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Abstract: We revisit T T̄ deformations of d = 2 theories with fermions with a view to-
ward the quantization. As a simple illustration, we compute the deformed Dirac bracket
for a Majorana doublet and confirm the known eigenvalue flows perturbatively. We mostly
consider those T T̄ theories that can be reconstructed from string-like theories upon inte-
grating out the worldsheet metric. After a quick overview of how this works when we add
NSR-like or GS-like fermions, we obtain a known non-supersymmetric T T̄ deformation of
a N = (1, 1) theory from the latter, based on the Noether energy-momentum. This world-
sheet reconstruction implies that the latter is actually a supersymmetric subsector of a
d = 3 GS-like model, implying hidden supercharges, which we do construct explicitly. This
brings us to ask about different T T̄ deformations, such as manifestly supersymmetric T T̄
and also more generally via the symmetric energy-momentum. We show that, for theories
with fermions, such choices often lead us to doubling of degrees of freedom, with potential
unitarity issues. We show that the extra sector develops a divergent gap in the “small
deformation” limit and decouples in the infrared, although it remains uncertain in what
sense these can be considered a deformation.
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1 Summary

In recent years, a particular form of irrelevant deformation of field theories received much
attention, namely the T T̄ deformation [1]. A most surprising fact was that the exact
energy eigenvalue flow of such deformations could be computed [1, 2]. The eigenvalues are
anticipated to flow as, provided that the spatial direction is compactified on a circle,

E(λ) ∼ 1
2λ

[√
1 + 4λE(0) + 4λ2P (0)2 − 1

]
, P (λ) = P (0) , (1.1)
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where λ is the coefficient of the deformation. E(0) and P (0) are the energy and momentum
eigenvalues of the theory before the deformation.1 The effect on S-matrices can also be
kept track of relatively easily [2, 3], and the latter’s equivalence to those of an undeformed
theory coupled to dynamical gravity is known [4, 5], further suggesting another special
nature of this set of theories.

Despite these well-known features, the first-principle quantization via the usual canoni-
cal approach remains beyond the reach as the deformed Lagrangians are heavily non-linear.
In the simplest known example of a single real scalar, the deformed Lagrangian is of Nambu-
Goto or of Born-Infeld type [3, 6], with the kinetic terms enclosed inside a square root. The
appearance of such a square-rooted Lagrangian implies the same for a similar structure for
the Hamiltonian density,

H = 1
2λ

[√
1 + 4λ

(1
2π

2 + 1
2φ
′2
)

+ 4λ2(πφ′)2 − 1
]
, (1.2)

with the conjugate momentum π of φ, in an apparent similarity with the known eigen-
value flow. However, the two expressions are actually a world-apart as H needs a further
integration over the space while the eigenvalue flow tells us that actual Hamiltonian in-
volves free Hamiltonian and momentum operators, rather than densities thereof, inside the
square-root. The tantalizing similarity between eq. (1.1) and eq. (1.2) is thus even more
vexing.

For fermions, the potential non-linearity of the Hamiltonian density truncates at a
finite order, which also appears naively at odd with the above universal eigenvalue flow
with a would-be infinite Taylor series in λ. The resolution is conceptually simpler for
fermions, as it turns out. Recall that quantization of usual Fermionic theories must start
with a second-class constraint that relates the conjugate momenta linearly to the original
fermion variable,

πψ ≈
i

2ψ , (1.3)

whereby the Dirac bracket [7] replaces the naive Poisson bracket. What happens with T T̄
-deformed fermions is that this canonical structure is itself deformed, again up to some
finite order in λ. Combining this polynomial-modified Dirac bracket and the polynomial-
modified Hamiltonian sets up a perturbative eigenvalue problem that does not truncate
in λ. For actual eigenvalues, one would prefer to rephrase the Hamiltonian in terms of
simple harmonic oscillators, which would then involve an appropriate infinite Taylor series
and reproduce the general eigenvalue flow formula. We have performed this to the first
nontrivial order in section 2.

For the scalar theory above, something different happens. Between the natural har-
monic oscillators that come out of the canonical commutator,

[π, φ] = −iδ , (1.4)
1This assumes the absence of certain zero-modes, such as the Wilson line of a gauge theory, whose scaling

with the spatial radius is exceptional.
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and those that construct the free Hamiltonian and the translational Momentum inside the
square root of (1.1), we find a nontrivial canonical transformation. In other words, a non-
linear map between the two sets of oscillators such that both obey the common commutator
algebra, yet one is an infinite Taylor series of the other. These preliminary investigations
can be found in section 2, where the above perturbative computation is carried out up to
the second-order in λ and confirms the known eigenvalue flow. Section 2 also reviews the
Dirac quantization procedures in some detail, which will prove useful and important in
later sections.

However, neither of these is efficient or extendable to higher-order, if interesting con-
ceptually. As such, we also explore other potential venues. For the above free scalar theory,
deformed by T T̄ , an indirect method is known [8–13] where the theory is realized as a unit
winding number sector of a Polyakov action after integrating out a worldsheet metric, and
the energy as the conserved conjugate momenta of the time-like target variable. It is nat-
ural to imagine that this method is straightforwardly generalized to Polyakov models with
fermions, either Neveu-Schwarz-Ramond (NSR) type or Green-Schwarz (GS) type, and we
explore such possibilities and find that some of such approaches do give the desired form
of T T̄ -deformed theories. We find, unfortunately, these allow only limited handles on the
exact quantization, unlike the simplest scalar-only theory. Nevertheless, they offer struc-
tures of the T T̄ deformation that would not have been easily available without such routes.
The bulk of this note is dedicated to these explorations, as delineated in sections 3 and 4.

In particular, we devote the bulk of section 4 on T T̄ deformation of the simplest
N = (1, 1) theory, with the deformation operator being not supersymmetry completed.
Despite this explicit supersymmetry breaking, the universal nature of the eigenvalue flow
suggests preservation of the supersymmetry. This is also reinforced by the worldsheet
reconstructions of the same theory, starting from a 3D GS-like model with spacetime
supersymmetry. From both T T̄ side and the worldsheet side, we construct and explore
the supercharges of the deformed models. In particular, the worldsheet viewpoint gives a
rather clear picture of why such supercharges exist, and we further explore the subsector
of the Hilbert space that preserves the supersymmetry partially. This observation may
lead to interesting topological observables for more complicated supersymmetric models
and T T̄ deformation thereof.

Along the way, we find a peculiar problem with the generic T T̄ deformation of fermionic
theories. Recall that the fermion quantization, with its at most single time derivative in
the Lagrangian, starts with a second-class constraint that linearly relates the conjugate
momentum to the configuration fermion as πψ ≈ i

2ψ “weakly” [7]. Such a constraint is
essential in all fermionic theory, free or interacting, for the usual counting of degrees of
freedom, where one complex Grassmannian field carries the same number of independent
canonical variables as one real scalar field. This counting holds for the initial undeformed
theories, but does it for the deformed theories? The T T̄ operator of free fermion theory
containing up to two derivatives, and even worse, once deformation starts, the number
of time derivatives can easily proliferate. The crucial second-class constraint can be lost
depending on the precise nature of the energy-momentum tensor used to build T T̄ .
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As such, we find an important dividing feature among various T T̄ deformations. Clas-
sified by precisely which energy-momentum tensor is used or the deformation, there appear
to be two types of T T̄ deformation of fermionic theories. In one type, this constraint re-
mains a constraint only to be modified by non-linear corrections. The Dirac bracket is
additively modified by the higher-order multi-fermion terms, as we noted already. The
would-be second-class constraint itself is lifted entirely by acquiring a term with a time
derivative in the other type. The latter means that the degrees of freedom are doubled than
otherwise, so that the Hilbert space is much larger than that of the initial undeformed the-
ory, rendering the terminology “deformation” a misnomer. One fortunate aspect, though, is
that these extra degrees of freedom are gapped amply, scaling inversely with the small λ so
that one may hope for a decoupling of the extra sector can be argued in the infrared limit.

In the latter class, the Lagrangian involves terms with more than one time derivatives
on fermions. Such theories are expected to be riddled with unitarity issues, generically,
such as negative norm states or non-Hermitian Hamiltonian [14]. For a d = 1 toy example
and for some simplest d = 2 examples, we see a glimpse of how the unitarity might be
restored by replacing the naive inner product on the Hilbert space with the one consistent
with the path integral. However, we performed the latter exercise only for specific limits
in the case of d = 2 examples, so it is not completely clear whether such “deformation”
leads to an inconsistent extension or to a different but sensible UV completion merely with
twice the degrees of freedom. Either way, the choice of the energy-momentum tensor for
T T̄ deformation appears far more critical than naive expectations.

Interestingly, for those simplest examples considered here, the T T̄ deformations based
on the Noether energy-momentum tensor do not generate such issues. With symmetric
energy-momentum, we do find such problems even for the simplest possible theory. A
further divide of this kind exists between this standard T T̄ deformation, at least naively
non-supersymmetric, of N = (1, 1) theory of a single scalar multiplet and the supersym-
metry completed T T̄ deformation thereof. It is unclear to us precisely what aspect of the
Noether energy-momentum tensor allows such a nice behavior and whether the same would
happen with a larger fermion content.

2 Hamiltonian analysis of T T̄ deformation

The T T̄ deformation features a universal form of the deformed spectrum in terms of un-
deformed energy and momentum [2, 3],

En(L, λ) = L

2λ

√1 + 4λ
L
En + 4λ2

L2 P
2
n − 1

 , (2.1)

Pn(L, λ) = Pn(L) . (2.2)

It is tempting to claim that this universal form of the deformed spectrum also holds at the
operator level. Namely, one can ask whether the Hamiltonian operator of the deformed
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theory can universally be written as

H = L

2λ

√1 + 4λ
L
H(0) + 4λ2

L2 P
2
(0) − 1

 , (2.3)

where H(0) and P(0) is Hamiltonian and momentum operator of the undeformed theory.
We emphasize that H(0) and P(0) are not density operators. On the other hand, starting
from the deformed Lagrangian density following the flow equation

∂λL = 1
2εµνε

ρσTµρT
ν
σ , (2.4)

one can derive the Hamiltonian density of the deformed theory. However, it is highly non-
trivial to see how the Hamiltonian from the deformed Lagrangian density is related to the
universal form (2.3). Also, the normal ordering of the deformed Hamiltonian (2.3) is not
clear.2 Therefore, in this section, we will carry out the Hamiltonian analysis for the T T̄
deformation of free theories. Then, we will give an explicit construction of the conjectured
Hamiltonian (2.3) perturbatively by field redefinition.

2.1 T T̄ deformation of free scalar field

First, let us consider the T T̄ deformation of the scalar field of which Lagrangian is given by

L = − 1
2λ

[√
1 + 2λ(−φ̇2 + φ′2)− 1

]
, (2.5)

where φ̇ ≡ ∂tφ and φ′ ≡ ∂xφ. Using the conjugate momentum

π = φ̇√
1 + 2λ(−φ̇2 + φ′2)

, (2.6)

the Hamiltonian density can be written as follows,

H = 1
2λ

[√
1 + 4λ

(1
2π

2 + 1
2φ
′2
)

+ 4λ2(πφ′)2 − 1
]
,

= 1
2
(
π2 + φ′2

)
− λ

(1
2π

2 − 1
2φ
′2
)2

+O(λ2) , (2.7)

where φ and π satisfy the (equal-time) canonical commutation relations:

[φ(x1), π(x2)] = iδ(x1 − x2) , [φ(x1), φ(x2)] = [π(x1), π(x2)] = 0 . (2.8)

Note that the Hamiltonian (2.7) is significantly different from eq. (2.3) in that the Hamil-
tonian (2.7) is the integral of a local density while the conjectured Hamiltonian (2.3) is a
function of charge operators (i.e., H(0) and P(0)) so that it contains infinitely many inte-
grals. This implies that the equivalence of two Hamiltonian is highly non-trivial, and one
needs non-local canonical transformation3 to reach the conjectured form (2.3) if exists.

2Considering the deformed energy spectrum, it is tempting to guess that the normal ordering chosen in
the undeformed theory had better be applied to each H(0) and P(0) individually inside of the square-root.

3Note that the commutation relation is not changed under such a transformation for the case of a scalar
field.
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It was shown [8, 13] that the equivalence of the Hamiltonian (2.7) and the conjectured
Hamiltonian (2.3) can be proved by using Polyakov action (up to the issue of operator
ordering and the equivalence between Polyakov action and Nambu-Goto action at quantum
level). Although the equivalence of two Hamiltonians is proved, it is still non-trivial to find
an explicit map between operators. The dynamical coordinate transformation [15–17] and
the canonical map discussed in ref. [13] could, in principle, give the answer — a map
between operators. But, since they are an operator-dependent coordinate transformation,
it would not be easy to utilize them at the quantum level from the point of view of 2D
QFT. Hence it is worthwhile to find an explicit map between operators which transforms the
Hamiltonian (2.7) into the conjectured Hamiltonian (2.3), at least, perturbatively in small
λ. Such an operator map could be used in other quantum calculations (e.g., correlation
function etc.).

For this, we consider the Fourier expansion of φ and Π:

φ(x) =
∑
k

φke
2πikx
L , (2.9)

Π(x) = 1
L

∑
k

Πke
2πikx
L , (2.10)

where L denotes the circumference of x. Here, the normalization is chosen in a way that
φk and Πk are dimensionless and the commutation relations of the modes are

[φk,Πq] = iδk+q,0 , [φk, φq] = [Πk,Πq] = 0 . (2.11)

It is useful to define oscillators Ak Āk by

Ak ≡ −
√
πikφk + 1

2
√
π

Πk , (2.12)

Āk ≡ −
√
πikφ−k + 1

2
√
π

Π−k . (2.13)

The commutation relations of Ak and Āk are

[Ak, Aq] = kδk+q,0 , (2.14)
[Āk, Āq] = kδk+q,0 , (2.15)
[Ak, Āq] = 0 . (2.16)

We will consider the small λ/L2 expansion of Ak and Āk:

Ak = A
(0)
k + λ

L2A
(1)
k + · · · , Āk = Ā

(0)
k + λ

L2 Ā
(1)
k + · · · . (2.17)

Because we have the free scalar field for λ = 0, the leading operator A(0)
k and Ā(0)

k should
be the free oscillators αk and ᾱk of the free scalar field,

A
(0)
k = αk , Ā

(0)
k = ᾱk , (2.18)

– 6 –
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where the commutation relation of the oscillator αk and ᾱk is the same as that of A’s:

[αk, αq] = kδk+q,0 , (2.19)
[ᾱk, ᾱq] = kδk+q,0 , (2.20)
[αk, ᾱq] = 0 . (2.21)

Now, we claim that there exists a canonical transformation from Aq , Āq to αk , ᾱk
such that the Hamiltonian H̃[α, ᾱ] ≡ H

[
A(α, ᾱ), Ā(α, ᾱ)

]
is consistent with the energy

spectrum. Namely, H̃[α, ᾱ] is of form

H[A, Ā] = H̃[α, ᾱ] = L

2λ

√1 + 4λ
L

(H+ +H−) + 4λ2

L2 (H+ −H−)2 − 1

 , (2.22)

where H± is defined by

H+ ≡
π

L

∑
k

α−kαk , H− ≡
π

L

∑
k

ᾱ−kᾱk . (2.23)

Perturbatively, we aim at finding a transformation in which the Hamiltonian becomes∫
dx

[
1
2
(
π2 + φ′2

)
− λ

(1
2π

2 − 1
2φ
′2
)2

+O(λ2)
]

= H+[α] +H−[ᾱ]− 4λ
L
H+[α]H−[ᾱ] +O(λ2) . (2.24)

To avoid the ordering ambiguity, we will first find the transformation classically. Up to the
leading order O(λ0), we have

Ak = αk +O(λ) , Āk = ᾱk +O(λ) , (2.25)

and we trivially have

H[A, Ā] = π

L

∑
k

(A−kAk + Ā−kĀk) +O(λ) = H̃[α, ᾱ] +O(λ) . (2.26)

We solve (2.24) perturbatively up to order O(λ2) by expanding Ak , Āk with respect to λ
L2 :

Ak = αk + λ

L2A
(1)
k [α, ᾱ] + λ2

L4A
(2)
k [α, ᾱ] +O(λ3) , (2.27)

Āk = ᾱk + λ

L2 Ā
(1)
k [α, ᾱ] + λ2

L4 Ā
(2)
k [α, ᾱ] +O(λ3) . (2.28)

Demanding that the transformation is canonical, we get a solution for the canonical trans-
formation from Ak, Āk to αk, ᾱk:

A
(1)
k = 2π

∑
r,s

r+s 6=0

k

r + s
αk−r−sᾱ−rᾱ−s , (2.29)

Ā
(1)
k = 2π

∑
r,s

r+s 6=0

k

r + s
α−rα−sᾱk−r−s , (2.30)

– 7 –



J
H
E
P
0
7
(
2
0
2
1
)
2
1
7

and

A
(2)
k = 2π2k

∑
r,s,u,v

u+v 6=0,r+s 6=0

k − r − s− u− v
(u+ v)(r + s) αk−r−s−u−vᾱ−uᾱ−vᾱ−rᾱ−s

− 4πk
∑
u,v

u+v 6=0

1
u+ v

αk−u−vᾱ−uᾱ−vL(H+ +H−)

+ 4π2k
∑
r,s,u,v
r+s 6=0

1
r + s

αk−r−s−u−vαrαsᾱ−uᾱ−v , (2.31)

Ā
(2)
k = 2π2k

∑
r,s,u,v

u+v 6=0,r+s 6=0

k − r − s− u− v
(u+ v)(r + s) ᾱk−r−s−u−vα−uα−vα−rα−s

− 4πk
∑
u,v

u+v 6=0

1
u+ v

ᾱk−u−vα−uα−vL(H+ +H−)

+ 4π2k
∑
r,s,u,v
r+s 6=0

1
r + s

ᾱk−r−s−u−vᾱrᾱsα−uα−v . (2.32)

See appendix B.1 for details. Indeed, one can check that under this solution, the Hamilto-
nian H[A, Ā] and the momentum P defined by

P [A, Ā] ≡
∫
dx πφ′ = −π

L

∑
k

[A−kAk − Ā−kĀk] , (2.33)

are mapped to the expected result for the T T̄ deformed spectrum,

H[A, Ā] = H+ +H− − 4λ
L
H+H− + 8λ2

L2 H+H−(H+ +H−) +O(λ3) , (2.34)

P [A, Ā] = −H+ +H− +O(λ3) . (2.35)

So far, our analysis remained classical to avoid the normal ordering issue in finding the
solution. We confirm our solution up to order O(λ) at the quantum level. We find that the
normal ordering : : with respect to the free oscillators α , ᾱ can still be used up to order
O(λ), and we take the normal ordering with respect to the free oscillators α’s and ᾱ’s for
H,P and the solution A(1)

k , Ā
(1)
k up to order O(λ),

H = 2π
2L :

(
A−kAk + Ā−kĀk

)
: −4π2λ

L3

∑
k,q,r

: AkĀ−qA−k−q−rĀ−r : +O(λ2) ,

P = − π

L

∑
k

: [A−kAk − Ā−kĀk] : , (2.36)

A
(1)
k = 2π

∑
r,s

r+s 6=0

k

r + s
αk−r−s : ᾱ−rᾱ−s : , (2.37)

Ā
(1)
k = 2π

∑
r,s

r+s 6=0

k

r + s
: α−rα−s : ᾱk−r−s . (2.38)

– 8 –
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After repeating the same calculations with careful operator ordering, we have

H = : H+ : + : H− : −4λ
L

: H+ :: H− : +O(λ2) ,

P = − : H+ : + : H− : +O(λ2) . (2.39)

2.2 T T̄ deformation of free fermion

Now, we consider the T T̄ deformation of the free Majorana fermion of which the unde-
formed Lagrangian density is given by

L0 = iψ+∂=ψ+ + iψ−∂++ψ− . (2.40)

Here, we denote the light-cone derivative by ∂++=
≡ 1

2(∂0 ± ∂1). The energy-momentum
tensor of a fermionic model is given by

T=
++ =

←−
δ L

←−
δ ∂=ψ+

∂++ψ+ +
←−
δ L

←−
δ ∂=ψ−

∂++ψ− , (2.41)

