithms for finding a UT basis, for example, by the four-dimensional
leading singularity analysis [14, 15], by the Magnus series [16], by the dlog integrand con-
struction [17] with the four-dimensional integrand or the Baikov representation [18, 19], by
the initial algorithm [20], by the Poincare index computations (Lee’s algorithm) [21–23],
by the intersection theory [24, 25] and etc. In recent years, there is a great progress of the
UT basis determination, and there are several publicly available packages for determining a
UT basis, like Canonica [26, 27], Fuchsia [28], epsilon [29], initial [20] and libra [23].
However, in general, it is still not an easy task to find a UT basis for multi-loop Feynman
integrals, especially for the cases with multiple scales.

In this paper, we further develop the Baikov leading singularity analysis method, pow-
ered by the new developments in the syzygy based integration-by-parts (IBP) reduction
method on the Baikov integrand and modern algebraic methods for rationalizing square
roots. Our method can be summarized as the following steps:

1. In a Feynman integral family, derive the Baikov representation (the usual represen-
tation or the loop-by-loop approach) of every sector.

2. In each sector, if necessary, rationalize the Baikov integrand with our rationalization
package, to reduce the number of roots in the integrand.

3. For each sector, with a leading singularity analysis, find the candidate UT integrands.
If one candidate UT integrand does not have the form of Feynman integrals in the
family, we apply the syzygy IBP reduction to convert it to a “normal” Feynman
integral’s Baikov representation.

Note that the UT candidates on one sector we found, may not correspond to the master
integral counting in the sense of Laporta algorithm. The reason is that we frequently
use Laporta-reducible integrals in higher sectors as our UT basis candidates. Once the
complete (and independent) candidate UT basis is obtained, we use the IBP reduction
(directly or by the finite-field reconstruction) to derive the differential equation, to verify
if the canonical differential equation is obtained.

For this step 3 mentioned above, in this paper we invent a new syzygy method for the
IBP reduction of the Baikov-type integrand with several kernels. This method treats the
simultaneous no-shift conditions as a syzygy computation for a set of module generators.
Once the syzygy is solved, we can use the corresponding IBP relations to convert the un-
conventional Baikov integrand to the representation of a “normal” Feynman integral. This
computation is straightforward and fast with the help of modern computational algebraic
geometry softwares. See [24, 25] for the different approach for converting these integrand
via the intersection theory.
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We present a cutting-edge example to demonstrate our method, the two-loop double
box integral family with three different external masses. This example is complicated since
it contains five kinematic variables, and the symbol letter structure is complicated. The
traditional 4D leading singularity analysis or the recent Baikov analysis does not straight-
forwardly apply on this integral family, since the leading singularities contain complicated
roots. However, with our approach, this difficulty is overcome by the modern rational-
ization tool. We determine the UT basis of this integral family smoothly, and obtain the
analytic canonical differential equation as well as symbol letters.

This paper is organized as follows: in section 2, we further develop the leading singu-
larity analysis in Baikov representation and the method to find UT integral candidates. In
section 3, in detail, we present the example of the double box integral family with three
different external masses, with a sector-by-sector Baikov leading singularity analysis. In
section 4, we show that in cases needed, we can convert a non-traditional integrand in
Baikov representation to the Baikov representation of normal Feynman integrals, by the
syzygy IBP method. By this method, we re-derive some of the UT integrals in the three-
external-mass double box integral family as examples. In section 5, we summarize our
method and give an outlook of the further developments.

2 Singularity analysis in Baikov representation

2.1 Leading singularities and dlog integrals

Given an L-loop Feynman integral,

Ia1,...,an = eLγEε
∫ L∏

k=1

dDlk
iπD/2

1
Da1

1 · · ·D
an
n
, D = 4− 2ε, (2.1)

it has been conjectured1 (see e.g. [14, 15]) that any linear combination of Feynman integrals
has uniform transcendental weight if it can be written in the form∫ ∑

i

ci
∏
j

d log gi,j , (2.2)

for ε = 0 and with ci ∈ C and gi,j depending on the integration variables, as well as the
kinematic variables. We call ci the Leading Singularities (LS) of the Feynman integral.
Note that eq. (2.2) implies the absence of double or higher order poles of the form

dx
xa
, a 6= 1 (2.3)

and only permits logarithmic singularities. In the following we will refer to an integrand
with this property as a dlog integrand, and to the corresponding integral as a dlog integral.

In general, the calculation of LS and finding dlog integrals are no easy tasks, but there
has been much progress in this direction in recent years [17, 24, 31]. In [17, 31], a general

1We explicitly consider integrals that evaluate to multiple polylogarithms and do not consider cases that
evaluate to elliptic generalizations, as the status for the conjecture there is currently under discussion [30].
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algorithm for constructing dlog form integrands in four dimensions has been proposed and
the corresponding package has been released publicly. Most importantly, the package also
allows to compute the LS of a user-defined integrand and is able to give conditions on
an integrand-ansatz for the absence of double poles. We combine this algorithm with the
Baikov representation and use an example in section 3 to explain in detail how to construct
dlog integrals using this approach. This method has already been used in [18] to determine
the canonical differential equation of a family of five-point integrals.

2.2 Baikov representation

In both the computation of leading singularities and IBP reduction, the Baikov represen-
tation [4, 32–34] has proven to be extremely powerful. With n = LE + L(L + 1)/2 being
the number of scalar products, the Baikov representation reads

Ia1,...,an = CLEU
E−D+1

2

∫
dz1 · · · dznP

D−L−E−1
2

1
za1

1 · · · z
an
n
, (2.4)

where the Baikov polynomial is defined as

P = G(l1, . . . , lL, k1, . . . , kE), (2.5)

U is a polynomial depending on the external kinematics

U = G(k1, . . . , kE) (2.6)

and CLE is

CLE = J
π

L−n
2

Γ(D−E−L+1
2 ) · · ·Γ(D−E2 )

, (2.7)

with J being a constant Jacobian. The Gram determinant G is defined by

G(ki) = G({ki}, {ki}), (2.8)
G({ki}, {kj}) = det

i,j
(2ki · kj). (2.9)

The details of the integration contour will not be important for our applications. However,
note that by encircling a pole zi in eq. (2.4) we see that this representation trivializes the
operation of cutting the propagator zi ≡ Di of the Feynman integral.

Another way of using the representation (2.4) is to apply it to one loop integral at
a time, instead of the multi-loop integral as a whole. This is called the loop-by-loop
approach [35] and has the advantage that the number of integration variables is usually
lower than in the full Baikov representation. In addition, the integration kernel factorizes
into lower-degree polynomials which can be used to construct integrals without double
poles [24].

The leading singularity analysis in Baikov representation has another advantage over
the conventional analysis in 4D [18]: it captures terms in the numerator that vanish when
using a four-dimensional parametrization of the loop-momenta. These terms can be con-
structed from Gram determinants involving more than four internal or external momenta
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Figure 1. A schematic algorithm for finding UTs in a specific sector of a Feynman integral family.
In steps one to three, a LS analysis is done.

since these naturally vanish in 4D. While one may be tempted to neglect these so-called
D-dimensional upgrades, the differential equations quickly show that the naive 4D-dlog
analysis is not always enough to construct UT integrals. For more details see [18].

The general strategy for finding the UTs is one sector after another in two directions,
from top sector to lowest sector or from lowest sector to top sector. The main algorithm
for finding dlog integrals or UTs in a specific sector is shown in figure 1. We explain the
steps in figure 1 in more details:

• First, we consider the full (standard) or loop-by-loop Baikov representation on the
maximal cut of the scalar integral to calculate its LS by using the package DlogBasis
from [17, 31]. If there are no double poles, we construct a dlog integral by demanding
that the LS are constant.

• Second, if the scalar integral is not a dlog integral or if the number of MIs in this
sector is bigger than one, we consider a general numerator ansatz and repeat the
procedure of finding dlog integrals.

• Third, if the number of dlog integrals we have found is still smaller than the number
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of MIs, then we consider the super-sectors of the current sector, where we might be
able to find more dlog integrals that can be used for the sector.

• Finally, in general, these dlog integrals are almost UT in the sense that the diagonal
blocks of the differential equation, which correspond to the maximal cut, are in
canonical form but the off-diagonal blocks might still require corrections. We show
how to deal with this case in the next section.

The main challenge is the calculation of the LS. This step is especially difficult when more
than one square roots appear in the Baikov representation or when the integrand is a func-
tion of many kinematic variables or integration variables. The difficulty from square roots is
overcome by rationalization through our Mathematica package RationalizeSquareRoots.2

3 Example: double box with three massive external legs

We apply the LS analysis to the double box with three massive external momenta shown
in figure 2. We choose this non-trivial example to show the power and procedure of our
method. The integral family is defined as

Ia1,...,a9 = e2γEε
∫
dDl1d

Dl2
(iπd/2)2

1
Da1

1 · · ·D
a9
9
, (3.1)

where the propagators are

D1 = l21, D2 = (l1 − k1)2, D3 = (l1 − k1 − k2)2, D4 = (l2 + k1 + k2)2,

D5 = (l2 + k1 + k2 + k3)2, D6 = l22, D7 = (l1 + l2)2,

D8 = (l1 − k1 − k2 − k3)2, D9 = (l2 + k1)2,

(3.2)

with the last two being irreducible scalar products (ISPs), i.e. a8, a9 are always non-positive
integers. The kinematics is

k2
1 = m2

1, k
2
2 = m2

2, k
2
3 = m2

3 , s = (k1 + k2)2, t = (k2 + k3)2, u = (k1 + k3)2, (3.3)

and s + t + u = ∑3
i=1m

2
i . A UT basis for this family has not yet been provided in the

literature, but a subset of the integrals have been computed through other methods, see
e.g. [37].

After doing IBP reduction with FIRE [38], Azurite [39, 40], Kira [41] or FiniteFlow [42],
we get a total of 47 master integrals (MIs). The 47 MIs can be organized into 33 integral
sectors as drawn in figure 3, and there are respectively 1, 3, 10, 14, 5 sectors with 7, 6, 5, 4, 3
propagators, some of which are symmetric to each other by making permutations of external
momenta. There are six slashed box (triangle-triangle) sectors with five propagators shown
in the third line of figure 3, and among them, one sector is most special with six MIs, while
other sectors only contain one or two MIs.

The task is to find 47 linearly independent UT integrals, and we will follow the al-
gorithm proposed in figure 1 in the last section. We will extensively use the full and the

2A private implementation of the algorithm described in [50]. See [36] for a public implementation.
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1

D2

2

D3 D4

3

D5

4

D6D1

D7

Figure 2. The two-loop double box Feynman integral with three massive external momenta
k1, k2, k3 and seven massless propagators. The massive legs are indicate by thick lines.

loop-by-loop Baikov representation of eq. (3.1), therefore we will give the explicit forms
of the Baikov representations of our case. Following eq. (2.4) we find for the full Baikov
representation of the two-loop three-mass box

Ia1,...,a9 ∼
∫ dz1 · · · dz9
za1

1 · · · z
a9
9
P−1−εU ε, (3.4)

where we have ignored the factor CLE because it is not important for our analysis of LS.
Here and P and U are

P = G(l1, l2, k1, k2, k3), U ≡ ∆ = G(k1, k2, k3), (3.5)

and the scalar products are replaced by new variables corresponding to the propagators
zi ≡ Di. Further, we call

KF (z1, . . . , z9) = P−1−εU ε (3.6)

the full Baikov kernel.
Next, we consider the loop-by-loop Baikov representation. In the case of the double box

eq. (3.1), there are two kinds of loop-by-loop Baikov representations [35]: the left-to-right
(LR) and the right-to-left (RL) Baikov representation, depending on whether we first put
the l1 or l2 loop into Baikov representation, respectively. The LR Baikov representation is

Ia1,...,a7,0,a9 ∼
∫ dz1 · · · dz7 dz9

za1
1 · · · z

a7
7 za9

9
KLR(z1, . . . , z7, z9) (3.7)

where the LR Baikov kernel is

KLR(z1, . . . , z7, z9) = (uLR1 )−
1
2−ε(uLR2 )−

1
2−ε(uLR3 )ε∆ε (3.8)

with

uLR1 = G(l1, l2, k1, k2), uLR2 = G(l2, k1, k2, k3), uLR3 = G(l2, k1, k2). (3.9)

The RL Baikov representation is

Ia1,...,a8,0 ∼
∫ dz1 · · · dz8
za1

1 · · · z
a8
8
KRL(z1, . . . , z8) (3.10)
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Figure 3. The different topologies of the MIs. The thick external lines represent massive external
momenta. The sectors I are labeled by the lines that are present in the diagram and we also show
the number of master integrals in each sector.
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where the RL Baikov kernel is

KRL (z1, . . . , z8) =
(
uRL1

)− 1
2−ε

(
uRL2

)− 1
2−ε

(
uRL3

)ε
∆ε (3.11)

and

uRL1 = G(l1, l2, k3, k4), uRL2 = G(l1, k1, k2, k3), uRL3 = G(l1, k3, k4). (3.12)

Just as stated before, the loop-by-loop Baikov representations have fewer integration vari-
ables. While this speeds up the LS computation, it also represents a loss of information
since integrals involving non-zero a8 or a9, respectively, cannot be included in the ansatz.

3.1 Top sector and six-propagator sector

We start with the top sector I1234567, which has 3 MIs, as shown in figure 3 and we will
use the full Baikov representation of eq. (3.4). First, we simply consider the scalar integral
I1,1,1,1,1,1,1,0,0. After taking the maximal cut, z1 = . . . = z7 = 0, the integrand simplifies to

P−1−εU ε|z1=...=z7=0 = U ε
{
z2

8
[
m2

1m
2
2s+ (−m2

1s−m2
2s+ s2)z9 + sz2

9
]

+ z8
[
(m2

1m
2
3s− s2t)z9 + (−m2

3s+ s2)z2
9
]}−1−ε

.
(3.13)

As shown in eq. (2.2) we can set ε = 0. The LS is easily calculated by the command
LeadingSingularities of the package [31]:

− 16
s(st−m2

1m
2
3) . (3.14)

Therefore the scalar integral s(m2
1m

2
3 − st)I1,1,1,1,1,1,1,0,0, whose LS is a rational constant,

is a dlog integral on the maximal cut and a candidate for UT in the top sector.
Next, we need to find two more dlog integrals in the top sector. Since z8 and z9 are

the only possible numerators in this sector, we consider the integrals with a numerator z8
and z9, or the linear combinations of them with the scalar integral. Indeed, we find that
I1,1,1,1,1,1,1,−1,0 and I1,1,1,1,1,1,1,0,−1 are dlog integrals on the maximal cut with LS

− 16
s
(
−s+m2

3
) , (3.15)

and

− 16
sr1

, (3.16)

respectively, where r1 =
√
λ(m2

1,m
2
2, s) and λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz is

the Källén function. Therefore our UT candidates for the top-sector are

s
(
m2

1m
2
3 − st

)
I1,1,1,1,1,1,1,0,0,

s
(
m2

3 − s
)
I1,1,1,1,1,1,1,0,−1,

sr1I1,1,1,1,1,1,1,−1,0.