T++
= =

←−
δ L

←−
δ ∂++ψ+

∂=ψ+ +
←−
δ L

←−
δ ∂++ψ−

∂=ψ− , (2.42)

T=
= =

←−
δ L

←−
δ ∂=ψ+

∂=ψ+ +
←−
δ L

←−
δ ∂=ψ−

∂=ψ− − L , (2.43)

T++
++ =

←−
δ L

←−
δ ∂++ψ+

∂++ψ+ +
←−
δ L

←−
δ ∂++ψ−

∂++ψ− − L , (2.44)

where
−→
δ−→
δ ψ

and
←−
δ←−
δ ψ

denotes the left and right functional derivative with respect to a Grass-
mannian variable defined by

δX = δψ

−→
δ X
−→
δ ψ

=
←−
δ X
←−
δ ψ

δψ . (2.45)

Note that the resulting energy-momentum tensor is not symmetric. We will solve the flow
equation perturbatively for the T T̄ deformation with non-symmetric energy-momentum
tensor,

∂λL = −
(
T++

++T
=

= − T++
=T

=
++
)
, (2.46)

by expanding the Lagrangian with respect to λ

L =
∞∑
n=0

λnLn , (2.47)

where L0 is the Lagrangian of the free fermion in eq. (2.40). The (leading) energy-
momentum tensor from L0 is

T=
(0)++

= iψ+∂++ψ+ , (2.48)

T++
(0)=

= iψ−∂=ψ− , (2.49)

T=
(0)=

=− iψ−∂++ψ− , (2.50)

T++
(0)++

=− iψ+∂=ψ+ , (2.51)
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which determines the first correction L1,

L1 = ψ+∂=ψ+ψ−∂++ψ− − ψ+∂++ψ+ψ−∂=ψ− . (2.52)

One can confirm that L0 + λL1 is indeed the exact solution of the flow equation because
of Fermi statistics. Hence, the T T̄ deformed Lagrangian of the free fermion is

L = iψ+∂=ψ+ + iψ−∂++ψ− + λ (−ψ+∂++ψ+ψ−∂=ψ− + ψ+∂=ψ+ψ−∂++ψ−) . (2.53)

To calculate Hamiltonian, it is useful to write the Lagrangian in the Cartesian coordinates:

L = i

2ψ+ψ̇+ + i

2ψ−ψ̇− −
i

2ψ+ψ
′
+ + i

2ψ−ψ
′
− + λ

2
(
−ψ+ψ

′
+ψ−ψ̇− + ψ+ψ̇+ψ−ψ

′
−

)
, (2.54)

where ψ̇ ≡ ∂tψ and ψ′ ≡ ∂xψ. The conjugate momentum π± of the fermion ψ± is calculated
by right functional derivative,

π+ =
←−
δ L
←−
δ ψ̇+

= i

2ψ+ + λ

2ψ+ψ−ψ
′
− , (2.55)

π− =
←−
δ L
←−
δ ψ̇−

= i

2ψ− −
λ

2ψ+ψ
′
+ψ− . (2.56)

The right-hand side does not contain ψ̇±, and they form the second-class constraints,

C1 ≡ π+ −
i

2ψ+ −
λ

2ψ+ψ−ψ
′
− , (2.57)

C2 ≡ π− −
i

2ψ− + λ

2ψ+ψ
′
+ψ− . (2.58)

We define the Poisson bracket of F and G, consistent with any Grassmannian variables F
and G, by

{F,G}PB ≡
∑
α=±

∫
dx

[ ←−
δ F

←−
δ ψα(x)

−→
δ G

−→
δ πα(x)

+
←−
δ F

←−
δ πα(x)

−→
δ G

−→
δ ψα(x)

]
. (2.59)

For the Dirac bracket, we need to evaluate the Poisson brackets of the constraints,

M(i, x1; j, x2) ≡ {Ci(x1), Cj(x2)}PB , (2.60)

where each component of the matrixM is given by

{C1(x1), C1(x2)}PB =− i
[
1− iλψ−(x1)ψ′−(x1)

]
δ(x1 − x2) , (2.61)

{C2(x1), C2(x2)}PB =− i
[
1 + iλψ+(x1)ψ′+(x1)

]
δ(x1 − x2) , (2.62)

{C1(x1), C2(x2)}PB = λ(ψ′+ψ− + ψ+ψ
′
−)δ(x1 − x2) . (2.63)

Using the matrixM, one can evaluate the Dirac bracket,

{F (x1), G(x2)}D ≡{F (x1), G(x2)}PB (2.64)

−
∑

i,j=1,2

∫
dx3dx4 {F (x1), Ci(x3)}PBM−1(i, x3; j, x4){Cj(x4), G(x2)}PB .
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The Dirac brackets of ψ± are found to be

i{ψ+(x1), ψ+(x2)}D = (1 + λS− + 2λ2S+S−)δ(x1 − x2) , (2.65)
i{ψ−(x1), ψ−(x2)}D = (1− λS+ + 2λ2S+S−)δ(x1 − x2) , (2.66)
i{ψ+(x1), ψ−(x2)}D =− iλ(ψ′+ψ− + ψ+ψ

′
−)δ(x1 − x2) , (2.67)

where it is useful to introduce Hermitian operators S± defined by

S± ≡ iψ±ψ′± . (2.68)

Also, the Dirac brackets of π+ and ψ± are

{π+(x1), ψ+(x2)}D = 1
2(1− λ2S+S−)δ(x1 − x2) , (2.69)

{π+(x1), ψ−(x2)}D =− iλ

2 ψ
′
+ψ−δ(x1 − x2) , (2.70)

and similar for π−. With constraint, the Hamiltonian (density) is given by

H ≡ π+ψ̇+ + π−ψ̇− − L

=
(
π+ −

i

2ψ+ −
λ

2ψ+ψ−ψ
′
−

)
ψ̇+ +

(
π− −

i

2ψ− + λ

2ψ+ψ
′
+ψ−

)
ψ̇−

+ i

2ψ+ψ
′
+ −

i

2ψ−ψ
′
−

= i

2ψ+ψ
′
+ −

i

2ψ−ψ
′
− . (2.71)

At first glance, it does not seem possible to get the conjectured form of Hamiltonian (2.3)
from the deformed Hamiltonian density (2.71) because the Hamiltonian density (2.71) is
of the same form as that of the undeformed model. However, unlike the scalar field case,
the deformed fermions satisfy non-trivial Dirac brackets (2.65)–(2.67), which allows us to
match two Hamiltonians. To see this, we first consider the mode expansion of the fermions
(with circumference L):

ψ±(x) = 1√
L

∑
k

ψ±,ke
2πikx
L , (2.72)

where k ∈ Z + 1/2 for anti-periodic boundary condition and k ∈ Z for periodic boundary
condition. It is also useful to Fourier expand S± , S+S− and i(ψ′+ψ− + ψ+ψ

′
−):

S±(x) = 1
L2

∑
p

S±,pe
2πipx
L , (2.73)

(S+S−)(x) = 1
L4

∑
p

(S+S−)pe
2πipx
L , (2.74)

i(ψ′+ψ− + ψ+ψ
′
−)(x) = 1

L2

∑
p

Kpe
2πipx
L . (2.75)
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The Dirac brackets of the modes ψ±,k can be written as

i{ψ+,k, ψ+,q}D = δk+q,0 + λ

L2S−,k+q + 2λ2

L4 (S+S−)k+q , (2.76)

i{ψ−,k, ψ−,q}D = δk+q,0 −
λ

L2S+,k+q + 2λ2

L4 (S+S−)k+q , (2.77)

i{ψ+,k, ψ−,q}D =− λ

L2Kk+q . (2.78)

This nonstandard Dirac bracket is at the heart of how the Hamiltonian, which apparently
has no λ at all when written in terms of ψ’s, can generate a Taylor series with infinitely
many terms. For actual evaluation of the eigenvalues of Hamiltonian and momentum, we
will introduce a new set of operators that obey the usual fermi harmonic oscillator algebra,

i{bk, bq}D = δk+q,0 , i{b̄k, b̄q}D = δk+q,0 , i{bk, b̄q}D = 0 . (2.79)

and we reconstruct ψ by

ψ+,k = bk + λ

L2ψ
(1)
+,k[b, b̄] + · · · , ψ−,k = b̄k + λ

L2 ψ̄
(1)
−,k[b, b̄] + · · · , (2.80)

such that the Dirac bracket of ψ’s is properly incorporated.
We will further demand that the map between ψ+,k , ψ−,k and bq , b̄q is such that

the Hamiltonian H̃[bk, b̄k] ≡ H
[
ψ+(b, b̄), ψ−(b, b̄)

]
is consistent with the energy spectrum.

Namely, H̃[b, b̄] is of form

H[ψ+, ψ−] = H̃[b, b̄] = L

2λ

√1 + 4λ
L

(H+ +H−) + 4λ2

L2 (H+ −H−)2 − 1

 , (2.81)

where H±[b, b̄] is defined by

H+ ≡ −
π

L

∑
k

kb−kbk , H− ≡
π

L

∑
k

kb̄−k b̄k . (2.82)

If these steps are achieved, we will have effectively shown that the first-principle quanti-
zation of T T̄ deformed Majorana fermion does reproduce the anticipated eigenvalue flow.
We find a map between ψ’s and b’s perturbatively up to order O(λ) by solving the equa-
tion (2.81) and by demanding that non-trivial Dirac brackets of ψ’s is realized by b and
b̄. To avoid the ordering ambiguity, one may first search for the map classically. At the
quantum level, one needs to take care of operator ordering. Especially, the T T̄ deformation
of the fermion has additional ambiguity of operator ordering in the Dirac bracket. That
is, when we promote the Dirac bracket (2.76)–(2.78) to the anti-commutation relation, the
operators on the right-hand side of the Dirac brackets have ordering ambiguity. One may
choose a prescription for the operator ordering, and one can test it with certain criteria,
such as the Jacobi identity of the Dirac bracket. But, although this could rule out inconsis-
tent one, it is not clear which criteria is a sufficient condition for a consistent prescription
for the ordering.
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One can see that the Jacobi identity of Dirac brackets of ψ±,k holds up to order O(λ)
irrespective of any choice of ordering. Thus, it is natural to choose the normal ordering
prescription with respect to the free fermi oscillators b and b̄ up to order O(λ). Hence, we
obtain a solution,

ψ
(1)
+,k = 2π

∑
r,s

r+s 6=0

(k − r − s)s
r + s

bk−r−s : b̄r b̄s : −πbk
∑
r

r : b̄−r b̄r : , (2.83)

ψ
(1)
−,k =− 2π

∑
r,s

r+s 6=0

(k − r − s)s
r + s

: brbs : b̄k−r−s + π
∑
r

r : b−rbr : b̄k . (2.84)

We confirm that the map gives the expected result at the quantum level up to order O(λ),

Hqu = : H+ : + : H− : −4λ
L2 : H+ :: H− : +O(λ2) , (2.85)

P qu = : H+ : − : H− : +O(λ2) . (2.86)

3 T T̄ eigenvalue flows via worldsheet theories

We have seen that the direct canonical quantization of the simplest T T̄ deformed theories
reproduce the leading Taylor expansions of the anticipated eigenvalue flow (2.1). However,
it would be difficult to go beyond order O(λ2) with this perturbative method. On the
other hand, it was demonstrated by refs. [8, 12, 13] that the worldsheet Polyakov action for
flat 3D target space with a unit “winding number” and in the light-cone gauge reproduces
the T T̄ deformed Hamiltonian for massless scalars. With a view toward fermions and
supersymmetric theories, we wish to extend the same approach to worldsheet theories
with fermions, either Neveu-Schwarz-Ramond (NSR) type or Green-Schwarz (GS) type,
included. Unlike the scalar-only case, which we review first, we encounter various difficulties
in the presence of fermions, so this approach does not offer a good handle for the full
quantum spectrum. Nevertheless, there are lessons to be learned, which we will later make
use of for the canonical analysis of a T T̄ -deformed supersymmetric theory.

3.1 Via Polyakov worldsheet in lightcone: a review

We begin with the review of ref. [13] for the T T̄ deformed spectrum from the Polyakov
action with flat target space metric,

S = − 1
2λ

∫
dτdσ

1
2
√
−hhαβ∂αXµ∂βXµ + 1

2λ

∫
dτdσ

1
2Bµνε

αβ∂αX
µ∂βX

ν , (3.1)

where 1
2λ denotes the string tension. Here, we add4 the constant Kalb-Ramond B-

field [12, 18] given by

Bµν =

 0 1 0
−1 0 0
0 0 0

 , (µ, ν = +,−, 2) . (3.2)

4One may consider the Polyakov action without the B-field as in ref. [13]. In that case, one needs a
constant shift to identify the string energy with T T̄ deformed energy.
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One can rewrite the Polyakov action in the first order form by introducing the conjugate
momentum pµ,

S =
∫
dτ

∫
dσ
[
pµẋ

µ + λ1C1 + λ2C2
]
, (3.3)

where the Lagrange multiplier is given by λ1 = γτσ

γττ and λ2 = 1
2γττ with γαβ =

√
−hhαβ .

In addition, the Virasoro constraints C1 and C2 are5

C1 ≡ pµXµ′ , C2 ≡ 4λ
(
p+ −

1
2λX

−′
)(

p− + 1
2λX

+′
)

+ 2λ(p2)2 + 1
2λX

′
µX

µ′ . (3.4)

Note that the shift in the momentum comes from the B-field term. To make contact with
the T T̄ deformation, a subsector in which the target coordinate X1 has winding number 1
was considered in refs. [8, 12, 13]. For this, one can choose the following gauge condition,

X+ =
(

2λp− + L

4π

)
τ + L

4πσ , (3.5)

where L is the circumference of the target coordinate X1 and pµ is the zero-mode of the
conjugate momentum pµ:

pµ ≡
1

2π

∫ 2π

0
dσ pµ . (3.6)

Compared with the T T̄ deformation, the target coordinate X2, which corresponds to the
scalar field in the T T̄ deformation, is rescaled by λ to make φ and π dimensionless as
follows,

X2 =
√

2λφ , p2 = π√
2λ

. (3.7)

In this light-cone gauge (3.5), the Virasoro constraints can be written as

C1 = L

4πp+ + p−X
−′ + Pb,0 = 0 , (3.8)

C2 = 4λp−p+ − 2p−X
−′ + L

2πp+ + 2Hb,0 = 0 , (3.9)

where Hb,0 and Pb,0 is the Hamiltonian and momentum density of the 2D free scalar field

Hb,0 = 1
2π

2 + 1
2φ
′2 , (3.10)

Pb,0 = πφ′ . (3.11)

We integrate the constraints C1 and C2 in eqs. (3.8) and (3.9) over σ ∈ [0, 2π]. Also, it
was demanded [8, 12, 13] that X0 coordinate has zero winding number. Together with
eq. (3.5), this implies that X− has 1 winding number, and we have∫ 2π

0
dσ ∂σX

− = L . (3.12)

5In this note, the light-cone target coordinates are defined by X+ = 1
2 (X1 +X0) , X− = X1 −X0.

– 14 –



J
H
E
P
0
7
(
2
0
2
1
)
2
1
7

Therefore, the integrated Virasoro constraints become

1
2p+ + p− + 1

2πPb,0 = 0 , (3.13)

4πλp+p− + L

(1
2p+ − p−

)
+ L

2πHb,0 = 0 , (3.14)

where we defined the charge Hb,0 and Pb,0 (of length dimension −1) by

Hb,0 ≡
2π
L

∫ 2π

0
dσ Hb,0 , (3.15)

Pb,0 ≡
2π
L

∫ 2π

0
dσ Pb,0 . (3.16)

A solution of those equations is

p+ =− Pb,0
2π + L

4πλ −
L

4πλ

√
1 + 4λ

L
Hb,0 + 4λ2

L2 P
2
b,0 , (3.17)

p− =− Pb,0
4π −

L

8πλ + L

8πλ

√
1 + 4λ

L
Hb,0 + 4λ2

L2 P
2
b,0 . (3.18)

The string “energy”6 Estr related to the charge generating the translation along X0 is

Estr ≡
∫ 2π

0
dσ p0 = −2π

(1
2p+ − p−

)
= L

2λ

[√
1 + 4λ

L
Hb,0 + 4λ2

L2 P
2
b,0 − 1

]
. (3.19)

This agrees with the T T̄ deformed energy (2.3).

3.2 NSR-like extension

In section 2.2, we have shown perturbatively up to O(λ) that the T T̄ deformed spec-
trum (2.3) can be obtained for the case of the T T̄ deformation of fermion. Now, we will
generalize the Jorjadze-Theisen’s method [8, 13] to derive the T T̄ deformed Hamiltonian
for fermion. To incorporate fermion, we first utilize the NSR-like action for 3D flat target
space with the three pairs of worldsheet Majorana fermions ψµ± (µ = ±, 2),

SNSR = 1
2λ

∫
dτdσ

(
2∂++X

µ∂=Xµ + iΨµ
+∂=Ψ+µ + iΨµ

−∂++Ψ−µ
)

+ 1
2λ

∫
dτdσ

1
2Bµνε

αβ∂αX
µ∂βX

ν , (3.20)

where the Regge slope 2λ will become the T T̄ deformation parameter and the flat target
space metric7 is given by

ds2 = 2dX+dX− + (dX2)2 . (3.21)
6More precisely, the target time coordinate X0 is identified with the worldsheet time τ in a way that

Ẋ0 > 0 [13]. Hence, p0 is positive, and we identify it with energy.
7The light-cone target coordinates are defined by X+ = 1

2 (X1 + X0) , X− = X1 − X0 and Ψ+
± =

1
2 (Ψ1

± + Ψ0
±) , Ψ−± = Ψ1

± − Ψ0
±. On the other hand, the worldsheet light-cone is defined by x± = τ ± σ.