(3.17)
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Some comments: first, the outlined process of finding dlog integrals in the top sec-
tor can be simplified, as introduced in [31], by giving a general ansatz for the integrand
numerator

(a1 + a2z8 + a3z9) K̃F , (3.18)

computing all LS, and choosing independent LS to construct UT candidates. Furthermore,
the general ansatz must be linear in z8 and z9, because any higher power would imme-
diately lead to a double pole at infinity. Second, although in this sector we take the full
Baikov representation as the example to illustrate the process, the loop-by-loop Baikov
representation works equally well. Using the LR Baikov representation, we can find the
first two dlog integrals of eq. (3.17), and the last dlog integral can be found using the
RL Baikov representation. When we begin to consider the lower sectors, we will see that
the loop-by-loop Baikov representations are usually the better choice, since they contain
fewer variables.

Finally, we need to check if the candidates in eq. (3.17) receive corrections from sub-
sectors when relaxing the maximal cut constraint. We find that for I1,1,1,1,1,1,1,−1,0 a second
LS appears if z1 6= 0,

16m2
3

s(m2
1m

2
3 +m2

2s−m2
2m

2
3 − st)

. (3.19)

Therefore it is not possible to normalize the integral s.t. both LS are simultaneously con-
stant and we need to find suitable subtraction terms to cancel this second Leading Singu-
larity. The subtraction term has to come from the subsector I234567, since this is the only
subsector with non-vanishing integrals under the cut z2 = . . . = z7 = 0. Making a suitable
ansatz, we find

r1(−m2
3I0,1,1,1,1,1,1,0,0 + sI1,1,1,1,1,1,1,−1,0) (3.20)

to be a UT integral. A similar analysis shows that I1,1,1,1,1,1,1,0,−1 likewise receives correc-
tions from two subsectors:

(m2
3 − s)(−m2

1I1,1,1,0,1,1,1,0,0 −m2
2I1,1,1,1,1,0,1,0,0 + sI1,1,1,1,1,1,1,0,−1). (3.21)

Following the same process, i.e. considering the maximal cut and calculating the LS,
we can easily find the dlog integrals for the sectors with six-propagators:

(m2
1m

2
3 +m2

2s−m2
2m

2
3 − st)I0,1,1,1,1,1,1,0,0,

s(m2
1 − t)I1,1,0,1,1,1,1,0,0,

r2I1,1,1,1,1,0,1,0,0,

(3.22)

where r2 =
√

(m2
2m

2
3 −m2

3s+ st)2 − 4m2
1m

2
2m

2
3s. We have checked that lower sectors don’t

provide any corrections for these UTs. In principle, the maximal cut of the differential
equation in these single-MI sectors can always trivially be brought into canonical form by
choosing a suitable normalization of the integral. However, this may lead to complicated
corrections from lower sectors, therefore we try to avoid it in sectors with many propagators.
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3.2 Five-propagator sectors and lower sectors

At two loops, the sectors with five propagators are usually the most difficult for finding
UT integrals. There are three kinds of five-propagator sectors which we call box-bubbles,
slashed boxes, and triangle-bubbles as shown in the second, third, and fourth line of figure 3
respectively. First, we consider the six slashed-box sectors. Among them, there are two
special sectors, sector I23567 has two MIs and the other sector I12457 has six MIs.

For sector I23567, we immediately find that the scalar integral I0,1,1,0,1,1,1,0,0 is a dlog
integral with LS

16
m2

1 +m2
3 − s− t

. (3.23)

Considering a general ansatz for the numerator in this sector we do not find further dlog
integrals. However, as mentioned before, one can often fill missing dlog integrals in a sector
with integrals from super-sectors. Again starting from an ansatz in super-sector I234567
under the maximal cut of sector I23567, we find that

I0,1,1,0,1,1,1,0,0 − I0,1,1,1,1,1,1,0,−1 +m2
2I0,1,1,1,1,1,1,0,0, (3.24)

has leading singularity

− 16
m2

3 − s
(3.25)

and can therefore be used as a substitute in this sector. Surprisingly, after doing IBP
reduction, we find that this integral can be completely reduced to an integral in sector I23567

I0,1,1,0,1,1,1,0,0 − I0,1,1,1,1,1,1,0,−1 +m2
2I0,1,1,1,1,1,1,0,0 = −m

2
2(t−m2

3)
ε(m2

3 − s)
I0,2,1,0,1,1,1,0,0. (3.26)

Hence we conclude that εm2
2(t−m2

3)I0,2,1,0,1,1,1,0,0 is the second UT integral we want.
Next, we consider sector I12457, which has six MIs and is therefore the sector with the

most MIs of the two-loop three-mass box. Although the procedure for this sector is similar
to the previous one, it is technically much more difficult. To simplify the computation,
we use the loop-by-loop Baikov representations. The schematic form of the maximal cut
integrand of the scalar integral I1,1,0,1,1,0,1,0,0 in LR Baikov representation is

KLR|z1=z2=z4=z5=z7=0 = 16√
f1(z6, z9)

√
f2(z3, z6, z9)

, (3.27)

where we have set ε = 0. The kernel (3.27) has two complicated square roots and both
of their arguments are quadratic polynomials. Fortunately, we can first put the integrand
with respect to z3 into dlog form, because it appears only in the second square root. The
result is

16√
f1(z6, z9)

√
f3(z6, z9)

∂ log g1(z3, z6, z9)
∂z3

(3.28)
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where f3(z6, z9) = λ(m2
1, z6, z9). Since f3(z6, z9) is much simpler now, we can rationalize it

through the change of variables3

z6 = −m2
1x1(1 + x2), z9 = −m2

1x2(1 + x1), (3.29)

which was found through our package (see footnote 2).
The Jacobian turns out to cancel

√
f3(z6(x1, x2), z9(x1, x2)). There is now only one

square root left and therefore we can continue the analysis in the usual way to get the LS

−16
r4
, (3.30)

with r4 =
√

(s+t−m2)2−4m2
1m

2
3 =

√
λ(m2

1,m
2
3,u). So the scalar integral r4I1,1,0,1,1,0,1,0,0 is

a dlog integral.
Since we cannot find further dlog integrals through the maximal cut of this sector, we

turn to the super-sectors. Through sector I124567 we find that

(m2
3 − s)(−I1,1,0,1,1,0,1,0,0 + I1,1,0,1,1,1,1,0,−1−m2

1I1,1,0,1,1,1,1,0,0)

=− m2
1(m2

3 − s)
ε

I2,1,0,1,1,0,1,0,0 (3.31)

is a UT integral and reduces to sector I12457. To also consider the integrals with a8 6= 0,
we switch to the RL Baikov representation and similarly find the UT integral in supersec-
tor I123457:

r1(I1,1,0,1,1,0,1,0,0 + I1,1,1,1,1,0,1,−1,0 −m3I1,1,1,1,1,0,1,0,0) = −m
2
3r1
ε

I1,1,0,2,1,0,1,0,0. (3.32)

Using the symmetry p1 ↔ p3 of the sector, we can find another two UT integrals

−m
2
3(m2

1 − t)
ε

I1,1,0,1,2,0,1,0,0, −
m2

1r3
ε

I1,2,0,1,1,0,1,0,0. (3.33)

From the above results, we guess the last UT integral to be I1,1,0,1,1,0,2,0,0, and its coefficient
can be specified by integrating out the ε0 term of the corresponding differential equation.
Finally, this gives us six UT integrals for this sector as shown in (3.37). In section 4 we
show an alternative method for finding the first UT integral in eq. (3.33).

Now we should consider the remaining sectors, i.e. box-bubbles and triangle-bubbles,
all of which contain a bubble sub-diagram. Since the bubble integral has a double pole,
the scalar integrals in these sectors cannot be dlog integrals. However, we can again con-
sider their super-sectors, where triangle sub-diagram can be reduced to the corresponding
bubble. As a result, the bubble integral often comes with a doubled propagator or has an
ε dependent prefactor. We take the sector I12357 as an example. In this sector, we can
find that

−m2
3I1,1,1,1,1,0,1,0,0 + I1,1,1,0,1,0,1,−1,0 = −2ε− 1

ε
I1,1,1,0,1,0,1,0,0 (3.34)

3The command LeadingSingularities cannot find this transformation on its own and therefore stops
the computation at this point.

– 12 –



J
H
E
P
0
7
(
2
0
2
1
)
2
2
7

has LS −16/r1, and

I1,1,1,0,1,1,1,0,0 = −1
ε
I1,1,1,0,1,0,2,0,0 (3.35)

has LS 16/(m2
1m

2
3 − st). Therefore, two UT integrals in this sector are

2ε− 1
ε

r1I1,1,1,0,1,0,1,0,0 and 1
ε

(m2
1m

2
3 − st)I1,1,1,0,1,0,2,0,0. (3.36)

For sectors with four or three propagators, a first UT integral can always immediately
be found by considering a doubled propagator in each bubble integral. If necessary, a
second UT integral is then found by a transformation of the differential equation. Because
there are few subsectors that could give rise to corrections of these integrals, we find this
transformation to be extremely simple.

To conclude this section, we have found all UT integrals for the integral family of the
double box with three massive legs. They are listed in (3.37), and we have checked that
their differential equation is indeed in canonical form. In summary, when starting the LS
analysis from the maximally-cut integrals, the most important points are the following:

1. The dlog integrals of a sector sometimes receive corrections from its lower sectors,
which is indicated by the analysis of LS of the integrals when relaxing the maximal
cut of this sector.

2. To find dlog integrals in a given sector, we can consider a general ansatz for the
numerator s.t. there are no immediate double poles. If we cannot find enough dlog
integrals in a specific sector, we continue the search in its super-sectors.

3. Sectors with bubble sub-integrals will always have an inherent double pole. In this
case we can continue the analysis with a doubled propagator in the bubble integral
or consider integrals in its super-sectors. And if the sector is simple enough, a direct
transformation of the differential equation is often the preferred approach.

4. As mentioned at the beginning of the section, the off-diagonal blocks of the differ-
ential equation might still require correction terms. By working from lowest sector
to highest sector, it is then usually straightforward to also bring these off-diagonal
terms into canonical form. This can be done either by integrating out the ε0 term
of the off-diagonal block or by going back to point 1. and relaxing the cut-conditions
for the subsector corresponding to the respective off-diagonal block.

The list of all UT integrals, with the ordering corresponding to the classification of
sectors, is

I1234567 : g1 =−ε2s(st−m2
1m

2
3)I1,1,1,1,1,1,1,0,0,

g2 = ε2r1(−m2
3I0,1,1,1,1,1,1,0,0+sI1,1,1,1,1,1,1,−1,0),

g3 = ε2(m2
3−s)(−m2

1I1,1,1,0,1,1,1,0,0−m2
2I1,1,1,1,1,0,1,0,0+sI1,1,1,1,1,1,1,0,−1),

I234567 : g4 = ε2(m2
1m

2
3+m2

2s−m2
2m

2
3−st)I0,1,1,1,1,1,1,0,0,
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I124567 : g5 = ε2s(m2
1−t)I1,1,0,1,1,1,1,0,0,

I123457 : g6 = ε2r2I1,1,1,1,1,0,1,0,0,

I24567 : g7 = ε(2ε−1)(m2
3−s)I0,1,0,1,1,1,1,0,0,

I12357 : g8 = ε(2ε−1)r1I1,1,1,0,1,0,1,0,0, g9 = ε(m2
1m

2
3−st)I1,1,1,0,2,0,1,0,0,

I12457 : g10 =−εm2
1(m2

3−s)I2,1,0,1,1,0,1,0,0, g11 =−εm2
1r3I1,2,0,1,1,0,1,0,0,

g12 =−εm2
3r1I1,1,0,2,1,0,1,0,0, g13 =−εm2

3(m2
1−t)I1,1,0,1,2,0,1,0,0,

g14 = ε(m2
3m

2
1−st)I1,1,0,1,1,0,2,0,0, g15 = ε2r4I1,1,0,1,1,0,1,0,0,

I23567 : g16 = ε2(m2
1+m2

3−s−t)I0,1,1,0,1,1,1,0,0, g17 = 2εm2
2(t−m2

1)I0,2,1,0,1,1,1,0,0,

I23467 : g18 = ε2r1I0,1,1,1,0,1,1,0,0,

I23457 : g19 = ε2r3I0,1,1,1,1,0,1,0,0,

I13457 : g20 = ε2(m2
3−s)I1,0,1,1,1,0,1,0,0,

I12467 : g21 = ε2r1I1,1,0,1,0,1,1,0,0,

I12345 : g22 = ε2(m2
3−s)r1I1,1,1,1,1,1,0,0,0,

I12346 : g23 = εr1m
2
3(−2εI1,1,1,1,1,1,0,0,0+sI1,1,1,2,1,1,0,0,0),

I2467 : g24 = εr1I0,2,0,1,0,1,1,0,0,

g25 = 3ε(s−m2
1−m2

2)I0,2,0,1,0,1,1,0,0+m2
2m

2
1I0,2,0,1,0,1,2,0,0,

I2457 : g26 = εr3I0,2,0,1,1,0,1,0,0, g27 = 3ε(m2
3−m2

2−t)I0,2,0,1,1,0,1,0,0+m2
2tI0,2,0,1,1,0,2,0,0,

I2367 : g28 = εr1I0,1,1,0,0,2,1,0,0, g29 = 3ε(m2
2−m2

1−s)I0,1,1,0,0,2,1,0,0+m2
1tI0,1,1,0,0,2,2,0,0,

I2357 : g30 = εr3I0,1,1,0,2,0,1,0,0, g31 = 3ε(m2
2−m2

3−t)I0,1,1,0,2,0,1,0,0+m2
3tI0,1,1,0,2,0,2,0,0,

I1247 : g32 = εr1I1,1,0,2,0,0,1,0,0, g33 = 3ε(m2
1−m2

2−s)I1,1,0,2,0,0,1,0,0+sm2
2I1,1,0,2,0,0,2,0,0,

I1257 : g34 = (2ε−1)(3ε−1)I1,1,0,0,1,0,1,0,0,

I1357 : g35 = (2ε−1)(3ε−1)I1,0,1,0,1,0,1,0,0,

I1457 : g36 = (2ε−1)(3ε−1)I1,0,0,1,1,0,1,0,0,

I2346 : g37 = (1−2ε)2I0,1,1,1,0,1,0,0,0, I2345 : g38 = (1−2ε)2I0,1,1,1,1,0,0,0,0,