Hence, we have ∂++ = 1
2 (∂0 + ∂1) and ∂= = 1

2 (∂0 − ∂1).
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We also include the coupling to the constant B-field,

Bµν =

 0 1 0
−1 0 0
0 0 0

 , (µ, ν = +,−, 2) . (3.22)

The Virasoro constraints of the NSR-like model in eq. (3.20) are

T++++ = ∂++X
µ∂++Xµ + i

2Ψµ
+∂++Ψ+µ = 0 , (3.23)

T== = ∂=X
µ∂=Xµ + i

2Ψµ
−∂=Ψ−µ = 0 . (3.24)

As in the Polyakov case, demanding that X1 have winding number 1, we choose the fol-
lowing light-cone gauge:

X+ =
(

2λp− + L

4π

)
τ + L

4πσ , Ψ+
± = 0 . (3.25)

Also, we rescale X2 and Ψ2
± by 2λ to make them dimensionless,

X2 =
√

2λφ , Ψ2
± =
√

2λψ± . (3.26)

With the light-cone gauge (3.25), the Virasoro constraints (3.23) and (3.24) can be writ-
ten as

T++++ =
(
λp− + L

4π

)
(Ẋ− +X−′) + λ(Hb,0 + Pb,0) + λ(Hf,0 + Pf,0) = 0 , (3.27)

T== = λp−(Ẋ− −X−′) + λ(Hb,0 − Pb,0) + λ(Hf,0 − Pf,0) = 0 , (3.28)

where H(b,f),0, P(b,f),0 are defined by

Hb,0 ≡
1
2π

2 + 1
2φ
′2 , Pb,0 ≡πφ′ , (3.29)

Hf,0 ≡
i

2ψ+ψ
′
+ −

i

2ψ−ψ
′
− , Pf,0 ≡

i

2ψ+ψ
′
+ + i

2ψ−ψ
′
− , (3.30)

which correspond to the Hamiltonian and momentum density operators of the undeformed
model from the point of T T̄ deformation. By integrating the constraints over σ, we have∫ 2π

0
dσ T++++ = 4πλp+

(
λp− + L

4π

)
+ Lλ

2π (Hb,0 +Hf,0 + Pb,0 + Pf,0) = 0 , (3.31)∫ 2π

0
dσ T== = λp− (4πλp+ − 2L) + Lλ

2π (Hb,0 +Hf,0 − Pb,0 − Pf,0) = 0 . (3.32)

Here we used the fact that there exists winding number 1 along X1. In addition, we defined
the operators Hb,0 , Pb,0 , Hf,0 and Pf,0 of length dimension −1 by

Hb,0 ≡
2π
L

∫
dσ Hb,0 , Pb,0 ≡

2π
L

∫
dσ Pb,0 , (3.33)

Hf,0 ≡
2π
L

∫
dσ Hf,0 , Pf,0 ≡

2π
L

∫
dσ Pf,0 . (3.34)
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One of solutions of the constraints (3.31) and (3.32) is

p+ =− P0
2π + L

4πλ −
L

4πλ

√
1 + 4λ

L
H0 + 4λ2

L2 P
2
0 , (3.35)

p− =− P0
4π −

L

8πλ + L

8πλ

√
1 + 4λ

L
H0 + 4λ2

L2 P
2
0 . (3.36)

The string “energy” p0 related to the translation in the X0 direction is

Estr ≡
∫ 2π

0
dσ p0 = −2π

(1
2p+ − p−

)
= L

2λ

[√
1 + 4λ

L
H0 + 4λ2

L2 P
2
0 − 1

]
, (3.37)

which reproduces the T T̄ deformed spectrum (2.3).
As in Polyakov action, it is natural to ask which Lagrangian we will get if we integrate

out the worldsheet metric of NSR-like action. For this, let us consider NSR-like action for
3D flat target space with constant background B-field:

SNSR = 1
2λ

∫
dτdσ

√
−h

(
−1

2h
αβ∂αX

µ∂βXµ + i

4Ψ̄µγα∇αΨµ −
i

4∇αΨ̄µγαΨµ

)
+ 1

2λ

∫
dτdσ

1
2Bµνε

αβ∂αX
µ∂βX

ν , (3.38)

where the constant B-field is given in eq. (3.22). Moreover, the action of the covariant
derivative is defined by

∇αΨ = ∂αΨ− ωασ3Ψ , ∇αΨ̄ = ∂αΨ̄ + ωαΨσ3 , (3.39)

where we defined ωabα ≡ εabωα. Due to the spin connection ωα, one has to vary the
action with respect to the zweibein eαa . Since the fermion part in the action (3.38) is anti-
symmetrized by integrating by part, its dependence on the zweibein becomes extremely
simple [19], and one can easily obtain the equation of motion for eαa or hαβ :

− 4λ√
−h

eαae
β
b

δSNSR

δhαβ
= eαae

β
b

[
ραβ −

1
2hαβh

σδρσδ

]
= 0 , (3.40)

where we define ραβ by

ραβ ≡ ∂αXµ∂βXµ −
i

2Ψ̄γα∂βΨ− i

2Ψ̄γβ∂αΨ . (3.41)

Note that in terms of ραβ and hαβ the NSR-like action (3.38) can be written as

SNSR = − 1
4λ

∫
dτdσ

√
−hhαβραβ + 1

2λ

∫
dτdσ

1
2Bµνε

αβ∂αX
µ∂βX

ν . (3.42)

As in derivation of the Nambu-Goto action from Polyakov action, the solution of the
equation (3.40) is hαβ = f(τ, σ)ραβ where f(τ, σ) is a function which is irrelevant in the
final result. From the solution, we have

SNSR = − 1
2λ

∫
dτdσ

√
−ρ+ 1

2λ

∫
dτdσ

1
2Bµνε

αβ∂αX
µ∂βX

ν , (3.43)
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where we defined ρ ≡ det ραβ . We find that extra degrees of freedom, especially, related
to fermion appear in this action. To see this in a simple way, it is enough to truncate all
fields except for Ψ2. e.g.,

Ψ2 =
√

2λ
(
ψ+
ψ−

)
and X2 = 0 . (3.44)

By this truncation, together with the static gauge

X0 = L

2πτ , X1 = L

2πσ , (3.45)

the action (3.43) is reduced to an action of the fermion ψ±,

Str
NSR =

∫
dτdσ

[
i

2(ψ+ψ̇+ + ψ−ψ̇− − ψ+ψ
′
+ + ψ−ψ

′
−)
]

− Λ
∫
dτdσ

[
ψ+ψ̇+ψ−ψ̇− − ψ+ψ̇+ψ−ψ

′
− + ψ+ψ

′
+ψ−ψ̇− − ψ+ψ

′
+ψ−ψ

′
−

]
, (3.46)

where we define the dimensionless parameter Λ ≡ 4π2λ
L2 .

Usual fermion theories have second-class constraints that impose a relation between
the fermion and the conjugate momentum, leading to a Dirac bracket. However, the
action (3.46) does not have such constraints because of the term which is quadratic in the
time derivatives of fermions, i.e., ψ+ψ̇+ψ−ψ̇−. This implies that extra degrees of freedom
which the constraints would have removed are now coupled like the symplectic fermion in
refs. [20, 21]. Furthermore, those extra degrees of freedom often imply a unitarity issue.
We will come back to and address such subtleties in section 5.

3.3 GS-like extension, or a failure thereof

There is another way to incorporate fermions — Green-Schwarz-like action. This section
considers the Green-Schwarz (GS)-like action to find a relation to T T̄ deformation. Let us
consider the N = 2 GS-like action for 3D target space given by

SGS = 1
2λ

∫
dτdσ LGS , (3.47)

with

LGS =− 1
2γ

αβΠµ
αΠν

βGµν − iεαβ∂αXµ(Ψ̄+Γν∂βΨ+ − Ψ̄−Γν∂βΨ−)Gµν

− εαβ(Ψ̄+Γµ∂αΨ+)(Ψ̄−Γν∂βΨ−)Gµν , (3.48)

Πµ
α ≡ ∂αXµ + iΨ̄+Γµ∂αΨ+ + iΨ̄−Γµ∂αΨ− , (3.49)

where 2λ corresponds to the Regge slope parameter which will become the T T̄ deformation
parameter. Moreover, we defined ετσ = 1 and γαβ ≡

√
−hhαβ with worldsheet metric hαβ .

Also, note that Ψ± denotes the two-component Majorana spinors for 3D target space with
Ψ̄± = ΨTΓ0. We consider a flat target space8

ds2 = 2dX+dX− + (dX2)2 . (3.50)
8Again, note that the light-cone coordinates for target space is defined by X+ ≡ 1

2 (X1 + X0) and
X− = X1 −X0.
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As in the bosonic string, we are interested in the background where the target coordinate
X1 has winding number 1 (and the winding number of X0 is 0). Hence, we take the
following light-cone gauge,

X+ = 2λp−τ + L

4πσ , (3.51)

where pµ is the zero-mode of the conjugate momentum pµ:

pµ ≡
1

2π

∫ 2π

0
dσ pµ . (3.52)

We will solve the (zero-mode) Virasoro constraints to find the relation to the T T̄ deformed
Hamiltonian as in Polyakov action. The Virasoro constraint can be read off when we write
the GS-like Lagrangian in the first-order form,

L = KµΠµ
τ + γτσ

γττ
C1 + 1

2γττ C2 − iεαβ∂αXµ(Ψ̄+Γν∂βΨ+ − Ψ̄−Γν∂βΨ−)Gµν

− εαβ(Ψ̄+Γµ∂αΨ+)(Ψ̄−Γν∂βΨ−)Gµν ,

= pµẊ
µ + π+ψ̇+ + π−ψ̇− + γτσ

γττ
C1 + 1

2γττ C2 , (3.53)

where we define
Kµ ≡

δS
δΠµ

τ
, pµ ≡

δS
δẊµ

, π± ≡
δS
δψ̇±

, (3.54)

and the Virasoro constraints C1 and C2 are given by

C1 = KµΠµ
σ , C2 = 2λGµνKµKν + 1

2λGµνΠµ
σΠν

σ . (3.55)

The GS-like action has additional local fermionic symmetry [22–24]. For example, the
spinor Ψ± is transformed as

δκΨ± = Γµ
(
pµ ± 1

2λΠµ
σ

)
κ± . (3.56)

By fixing the κ symmetry, one can get correct propagating fermi degrees of freedom. For the
background that we are interested in, we find that a proper gauge condition for κ symmetry
is Γ±Ψ± = 0 instead of the usual one Γ+Ψ± = 0. As in the previous section, for the relation
to T T̄ deformation, we need to choose a background where X1 has winding number 1 while
X0 has no winding mode. In this case, we should check whether the gauge condition for
κ symmetry is proper or not. That is, for a given general configuration of Ψ±, one should
ask whether there is a κ gauge transformation to the gauge condition that we chose. In
particular, this should also be possible perturbatively around the background (i.e., zero-
modes without the oscillators). Hence, turning the oscillators off, the κ transformation of
the spinor (3.56) becomes

δκΨ± =
(

0 p+ ± L
4πλ

2p− ± L
4πλ 0

)
κ± , (3.57)
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and p± are subjected to the following zero-mode Virasoro constraints with the fluctuations
turned off:

L

2π

(1
2p+ + p−

)
= 0 , p+p− + L2

32π2λ2 = 0 . (3.58)

These constraints make the rank of the matrix (3.57) 1 so that we have two Majorana
fermions at the end of the gauge fixing. Note that the terms related L in eqs. (3.57)
and (3.58) come from the winding mode along X1, which does not appear in the usual
light-cone quantization X+ = τ . Indeed, in the usual light-cone quantization (e.g., L = 0),
it is easy to see that one could choose Γ+Ψ± = 0 because a solution of the constraints (3.58)
is p+ = 0 , p− = 0 and the κ transformation becomes

δκΨ± =
(

0
2p−κ1

±

)
, where κ± =

(
κ1
±
κ2
±

)
. (3.59)

However, the solution of eq. (3.58) for the usual light-cone quantization is different from
the solution that we are interested in. For the T T̄ deformed Hamiltonian, the background
solution of the Virasoro constraints is

p− = −1
2p+ = ± L

8πλ , (3.60)

which is not smoothly connected to that of the usual light-cone quantization in the limit
L→ 0. With the solution (3.60), the κ gauge transformation can be written as

δΨ+ =
(

0 0
L

2πλ 0

)
κ+ , δΨ− =

(
0 − L

2πλ
0 0

)
κ− (3.61)

or δΨ+ =
(

0 L
2πλ

0 0

)
κ+ , δΨ− =

(
0 0
− L

2πλ 0

)
κ− (3.62)

depending on the sign of p−. Therefore, when considering fluctuations around the back-
ground perturbatively, we can choose either Γ±Ψ± = 0 or Γ∓Ψ± = 0, but it is not
possible to choose that gauge condition Γ+Ψ± = 0 when X1 has a winding number (and
X0 does not).

Furthermore, the problem of the gauge choice Γ+Ψ± = 0 for our background is also
revealed at the level of the GS-like action. As in the usual quantization of string theory,
one can choose a flat worldsheet metric using the reparametrization and Weyl invariance.
For the background p− = ± L

8πλ , one of the kinetic terms of the fermions vanishes,9 and
the corresponding fermions become singular.

Hence, we choose the gauge condition for the κ symmetry, consistent with the back-
ground,

Γ±Ψ± = 0 , for p− > 0 (3.63)

9Here, we also consider small fluctuation around the background.
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and one can write the spinor as

Ψ+ = 1
2
√
ξ+

(
ψ+
0

)
, Ψ− = 1

2
√
ξ−

(
0
ψ−

)
, (3.64)

where we choose ξ± ≡ L
4πλ .

Now, with our gauge choices, Πµ
σ and Kµ in eq. (3.54) are found to be

Πµ
σ =


L
4π −

πiλ
L ψ−ψ

′
−

X−′ + 2πiλ
L ψ+ψ

′
+√

2λφ′

 , Kµ =

p+ + πi
L ψ+ψ

′
+

p− + πi
2Lψ−ψ

′
−

1√
2λπ

 , (µ = +,−, 2) (3.65)

where we also rescaled X2 and p2 by
√

2λ:

X2 =
√

2λφ , p2 = 1√
2λ
π . (3.66)

Unlike the Polyakov or NSR-like cases, the Virasoro constraints contain cross terms between
oscillators in the light-cone sector,

C1 =− πiλ

L
ψ−ψ

′
−p+ + πi

2Lψ−ψ
′
−X

−′ + · · · (3.67)

C2 = 2πiλ
L

ψ−ψ
′
−p+ −

πi

L
ψ−ψ

′
−X

−′ + · · · (3.68)

Hence, the integrated constraints do not give simple algebraic equations for zero-modes as
in eqs. (3.13) and (3.14). With the gauge conditions (3.51) and (3.64), we fail to reproduce
the anticipated Hamiltonian (3.37) from the GS-like action.

The failure can be traced to how the κ symmetry was fixed by demanding residual
degree of fermionic freedom to obey eq. (3.63), an avoidable consequence of the gauge choice
made here. Even if we had demanded a more familiar one Γ+Ψ± = 0 as in the standard
light-cone approach, an invalid choice anyway, the reduced action becomes degenerate in
that some of the necessary quadratic kinetic terms are killed.

This complication with the κ gauge fixing disappears for N = 1 GS-like model, equiva-
lent to removing one of the spinors from the N = 2 GS-like action. For example, truncating
the spinor Ψ−, we may choose the gauge condition Γ+Ψ+ = 0 (for p− > 0). Then, we have

Ψ+ = 1
2
√
ξ+

(
ψ+
0

)
. (3.69)

Now, with the light-cone gauge (3.51) and the κ gauge condition (3.69), Kµ and Πµ
σ defined

in eq. (3.54) is found to be

Πµ
σ =

 X+′

X−
′ + P̃f,0√
2λφ′

 , Kµ =

p+ + 1
2λH̃f,0
p−
1√
2λπ

 , (3.70)
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where we defined

H̃f,0 ≡
i

2ξ+
ψ+ψ

′
+ , P̃f,0 ≡

i

2ξ+
ψ+ψ

′
+ . (3.71)

Using the choice10 of ξ+ = p−+ L
8πλ , the zero-mode of the constraints C1 and C2 in eq. (3.55)

becomes
1
2p+ + p− + 1

2πP0 = 0 , (3.73)
4πλ
L

p+p− + L

8πλ + 1
2πH0 = 0 , (3.74)

where the total Hamiltonian and momentum of the undeformed theory is

H0 ≡Hb,0 +Hf,0 , P0 ≡ Pb,0 + Pf,0 , (3.75)

and

Hb,0 ≡
2π
L

∫
dσ

[1
2π

2 + 1
2φ
′2
]
, Pb,0 ≡

2π
L

∫
dσ πφ′ , (3.76)

Hf,0 ≡
2π
L

∫
dσ

i

2ψ+ψ
′
+ , Pf,0 ≡

2π
L

∫
dσ

i

2ψ+ψ
′
+ . (3.77)

Hence, one can immediately get the energy corresponding to the translation of the target
coordinate X0,

Estr ≡
∫ 2π

0
dσ p0 = −2π

(1
2p+ − p−

)
= L

2λ

√
1 + 4λ

L
H0 + 4λ2

L2 P
2
0 . (3.78)

Modulo an additive constant, this is again the T T̄ deformed spectrum of the free N = (1, 0)
SUSY model.

One must remember, however, this last model by itself would have a worldsheet dif-
feomorphism anomaly unless embedded into a larger anomaly-free set-up, either by adding
canceling chiral fields or by introducing an inflow mechanism. We will not pursue the lat-
ter possibility in this note, although it may lead to an interesting variation on this general
theme of T T̄ vs. worldsheet.

4 T T̄ deformation and N = (1, 1) supersymmetry

The relation between T T̄ deformation and a Polyakov worldsheet theory was first pointed
out in ref. [3] of which the T T̄ deformed Lagrangian of the free scalar field is a Nambu-
Goto Lagrangian. A Polyakov action was designed to produce Nambu-Goto action after

10We determine the coefficient ξ+ in a way that in the light-cone gauge with flat worldsheet metric, the
N = 1 GS-like action becomes

Sl.c.
N = 1 GS =

∫
dτdσ

[
− 1

4λ∂αX
2∂αX2 + iψ+∂=ψ+

]
. (3.72)
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integrating out the worldsheet metric, so the connection is obvious, at least for the massless
scalar theories.

In the previous section, we reviewed how even the T T̄ deformed quantum spectrum
can be sometimes read off via the worldsheet analysis, say, by taking a particular gauge
and concentrating on a winding sector. We have also seen that such a clean result is
no longer immediate when fermions are involved. For instance, when we start with a
GS-like worldsheet theory, the zero-mode part of the conjugate momentum of X0, the
would-be Hamiltonian on the T T̄ side, cannot be cleanly factored out from oscillators in
the worldsheet diffeomorphism constraints, rendering the mechanism employed in ref. [13]
unusable.

Nevertheless, this alternate approach to the T T̄ deformed theory offers us more handles
than otherwise, so in this section, we will further pursue this relationship with an emphasis
on the canonical structures and the symmetry algebra. In particular, we wish to concentrate
on a N = (1, 1) supersymmetric theory, for which GS-like worldsheet models with their
manifest spacetime supersymmetry is a natural place to start.

4.1 Two distinct constructions via GS-like worldsheet theory

This dictionary between T T̄ deformation and worldsheet models is not unique. With
3D GS-like models we have already encountered, one can take at least two different gauge
choices that reproduce the same T T̄ deformation of the simplest N = (1, 1) supersymmetric
theory with a single massless scalar supermultiplet. Either way, the deformation resorts to
the ordinary T T̄ operator rather than its supersymmetry completion, yet the worldsheet
interpretation tells us that N = (1, 1) supersymmetry would be actually intact throughout
the deformation. We will investigate the canonical and symmetry structures from the
original T T̄ perspective and the alternate worldsheet perspective.

Static gauge with a light-cone target. In section 3.3, we have already studied the
GS-like action in a light-cone gauge. We choose the static gauge,

X0 = L

2πτ , X1 = L

2πσ , (4.1)

and we integrate out the worldsheet metric in the GS-like Lagrangian (3.48),

SGS = 1
2λ

∫
dτdσ

[
−
√
− det G̃− iεαβ∂αXµ(Ψ̄+Γν∂βΨ+ − Ψ̄−Γν∂βΨ−)Gµν

− εαβ(Ψ̄+Γµ∂αΨ+)(Ψ̄−Γν∂βΨ−)Gµν
]
, (4.2)

where G̃ is the induced metric given by

G̃αβ ≡ Πµ
αΠν

βGµν . (4.3)

As we have discussed in section 3.3, we need to choose the following κ gauge condition for
the background (4.1),

Γ±Ψ± = 0 , (4.4)
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and we have

Ψ+ = 1
2
√
ξ+

(
ψ+
0

)
, Ψ− = 1

2
√
ξ−

(
0
ψ−

)
, (4.5)

where we choose ξ± ≡ L
4πλ .