I1346 : g39 = (1−2ε)2I1,0,1,1,0,1,0,0,0, I1345 : g40 = (1−2ε)2I1,0,1,1,1,0,0,0,0,

I1246 : g41 = (1−2ε)2I1,1,0,1,0,1,0,0,0, I1245 : g42 = (1−2ε)2I1,1,0,1,1,0,0,0,0,

I367 : g43 = sI0,0,2,0,0,2,1,0,0, I357 : g44 =m2
3I0,0,2,0,2,0,1,0,0, I267 : g45 =m2

1I0,2,0,0,0,2,1,0,0,

I247 : g46 = tI0,2,0,0,2,0,1,0,0, I247 : g47 =m2
2I0,2,0,2,0,0,1,0,0. (3.37)

The square roots are defined as

r1 =
√
λ(m2

1,m
2
2, s), r2 =

√
(m2

2m
2
3 −m2

3s+ st)2 − 4m2
1m

2
2m

2
3s,

r3 =
√
λ(m2

2,m
2
3, t), r4 =

√
λ(m2

1,m
2
3, u),

(3.38)

where we have used s+ t+ u = ∑3
i=1m

2
i . Recall that λ(x, y, z) is the Källén function.

3.3 Differential equation and the alphabet

The alphabet of the three-external-mass double box integral family consists of 30 symbol
letters. Here we explicitly list them:
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• Even letters. There are 15 even letters:

W1 = m2
1, W2 = m2

2, W3 = m2
3, W4 = s, W5 = t W6 = m2

3 − s,
W7 = m2

1 − t, W8 = m2
1m

2
3 − st, W9 = m2

1 +m2
3 − s− t,

W10 = m2
2s+m2

1m
2
3 −m2

2m
2
3 − st,

W11 = −2m2
1s− 2m2

2s+m4
1 +m4

2 − 2m2
1m

2
2 + s2

W12 = −2m2
2t− 2m2

3t+m4
2 +m4

3 − 2m2
2m

2
3 + t2,

W13 = −2m2
2s− 2m2

2t+m4
2 − 4m2

1m
2
3 + s2 + 2st+ t2,

W14 = −2m2
3s

2t+m4
3s

2 + 2m2
2m

2
3st− 2m2

2m
4
3s− 4m2

1m
2
2m

2
3s+m4

2m
4
3 + s2t2,

W15 = −m2
1st−m2

2st−m2
3st+m2

1m
2
2s−m2

1m
2
3s−m2

1m
2
3t+m2

2m
2
3t

+m2
1m

4
3 +m4

1m
2
3 −m2

1m
2
2m

2
3 + s2t+ st2 (3.39)

• Odd letters. There are 15 odd letters.

W16 = m2
1 −m2

2 + s− r1
m2

1 −m2
2 + s+ r1

, W17 = m2
2 −m2

3 + t− r3
m2

2 −m2
3 + t+ r3

,

W18 = m2
1 −m2

2 − s− r1
m2

1 −m2
2 − s+ r1

, W19 = m2
2 −m2

3 − t− r3
m2

2 −m2
3 − t+ r3

,

W20 = m2
2 − s− t+ r4

m2
2 − s− t− r4

, W21 = −m
2
3s+m2

2m
2
3 + st+ r2

−m2
3s+m2

2m
2
3 + st− r2

,

W22 = −r4
(
m2

3 − s
)

+m2
2s+m2

3s−m2
3t+ 2m2

1m
2
3 −m2

2m
2
3 − s2 − st

r4
(
m2

3 − s
)

+m2
2s+m2

3s−m2
3t+ 2m2

1m
2
3 −m2

2m
2
3 − s2 − st

,

W23 = m2
2s−m2

3s+m2
2t−m2

1t−m4
2 +m2

1m
2
2 +m2

3m
2
2 +m2

1m
2
3 + st− r1r3

m2
2s−m2

3s+m2
2t−m2

1t−m4
2 +m2

1m
2
2 +m2

3m
2
2 +m2

1m
2
3 + st+ r1r3

,

W24 = −m
2
2s+m2

3s− 2m2
2t−m2

3t+m4
2 − 2m2

1m
2
3 −m2

2m
2
3 + st+ t2 − r3r4

−m2
2s+m2

3s− 2m2
2t−m2

3t+m4
2 − 2m2

1m
2
3 −m2

2m
2
3 + st+ t2 + r3r4

,

W25 = m2
1s+ 2m2

2s−m2
1t+m2

2t−m4
2 +m2

1m
2
2 + 2m2

1m
2
3 − s2 − st− r1r4

m2
1s+ 2m2

2s−m2
1t+m2

2t−m4
2 +m2

1m
2
2 + 2m2

1m
2
3 − s2 − st+ r1r4

,

W26 = f26 − r1r2
f26 + r1r2

, W27 = f27 − r2r3
f27 + r2r3

, W28 = f28 − (m2
1m

2
3 − st)r2

f28 + (m2
1m

2
3 − st)r2

,

W29 = f29 − (m2
2s+m2

1m
2
3 −m2

2m
2
3 − st)r1

f29 + (m2
2s+m2

1m
2
3 −m2

2m
2
3 − st)r1

,

W30 = f30 − (−m2
2t+m2

1m
2
2 −m2

1m
2
3 + st)r3

f30 + (−m2
2t+m2

1m
2
2 −m2

1m
2
3 + st)r3

(3.40)

where

f26 = −m2
3s

2 −m2
1st−m2

2st+ 2m2
1m

2
2s+m2

1m
2
3s

+ 2m2
2m

2
3s−m4

2m
2
3 +m2

1m
2
2m

2
3 + s2t,

f27 = m2
2st+ 2m2

3st−m4
3s+m2

2m
2
3s−m2

2m
2
3t

+m2
2m

4
3 −m4

2m
2
3 + 2m2

1m
2
2m

2
3 − st2,
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f28 = −m2
3s

2t−m2
1m

2
3st+m2

2m
2
3st+m2

1m
4
3s

− 2m2
1m

2
2m

2
3s+m2

1m
2
2m

4
3 + s2t2,

f29 = m2
2s

2 −m2
1st+m2

2st−m4
2s+m2

1m
2
2s−m2

1m
2
3s

−m2
2m

2
3s+m4

1m
2
3 +m4

2m
2
3 − 2m2

1m
2
2m

2
3 + s2t,

f30 = m2
2st−m2

3st+m2
2t

2 −m4
2t−m2

1m
2
2t−m2

1m
2
3t

+m2
2m

2
3t+m2

1m
4
2 +m2

1m
4
3 − 2m2

1m
2
2m

2
3 + st2 (3.41)

In terms of the 30 letters, the differential equation can be expressed as

dI = ε(dÃ)I (3.42)

where each entry of the matrix Ã is a linear combination of the logarithm of the letters.
The computer-readable files for the canonical differential equation and the alphabet are
given as supplementary material of this paper.

We also explicitly checked that the one-loop three-external-mass box’s alphabet is a
subset of our 30-letter alphabet. Furthermore, it would be interesting to see if the alphabet
of the two-loop two-external-mass integrals [43] can be recovered from our results. We leave
this problem to future work.

Obtaining the matrix Ã from the five matrices ∂iÃ of partial differential equations is
complicated by the fact that we were not able to find a parametrization that simultaneously
rationalizes the four square roots r1, . . . , r4. However, individual elements of Ã only depend
on two of the square roots at most and therefore we can use different parametrizations when
integrating different elements. E.g. Ã44,21 depends only on r1 and r2 and can be integrated
after rationalizing only these two square roots using our package RationalizeSquareRoots
(see footnote 2). In this way we are able to rationalize all elements of the matrices ∂iÃ.
Subsequently, we obtain the independent letters following section 3.1 of [44].

4 Reducing shifted integrals to Feynman integrals through syzygies

In this section we try to utilize a different idea for finding UT integrals which was introduced
in [24], and we further develop this method by a new type of IBP relations in the loop-by-
loop Baikov representation. The method of [24] builds on the fact that the Baikov kernel
K(z) in the loop-by-loop approach factorizes in the following way:

K(z) =
m∏
k=1

uk(zk)−γk−βkε, (4.1)

where it is important that the uk(zk) are irreducible, distinct and quadratic polynomials
in z = {z1, . . . , zn}. For the example of the two-loop three-mass box in the right-to-left
approach, the kernel is given in eq. (3.11)

K(z) =
( ∆u3(z3)
u1(z1)u2(z2)

)ε 1√
u1(z1)

√
u2(z2)

(4.2)

– 16 –



J
H
E
P
0
7
(
2
0
2
1
)
2
2
7

where z = {z1,z2,z3,z4,z5,z6,z7,z8} and z1 = z\{z2},z2 = {z1,z2,z3,z8},z3 = {z1,z3,z8}.
For the sake of readability we use ui(zi)≡uRLi and in the following also ui≡ui(zi). From
eq. (4.2) we see that

γ1 = 1
2 , γ2 = 1

2 , γ3 = 0. (4.3)

In the last section we used the square-roots of u1(z1) and u2(z2) in the denominator to
build dlog-integrands by choosing appropriate numerators. Following [24] we now also want
to introduce u3(z3) into the denominator and likewise use it in the dlog construction. From
eq. (4.1) we see that this amounts to the shift γ3 → (γ3 + 1).4 We will use the notation
I(γ1,γ2,γ3+1) for these new integrals, s.t. the original integrals are denoted by I(γ1,γ2,γ3) ≡ I.

The task is then to

1. Find dlog integrands through suitable linear combinations of integrals I(γ1,γ2,γ3+1)

and I(γ1,γ2,γ3).

2. Relate the shifted integrals I(γ1,γ2,γ3+1) to the unshifted integrals I(γ1,γ2,γ3).

In both of these points, we will deviate from the original methods proposed in [24]. In
the first point, the two square roots in K(z) force us to apply a change of variables that
rationalizes one of the them. In the second point, we will not use intersection theory [45–
49], but rely on unconventional IBP reduction via the Laporta algorithm, in combination
with techniques borrowed from dimensional recurrence relations [11].

4.1 Finding dlog integrands

It will be useful to define

ui,j±
1 ...j

±
m

= ui
(
zj1 = c±j1 , . . . , zjm = c±jm

)
, (4.4)

with c±j = 0, j /∈ {3, 6, 8} and c±3 , c±6 and c±8 will be defined below depending on the sector
under consideration.

Next, we note that, when constructing dlog integrals, a factor (x − a) in front of a
square root with a quadratic polynomial as argument basically means that we take the
residue in a, because [24]

1
(x− a)

√
(x− a1)(x− a2)

= 1√
(a− a1)(a− a2)

∂

∂x
log

1 +
√

(a2−a)(a1−x)
(a1−a)(a2−x)

1−
√

(a2−a)(a1−x)
(a1−a)(a2−x)

(4.5)

1
(x− a)

√
(x− x1)

= 1√
(a− x1)

∂

∂x
log

1 +
√

(a1−x)
(a1−a)

1−
√

(a1−x)
(a1−a)

(4.6)

4Note that we can only relate integrals with γk’s shifted by an integer back to the unshifted integrals.
Therefore, we can only shift γ3 without introducing a double-pole into the integrand.
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and we usually omit the dlog because its exact form is irrelevant for the construction. This
means that, for the top sector, one can immediately construct dlogs in z4, z5, z6 and z7 by
repeatedly using eq. (4.5), effectively setting these variables to zero in u1. The result is

I1,1,1,1,1,1,1,0,0 ∼
1

z1z2z3z4z5z6z7

1
√
u1
√
u2

= 1
z1z2z3

1
√
u1,4567

√
u2
×

7∏
i=4

∂

∂zi
log(. . .) (4.7)

where
u1,4567 = (m2

3z1 − sz8)2 (4.8)

which rationalizes the first square root. This is possible because u2 does not depend on
these four variables.

A more interesting example is the “hard slashed-box” sector, I12457. As a warm-up,
consider again the scalar integral, this time in the RL approach

I1,1,0,1,1,0,1,0,0 ∼
1

z1z2z4z5z7

1
√
u1
√
u2
. (4.9)

We can set z4, z5 and z7 to zero in u1, but because we cannot set z6 to zero, the square-root
does not rationalize anymore. Next, we can factorize the remaining u1,457 in z6:

u1,457 = f1(z3, z8)(z6 − c+
6 )(z6 − c−6 ) (4.10)

and build a dlog in z6 by using

1√
(x− a1)(x− a2)

= ∂

∂x
log

1 +
√

(a1−x)
(a2−x)

1−
√

(a1−x)
(a2−x)

, (4.11)

so that only z1z2
√
f1(z3, z8)√u2 remains in the denominator.

Similarly, we can set z1 and z2 in u2 to zero, but not z3. Hence, for the scalar integral,
we are left with

1√
f1(z3, z8)√u2,12

×
∏

i∈{1,2,4,5,6,7}

∂

∂zi
log(. . .). (4.12)

Since both factors are quadratic in z3 and z8, we need to rationalize one of the square
roots. We can rationalize f1(z3, z8) through the change of variables

z3 = −m2
3x3(1 + x8), z8 = −m2

3(1 + x3)x8, (4.13)

which can be found through the methods described in [50]. The Jacobian turns out to
cancel

√
f1(x3, x8) and therefore there is only

√
u2,12(x3, x8) left, which is quadratic in x3

and x8 and can be processed through eq. (4.11). This shows how the scalar integral in this
sector can be put into dlog form using the language of [24]. It also shows why this integral
does not receive corrections from lower sector, namely because the analysis on the maximal
cut in eq. (3.27) is essentially equivalent to the one done in this section.