In the usual light-cone gauge, we fix the κ gauge symmetry by Γ+Ψ± = 0 so that the
GS-like action with flat worldsheet metric becomes free-field action of scalar and fermion
with suitable normalization. On the other hand, our gauge condition (4.5) gives quartic
interactions of fermions in the same calculation. But, in this gauge, after integrating out
the worldsheet metric, the GS-like action becomes free-field action of scalar and fermion
(up to divergent constant) in the limit where the string length goes to zero compared to
the circumference L of the target coordinate X1, i.e.,

4π2λ

L2 −→ 0 . (4.6)

It is convenient to define the dimensionless (T T̄ deformation) parameter Λ by

Λ ≡ 4π2λ

L2 . (4.7)

With our gauge choice (4.5) for κ symmetry together with the static gauge (4.1), the
GS-like action (4.2) is written as

Ss.t.
GS =

∫
dτdσ

[
− 1

2Λ
√
A+ B

]
, (4.8)

where A and B is given by

A = 1− 2Λ(4∂++φ∂=φ+ iψ+∂=ψ+ + iψ−∂++ψ−)
− 2Λ2(ψ+∂=ψ+ψ−∂++ψ− − ψ+∂++ψ+ψ−∂=ψ−)− Λ2(ψ+∂=ψ+ + ψ−∂++ψ−)2

− 8iΛ2
[
(∂++φ)2ψ−∂=ψ− + (∂=φ)2ψ+∂++ψ+ − ∂++φ∂=φ(ψ+∂=ψ+ + ψ−∂++ψ−)

]
− 8Λ3(∂++φψ+∂=ψ+ − ∂=φψ+∂++ψ+)(∂++φψ−∂=ψ− − ∂=φψ−∂++ψ−) , (4.9)

and

B = i

2(ψ+∂=ψ+ + ψ−∂++ψ−) + Λ
2 (ψ+∂=ψ+ψ−∂++ψ− − ψ+∂++ψ+ψ−∂=ψ−) , (4.10)

where we used the rescaling of X2 by
√

2λ as before:

X2 =
√

2λφ . (4.11)

By expanding the square-root in eq. (4.8) with respect to the fermions, one can compare11

the result with the T T̄ deformed Lagrangian of the free N = (1, 1) SUSY model (4.42)
which we will discuss in detail in the next section. One can find that they differ by the
constant 1

2Λ ,

LT T̄ = Ls.t.
GS + 1

2Λ . (4.12)
11For concrete comparison, one needs to rescale the fermion and coordinates (t, x) by the length L

2π in
the T T̄ deformation side to make them dimensionless.
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With a shifted light-cone target. There is another way to construct T T̄ deformed
Lagrangian from the GS-like worldsheet theory. It was shown in refs. [9–11] that the
Lagrangian density of the T T̄ deformed theory can be obtained from the GS-like action
as well as Polyakov action in the uniform light-cone gauge. We review the approach of
refs. [9–11], in particular, for the case of the N = 2 GS-like action of 3D target space in
the uniform light-cone gauge to reproduce the Hamiltonian density of the T T̄ deformation
of 2D free N = (1, 1) SUSY model.

The 3D N = 2 GS-like Lagrangian with WZ term is given by

LGS =− 1
2γ

αβΠµ
αΠν

βGµν − iεαβ∂αXµ(Ψ̄+Γν∂βΨ+ − Ψ̄−Γν∂βΨ−)Gµν

− εαβ(Ψ̄+Γµ∂αΨ+)(Ψ̄−Γν∂βΨ−)Gµν , (4.13)

Πµ
α ≡ ∂αXµ + iΨ̄+Γµ∂αΨ+ + iΨ̄−Γµ∂αΨ− . (4.14)

We introduce a new light-cone target coordinate X± [9–11] defined by

X+ ≡
(1

2 − Λ
)
X1 +

(1
2 + Λ

)
X0 , (4.15)

X− ≡X1 −X0 . (4.16)

In addition, we will consider the flat target space. But, due to the new definition of the
light-cone (4.15), the target space metric12 denoted by Gµν becomes

ds2 = GµνX
µXν = 2Λ(dX−)2 + 2dX+dX− + (dX2)2 . (4.17)

To fix the κ symmetry of the GS-like action, we introduce projectors [9]

Υ± = 1
2(Γ1 ± Γ0) , (4.18)

which satisfies

Υ±Υ± = 0 , Υ+Υ− + Υ−Υ+ = 1 , (Υ±)T = Υ∓ . (4.19)

Note that the projector Υ± is different from the gamma matrix Γ± of in light-cone coor-
dinates because of the new definition of the light-cone (4.15) and (4.16). The target space
gamma matrices in the light-cone direction are given by

Γ+ =
(1

2 − Λ
)

Γ1 +
(1

2 + Λ
)

Γ0 = Υ+ − 2ΛΥ− , Γ− = Γ1 + Γ0 = 2Υ− , (4.20)

where Γµ is chosen to be

Γ0 = iσ2 , Γ1 = σ1 , Γ2 = σ3 . (4.21)
12In this review for the GS-like model, we take 2π`2s = 1 for simplicity. Accordingly, we use dimensionless

parameter Λ = λ
2π`2

s
where λ is the T T̄ deformation parameter. In section 4.3, we will retrieve the string

length `s to see the detailed relation.
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We fix the κ gauge by the condition13

Υ+Ψ± = 0 . (4.22)

This condition projects out half of the Majorana spinor,

Ψ± = 1
2

(
ψ±
0

)
. (4.23)

Then, one can write the 3D GS-like Lagrangian in the first-order form as follows,

L = KµΠµ
τ + γτσ

γττ
C1 + 1

2γττ C2 − iεαβ∂αXµ(Ψ̄+Γν∂βΨ+ − Ψ̄−Γν∂βΨ−)Gµν

− εαβ(Ψ̄+Γµ∂αΨ+)(Ψ̄−Γν∂βΨ−)Gµν ,

= pµẊ
µ + π+ψ̇+ + π−ψ̇− + γτσ

γττ
C1 + 1

2γττ C2 , (4.24)

where ψ̇± ≡ ∂τψ± and ψ′± ≡ ∂σψ± etc.Also, we define

Kµ ≡
δS
δΠµ

τ
, pµ ≡

δS
δẊµ

, π± ≡
δS
δψ̇±

, (4.25)

and the Virasoro constraints C1 and C2 are given by

C1 = KµΠµ
σ , C2 = GµνKµKν +GµνΠµ

σΠν
σ . (4.26)

By choosing the uniform light-cone gauge

X+ = τ , p− = 1 , (4.27)

we have

Πµ
σ =

 −ΛPf,0
X−′ + Pf,0

φ′

 , Kµ =

p+ +Hf,0
1 + ΛHf,0

π

 , (4.28)

for µ = +,−, 2. To make contact with T T̄ deformation, we identified X2 with φ, and
accordingly we also identified its conjugate momentum, i.e., K2 ≡ π. Also, H(b,f),0,P(b,f),0
are the Hamiltonian and momentum density of the free scalar and fermion,

Hf,0 ≡
i

2ψ+ψ
′
+ −

i

2ψ−ψ
′
− , Pf,0 ≡

i

2ψ+ψ
′
+ + i

2ψ−ψ
′
− , (4.29)

Hb,0 ≡
1
2(π2 + φ′2) , Pb,0 ≡ πφ′ . (4.30)

13We confirm that this choice of gauge condition is valid by a similar analysis as in section 3.3 with the
light-cone gauge (4.27).
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Using them, the Virasoro constraints C1, C2 can be written as

C1 = K+Π+
σ +K−Π−σ +KµΠµ

σ

=− (p+ +Hf,0) ΛPf,0 + (1 + ΛHf,0)Π−σ + Pb,0 = 0 , (4.31)

C2 = 2K−K+ − 2Λπ2
+ + 2Λ(Π−σ )2 + 2Π+

σ Π−σ + 2Hb,0
= 2 (1 + ΛHf,0) (p+ +Hf,0)− 2Λ (p+ +Hf,0)2

+ 2Λ(Π−σ )2 − 2ΛPf,0Π−σ + 2Hb,0 = 0 . (4.32)

We solve Virasoro constraints C1 and C2 for p+ and Π−σ . In particular, one can express
p+ in terms of H(b,f),0 and P(b,f),0. Then, the Lagrangian of the GS-like model can be
written as

L =pµẊµ + π+ψ̇+ + π−ψ̇− = πφ̇+ π+ψ̇+ + π−ψ̇− − (−p+) , (4.33)

where the total derivative term Ẋ− is ignored. From the first-order Lagrangian, one can
read off the Hamiltonian density of the 3D N = 2 GS-like action,

H = −p+ (4.34)

= 1
2Λ

[√
1 + 4ΛHb,0 + 4Λ2 (Pb,0)2 − 1

]

+ i

4

 1− 4Λ2 (Pb,0)2√
1 + 4ΛHb,0 + 4Λ2 (Pb,0)2

+ 1

 (ψ+ψ
′
+ − ψ−ψ′−)

+ iΛPb,0
2 (ψ+ψ

′
+ + ψ−ψ

′
−)−

2
(
(Hb,0)2 − (Pb,0)2

)
Λ3(

1 + 4ΛHb,0 + 4Λ2 (Pb,0)2
) 3

2
(ψ+ψ

′
+ψ−ψ

′
−) . (4.35)

This agrees with the T T̄ deformed Hamiltonian density of free N = (1, 1) SUSY model, as
will be explicitly shown next.

4.2 Does N = (1, 1) SUSY survive ordinary T T̄ ?

We have seen that a T T̄ deformation of a single real scalar and a single Majorana doublet
can be obtained from a GS-like worldsheet theory in two different backgrounds and the ac-
companying gauge choices. One important fact is that in neither approaches, the spacetime
supersymmetry of the GS-like action was broken. As we will see in this section, however,
the common end result is that of non-supersymmetric T T̄ deformation of N = (1, 1) theory
of a single scalar supermultiplet.

On the other hand, the generality of the eigenvalue flow, which does not distinguish the
bosonic or the fermionic nature of the state, does naturally suggest that the supersymmetry
would not be explicitly broken by T T̄ and one can say that the above analysis realizes
this anticipation. We will devote this subsection and the next to an exploration of this
supersymmetry structure, from both the T T̄ side and the worldsheet side.

We start from the free N = (1, 1) theory of a single massless scalar supermultiplet,

L0 = 2∂++φ∂=φ+ iψ+∂=ψ+ + iψ−∂++ψ− , (4.36)
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and solve the flow equation of the non-SUSY T T̄ deformation

∂λL = 1
2εµνε

ρσTµρT
ν
σ . (4.37)

We emphasize that we used the energy-momentum tensor calculated by the Noether pro-
cedure, which differs from the usual symmetric energy-momentum tensor. This simple
deformation is referred to as non-SUSY T T̄ deformation since the N = (1, 1) supersymme-
try is not manifestly respected by the deformation, unlike the manifestly supersymmetric
versions, where the T T̄ operator is supersymmetry-completed, as in refs. [9, 25].

One can directly solve this flow equation by taking the following ansatz,

L = f0[χ] + f1[χ]S++,= + f2[χ]S=,++ + f3[χ](∂=φ)2S++,++

+ f4[χ](∂++φ)2S=,= + f5[χ]S++,++S=,= + f6[χ]S++,=S=,++

+ f7[χ](∂++φ)2S++,=S=,= + f8[χ](∂=φ)2S++,++S=,++ , (4.38)

where we defined

χ ≡− 4λ∂++φ∂=φ , (4.39)
S++ , µ ≡ iψ+∂µψ+ , (4.40)
S= , µ ≡ iψ−∂µψ− . (4.41)

Note that higher-order terms in Sµ,ν is truncated because of fermi-statistics. With initial
condition L[λ = 0] = L0, the flow equation determines fi[χ] i = 0, 1, · · · , 8, and we have

L =− 1
2λ
[√

1 + 2χ− 1
]

+ 1 + χ+
√

1 + 2χ
2
√

1 + 2χ (S++,= + S=,++)

+ 2λ√
1 + 2χ [(∂=φ)2S++,++ + (∂++φ)2S=,=]

+ λ
1 + χ− χ2 + (1 + 2χ) 3

2

2(1 + 2χ) 3
2

S++,++S=,= − λ
1 + 3χ+ χ2 + (1 + 2χ) 3

2

2(1 + 2χ) 3
2

S++,=S=,++

− 2λ2χ

(1 + 2χ) 3
2

[(∂++φ)2S++,=S=,= + (∂=φ)2S++,++S=,++] . (4.42)

This Lagrangian has appeared elsewhere [9, 10, 17].
For Hamiltonian analysis, we first calculate the conjugate momentum of φ and ψ±:

π ≡ ∂L
∂φ̇

, (4.43)

π± ≡
∂L
∂ψ̇±

. (4.44)
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Note that the right-hand side of eq. (4.44) contains ψ̇±, unlike the free fermion. We invert
eq. (4.43) to express φ̇ in terms of others:

φ̇ = π
√

1 + 2λφ′2√
1 + 2λπ2

− λπ(1 + λπ2 + 3λφ′2 + 4λ2π2φ′2)√
1 + 2λφ′2(1 + 2λπ2) 3

2
(S++,++ + S=,=)

+ λφ′(S++,++ − S=,=)− λ2π(π2 − φ′2)√
1 + 2λφ′2(1 + 2λπ2) 3

2
[S++,= + S=,++]

+ λ3π(π2 − φ′2)(2 + λπ2 + 3λφ′2)
(1 + 2λφ′2) 3

2 (1 + 2λπ2) 5
2

(S++,++ − S++,=)(S=,++ − S=,=)

− λ3π(π2 − φ′2)√
1 + 2λφ′2(1 + 2λπ2) 3

2
[S++,++S=,= − S++,=S=,++] . (4.45)

When inserting eq. (4.45) into eq. (4.44), one can see that the right-hand side of eq. (4.44)
has no ψ̇± dependence, and they become the second-class constraints C1 and C2,

C1 = π+ −
i

4ψ+

(
1− 2λπφ′ +

√
(1 + 2λπ2)(1 + 2λφ′2)

)
− λ

[
1 + λ(π2 + φ′2)

4
√

(1 + 2λπ2)(1 + 2λφ′2)
+ 1

4

]
ψ+ψ−ψ

′
− , (4.46)

C2 = π− −
i

4ψ−
(

1 + 2λπφ′ +
√

(1 + 2λπ2)(1 + 2λφ′2)
)

+ λ

[
1 + λ(π2 + φ′2)

4
√

(1 + 2λπ2)(1 + 2λφ′2)
+ 1

4

]
ψ+ψ

′
+ψ− . (4.47)

Hence, in this T T̄ deformed Lagrangian, the dimension of the Hilbert space is not changed
under the deformation.

From the Noether procedure, Hamiltonian and momentum density is given by

H = 1
2λ
[√

1 + 4λHb,0 + 4λ2P2
b,0 − 1

]
+ 1

4

 1− 4λ2P2
b,0√

1 + 4λHb,0 + 4λ2P2
b,0

+ 1

 (S++ − S=)

+ λPb,0
2 (S++ + S=) +

2(H2
b,0 − P2

b,0)λ3

(1 + 4λHb,0 + 4λ2P2
b,0) 3

2
S++S= , (4.48)

P = Pb,0 + 1
4
[
1 +

√
1 + 4λHb,0 + 4λ2P2

b,0

]
(S++ + S=)− λPb,0

2 (S++ − S=) , (4.49)

where Hb,0 and Pb,0 denotes the undeformed Hamiltonian and momentum density of the
scalar field, respectively,

Hb,0 ≡
1
2π

2 + 1
2φ
′2 , (4.50)

Pb,0 ≡πφ′ , (4.51)

and S++ and S= is defined by

S++ ≡ iψ+ψ
′
+ , S= ≡ iψ−ψ

′
− . (4.52)
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Note that the constraints (4.46) and (4.47) can be written as

C1 = π+ −
i

2ψ+ −
i

2λ(H−P)ψ+ , (4.53)

C2 = π− −
i

2ψ− −
i

2λ(H+ P)ψ− . (4.54)

Using the Poisson bracket

{F,G}PB ≡
∫
dz

[
∂F

∂φν(z)
∂G

∂π(z) −
∂F

∂π(z)
∂G

∂φ(z)

]

+
∑
α=±

∫
dz

[
F
←−
∂

←−
∂ ψα(z)

−→
∂ G

−→
∂ πα(z)

+ F
←−
∂

←−
∂ πα(z)

−→
∂ G

←−
∂ ψα(z)

]
, (4.55)

we can evaluate the Poisson bracket of the constraints

M(i, x; j, y) ≡ {Ci(x), Cj(y)}PB , (4.56)

whereM(i, x; j, y) are found to be

M(1, x; 1, y) =
[
− i

2(1− 2λπφ′ +
√

(1 + 2λπ2)(1 + 2λφ′2))

+ λ2
(
−πφ′ + π2 + φ′2 + 4λπ2φ′2

2
√

(1 + 2λπ2)(1 + 2λφ′2)

)
ψ+ψ

′
+

− λ

2

(
1 + 1 + λ(π2 + φ′2)√

(1 + 2λπ2)(1 + 2λφ′2)

)
ψ−ψ

′
−

− iλ4(π2 − φ′2)2

2 [(1 + 2λπ2)(1 + 2λφ′2)]
3
2
ψ+ψ

′
+ψ−ψ

′
−

]
δ(x− y) , (4.57)

M(2, x; 2, y) =
[
− i

2(1 + 2λπφ′ +
√

(1 + 2λπ2)(1 + 2λφ′2))

− λ2
(
πφ′ + π2 + φ′2 + 4λπ2φ′2

2
√

(1 + 2λπ2)(1 + 2λφ′2)

)
ψ−ψ

′
−

+ λ

2

(
1 + 1 + λ(π2 + φ′2)√

(1 + 2λπ2)(1 + 2λφ′2)

)
ψ+ψ

′
+

− iλ4(π2 − φ′2)2

2 [(1 + 2λπ2)(1 + 2λφ′2)]
3
2
ψ+ψ

′
+ψ−ψ

′
−

]
δ(x− y) , (4.58)

M(1, x; 2, y) = λ

2

(
1 + 1 + λ(π2 + φ′2)√

(1 + 2λπ2)(1 + 2λφ′2)

)
(ψ+ψ

′
− + ψ′+ψ−)δ(x− y) . (4.59)

From the matrixM(i, x; j, y), one can calculate the Dirac bracket:

{F (x), G(y)}D (4.60)

≡ {F (x), G(y)}PB −
∑

i,j=1,2

∫
dzdw {F (x), Ci(z)}PBM−1(i, z; j, w){Cj(w), G(y)}PB .
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We found that the Dirac brackets among the scalar field and its conjugate momentum
are the same as their Poisson brackets,

{φ(x), π(y)}D = δ(x− y) , (4.61)
{φ(x), φ(y)}D = {π(x), π(y)}D = 0 . (4.62)

The Dirac brackets among fermions are found to be

i{ψ+(x), ψ+(y)}D = 2λπφ′ − 1 +
√

(1 + 2λπ2)(1 + 2λφ′2)
λ(π + φ′)2 δ(x− y) (4.63)

+ −1− λ(π + φ′)2 +
√

(1 + 2λπ2)(1 + 2λφ′2)
(π + φ′)2

√
(1 + 2λπ2)(1 + 2λφ′2)

S++δ(x− y)

+
[

2λπφ′
(π + φ′)2 + λ(π2 + φ′2 + 4λπ2φ′2)

(π + φ′)2
√

(1 + 2λπ2)(1 + 2λφ′2)

]
S=δ(x− y)

+ λ2

(1 + 2λπ2)(1 + 2λφ′2)

[
1 + 2λπφ′ + 1 + λ

[
(π + φ′)2 + 4λπ2φ′2

]√
(1 + 2λπ2)(1 + 2λφ′2)

]
S++S=δ(x− y) ,

i{ψ−(x), ψ−(y)}D = −2λπφ′ − 1 +
√

(1 + 2λπ2)(1 + 2λφ′2)
λ(π − φ′)2 δ(x− y) (4.64)

+ 1 + λ(π + φ′)2 −
√

(1 + 2λπ2)(1 + 2λφ′2)
(π − φ′)2

√
(1 + 2λπ2)(1 + 2λφ′2)

S=δ(x− y)

+
[

2λπφ′
(π − φ′)2 −

λ(π2 + φ′2 + 4λπ2φ′2)
(π − φ′)2

√
(1 + 2λπ2)(1 + 2λφ′2)

]
S++δ(x− y)

+ λ2

(1 + 2λπ2)(1 + 2λφ′2)

[
1− 2λπφ′ + 1 + λ

[
(π − φ′)2 + 4λπ2φ′2

]√
(1 + 2λπ2)(1 + 2λφ′2)

]
S++S=δ(x− y) ,

i{ψ+(x), ψ−(x)}D = − iλ√
(1 + 2λπ2)(1 + 2λφ′2)

(ψ+ψ−)′δ(x− y) . (4.65)

Also, the Dirac brackets between the fermion and the scalar field are

{φ(x), ψ+(y)}D = −2λπ2 − 1 +
√

(1 + 2λπ2)(1 + 2λφ′2)
2(1 + 2λπ2)(π + φ′) ψ+δ(x− y) (4.66)

− iλ2π

2(1 + 2λπ2))

[
1 + 1 + 2λπφ′√

(1 + 2λπ2)(1 + 2λφ′2)

]
ψ+ψ−ψ

′
−δ(x− y) ,

{φ(x), ψ−(y)}D = −2λπ2 − 1 +
√

(1 + 2λπ2)(1 + 2λφ′2)
2(1 + 2λπ2)(π − φ′) ψ−δ(x− y) (4.67)

+ iλ2π

2(1 + 2λπ2))

[
1 + 1− 2λπφ′√

(1 + 2λπ2)(1 + 2λφ′2)

]
ψ+ψ

′
+ψ−δ(x− y) ,
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{π(x), ψ+(y)}D = 2λφ′2 + 1−
√

(1 + 2λπ2)(1 + 2λφ′2)
2(1 + 2λφ′2)(π + φ′) ψ+δ(x− y)∂x (4.68)

+ iλ2φ′

2(1 + 2λφ′2)

[
1 + 1 + 2λπφ′√

(1 + 2λπ2)(1 + 2λφ′2)

]
ψ+ψ−ψ

′
−δ(x− y)∂x ,

{π(x), ψ−(y)}D = −2λφ′2 − 1 +
√

(1 + 2λπ2)(1 + 2λφ′2)
2(1 + 2λφ′2)(π − φ′) ψ−δ(x− y)∂x (4.69)

− iλ2φ′

2(1 + 2λφ′2)

[
1 + 1− 2λπφ′√

(1 + 2λπ2)(1 + 2λφ′2)

]
ψ+ψ

′
+ψ−δ(x− y)∂x .