– 18 –



J
H
E
P
0
7
(
2
0
2
1
)
2
2
7

Now we are ready to search for further dlog integrals among the shifted integrals
I(γ1,γ2,γ3+1). We consider the integrand of

I
(γ1,γ2,γ3+1)
1,1,0,1,1,0,1,0,0 ∼

1
z1z2z4z5z7

1
√
u1
√
u2 u3

. (4.14)

The steps for u1 are the same up to eq. (4.10), i.e. we begin by building dlogs in z4, z5, z7
and then in z6. For u2, we do not yet set z1 and z2 to zero but first change variables
according to eq. (4.13) which removes

√
f1(x3, x8). The integrand up to now is therefore

I
(γ1,γ2,γ3+1)
1,1,0,1,1,0,1,0,0 ∼

1
z1z2

1
√
u2 u3

×
∏

i∈{4,5,6,7}

∂

∂zi
log(. . .). (4.15)

Now we need to factorize u3, e.g.

u3(z1, x3, x8) = f3(x8)(x3 − c+
3 )(x3 − c−3 ). (4.16)

To make the discussion easier, it will be beneficial to remove one of the two factors in x3 by
switching to an integral I(γ1,γ2,γ3+1)

1,1,0,1,1,0,1,0,0 [N±] with corresponding numerator N+ = (x3 − c−3 )
or N− = (x3− c+

3 ). The complete denominator in (4.16) can then be recovered by building
linear combinations of the two integrals with numerators. Therefore, we consider the
integrand

I
(γ1,γ2,γ3+1)
1,1,0,1,1,0,1,0,0 [N±] = 1

z1z2f3(x8)(x3 − c±3 )√u2

= 1
z1z2f3(x8)√u2,3±

× ∂

∂x3
log(. . .)×

∏
i∈{4,5,6,7}

∂

∂zi
log(. . .).

(4.17)

As shown in appendix A, u2,3± is a perfect square and can be written in the follow-
ing way:

√
u2,3± = 1

(m2
3 − s)

1
2

[
1− (x3 − c±3 ) ∂

∂x3

]
∂

∂z2
u2. (4.18)

We could now use √u2,3± in the numerator in order to cancel the corresponding denomi-
nator of (4.17). This would leave us with dlogs in z1, z2 and x8, as one can easily check.
However, c±3 are potential square roots and the relation between {x3, x8} and {z3, z8} is not
single-valued. The numerators N ′± = √u2,3±(x3 − c∓3 ) are therefore also not single-valued.
To avoid this issue, we build linear combinations of the two numerators.

The anti-symmetric combination is

N ′+ −N ′− = √u2,3+(x3 − c−3 )−√u2,3−(x3 − c+
3 )

= 1
2(m2

3 − s)
(c+

3 − c
−
3 ) ∂

∂z2
u2.

(4.19)

The factor c+
3 − c−3 can easily be dealt with by cancelling it through a corresponding

denominator. This means that the two individual integrals of the linear combination now
have numerators N ′′± = √u2,3±(x3 − c∓3 )/(c+

3 − c−3 ) and (c+
3 − c−3 ) is used in the dlog

construction for z1. The final integrand of the anti-symmetric combination is then

I
(γ1,γ2,γ3+1)
1,1,0,1,1,0,1,0,0[N ] ∼ 1

z1z2z4z5z7

N
√
u1
√
u2 u3

, (4.20)
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where the numerator is now a rational function in z

N = 2
(
N ′′+ −N ′′−

)
(m2

3 − s)2 = (m2
3 − s)

∂

∂z2
u2. (4.21)

Making the symmetric combination rational in z3 and z8 is more complicated. While
this can be done through certain linear combinations, e.g. using

∂

∂x3
− ∂

∂x8
= m2

3

(
∂

∂z3
− ∂

∂z8

)
, (4.22)

we find it both easier and more systematic to just make an ansatz in terms of integrals
I(γ1,γ2,γ3) and I(γ1,γ2,γ3+1) and then feed it into LeadingSingularities. In this way, we
find a total of six dlog integrals, including the two mentioned above.

4.2 Reducing shifted integrals

Our method for relating the shifted integrals I(γ1,γ2,γ3+1) to the original ones is similar to
how dimensional recurrence relations are derived. Therefore, we give a very brief introduc-
tion into the latter before proceeding with the example of the last section.

Following eq. (8) in [11], one can construct lowering dimensional recurrence relations
in (full) Baikov representation by factoring out one power of the Baikov polynomial:

I(D)
a1,...,an

∼
∫ ( n∏

i=1
dzi
)
P (z1, . . . , zn)(D−E−L−1)/2

za1
1 . . . zan

n
(4.23)

I(D+2)
a1,...,an

∼ P (A−1 , . . . , A−n ) I(D)
a1,...,an

, (4.24)

where A−i acts on I(D)
a1,...,an by decreasing the corresponding ai by one, e.g.

A−3 I
(D)
a1,a2,a3,a4 = I

(D)
a1,a2,a3−1,a4 . (4.25)

An important point here is that one can do a (D+2)-dimensional IBP reduction for I(D+2)
a1,...,an

and derive the corresponding master integrals I
(D+2)
MI , which can then be translated to

integrals in D dimensions. These integrals can then be related to D-dimensional master
integrals I

(D)
MI through a D-dimensional IBP reduction. This gives a relation

I
(D+2)
MI = T−2 I

(D)
MI . (4.26)

Upon inverting T−2 one can also derive raising dimensional recurrence relations, which
have to be consistent with the ones found from the parametric representation (see eq. (4)
in [11]).

Now the idea is to apply this to the right-to-left Baikov approach for a single uj(zj).
We start with an analog expression for the integral, now in the loop-by-loop approach:

I(γ1,...,γm)
a1,...,an

∼
∫ ( n∏

i=1
dzi
) ∏m

k=1 uk(zk)−γk−βkε

za1
1 . . . zan

n
(4.27)
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As in section 4.1, our dlog integrals will have an additional factor uj(zj) in the denominator,
i.e. γj → (γj + 1). We relate the two types of integrals through.

I(γ1,...,γm)
a1,...,an

= uj(A−1 , . . . , A−n ) I(γ1,...,γj+1,...,γm)
a1,...,an . (4.28)

We would now again like to do an IBP reduction of both sides to get

I
(γ1,...,γm)
MI = Tγj+1 I

(γ1,...,γj+1,...,γm)
MI (4.29)

and use this to relate the integrals I(γ1,...,γj+1,...,γm)
a1,...,an to the master integrals I

(γ1,...,γm)
MI .

However, in general it is not expected that an integral with denominators other than
zai
i can be related to the integral family (4.27). Indeed, we find that Tγj+1 is not invertible
and that only a subset of the I

(γ1,...,γj+1,...,γm)
MI can be written in terms of I

(γ1,...,γj ,...,γm)
MI .