It is interesting to ask whether this deformed model has supersymmetry or not. At
first glance, it is not guaranteed that the non-SUSY deformation preserves supersymmetry.
But, the deformed spectrum follows the universal formula (2.1), and the Bose-Fermi degen-
eracy of the undeformed theory will be preserved under the non-SUSY deformation. This
implies a supercharge operator with Hamiltonian and momentum and maps between those
degenerate states, and indeed the deformed model will be supersymmetric. In ref. [17],
the supersymmetry of this model was confirmed perturbatively up to order O(λ2). Still, it
is not clear whether this supercharge operator can be written as an integration of a local
supercharge density or not.

Using the Dirac bracket, we find that two supercharges of the deformed model are

Q1
+ ≡

∫
dx ψ+(π + φ′) , (4.70)

Q1
− ≡

∫
dx ψ−(π − φ′) . (4.71)

This expression is identical to that of the undeformed theory. But, it is important to note
that the conjugate momentum π is not equal to φ̇. First, we confirm that Q1

+ anti-commutes
with Q1

−,

{Q1
+, Q

1
−}D = 0 . (4.72)

Furthermore, the Hamiltonian and the momentum from eqs. (4.48) and (4.49) can be
expressed in terms of Dirac brackets of the supercharges,

H =
∫
dx H = i

4

{
Q1

+, Q
1
+}D + i

4{Q
1
−, Q

1
−

}
D

, (4.73)

P =
∫
dx P = i

4

{
Q1

+, Q
1
+}D −

i

4{Q
1
−, Q

1
−

}
D

. (4.74)

From the Jacobi identity of the Dirac bracket, one can easily deduce that Q1
± commutes

with Hamiltonian and momentum operator,

{Q1
±, H}D = {Q1

±, P}D = 0 . (4.75)

Therefore, this explicitly proves that the non-SUSY T T̄ deformation of N = (1, 1) SUSY
model has supersymmetry (at least, classically). One can also evaluate the SUSY trans-
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formation of φ and ψ±:

δ+φ(x) ≡ {Q1
+, φ(x)}D (4.76)

= −1
2

1 +
√

1 + 2λφ′2
1 + 2λπ2

ψ+ + iλ2π(π + φ′)
2(1 + 2λπ2)

(
1 + 1 + 2λπφ′√

(1 + 2λπ2)(1 + 2λφ′2)

)
ψ+ψ−ψ

′
− ,

δ−φ(x) ≡ {Q1
−, φ(x)}D (4.77)

= −1
2

1 +
√

1 + 2λφ′2
1 + 2λπ2

ψ− − iλ2π(π − φ′)
2(1 + 2λπ2)

(
1 + 1− 2λπφ′√

(1 + 2λπ2)(1 + 2λφ′2)

)
ψ+ψ

′
+ψ− .

δ+ψ+ ≡{Q1
+, ψ+}D

= i
1− 2λπφ′ −

√
(1 + 2λπ2)(1 + 2λφ′2)
λ(π + φ′)

+ λ

(
2πφ′
π + φ′

+ φ′2 + π2 + 4λπ2φ′2

(π + φ′)
√

(1 + 2λπ2)(1 + 2λφ′2)

)
ψ−ψ

′
−

+ i
λ2(π + φ′)(1 + 2λπφ′ +

√
(1 + 2λπ2)(1 + 2λφ′2))

2(1 + 2λπ2)(1 + 2λφ′2) ψ+ψ
′
+ψ−ψ

′
− , (4.78)

δ−ψ+ ≡{Q1
−, ψ+}D = − λ(π − φ′)√

(1 + 2λπ2)(1 + 2λφ′2)
ψ′+ψ− , (4.79)

δ−ψ− ≡{Q1
−, ψ−}D

= i
1 + 2λπφ′ −

√
(1 + 2λπ2)(1 + 2λφ′2)
λ(π − φ′)

+ λ

(
2πφ′
π − φ′

− φ′2 + π2 + 4λπ2φ′2

(π − φ′)
√

(1 + 2λπ2)(1 + 2λφ′2)

)
ψ+ψ

′
+

+ i
λ2(π − φ′)(1− 2λπφ′ −

√
(1 + 2λπ2)(1 + 2λφ′2))

2(1 + 2λπ2)(1 + 2λφ′2) ψ+ψ
′
+ψ−ψ

′
− , (4.80)

δ+ψ− ≡{Q1
+, ψ−}D = − λ(π + φ′)√

(1 + 2λπ2)(1 + 2λφ′2)
ψ+ψ

′
− . (4.81)

The undeformed free N = (1, 1) SUSY model has additional global symmetry in shift-
ing φ and ψ± by a and η±:

φ −→ φ+ a , (4.82)
ψ± −→ ψ± + η± , (4.83)

where a and η± is Grassmannian even and odd constant, respectively. This symmetry is
generated by

P2 ≡ 2π
L

∫
dx π , (4.84)

Q2
± ≡ −

8πi
L

∫
dx π± . (4.85)
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Here, we emphasize that π± is related to the ψ± , φ and π via the constraints (4.53)
and (4.54), which is not equal to i

2ψ± for λ 6= 0. We confirm that this symmetry is also
preserved under the T T̄ deformation of N = (1, 1) SUSY model. Namely, they commute
with Hamiltonian and momentum operator,

{Q2
±, H}D = {P2, H}D = {Q2

±, P}D = {P2, P}D = 0 . (4.86)

And they satisfy the following algebra,

{Q2
±, Q

2
±}D = − 16π2i

L
− 16π2iλ

L2 (H ∓ P ) , (4.87)

{Q2
+, Q

2
−}D = 0 , (4.88)

{Q1
+, Q

2
+}D = − 2i

(
P2 + 4π2

L2 W2
)
, (4.89)

{Q1
−, Q

2
−}D = − 2i

(
P2 − 4π2

L2 W2
)
, (4.90)

{Q1
±, Q

2
∓}D = 0 , (4.91)

where W2 is the winding number of the scalar field φ if it is compactified:

W2 ≡ L

2π

∮
dx φ′ . (4.92)

4.3 Lessons from the GS-like worldsheet

We saw the ordinary, i.e., non-supersymmetric T T̄ deformation of the N = (1, 1) theory
admit an N = (1, 1) supersymmetry. We constructed the superalgebra by exploring the
canonical structure of the deformed theory. As shown earlier, the same theory can be
obtained from integrating out the worldsheet metric of a GS-like theory with D = 3 space-
time supersymmetry, where the presence of the supersymmetry is a little more transparent;
The procedure of integrating out the worldsheet metric identifies part of spacetime with
the worldsheet, such that the spacetime supersymmetry descends to that on the T T̄ side.
Now armed with the canonical analysis of the T T̄ side, we wish to revisit the latter for the
purpose of relating the symmetry algebra of the latter after the gauge fixing to that of T T̄
side. This should illuminate further on precise nature of the supersymmetry in question.

We will follow the second approach to the GS-like action for the supersymmetry with
shifted light-cone metric (4.17) in section 4.1. Before moving on to the second approach, we
shortly comment on the supersymmetry from the first approach to the N = 2 supercharges
of GS-like model with the static gauge (4.1). We find that two of N = 2 supercharges
and their algebra exactly agree14 with the supersymmetry of the T T̄ deformed N = (1, 1)
model in section 4.2. The other two supercharges in N = 2 SUSY are supposed to be
related to the fermi global charges (4.85) in T T̄ deformation. However, those two charges
and their algebra do not seem to be simply expressed in terms of the fermi global charges.

14For this we use the relation PTT̄ = −P1 deduced from the level-matching condition at λ = 0. Recall
that the momentum P is invariant under the T T̄ deformation.
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Hence, in this section, we will focus on the second approach in section 4.1. Recall that
the Lagrangian of the non-SUSY T T̄ deformation agrees with that of GS-like action in
uniform light-cone gauge with the shifted light-cone metric,

ds2 = 2Λ(dX−)2 + 2dX+dX− + (dX i)2 , (4.93)

where Λ is a dimensionless parameter which we will clarify the relation to the T T̄ deforma-
tion parameter λ soon. We retrieve the string length scale 1

2π`2s
= 1

2πα′ to see the explicit
relation to the length scale in the T T̄ deformation (i.e., circumference L of the cylinder).
The length scale L of the T T̄ deformation is identified with the length scale of the string
`s as follows,

L

2π =
√

2π`s . (4.94)

Accordingly, we relate the dimensionless parameter Λ to the T T̄ deformation parameter
λ by

Λ ≡ λ

2π`2s
. (4.95)

Also, to compare the results explicitly, it is convenient to rescale the fields and variables
by L

2π to make them dimensionless in the T T̄ deformation side. e.g.,

t , x −→ L

2πτ ,
L

2πσ , λ −→
(
L

2π

)2
Λ , ψ± −→

√
2π
L
ψ± etc. (4.96)

Then, the charge density and charge operators in the T T̄ deformation are also rescaled
properly. For example,

H = 1
2Λ

(√
1 + 4ΛHb,0 + 4Λ2P2

b,0 − 1
)

+ · · · , (4.97)

P =Pb,0 + 1
4
[
1 +

√
1 + 4ΛHb,0 + 4Λ2P2

b,0

]
(S++ + S=) , (4.98)

H = 2π
L

∫ 2π

0
dσ H , (4.99)

P = 2π
L

∫ 2π

0
dσ P , (4.100)

Q1
± =

√
2π
L

∫ 2π

0
dσ ψ+(π ± φ′) , (4.101)

Q2
± = − 4i

√
2π
L

∫ 2π

0
dσ π± etc. (4.102)

Here, we made the density operators H and P dimensionless while we keep the dimension
of the charge operators. Also, we defined Hb,0 ≡ 1

2π
2 + 1

2φ
′2 and P0,b = πφ′.

The 3D GS-like action has 3D super Poincare symmetry, and we will show how this 3D
super Poincare algebra is related to the algebra found in the previous section. We calculate
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the supercharges of the 3D N = 2 GS-like model given in ref. [24]15

Qα
± = 2

∮
dσ

[(
pµ ± 1

2π`2s
Πµ
σ

)
(ΓµΨ±)α ± 2i

2π`2s
(Ψ±Ψ±)∂σΨα

±

]
(α = 1, 2) , (4.103)

where pµ is conjugate momentum of Xµ. Due to the gauge condition Γ+Ψ± = 0 fixing the
κ symmetry, the Majorana spinor Ψ± is written as follows,

Ψ± = 1
2√p−

(
ψ±
0

)
. (4.104)

To make contact with (dimensionless) scalar field φ and its conjugate momentum π in the
T T̄ deformation, we also rescale the transverse target coordinate X2 and its conjugate
momentum p2 as follows,

X2 ≡
√

2π`sφ , p2 = 1√
2π`s

π . (4.105)

Before obtaining the supercharges, we revisit the uniform light-cone quantization. In order
to identify target coordinate X+ with worldsheet time τ ,

X+ =
√

2π`sτ , (4.106)

the target coordinate X+ should be either time-like or null. From eq. (4.93), one can see
that this is possible16 when

Λ = 0 . (4.107)

Therefore, the relation between GS-like model and T T̄ deformation in this work is valid for
Λ = 0. Following DLCQ [26], we compactify null coordinate X−. Then, the momentum
zero-mode p− is quantized,17 i.e.,

p− = 2πn
2πR , (4.109)

where R is the circumference of X− and the range of the worldsheet spatial coordinate σ
belongs to [0, 2π]. Recall that we chose the condition18

p− = 1√
2π`s

, (4.110)

for uniform light-cone gauge. This is possible when the circumference R of the target
coordinate X− becomes

R =
√

2π`sn . (4.111)
15The index a = 1, 2 of supercharge Qαa in ref. [24] corresponds to − and + in this paper, respectively.
16For example, consider Eddington-Finkelstein metric or Vaidya metric.
17Consider the Wilson-Sommerfeld quantization for the symplectic one-form,∮

dσ

∮
p−dX

− = 2πn . (4.108)

18In section 4.1, we worked out in the unit with 2π`2s = 1.
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Furthermore, due to the compactification of X− coordinate, we have a topological charge
corresponding to winding mode along X−, which is quantized,

W− ≡
∮
dσ ∂σX

− = −mR = −
√

2π`smn , (4.112)

where we used eq. (4.111). The level matching condition of the string theory relates this
topological charge to the momentum operator P (4.100) of the T T̄ deformed theory,

P = −2π
L
p−W− = 2πmRp−

L
= 2πnm

L
. (4.113)

Therefore, for n = 1 or m = 1, this reproduces the quantization of the momentum operator
P in the T T̄ deformation. In addition to W−, we could have additional topological charge
W2 if X2 =

√
2π`sφ is also compactified.

With this gauge condition, the supercharge can be written as

Q± =
∮
dσ

1
√
p−

[(
2p− − 2Λp+ ±

2Λ
2π`2s

∂σX
−
)( 0

ψ±

)
+
(
p2 ± 1

2π`2s
Π2

1

)(
ψ±
0

)]
. (4.114)

One can connect the operators in string theory (on the left-hand side) with those in the
T T̄ deformed theory19 (on the right-hand side) as follow

p+ = − 2π
L
H , P+ = −H , (4.115)

p− = 2π
L
, P2 = 2π

L

∫
dσ π , (4.116)

p2 = 2π
L
π , W− = − L2

4π2P , (4.117)

Π2
1 = L

2πφ
′ , W2 = L

2π

∮
dσ ∂σφ , (4.118)

∂σX
− = − L

2πP . (4.119)

Then, the supercharge of the N = 2 super Poincare algebra can be written as

Q± =
√

2π
L

∮
dσ

[(
0

−4iπ±

)
+
(
ψ±(π ± φ′)

0

)]
, (4.120)

where we used the constraints (4.53) and (4.54) for π± which is conjugate momentum
of ψ±:

π± = i

2[1 + Λ(H∓P)]ψ± . (4.121)

Hence, we confirm that this is exactly what we had in the previous section (with suitable
rescaling as explained):

Qα
a =Qαa (α = 1, 2 , a = ±) . (4.122)

19Recall that we make the density operator H and P dimensionless, and the charge operator H and P
has the length dimension −1.
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Then, the algebra found in eqs. (4.72)–(4.74) and eqs. (4.87)–(4.91) can be summarized by

{Qα
a ,Q

β
b }D =− 2iδab(ΓµC)αβPµ −

2i
2π`2s

σ3
abA

αβ , (4.123)

where ΓµCPµ and the topological charge Aαβ is given by

ΓµCPµ =
(
−P− P2

P2 2P+ + 2ΛP−

)
=
(
−P+ P2

P2 2P− − 2ΛP+

)
=
(
H P2

P2 8π2

L + 2ΛH

)
, (4.124)

A = ΓµC
∮
dσ ∂σX

µ =
(
−W− W2

W2 2ΛW−

)
= L2

4π2

(
P 4π2

L2 W2

4π2

L2 W2 −2ΛP

)
. (4.125)

We can write them explicitly as

{Qα
+,Q

β
+}D = −2i

(
H + P P2 + 4π2

L2 W2

P2 + 4π2

L2 W2 8π2

L + 2Λ(H − P )

)
, (4.126)

{Qα
−,Q

β
−}D = −2i

(
H − P P2 − 4π2

L2 W2

P2 − 4π2

L2 W2 8π2

L + 2Λ(H + P )

)
. (4.127)

This is exactly the supersymmetry algebra of N = 2 super Poincare with topological
charge [27]. From the point of view of the 3D GS-like model, the topological charge in the
supersymmetry algebra is originated from the WZ term of the GS-like model [27].

Recall the λ dependence of the algebra of the fermi global charges (4.87). In string
theory, the deviation of the light-cone coordinate X+ from the usual one is responsible for
this λ dependence. On the other hand, from the point of view of T T̄ deformation, this is
an example of the symmetry algebra deformed by T T̄ deformation.

Recall that the operators H, P, P2 and W2 commute.20 Hence, at quantum level one
can consider an eigenstate of those operators

|E,P, pm, pw〉 , (4.128)

where E, P, pm and pw is the eigenvalue of H, P, P2 and W2, respectively.
In general, we have 16 degeneracy in this eigenspace. To see this, let us con-
sider degenerate states by acting Q1

+ and Q2
+ on |E,P, pm, pw〉. Note that

|E,P, pm, pw〉, Q1
+Q

2
+|E,P, pm, pw〉, Q2

+Q
1
+|E,P, pm, pw〉 are not linearly indepen-

dent because of the anti-commutation relation of Q1
+ and Q2

+. Hence, we have 4 states
instead of 5 states,

|E,P, pm, pw〉 , Q1
+Q2

+|E,P, pm, pw〉 , (4.129)
Q1

+|E,P, pm, pw〉 , Q2
+|E,P, pm, pw〉 . (4.130)

Together with the action of Q1
− and Q2

−, we have 16 degenerate states in general. This
agrees with the usual free N = (1, 1) SUSY model. In free N = (1, 1) SUSY model

20See eq. (4.86). Also, from eqs. (4.89) and (4.90), one can also deduce that W2 commutes with others
by Jacobi identity if φ is compact.
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(λ = 0), we have 4 degeneracy by the N = (1, 1) supercharges Q1
±. Furthermore, the

fermion zero-modes21 Q2
± give 4 degenerate ground states. In total, we also have 16

degenerate states in general.
In N = (1, 1) supersymmetry of T T̄ deformation, the positive definiteness22 of the

supersymmetric algebra,

[Q1
±,Q1

±]+ = 2(H ± P ) , (4.131)

gives

E ± P = 0 . (4.132)

This can be saturated by a state satisfying

E = |P | , (4.133)

and this state preserve the half of the N = (1, 1) supersymemtry — either N = (1, 0) or
N = (0, 1) supersymmetry depending on the sign of P . The condition (4.133) is protected
under T T̄ deformation [28]. That is, let us consider a state in the undeformed theory
(λ = 0) satisfying

E(0) = |P (0)| , (4.134)

where E(0) and P (0) is the undeformed energy and momentum. Under the T T̄ deformation,
the momentum is invariant P = P (0), and the deformed energy (2.1) becomes

E = L

2λ

√1 + 4λ
L
|P |+ 4λ

2

L2 |P |
2 − 1

 = |P | . (4.135)

Therefore, the deformed state also satisfies the condition (4.133). Without momentum and
winding zero-modes of φ, there always exists a state with the condition (4.133) for each
momentum P . On the other hand, there is no state with non-vanishing momentum zero-
mode or winding zero-mode (if X2 = φ is compactified) which is annihilated by Q1

±. One
might try to find a special cases23 satisfying the condition (4.133) with non-vanishing zero-
modes. Soon we will prove that no physical state with non-vanishing zero-mode satisfies
the condition (4.133) from the point of view of N = 2 supersymmetry of GS-like model.

From the point of view of N = (1, 1) SUSY model, eq. (4.123) is the algebra among
N = (1, 1) supercharges Q1

± and fermi global charges Q2
±. Thus, it might look odd to

consider its “BPS” bound. Nevertheless, one can still demand the positiveness of the anti-
commutation relation (4.123) whether it is a supercharge or a fermi global charge. Also,

21In λ = 0, π± = i
2ψ±.

22Recall that the Dirac bracket becomes (anti-)commutation relation by i{ , }D −→ [ , ]±. Moreover,
there could be additional contributions from the normal ordering. Here, we include the (regularized) shifts
from the normal ordering in the eigenvalues such as E and P if exists.

23For example, non-compact X2 = φ with a special momentum zero-mode or compact X2 = φ with
self-dual radius can make the energy of form 2πn

L
(n ∈ Z).
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from the perspective of N = 2 supersymmetry of GS-like model, it is natural to discuss
the “BPS” bound. From eq. (4.123), the “BPS” bound reads

L(E ± P ) + Λ
4π2L

2(E2 − P 2)− 1
2

(
L

2πpm ±
2π
L
pw

)2
= 0 , (4.136)

8π2 + 2ΛL(E ∓ P ) + L(E ± P ) = 0 . (4.137)

where pm and pw denotes the eigenvalue of P2 and W2 corresponding to the momentum
and winding zero-mode of X2 = L

2πφ. First, note that the BPS bound (4.137) will not
be saturated because E ± P = 0, which leads to the partially broken rigid supersymme-
try (PBRS) by topological WZ term [27]. From the point of view of free N = (1, 1) SUSY
model, Q2

± ∼
∫
dσπ± ∼

∫
dσπ± is already “broken” (i.e., 〈vac|Q2

+Q2
+|vac〉 6= 0). And we

have never called it “supersymmetry” in the N = (1, 1) SUSY context.
The BPS bound (4.136) implies that when pm 6= 0 or pw 6= 0, the condition E = |P |

violates the BPS bound (4.136). This immediately prove that there is no physical state
with non-vanishing zero-modes such that E = |P |.

From the point of view of N = 2 SUSY of the GS-like model, one can consider a “BPS”
state with non-vanishing zero-modes which saturates the BPS bound (4.136). When one
of the inequality in eq. (4.136) is saturated, the other in eq. (4.136) gives the inequality
between P and pmpw. And then, one can write the “BPS” condition with

∣∣P − 1
Lpmpw

∣∣
instead of ±

(
P − 1

Lpmpw
)
,

E = L

2λ

[√
1 + 4λ

L

∣∣∣∣P − 1
L
pmpw

∣∣∣∣+ 2λ
L2

(
L2

4π2 p
2
m + 4π2

L2 p
2
w

)
+ 4λ2

L2 P
2 − 1

]
, (4.138)

where we used Λ = 4π2

L2 λ. Note that this condition returns to the condition (4.133) for
vanishing zero-modes pm = pw = 0. This “BPS” condition is protected under the T T̄
deformation. For λ = 0, the “BPS” state is characterized by

E(0) =
∣∣∣∣P (0) − 1

L
pmpw

∣∣∣∣+ 1
2L

(
L2

4π2 p
2
m + 4π2

L2 p
2
w

)
. (4.139)

Note that for λ = 0 we will have the 3D GS-like model with the usual light-cone target
metric, and this is nothing but the familiar worldsheet BPS condition. Under the T T̄
deformation, its deformed energy also follows the universal formula (2.1), and the deformed
states also satisfy the BPS condition (4.138) along the T T̄ deformation,

E = L

2λ

√1 + 4λ
L
E(0) + 4λ2

L2 P
2 − 1


= L

2λ

[√
1 + 4λ

L

∣∣∣∣P − 1
L
pmpw

∣∣∣∣+ 2λ
L2

(
L2

4π2 p
2
m + 4π2

L2 p
2
w

)
+ 4λ2

L2 P
2 − 1

]
, (4.140)

where the momentum is invariant under the T T̄ deformation (i.e., P = P (0)). In other
words, the “BPS” condition (4.138) already shows how it flows along the T T̄ deformation.
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Note that this “BPS” state spontaneously breaks N = (1, 1) supersymmetry when it has
non-vanishing zero-modes

Q1
± |“BPS”〉 6= 0 when pm 6= 0 or pw 6= 0 . (4.141)

From the point of view of T T̄ deformation, this is interesting because “BPS” states will
still be protected under the deformation even though it spontaneously breaks N = (1, 1)
supersymmetry. On the other hand, this is natural from the point of view of N = 2 Super
Poincare, and the “BPS” state is annihilated by a linear combination of supercharges Q1

±
and fermi global charges Q2

±, respectively.
The T T̄ deformation of N = (0, 1) SUSY model can easily be obtained by truncating

the fermion ψ− from the N = (1, 1) case [9]. Hence, we only have two fermi charges

Q1
+ =

√
2π
L

∫
dσ ψ+(π + φ′) , (4.142)

Q2
+ = − 4i

√
2π
L

∫
dσ π+ . (4.143)

The first one is the supercharge of N = (0, 1) supersymmetry, and the second one generates
a shift of the fermion ψ+ by a Grassmannian-odd constant. This T T̄ deformed N = (0, 1)
SUSY model corresponds to the 3D N = 1 GS-like model. Qa+ = Qa

+ (a = 1, 2) are the
supercharges of the 3D N = 1 super Poincare algebra. As in N = 2 GS-like model, the
topological charge W− = − L2

4π2P appears in the supersymmetry algebra because of the
WZ term,

[Qα, Qβ ]+ = 2(ΓµC)αβPµ + 2
2π`2s

Aαβ , (4.144)

where ΓµC and Aαβ are given in eqs. (4.124) and (4.125). As before, the “BPS” bound
can be written as

L(E + P )
[
1 + Λ

4π2L(E − P )
]
− 1

2

(
L

2πpm + 2π
L
pw

)2
= 0 , (4.145)

8π2 + 2ΛL(E − P ) + L(E + P ) = 0 . (4.146)

From the two inequality, one can deduce that

L(E + P ) = 0 , L(E − P ) = −4π2

Λ . (4.147)

Therefore, eq. (4.146) cannot be saturated. The “BPS” condition from eq. (4.145) is

E = L

2λ

√1− 4λ
L
P + 2λ

L2

(
L

2πpm + 2π
L
pw

)2
+ 4λ2

L2 P
2 − 1

 . (4.148)

This “BPS” state is also protected under the T T̄ deformation as before.
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5 The question of which energy-momentum tensor

So far, we have mostly studied the T T̄ deformations constructed from the Noether energy-
momentum tensor. It has been observed [9, 10], as we repeated here, that the T T̄ deformed
Lagrangian obtained from the worldsheet theory approach is consistent with this energy-
momentum tensor from the Noether procedure. This is itself a little counter-intuitive as
we are accustomed to the symmetric energy-momentum tensor, especially dealing with
systems with dynamical gravity. Moreover, in the derivation of the T T̄ deformed spectrum
via the factorization formula [1], one might think that the symmetric energy-momentum
tensor is a more natural starting point, as obtained by variation of action with respect
to the metric. This led us to wonder what would happen for T T̄ deformations by the
symmetric energy-momentum tensor. Do we obtain the same theory in the end, or if not,
why did the worldsheet approaches above preferred the Noether energy-momentum? Let
us start the investigation by listing some simplest examples of T T̄ deformed theories where
the symmetric energy-momentum tensor is used.

A priori, deformation of fermionic theories by higher derivative interaction terms can
easily suffer from superfluous degrees of freedom. Recall how, in ordinary fermion theories
with at most a single time derivative, the system comes with a second-class constraint that
relates the conjugate momenta of the fermion to the original fermion variables. The familiar
canonical anti-commutator among the fermions is a result of the Dirac bracket based on
this constraint. The latter results in, relative to the bosonic counterpart, halving of degrees
of freedom. For instance, a complex Grassmannian field has the same number of canonical
degrees of freedom as a single real scalar. T T̄ deformations involve a higher-derivative
operator and have the same potential danger of spoiling this counting.

Therefore, a different kind of issue arises when the “deformed” Lagrangian involves
terms with more than one time derivatives on fermions; the usual second-class constraints
that halve the degrees of freedom are no longer constraints, resulting in the degree of
freedom being doubled. We find that, for the simplest examples, the T T̄ based on the
symmetric energy-momentum tensor leads to this phenomenon. Such higher derivative
fermion theories are riddled with another problem, with unitarity. The naive canonical
analysis leads to negative norm states, but we will find an alternate positive definite inner
product on the Hilbert space on a closer look. We further show that this choice is actually
the one consistent with the path integral, as can be seen from the partition function, and the
unitarity can be intact. We will see below that this tends to happen quite easily in fermionic
theories, especially with the symmetric energy-momentum. in particular, the same happens
if one deforms N = (1, 1) theory by a supersymmetric completion of ordinary T T̄ .

We illustrate the phenomenon by considering a d = 1 toy model and a pair of d = 2 pure
fermion theories in the large λ limit. We should warn ahead that in the latter examples, the
Hamiltonian can be made Hermitian, hence the evolution operator is unitary, but only at
the cost of the spatial momentum operator, a perfectly sensible physical quantity, becoming
non-Hermitian. It is also unclear whether this recovery of the unitarity is an artifact of the
d = 1 toy model or the UV approximation we employed for the analysis in d = 2.24

24A class of fermion theories with two time derivatives has been studied elsewhere with a similar conclu-
sion, although their choice of the inner product is a little different [20, 21].
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Regardless of unitary or not, what does remain clear is that, for some T T̄ deformations,
the word “deformation” is misleading. Even if such theories are well-defined, they lead to
a rather different UV completion with an exponentially larger Hilbert space than naively
anticipated. In the IR, one must decouple half the degrees of freedom to match the free
undeformed theory limit. The latter operation looks not too ill-motivated at least, thank-
fully, given how the relevant states are far removed from the physical ones due to the very
large energy eigenvalues, divergent as λ → 0. In retrospect, the very fact that we are yet
to find such complications for the T T̄ deformations with the Noether energy-momentum
tensor should be a surprise.

5.1 Examples of the other T T̄ deformations

T T̄ deformation of free fermion by symmetric Tµν . Let us revisit the simplest
model of a single Majorana fermion. The T T̄ deformed Lagrangian of the free fermion by
symmetric energy-momentum tensor is [19]

L = i

2ψ+ψ̇+ + i

2ψ−ψ̇− −
i

2ψ+ψ
′
+ + i

2ψ−ψ
′
− + 3λ

8
(
−ψ+ψ

′
+ψ−ψ̇− + ψ+ψ̇+ψ−ψ

′
−

)
− λ

8ψ+ψ̇+ψ−ψ̇− + λ

8ψ+ψ
′
+ψ−ψ

′
− . (5.1)

From the Lagrangian, one can obtain the conjugate momentum π± of the fermion ψ±:

π+ = i

2ψ+ + 3λ
8 ψ+ψ−ψ

′
− −

λ

8ψ+ψ−ψ̇− , (5.2)

π− = i

2ψ− −
3λ
8 ψ+ψ−ψ

′
− + λ

8ψ+ψ−ψ̇+ . (5.3)

Note that the right-hand sides contain ψ̇±, unlike the fermions in section 2. Therefore,
they are not the second-class constraints for non-zero λ, although it is still not clear how
to invert those equations to solve for ψ̇ in general. Since we do not have the second-class
constraints, we will have additional degrees of freedom, which would have been removed
from the Hilbert space with the constraints. The term with more than one time derivatives
is responsible for the emergence of the extra degrees of freedom for the case of free fermion.
The higher time derivative term does not vanish either in the Hamiltonian, i.e.,

H =π+ψ̇+ + π−ψ̇− − L

=
(
π+ − i

2ψ+ −
3λ
8 ψ+ψ−ψ

′
− + λ

8ψ+ψ−ψ̇−

)
ψ̇+

+
(
π− − i

2ψ− + 3λ
8 ψ+ψ−ψ

′
− −

λ

8ψ+ψ−ψ̇+

)
ψ̇−

+ i

2ψ+ψ
′
+ −

i

2ψ−ψ
′
− −

λ

8ψ+ψ
′
+ψ−ψ

′
− −

λ

8ψ+ψ̇+ψ−ψ̇− .

(5.4)

T T̄ deformation on superspace. There exist three types of T T̄ deformed Lagrangians
in the literature [9, 10, 17, 25] of the simplest N (1, 1) model, whose free form Lagrangian is

L0 = 2∂++φ∂=φ+ iψ+∂=ψ+ + iψ−∂++ψ− . (5.5)
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We have analyzed the canonical structure for one of them in section 4.2, where the defor-
mation involves the vanilla T T̄ with no attempt at its supersymmetry completion. Here,
we found no additional degrees of freedom appeared.

On the other hand, the other Lagrangians were worked out in the superspace so that
supersymmetry is manifestly preserved by construction [9, 25]. In those two other La-
grangians, the conjugate momentum π± of the fermions again includes the time derivatives
of fermions. Denoting the Lagrangian generally as a Taylor expansion

Lλ = L0 + λL1 + λ2L2 +O(λ3) , (5.6)

the first-order correction L1 of the T T̄ deformed Lagrangian in ref. [9] is found to be

L1 =−
(
2(∂++φ)2 + iψ+∂++ψ+

) (
2(∂=φ)2 + iψ−∂=ψ−

)
+ ψ+∂=ψ+ψ−∂++ψ−

− 4i(∂++φ∂=φ) (ψ+∂=ψ+ + ψ−∂++ψ−) . (5.7)

The conjugate momentum π± of the fermion ψ± can be written as follows,

π+ = i

2

[
1− λ

2

(
3π2 − 2πφ′ + 2iψ−ψ̇− − (φ′)2

)]
ψ+ +O(λ2) , (5.8)

π− = i

2

[
1− λ

2

(
3π2 + 2πφ′ + 2iψ+ψ̇+ − (φ′)2

)]
ψ− +O(λ2) . (5.9)

Since ψ̇± appears on the right-hand side, these relationships are not constraints anymore
and imply doubling of degrees of freedom warned above.

The same phenomenon can be observed in the deformed Lagrangian in ref. [25] from
the order O(λ2). After integrating out the auxiliary field, the T T̄ deformed Lagrangian in
ref. [25] reads25

L1 =− ((∂++φ)2 + ψ+∂++ψ+)((∂=φ)2 + ψ−∂=ψ−) + ψ+∂=ψ+ψ−∂++ψ−

− 2(∂++φ∂=φ)(ψ+∂=ψ+ + ψ−∂++ψ−) , (5.10)

L2 = 3(∂++φ)2ψ+∂=ψ+ψ−∂=ψ− + 3(∂=φ)2ψ+∂++ψ+ψ−∂++ψ−

+ 2(∂++φ∂=φ)ψ+∂=ψ+ψ−∂++ψ− + 8(∂++φ∂=φ)ψ+∂++ψ+ψ−∂=ψ−

+ 6(∂++φ∂=φ)2(ψ+∂=ψ+ + ψ−∂++ψ−)

+ 4(∂++φ∂=φ)((∂++φ)2ψ−∂=ψ− + (∂=φ)2ψ+∂++ψ+) + 2(∂++φ∂=φ)3 , (5.11)

25Ref. [25] used a different convention for light-cone from ours, i.e., ∂±± = 1√
2 (∂t ± ∂x). Hence, we

calculate eqs. (5.10)–(5.13) following the convention in ref. [25].
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and the conjugate momentum π± are found to be

π+ = 1√
2

[
1− λ

2

(
3π2 − 2πφ′ + 2

√
2ψ−ψ′− − (φ′)2

)
− λ2

2

(
π4 + 2π3φ′ − 17

√
2π2ψ−ψ̇−

+ 10
√

2πφ′ψ−ψ′−− 2π(φ′)3− 4
√

2(φ′)2ψ−ψ
′
−+ 3

√
2(φ′)2ψ−ψ̇−−(φ′)4

)]
ψ+ +O(λ3) ,

(5.12)

π− = 1√
2

[
1− λ

2

(
3π2 + 2πφ′ + 2

√
2ψ+ψ

′
+ − (φ′)2

)
− λ2

2

(
π4 − 2π3φ′ − 17

√
2π2ψ+ψ̇+

+ 10
√

2πφ′ψ+ψ
′
++ 2π(φ′)3+ 4

√
2(φ′)2ψ+ψ

′
++ 3

√
2(φ′)2ψ+ψ̇+ − (φ′)4

)]
ψ− +O(λ3) .

(5.13)

One can see again that ψ̇± appears at the order O(λ2).
Both Lagrangians are constructed from the superfield Tµα (µ = ++,= , α = ±) contain-

ing the supercurrent and energy-momentum tensor. The superfield Tµα is calculated as a
supersymmetric Noether current. The deformation by this superfield induces the coupling
to the extra degrees of freedom.

It was observed [9, 25] that the superfield-squared deformation is equal to the defor-
mation by the determinant of the energy-momentum tensor on-shell,∫

d2θ (T+++T=− + T++−T=+) = T++++T== − T++=T=++ (on-shell) . (5.14)

However, this does not mean that SUSY T T̄ deformation is equivalent to non-SUSY T T̄

deformation. Because the supercurrent does contribute to the deformation of Lagrangian
off-shell, the energy-momentum tensor Tµν on the right-hand side of eq. (5.14) has a dif-
ferent form from that of non-SUSY T T̄ deformed theory.

One can add further add other divergence-less terms to the energy-momentum ten-
sor. Using the improved energy-momentum tensor, one can even get the higher-order
Lagrangian of scalar fields in principle. This also leads to the coupling to the extra degrees
of freedom.