Applying this to our example, we find only two linear combinations of the dlog integrals
of the previous section for which this is possible. The first integral is simply the scalar
integral, and the second integral is

(m2
1 − t)

[
− I1,1,0,1,1,0,1,0,0 + (m2

3 − s)I
(γ1,γ2,γ3+1)
1,1,−2,1,1,0,1,0,0 + sI

(γ1,γ2,γ3+1)
1,1,−1,1,1,0,1,−1,0

− (m2
3 − s)(m2

3 + s)I(γ1,γ2,γ3+1)
1,1,−1,1,1,0,1,0,0 −m

2
3sI

(γ1,γ2,γ3+1)
1,1,0,1,1,0,1,−1,0

+m2
3(m2

3 − s)sI
(γ1,γ2,γ3+1)
1,1,0,1,1,0,1,0,0

]
= −ε−1m2

3(m2
1 − t)I1,1,0,1,2,0,1,0,0.

(4.30)

At this point, we want to comment on the possibility of writing integrals with additional
denominators ui in terms of the original integral family. Looking at eq. (4.20) we see
that our construction would favor u2, rather than u3, in the denominator because the
derivative in z2 would combine into ∂z2 log u2. This, in turn, would make the removal of
the denominator trivial, because of IBPs of the form

0 = d
[

dz1 . . . d̂z2 . . . dz8K(z)
z1z2z4z5z7

]
= (γ2 + εβ2) d8z K(z)

z1z2z4z5z7
∂z2 log u2 + d8z K(z)

z1z2
2z4z5z7

. (4.31)

This happens e.g. in the two-loop four-scale triangle integrals discussed in [24].

4.3 Details about the IBP reduction in the loop-by-loop approach

A general IBP in the loop-by-loop approach has the form

0 = d
(

n∑
i=1

(−1)i+1viK(z)dz1 . . . d̂zi . . . dzn
za1

1 . . . zan
n

)

=
[
n∑
i=1

(
∂zivi + vi ∂zi logK(z)− ai

vi
zi

)]
Ω

(4.32)

where Ω = K(z) dz1 . . . dzn/(za1
1 . . . zan

n ). The derivative of K(z) is

∂zi logK(z) =
m∑
k=1

(−γk − βkε)
∂ziuk(zk)
uk(zk)

, (4.33)
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where we made use of the factorization into irreducible factors in eq. (4.1). Therefore

n∑
i=1

vi∂zi logK(z) =
m∑
k=1

(−γk − βkε)
uk(zk)

n∑
i=1

vi∂ziuk(zk). (4.34)

To get IBPs without shifts in the γk, we demand that the corresponding numerators are
proportional to the denominators:

bkuk +
n∑
i=1

vi∂ziuk(zk) = 0, ∀k (4.35)

which amounts to computing the syzygy of the module consisting of the uk(zk) and their
derivatives. The syzygy of the module can be easily solved by the computational algebraic
geometry software Singular [51]. The resulting IBP vectors vi can then be used in eq. (4.32)
to build a system of IBP relations without positive shifts in the γk.

5 Summary and outlook

In this paper, we further develop the UT integral determination method based on the
leading singularity analysis of Feynman integrals in Baikov representation. For an integral
family, we analyze sector by sector, rationalize the integrand factors in Baikov represen-
tation if necessary, and then use computational tools for leading singularities to find UT
integral candidates. After the sector-by-sector analysis, we collect the UT integral candi-
dates, use IBP identities to determine the independent integrals and derive the differential
equation to verify the UT candidates.

Our method is powered by the state-of-art tools for the integrand leading singularity
and dlog form computations, and for the rationalization of radicals. This method is highly
flexible and easy to use since 1) for each sector we can use either the original Baikov or
loop-by-loop Baikov representation 2) we may trade “complicated” UT integrals in some
sectors with reducible UT integrals in the corresponding super sectors, in the sector-by-
sector leading singularity analysis, to make the UT searching easier.

We present a nontrivial example, the UT integral basis for the two-loop double box
family with three different external mass, to demonstrate the power of our method. The
complete UT basis is determined by our Baikov leading singularity analysis combined
with our package for rationalization. The corresponding canonical differential equation is
obtained and the alphabet is determined by integrating the differential equation with the
help of our rationalization package.

Furthermore, we developed the IBP reduction method for the loop-by-loop Baikov
representation. In general, the loop-by-loop Baikov representation contains several irre-
ducible factors and thus we can use the syzygy module method to find the IBP relations
in this type of integrand. What is more, since it is clear that there are dlog integrals in
this representation which are not obviously of the form of Feynman integrals, we can fine
tune our syzygy equations to convert these integrals to Feynman integrals and then get
UT candidates.
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In the future, we plan to make a package with our UT determination protocol based
on the leading singularity analysis in Baikov representation, to automize the steps of ra-
tionalization, leading singularity analysis, and IBP reduction for differential equations.

Acknowledgments

We thank Alessandro Georgoudis for his early work on the massive double box’s UT basis.
We acknowledge Dmitry Chicherin, Johannes Henn, David Kosower, Pascal Wasser, and
Li Lin Yang for very useful discussions.

The work of XL was supported from Qiu-Shi Funding and the National Natural Science
Foundation of China (NSFC) with Grant No.11935013, No.11575156. The work of YZ
was supported from the NSF of China through Grant No. 11947301, 12047502 and No.
12075234. The research of CD has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme,
Novel structures in scattering amplitudes (Grant agreement No. 725110).

A The perfect square and Gram-determinant relations

To derive eq. (4.18), we use the following relation between Gram-determinants:

G(p3, p4, k1)G(p2, p3, p4)−G(p2, p3, p4, k1)G(p3, p4) = G({p2, p3, p4}, {p3, p4, k1})2 (A.1)

or
u3∆ + u2λ4 = u2

4, (A.2)

with u4 = G({p2, p3, p4}, {p3, p4, k1}) and λ4 = (m2
3−s)2. When substituting x3 → c±3 , the

first term on the r.h.s. vanishes and therefore

u2,3±λ4 = u2
4,3± . (A.3)

We can simplify even more by using

G ({p2, p3, p4} , {p3, p4, k1}) = −1
2

∂

∂ (2k1 · p2)G (p2, p3, p4, k1) (A.4)

or
u4 = 1

2
∂

∂z2
u2. (A.5)

The relation between the Gram determinants in (A.1) can be generalized to5

G(k, ~q)G(p, ~q)−G(k, p, ~q)G(~q) = G({k, ~q}, {p, ~q})2, (A.6)

where ~q can be any sequence of vectors. Further, we have

G({k, ~q}, {p, ~q}) = −1
2

∂

∂(2k · p)G(k, p, ~q). (A.7)

5We thank Li Lin Yang for sharing this identity with us.
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Relation (A.6) follows from Sylvester’s determinant identity6 and relation (A.7) is just
Jacobi’s formula.

Back to eqs. (A.3) and (A.5), we can use that u4 is linear in the xi and therefore

u4,3± = 1
2

[
1− (x3 − c±3 ) ∂

∂x3

]
∂

∂z2
u2. (A.8)

Putting everything together shows that

√
u2,3± = 1√

λ4

1
2

[
1− (x3 − c±3 ) ∂

∂x3

]
∂

∂z2
u2. (A.9)
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