5.2 A toy model with J -hemiticity

To understand the emergence of the extra degrees of freedom, we will study a toy model
of which Lagrangian is

L = i

2 ψ̄ψ̇ −
i

2
˙̄ψψ +mψ̄ψ − λ ˙̄ψψ̇ . (5.15)

Note that the last term characterizes the symplectic fermion in refs. [20, 21]. The conjugate
momentum of ψ and ψ̄ can be obtained by

π =
←−
δ L
←−
δ ψ̇

= i

2 ψ̄ − λ
˙̄ψ , (5.16)

π̄ =
−→
δ L
−→
δ ˙̄ψ

= − i2ψ − λψ̇ . (5.17)
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Note that we take the right and left derivative of the Lagrangian for π and π̄ in order to
demand that ψ̄, π̄ be Hermitian conjugate to ψ and π, respectively. From this, we can
express ψ̇ and ˙̄ψ in terms of phase space variables,

ψ̇ = − 1
λ

(
π̄ + i

2ψ
)
, (5.18)

˙̄ψ = − 1
λ

(
π − i

2 ψ̄
)
. (5.19)

Now, we can obtain Hamiltonian,

H = πψ̇ + ˙̄ψπ̄ − L = −mψ̄ψ − 1
λ

(
π − i

2 ψ̄
)(

π̄ + i

2ψ
)
. (5.20)

Note that the order of fermi fields πψ̇ + ˙̄ψπ̄ in Legendre transformation for Hamiltonian
is also consistent with hermiticity condition for Hamiltonian. Moreover, this implies the
anti-commutation relations of phase space variables is given by

{ψ, π} = i , {ψ̄, π̄} = −i . (5.21)

Note that this anti-commutation is consistent with Hermitian conjugation.
To construct Fock space, we will find the following transformation from ψ , ψ̄ , π , π̄ to

fermi oscillators b, b†, c, c† parametrized by real constants u1 , u2 , v1 , v2:

π̄ + i

2ψ = i(v1b+ v2c) , (5.22)

π − i

2 ψ̄ =− i(v1b
† + v2c

†) , (5.23)

π̄ − i

2ψ =− i(u1b+ u2c) , (5.24)

π + i

2 ψ̄ = i(u1b
† + u2c

†) , (5.25)

where the oscillators obey the anti-commutation relations

{b, b†} = 1 , {c, c†} = −1 . (5.26)

Demanding that the algebras (5.21) and (5.26) are mapped by a Bogoliubov transformation,
we obtain the conditions for the coefficients,

u2
1 − u2

2 = 1 , (5.27)
v2

1 − v2
2 = −1 , (5.28)

u1v1 − u2v2 = 0 , (5.29)

and they can be parameterized by θ:

u1 = cosh θ , u2 = sinh θ ,
v1 = sinh θ , v2 = cosh θ . (5.30)

Using this transformation, one can express the Hamiltonian in terms of the oscillators.
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We will choose the parameter θ in a way that cross terms such as b†c and c†b in the
Hamiltonian vanish. The choice for vanishing cross terms will be clarified soon. From this
requirement, the parameter θ is determined to be

tanh 2θ = − 2mλ
2mλ+ 1 . (5.31)

Because θ is real, this transformation is valid for

1 + 4mλ > 0 , (5.32)

and in this range of θ, the Hamiltonian becomes

H = 1−
√

1 + 4mλ
2λ b†b− 1 +

√
1 + 4mλ
2λ c†c . (5.33)

Defining vacuum state |0, 0〉 by

b|0, 0〉 = c|0, 0〉 = 0 , (5.34)

we construct Fock space by acting b† and c† on the vacuum. It is easy to see that these
states diagonalize the Hamiltonian:

E1 = 0 , |Ψ1〉 = |0, 0〉, (5.35)

E2 = 1−
√

1 + 4mλ
2λ , |Ψ2〉 = |1, 0〉 ≡ b†|0, 0〉, (5.36)

E3 = 1 +
√

1 + 4mλ
2λ , |Ψ3〉 = |0, 1〉 ≡ c†|0, 0〉, (5.37)

E4 = 1
λ
, |Ψ4〉 = |1, 1〉 ≡ b†c†|0, 0〉 . (5.38)

Due to the unusual anti-commutation relation of c and c† in eq. (5.26), this Fock space
includes negative norm states. To see this, we define bra state 〈ν1, ν2| by Hermitian con-
jugation of |ν1, ν2〉. Using the anti-commutation relations, we have

〈0, 0|0, 0〉 =〈0, 0|b†b+ bb†|0, 0〉 = 〈1, 0|1, 0〉, (5.39)
〈0, 0|0, 0〉 =− 〈0, 0|c†c+ cc†|0, 0〉 = −〈0, 1|0, 1〉, (5.40)
〈0, 1|0, 1〉 =〈0, 0|b†b+ bb†|0, 0〉 = 〈1, 1|1, 1〉 . (5.41)

Assuming that the vacuum state |0, 0〉 is normalized to be 1, we can conclude that the
negative norm state is inevitable:

〈0, 0|0, 0〉 = 〈1, 0|1, 0〉 = −〈0, 1|0, 1〉 = −〈1, 1|1, 1〉 = 1 . (5.42)

Hence, the states constructed by c† have a negative norm, as had been observed in the sym-
plectic fermion [21]. Therefore, although the Hamiltonian is Hermitian, the time evolution
is not unitary because of the negative norm states.
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However, the unitarity depends on the definition of the inner product, and we will
show that the unitarity can be recovered by an alternative definition of the inner product.
For this, we introduce an operator J [20, 21] defined by

J ≡ 1 + 2c†c . (5.43)

This operator is Hermitian and unitary,

J † =J , J 2 = 1 . (5.44)

Moreover, the operator J anti-commutes with c and c† while it commutes with b and b†,

J cJ = −c , J c†J = −c† , J bJ = b , J b†J = b† . (5.45)

Assuming that the vacuum is invariant under the action of operator J

J |0, 0〉 = |0, 0〉 , (5.46)

the operator J flips the sign of the state |0, 1〉 and |1, 1〉 which have negative norm:

J |1, 0〉 = |1, 0〉 , (5.47)
J |0, 1〉 =− |0, 1〉 , (5.48)
J |1, 1〉 =− |1, 1〉 . (5.49)

Using the operator J , the completeness relation can be written as

1 =|0, 0〉〈0, 0|J + |1, 0〉〈1, 0|J + |0, 1〉〈0, 1|J + |0, 0〉〈0, 0|J . (5.50)

Therefore, it is natural to define26 J -norm

〈i|O|j〉J ≡ 〈i|JO|j〉 . (5.51)

Note that the J -norm of the Fock space basis now becomes positive,

〈i|j〉J = δij . (5.52)

Also, the matrix representation for an operator, which is compatible with the above com-
pleteness relation, is defined in terms of the J -norm

Oij ≡ 〈i|O|j〉J . (5.53)

For example, unlike the naive norm, the matrix representation of the Hamiltonian with
J -norm can reproduce the energy eigenvalues (5.35)–(5.38). When we use J -norm, we
need to introduce J -conjugation †J defined by

O†J ≡ JO†J . (5.54)
26In this paper, we employ the notation J instead of C used in refs. [20, 21] to prevent any confusion.

Especially, the definition of the inner product is different, i.e., 〈 〉here = 〈 〉C , there and 〈 〉J , here = 〈 〉there.
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This J -conjugation is compatible with J -norm, i.e.,

〈Oψ′|ψ〉J = 〈Oψ′|J |ψ〉 = 〈ψ′|O†J |ψ〉 = 〈ψ′|JO†J |ψ〉 = 〈ψ′|O†J |ψ〉J . (5.55)

Recall that we have chosen the parameter θ to eliminate the cross terms in the Hamiltonian.
Then, the Hamiltonian (5.33) without the cross terms is J -Hermitian,

H†J = H . (5.56)

Therefore, one can expect that the energy eigenstates (Fock space states) now enjoy the
nice properties of the Hermitian matrices.

Without the J -Hermicity, the orthogonality of eigenstates would have been violated
in spite of the positive-definite J -norm. Now, the time evolution becomes unitary with
respect to the J -norm for 1 + 4mλ > 0. Recall that the transformation to b, c is possible
only for 1 + 4mλ > 0. For 1 + 4mλ > 0, this system exhibits nice physical properties such
as real energy eigenvalues, orthonormal energy eigenstates, and unitary time evolution.
However, for 1 + 4mλ 5 0, we lose all these sensible properties.

The above operator formalism with J -norm is consistent with the path integral for-
malism, in the sense that the latter naturally computes

Z(β) =
∫
Dψ̄Dψ exp

(
−Sβ [ψ̄, ψ]

)
= Tr

[
J e−βH

]
. (5.57)

with the additional operator insertion of J on the canonical side. A formal proof of this is
given in the appendix C, but we can easily convince ourselves of this relation by computing
the (thermal) partition function by path integral directly.

Imposing the usual anti-periodic boundary condition along the Euclidean time circle,
the fermions can be expanded by

ψ(τ) =
∑

n∈Z+ 1
2

ψn e
2πinτ
β , (5.58)

ψ̄(τ) =
∑

n∈Z+ 1
2

ψ̄n e
− 2πinτ

β , (5.59)

up to the normalization constant. The path integral can be evaluated as

Z =
∫
Dψ̄Dψ e−Sβ [ψ̄,ψ] =

∏
n∈Z+ 1

2

β

2π

[
−λ

(2πn
β

)2
+ 2πin

β
−m

]
,

=
∏

n∈Z+∪{0}+ 1
2

4π2λ2n4

β2

[
1 + β2z2

4π2n2

] [
1 + β2w2

4π2n2

]
, (5.60)

where we defined

z ≡ β
1 +
√

1 + 4mλ
2λ , w ≡ β

1−
√

1 + 4mλ
2λ . (5.61)
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By regularizing the partition function by L0 = −λ ˙̄ψψ̇, we have

Z

Z0
= cosh z2 cosh w2 = 1

4e
−β 1

2λ

[
1 + e

β

(
1−
√

1+4mλ
2λ

)
+ e

β

(
1+
√

1+4mλ
2λ

)
+ eβ

1
λ

]
. (5.62)

On the other hand, in operator formalism, the partition function can be found to be

Z =Tr
[
J e−βH

]
= 1 + e

β

(
1−
√

1+4mλ
2λ

)
+ e

β

(
1+
√

1+4mλ
2λ

)
+ eβ

1
λ , (5.63)

which reproduces the result (5.62) from the path integral up to a normal ordering, of
which we were not careful, of the Hamiltonian. The path integral consists of the four
terms, all with positive sign, and the exponents match energy eigenvalues we obtained on
the canonical side. Clearly, the end result is consistent with the J -norm and with the
above Hamiltonian, modulo a normal ordering issue.

In the small λ limit, the energy eigenstates cluster pairwise. E1,2 and E3,4 each cluster
together, relatively separated by a large gap ∼ 1/λ. Concentrating on one pair, say, E1,2,
we find E1 − E2 ' m � λ. The two sectors are separated by a divergent energy gap as
λ → 0, so a consistent decoupling of state |Ψ3〉 and |Ψ4〉 from the other two would be
possible in the λ→ +0 limit. In this limit, we can restrict our attention to {|0, 0〉, |1, 0〉},
disregarding c , c† (i.e., c = c† = 0). With this truncation, the fermion ψ and ψ̄ reduce to

ψ = b , ψ̄ = b† , (5.64)

with the usual anti-commutation relation of the usual free fermion

{ψ, ψ̄} = {b, b†} = 1 . (5.65)

One can even say that, at least in this toy model, the system reduces to that of the ordinary
fermion oscillator defined at λ = 0 by decoupling the highly gapped states.

So far, we have analyzed the toy model where the higher time derivative term is still
quadratic; this allowed an easy and explicit analysis and a relatively simple understanding
of the extra emergent states for all the values of λ. What would happen if the higher
derivative term appears at the quartic order? As we have seen before, some of d = 2 T T̄
deformation such as those in section 5.1 come with a quartic interaction of type ψ+ψ̇ψ−ψ̇.
Our quadratic toy model would be insufficient even as a qualitative model. As such, let us
consider, instead, the following d = 1 toy model of N complex fermions. The large N limit
can emulate some essential features of d = 2 higher derivative theories by a dimensional
reduction,

S =
N∑
j=1

(
ψ̄jψ̇j +mjψ̄jψj

)
+ λ

∑
j<k

ψ̄jψ̇jψ̄kψ̇k . (5.66)

Due to the double time derivatives in the quartic terms, we again lose the second-class
constraint so that the dimension of the phase space is 2N , instead of the usual N . Thus,
there will be 22N states instead of 2N .
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Now one immediate question is whether these extra states decouple in the small λ
limit, at least, the same as with the above quadratic model? Consider the thermal partition
function, schematically written as,

Z(β, λ) =
22N∑
j=1

e−βEj(λ) . (5.67)

The partition function should be again analytic in λ. Taking the limit λ → 0, one thus
should recover the partition function of N free complex fermion,

lim
λ→0

Z(β, λ) = Zfree(β) =
2N∑
j=1

e−βE
free
j . (5.68)

The implication is that in the limit λ → 0 only 2N states have finite energies while the
energies of the other 22N − 2N states diverge. This implies, in turn, that these N degrees
of freedom must all be infinitely gapped and decouple in the small λ limit, just as in the
quadratic toy model.

Note that in both classes above, one cannot really consider the finite λ theories to
be a “deformation” of the λ = 0 theory in any strict sense. Instead, the λ = 0 theory is
embedded into and emerges from, in the infrared limit, a one-parameter family of higher
derivative theories with a much larger Hilbert space. We will presently see that the same
behavior occurs for some T T̄ deformations and other similarly irrelevant deformations when
the theory contains fermions, to begin with.

5.3 Two-dimensional models with J -hermiticity near UV

In the simplest of d = 1 toy model above with a single complex fermion but with double
time derivatives, we managed to reduce the Hamiltonian to a pair of free oscillators and find
a positive-definite norm, twisted by J , under which the Hamiltonian is Hermitian. Without
such twists, one would have found negative norm states, but fortunately, we showed that
this twisted J -norm is actually the one demanded by the path integral.

In the small λ limit, one set of oscillators become highly gapped, of order ∼ 1/λ,
leaving behind the ordinary pair that would have emerged at λ = 0 after the second-class
constraint is used. In the later, more general quantum mechanics that had quartic fermion
interaction terms again with double time derivatives, we could not carry out such precise
analysis but did see that the degrees of freedom again split into two classes in the small λ
limit; one is composed of would-be harmonic oscillators at λ = 0 while the other invokes
divergent energy gaps and decouples as λ→ 0. In this limited sense, the finite λ theory with
double the degrees of freedom reduces to the ordinary first-order theory sitting at λ = 0.

Here, we lift the same set of questions to d = 2 theories with higher time derivatives
and find these exhibit some common behaviors with the d = 1 toy models. The quantum
mechanics with the quartic fermion term can be considered as a very rough image of various
momentum sectors of such d = 2 theories, so we expect that, for small λ, d = 2 theory
would again split into two sectors, one with light degrees of freedom and the other with
heavy degrees of freedom which incur large energy gap, relative to the light ones, scaling
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inversely with small λ. Unfortunately, the full analysis of this limit with all degrees of
freedom kept is enormously complicated. All we can say is that as λ→ 0, the heavy part
of the theory would again decouple from the ordinary light fields relevant for strict λ = 0.

Also unclear is whether the J -Hermiticity of the simplest toy model above can be
extended here for d = 2 theories with such higher derivative interaction terms. In the most
general setting, it is widely believed that ghost sectors are generic once such higher time-
derivative terms lift the second-class constraint for the fermion [14]. However, we will take
up a pair of the simplest theories deformed by quartic fermion interactions with double
time-derivatives and show that one can define a positive definite pairing in the Hilbert at
least for the UV limit space, with respect to which the evolution is unitary. Unfortunately,
not all of the usual observables can be made J -Hermitian simultaneously, adding further
uncertainties on such high derivative theories in d = 2.

The first example is the truncated Lagrangian obtained from the NSR-like action in
section 3.2. Although it is not clear if this is a T T̄ deformation based on some version of
the energy-momentum tensor, its spectra share the common eigenvalue flows and have a
rather simple structure of the irrelevant perturbation. It serves as a useful starting point
for d = 2 investigation of the above issue. The action is

Str
NSR =

∫
dτdσ

[
i

2(ψ+ψ̇+ + ψ−ψ̇− − ψ+ψ
′
+ + ψ−ψ

′
−)
]

− Λ
∫
dτdσ

[
ψ+ψ̇+ψ−ψ̇− − ψ+ψ̇+ψ−ψ

′
− + ψ+ψ

′
+ψ−ψ̇− − ψ+ψ

′
+ψ−ψ

′
−

]
, (5.69)

where we rescaled27 λ by L2

4π2 to define dimensionless parameter Λ.

Λ ≡ 4π2λ

L2 . (5.70)

Recall that we integrated out the worldsheet metric from the NSR-like action with the
static gauge, and we truncated the bosonic degrees of freedom. This action has a term
that is quadratic in the time derivatives of fermions, which leads to negative norm states.

The conjugate momentum of the fermion ψ± is

π+ = i

2ψ+ − Λψ+ψ−ψ̇− + Λψ+ψ−ψ
′
− , (5.71)

π− = i

2ψ− + Λψ+ψ−ψ̇+ + Λψ+ψ−ψ
′
+ . (5.72)

The relations (5.71) and (5.72) do not form the second-class constraint any more for Λ 6= 0.
Moreover, the problematic term ψ+ψ̇+ψ−ψ̇− still appears in the Hamiltonian

H =
∫
dσ

[
i

2ψ+ψ
′
+ −

i

2ψ−ψ
′
− − Λψ+ψ̇+ψ−ψ̇− − Λψ+ψ

′
+ψ−ψ

′
−

]
(5.73)

To see what happens in the large Λ limit more concretely, let us take such a limit while
keeping the phase space variables being of order O(Λ0), i.e.,

ψ± , π± ∼ O(Λ0) . (5.74)
27Or, one may rescale the fermion ψ± and the worldsheet coordinates (τ, σ) to make contact with the

usual T T̄ deformation.
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To analyze the Hamiltonian we need to express ψ̇± in terms of other phase space variables.
For this, we rewrite the relations (5.71) and (5.72) as follows,

Λψ+ψ−(ψ̇− − ψ′−) =− π+ + i

2ψ+ , (5.75)

Λψ+ψ−(ψ̇+ + ψ′+) = π− −
i

2ψ− . (5.76)

In a large Λ limit, these can be inverted perturbatively,

ψ̇+ =− ψ′+ + 1
Λη+ , (5.77)

ψ̇− = ψ′− + 1
Λη− , (5.78)

where η± satisfies

ψ+ψ−η− =− π+ + i

2ψ+ , (5.79)

ψ+ψ−η+ = π− −
i

2ψ− . (5.80)

Note that η± can, in principle, have any terms which vanish when we act ψ+ψ− on it.
Those terms may have an arbitrarily higher order in λ. But, since η± appears together
with ψ+ψ− in the Hamiltonian, they will not contribute to the Hamiltonian. Using them,
one can expand the Hamiltonian (5.73)

H =
∫
dσ
[
π−ψ

′
− − iψ−ψ′− − π+ψ

′
+ + iψ+ψ

′
+
]

+O(Λ−1) . (5.81)

The anti-commutation relation of ψ± and π± is given by

{ψ±(σ1), π±(σ2)} = iδ(σ1 − σ2) . (5.82)

As in the toy model, we consider a linear transformation of ψ+ and π+ such that their
Fourier modes bp , cp , b̄p , c̄p satisfies the following anti-commutation relation:

{bp, bq} = {b̄p, b̄q} = δp+q,0 , {cp, cq} = {c̄p, c̄q} = −δp+q,0 . (5.83)

Such a linear transformation is found to be

u+ψ+(σ)− 1
2u+

iπ+(σ) = 1√
2π
∑
p

bpe
ipσ , (5.84)

1
2u+

ψ+(σ) + u+iπ+(σ) = 1√
2π
∑
p

cpe
ipσ , (5.85)

u−ψ−(σ)− 1
2u−

iπ−(σ) = 1√
2π
∑
p

b̄pe
ipσ , (5.86)

1
2u−

ψ−(σ) + u−iπ−(σ) = 1√
2π
∑
p

c̄pe
ipσ , (5.87)
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where u± are real constants. Under this transformation, the Hamiltonian can be written as

H = κ
∑
p>0

p

[
(1− 2u2

+)b−pbp −
(

1 + 1
2u2

+

)
c−pcp −

(
u2

+ + 1− 1
4u2

+

)
(b−pcp + c−pbp)

]

− κ
∑
p>0

p

[
(1− 2u2

−)b̄−pb̄p −
(

1 + 1
2u2
−

)
c̄−pc̄p −

(
u2
− + 1− 1

4u2
−

)
(b̄−pc̄p + c̄−pb̄p)

]
,

(5.88)

where we defined κ ≡ 16u4

(1+4u4)2 . We determine the parameter u± by demanding that the
cross term such as b−pcp + c−pbp vanish to make Hamiltonian J -Hermitian. We obtain

u2
± =

√
2− 1
2 , (5.89)

and the Hamiltonian becomes

H =
∑
p>0

p
[
(2−

√
2)b−pbp − (2 +

√
2)c−pcp − (2−

√
2)b̄−pb̄p + (2 +

√
2)c̄−pc̄p

]
. (5.90)

Since the Hamiltonian is J -Hermitian, the time evolution is unitary with J -norm.
One can also express the momentum operator P obtained by the Noether procedure in

terms of the above oscillators. However, at the value of u± in eq. (5.89), the cross term does
not vanish, which implies that the momentum operator is not J -Hermitian although it is
Hermitian in the usual sense. Or, one can find another value ũ± such that the cross term in
the momentum operator vanishes. While the momentum operator becomes J̃ -Hermitian,28

the Hamiltonian is not J̃ -Hermitian anymore.
The second example is the T T̄ deformation of free fermion by the symmetric energy-

momentum tensor discussed at the beginning of section 5.1. Recall that the Lagrangian is
given by

L = i

2ψ+ψ̇+ + i

2ψ−ψ̇− −
i

2ψ+ψ
′
+ + i

2ψ−ψ
′
− + 3λ

8
(
−ψ+ψ

′
+ψ−ψ̇− + ψ+ψ̇+ψ−ψ

′
−

)
− λ

8ψ+ψ̇+ψ−ψ̇− + λ

8ψ+ψ
′
+ψ−ψ

′
− , (5.91)

and this gives the relation for the conjugate momentum π± as follows,

−λ8ψ+ψ−(ψ̇− − 3ψ′−) ≡ π+ −
i

2ψ+ , (5.92)
λ

8ψ+ψ−(ψ̇+ + 3ψ′+) ≡ π− −
i

2ψ− . (5.93)

The Hamiltonian can be written as

H =
∫
dx

[
i

2ψ+ψ
′
+ −

i

2ψ−ψ
′
− −

λ

8ψ+ψ̇+ψ−ψ̇− −
λ

8ψ+ψ
′
+ψ−ψ

′
−

]
. (5.94)

28For each value of u, J operator is different. Hence, J inner product and J -Hermiticity depend on the
value of u.
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In large λ limit (with ψ±, π± ∼ O(λ0), one can invert eqs. (5.92) and (5.93) perturbatively
to have

ψ̇+ = −3ψ′+ + 1
λ
η+ , ψ̇− = 3ψ′− + 1

λ
η− , (5.95)

where the 1
λ correction η± satisfies

ψ+ψ−η+ = 8
[
π− −

i

2ψ−
]
, ψ+ψ−η− = −8

[
π+ −

i

2ψ+

]
. (5.96)

Therefore, the 1
λ expansion of the Hamiltonian is

H =
∫
dx

[
λψ+ψ

′
+ψ−ψ

′
− + 3

(
π− −

i

2ψ−
)
ψ′− − 3

(
π+ −

i

2ψ+

)
ψ′+ + i

2ψ+ψ
′
+ −

i

2ψ−ψ
′
−

]
+O(λ−1) . (5.97)

When the canonical variables are of order O(λ0), the energy would be of order O(λ) in
general, which is seemingly not consistent with the large λ limit of the T T̄ deformed
spectrum (2.1) with the unperturbed energy and momentum of order O(λ0). First, due
to the existence of the additional degrees of freedom with the negative norm, it is not
guaranteed that the deformation of the energy (2.1) still holds. Furthermore, it is not
clear that keeping the canonical variable ψ± and π± being of order O(λ0) is equivalent to
keeping the unperturbed energy and momentum being of order O(λ0).

Since the leading term is quartic, it is still difficult to analyze the spectrum. Hence,
we will consider a subsector by taking a constraint,

ψ′− = 0 . (5.98)

For consistent truncation, we need to check the secondary constraint:

[H,ψ′−] = −3iψ′′− . (5.99)

Therefore, ψ′− = 0 is the first-class constraint and (by taking a gauge condition π− = 0),
we have

H =
∫
dx
[
− 3π+ψ

′
+ + 2iψ+ψ

′
+
]

+O(λ−1) . (5.100)

As in the NSR-like model, the Hamiltonian can be expressed in terms of fermi oscillators
bp , cp for each u:

H = 16u4

(1 + 4u4)2

∑
p>0

p

[
(3− 4u2)b−pbp −

(
3 + 1

u2

)
c−pcp

−
(

3u2 + 2− 3
4u2

)
(b−pcp + c−pbp)

]
+ E0 . (5.101)

where E0 is a constant from the operator ordering. Demanding that the cross term b−pcp+
c−pbp vanish to make Hamiltonian J -Hermitian, we get

u =

√√
13− 2

6 : real . (5.102)
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And the Hamiltonian becomes

H = 9
13
∑
p>0

p

3
[
(13− 2

√
13)b−pbp − (13 + 2

√
13)c−pcp

]
, (5.103)

which is J -Hermitian explicitly. Hence, the time evolution recovers unitarity. However,
at this value of u, the momentum has the cross term, and it is not J -Hermitian. As in
the NSR-like case, one cannot make both Hamiltonian and momentum J -Hermitian at the
same time. Therefore, the eigenstates of the momentum operator lose the properties of
the eigenstate of the Hermitian operators. (e.g., orthogonality and unitarity of e−iPx etc.).
Without the J -Hermiticity, one cannot use the orthogonality of energy and momentum
eigenstates, an important step in the factorization formula of the T T̄ operator [1].

In these two examples, we find a common pattern in the large λ limit. The naive
inner product yields negative norm states, yet there does exist a modified pairing such
that the norm is positive definite and at the same time the Hamiltonian is Hermitian.
This guarantees that the evolution operator is unitary. On the other hand, the spatial
momentum is not J -Hermitian, suggesting that there are certainly not ordinary quantum
field theories. We should also emphasize that the exercise was done in the large λ limit
where the Hamiltonian is greatly simplified; it is not clear whether both the positive-
definiteness of J -norm and the unitary evolution extends to finite nonzero λ.

Either way, it is clear that the degrees of freedom are doubled compared to λ = 0
limit, so one cannot consider this one-parameter family of theories as a “deformation”
λ = 0 theory. Rather, a more sensible interpretation would be that in the infrared limit
λ → 0 of this much bigger theory, one can find a very small subset of the Hilbert space,
separated from the rest by a divergent energy gap, which happens to match the sensible
λ = 0 theory.

In this final part of the note, we gave two examples of “deformation” that incur doubling
of the degrees of freedom with a potential unitarity issue. Interestingly, for those T T̄

deformation based on Noether energy-momentum, we are yet to find a problem of this
kind. It is unclear whether the latter is a general feature of the Noether energy-momentum
or simply due to the small fermion content of models we relied on.
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A Convention

GS-like and NSR-like models.

• Gamma matrices
Γ0 = iσ2 , Γ1 = σ1 , Γ2 = σ3 . (A.1)

• Ψ: 3D space-time Majorana spinor. Ψ̄ = ΨTC where C = Γ0 = iσ2.

• (τ, σ): (dimensionless) worldsheet coordinates. σ ∼ σ + 2π

• Λ = 4π2λ
L2 : (dimensionless) deformation parameter.

• pµ ≡ δS
δẊµ : the conjugate momentum of Xµ.

• pµ: zero-mode of the conjugate momentum pµ, pµ ≡ 1
2π
∮
dσ pµ .

• Pµ: momentum operator generating the translation along Xµ,
Pµ ≡

∮
dσ pµ = 2πpµ .

• Kµ ≡ δS
δΠµ0

: Auxiliary momentum-like variable.

• Wµ: winding number operator of Xµ, Wµ ≡
∮
dσ ∂σX

µ .

• σ±: Worldsheet light-cone coordinates.

σ± ≡ τ ± σ . (A.2)

∂++ = 1
2(∂0 + ∂1) , ∂= = 1

2(∂0 − ∂1) . (A.3)

Target light-cone coordinates in section 3.

• Target light-cone coordinates

X+ ≡ 1
2X

1 + 1
2X

0 , X− ≡ X1 −X0 . (A.4)

• Target space metric with light-cone

ds2 = 2dX+dX− + (dX2)2 . (A.5)

• Gamma matrices in the light-cone

Γ+ = 1
2Γ1 + 1

2Γ0 =
(

0 1
0 0

)
, Γ− = Γ1 − Γ0 =

(
0 0
2 0

)
. (A.6)
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Target shifted light-cone coordinates in section 4.

• Target Shifted light-cone coordinates.

X+ ≡
(1

2 − Λ
)
X1 +

(1
2 + Λ

)
X0 , X− ≡ X1 −X0 . (A.7)

• Target space flat metric in terms of shifted light-cone coordinates.

ds2 = 2dX+dX− + 2Λ(dX−)2 + (dX2)2 . (A.8)

• Gamma matrices in the shifted light-cone.

Γ+ =
(1

2 − Λ
)

Γ1 +
(1

2 + Λ
)

Γ0 =
(

0 1
−2Λ 0

)
, Γ− = Γ1 − Γ0 =

(
0 0
2 0

)
. (A.9)

• Projector

Υ+ ≡ 1
2(Γ1 + Γ0) =

(
0 1
0 0

)
, Υ− ≡ 1

2(Γ1 − Γ0) =
(

0 0
1 0

)
. (A.10)

T T̄ deformation.

• (t, x): (dimensionful) coordinates for 2D space-time

• Light-cone coordinates

x± ≡ t± x . (A.11)

∂++ = 1
2(∂0 + ∂1) , ∂= = 1

2(∂0 − ∂1) . (A.12)

• L: Circumference of the coordinates x

• λ: T T̄ deformation parameter of dimension length-squared.

• φ, ψ± and π, π±: scalar field, fermion and its conjugate momentum.

• H,P: Hamiltonian and momentum density of T T̄ deformed model

• Hb,0,Pb,0,Hf,0,Pf,0: Hamiltonian and momentum density of bosonic and fermi part
of the undeformed model, respectively.

• H,P : Hamiltonian and momentum operator.
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B Details of perturbative calculations

B.1 T T̄ deformation of free scalar field

In this appendix, we will provide the detailed calculations in section 2.1. Let us continue
with the equation (2.22)

H[A, Ā] = H̃[α, ᾱ] . (B.1)

The Hamiltonian H[A, Ā] is evaluated from the Hamiltonian density

H = 1
2λ

[√
1 + 4λ

(1
2π

2 + 1
2φ
′2
)

+ 4λ2(πφ′)2 − 1
]
, (B.2)

in terms of the Fourier modes Ak and Āk of φ and π while H̃[α, ᾱ] is defined in terms of
the free harmonic oscillators α’s and ᾱ’s by

H̃[αk, ᾱk] = L

2λ

√1 + 4λ
L

(H+ +H−) + 4λ2

L2 (H+ −H−)2 − 1

 , (B.3)

H+ ≡
π

L

∑
k

α−kαk , H− ≡
π

L

∑
k

ᾱ−kᾱk . (B.4)

which explicitly gives rise to the T T̄ deformed spectrum.
We might be able to solve directly this equation (B.1) together with the condition

for canonical transformation. However, we will develop a practical procedure to find the
transformation. If two Hamiltonians are equal under the transformation i.e., H[A, Ā] =
H̃[α, ᾱ], the Poisson brackets of any fields with them should be identical,

{Ak, H}PB = {AK , H̃}PB . (B.5)

Noting that the transformation from Ak to α is canonical, we will evaluate the left-hand side
of eq. (B.5) with respect to Ak and Āk and compute the Poisson bracket on the right-hand
side of eq. (B.5) with respect to αk and ᾱk:

{Ak, H}PB,A,Ā = {Ak, H̃}PB,α,ᾱ . (B.6)

Using the expansion of Ak and Āk

Ak = αk + λ

L2A
(1)
k + · · · , Āk = ᾱk + λ

L2 Ā
(1)
k + · · · , (B.7)

the left-hand side of eq. (B.6) is found to be

{Ak, H}PB,A,Ā =− 2πik
L

Ak + 4πλ
L2

2πik
L

∑
r,s

Ak−r−sĀ−rĀ−s +O(λ2) (B.8)

=− 2πik
L

αk −
2πikλ
L3 A

(1)
k + 4πλ

L2
2πik
L

∑
r,s

αk−r−sᾱ−rᾱ−s +O(λ2) . (B.9)
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On the other hand, the right-hand side of eq. (B.6) becomes{
αk + λ

L2A
(1)
k +O(λ2), H̃

}
PB,α,ᾱ

= −2πik
L

αk + 8πikλ
L2 αkH− −

λ

L2

∑
u

(
2πiu
L

αu
δA

(1)
k

δαu
+ 2πiu

L
ᾱu
δA

(1)
k

δᾱu

)
+O(λ2) , (B.10)

where we used the Poisson bracket

{F,G}PB,α,ᾱ =
∑
u

[
−iu δF

δαu

δG

δα−u
− iu δF

δᾱu

δG

δᾱ−u

]
. (B.11)

At order O(λ) we have a functional differential equation for A(1)
k (and similarly for Āk)

∑
u

(
uαu

δA
(1)
k

δαu
+ uᾱu

δA
(1)
k

δᾱu

)
− kA(1)

k =− 4πk
∑
r,s

r+s 6=0

αk−r−sᾱ−rᾱ−s , (B.12)

∑
u

(
uαu

δĀ
(1)
k

δαu
+ uᾱu

δĀ
(1)
k

δᾱu

)
− kA(1)

k =− 4πk
∑
r,s

r+s 6=0

α−rα−sᾱk−r−s . (B.13)

These are inhomogeneous first-order differential equations, and a solution is found to be

A
(1)
k =2π

∑
r,s

r+s 6=0

k

r + s
αk−r−sᾱ−rᾱ−s +

∑
r

fk,rαkᾱ−rᾱr , (B.14)

Ā
(1)
k =2π

∑
r,s

r+s 6=0

k

r + s
α−rα−sᾱk−r−s +

∑
r

f̄k,rα−rαrᾱk , (B.15)

where the second terms are solutions of the homogeneous parts. By construction, we have

fk,r = fk,−r , f̄k,r = f̄k,−r . (B.16)

The Poisson relations of Ak and Āk

[Ak, Aq] = kδk+q,0 , (B.17)
[Āk, Āq] = kδk+q,0 , (B.18)
[Ak, Āq] = 0 , (B.19)

leads to constraints on fk,r and f̄k,r:

i{A(1)
k , αq}PB + i{αk, A(1)

q }PB =
∑
r

k(fk,r + f−k,r)δk+q,0ᾱ−rᾱr = 0 , (B.20)

{Ā(1)
k , ᾱq}PB + {ᾱk, Ā(1)

q }PB =
∑
r

k(f̄k,r + f̄−k,r)δk+q,0α−rαr = 0 , (B.21)

and

i{A(1)
k , ᾱq}PB + i{αk, Ā(1)

q }PB =− 2(qfk,q − kf̄q,k)αkᾱq = 0 . (B.22)
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In sum, we have

fk,r = fk,−r , (B.23)
f̄k,r = f̄k,−r , (B.24)
fk,r = −f−k,r , (B.25)
f̄k,r = −f̄−k,r , (B.26)
qfk,q = kf̄q,k . (B.27)

Because fk,q and f̄k,q are dimensionless, one can take the following ansatz:

fk,q = f

(
k

q

)
. (B.28)

But, the above conditions lead to

f

(
k

q

)
= f

(
k

−q

)
= −f

(−k
q

)
, (B.29)

and we can conclude that
f

(
k

q

)
= 0 . (B.30)

Hence, the first-order solution is found to be

A
(1)
k = 2π

∑
r,s

r+s 6=0

k

r + s
αk−r−sᾱ−rᾱ−s , (B.31)

Ā
(1)
k = 2π

∑
r,s

r+s 6=0

k

r + s
α−rα−sᾱk−r−s . (B.32)

The small λ expansion of the Hamiltonian H[A, Ā] is given by

H = 2π
2L

(
A−kAk + Ā−kĀk

)
− 4π2λ

L3

∑
k,q,r

AkĀ−qA−k−q−rĀ−r +O(λ2) . (B.33)

Using the solution, one can express the Hamiltonian in terms of the free oscillators α’s,
and one can expand it with respect to λ again,

H =H(0)[α, ᾱ] + λ

L2H
(1)[α, ᾱ] +O(λ2) . (B.34)

Then, the leading and the first-order contribution are

H(0) = 2π
2L (α−kαk + ᾱ−kᾱk) ≡ H+ +H− , (B.35)

H(1) = 2π
L

∑
k

(
α−kA

(1)
k + ᾱ−kĀ

(1)
k

)
− 4π2

L

∑
k,q,r

αkᾱ−qα−k−q−rᾱ−r

= −4π2

L

∑
k,q

α−kαkᾱ−qᾱq = −4LH+H− . (B.36)
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Therefore, we have

H = H+ +H− −
4λ
L
H+H− +O(λ2) . (B.37)

One can repeat the same calculation for momentum P . The momentum density of the T T̄
deformed scalar field is given by

T 0
1 = δL

δ∂0φ
∂1φ = φ′φ̇√

1 + λ(−φ̇2 + φ′2)
= πφ′ , (B.38)

and the momentum operator is

P =
∫
dx πφ′ = −π

L

∑
k

[A−kAk − Ā−kĀk] . (B.39)

The leading momentum operator is the same as that of the free scalar field,

P (0) = −π
L

∑
k

[α−kαk − ᾱ−kᾱk] = −H+ +H− . (B.40)

One can confirm that the O(λ) correction of momentum operator vanishes,

P (1) = −2π
L

∑
k

[α−kA(1)
k − ᾱ−kĀ

(1)
k ] = 0 . (B.41)

One can repeat the same procedure to obtain the transformation at order O(λ2) at
the classical level. Expanding Ak with respect to λ

L2

Ak = αk + λ

L2A
(1)
k [α, ᾱ] + λ2

L4A
(2)
k [α, ᾱ] +O(λ3) , (B.42)

we get inhomogeneous differential equations for A(2)
k from the equation (B.5) at order

O(λ2):

∑
u

(
uαu

δA
(2)
k

δαu
+ uᾱu

δA
(2)
k

δᾱu

)
− kA(2)

k (B.43)

= −4π2k
∑
r,s,u,v

u+v 6=0,r+s 6=0

(r + s+ u+ v)(k − r − s− u− v)
(u+ v)(r + s) αk−r−s−u−vᾱ−uᾱ−vᾱ−rᾱ−s

+ 8πk
∑
u,v

u+v 6=0

αk−u−vᾱ−uᾱ−vL(H+ +H−)− 8π2k
∑
r,s,u,v
r+s 6=0

u+ v

r + s
αk−r−s−u−vαrαsᾱ−uᾱ−v .

A solution for this equation can be written as

A
(2)
k = 2π2k

∑
r,s,u,v

u+v 6=0,r+s 6=0

k − r − s− u− v
(u+ v)(r + s) αk−r−s−u−vᾱ−uᾱ−vᾱ−rᾱ−s

− 4πk
∑
u,v

u+v 6=0

1
u+vαk−u−vᾱ−uᾱ−vL(H++H−)+ 4π2k

∑
r,s,u,v
r+s 6=0

1
r+sαk−r−s−u−vαrαsᾱ−uᾱ−v

+ αk
∑
r,u,v

ck;r,u,vα−rαr−u−vᾱ−uᾱ−v + αk
∑
r,u,v

dk;r,u,vᾱ−r−u−vᾱrᾱuᾱv , (B.44)
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and similar for Ā(2)
k . Furthermore, for the canonical transformation, we demand

i{A(1)
k , A(1)

q }PB + i{αk, A(2)
q }PB + i{A(2)

k , αq}PB = 0 , (B.45)

i{Ā(1)
k , Ā(1)

q }PB + i{ᾱk, Ā(2)
q }PB + i{Ā(2)

k , ᾱq}PB = 0 , (B.46)

i{A(1)
k , Ā(1)

q }PB + i{αk, Ā(2)
q }PB + i{A(2)

k , ᾱq}PB = 0 . (B.47)

These equations are satisfied by

ck,r,u,v = dk,r,u,v = c̄k,r,u,v = d̄k,r,u,v = 0 . (B.48)

In sum, we find that the canonical transformation from Ak, Āk to αk, ᾱk is

Ak = αk + λ

L2A
(1)
k [α, ᾱ] + λ2

L4A
(2)
k [α, ᾱ] +O(λ3) , (B.49)

Āk = ᾱk + λ

L2 Ā
(1)
k [α, ᾱ] + λ2

L4 Ā
(2)
k [α, ᾱ] +O(λ3) , (B.50)

where

A
(2)
k = 2π2k

∑
r,s,u,v

u+v 6=0,r+s 6=0

k − r − s− u− v
(u+ v)(r + s) αk−r−s−u−vᾱ−uᾱ−vᾱ−rᾱ−s

− 4πk
∑
u,v

u+v 6=0

1
u+ v

αk−u−vᾱ−uᾱ−vL(H+ +H−)

+ 4π2k
∑
r,s,u,v
r+s 6=0

1
r + s

αk−r−s−u−vαrαsᾱ−uᾱ−v , (B.51)

Ā
(2)
k = 2π2k

∑
r,s,u,v

u+v 6=0,r+s 6=0

k − r − s− u− v
(u+ v)(r + s) ᾱk−r−s−u−vα−uα−vα−rα−s

− 4πk
∑
u,v

u+v 6=0

1
u+ v

ᾱk−u−vα−uα−vL(H+ +H−)

+ 4π2k
∑
r,s,u,v
r+s 6=0

1
r + s

ᾱk−r−s−u−vᾱrᾱsα−uα−v . (B.52)

Under the transformation, the Hamiltonian and the momentum become

H = H+ +H− − 4λ
L
H+H− + 8λ2

L2 H+H−(H+ +H−) +O(λ3) ,

= 1
2λ

[√
1 + 4λ(H+ +H−)2 + 4λ2(H+ −H−)2 − 1

]
+O(λ3) , (B.53)

P =−H+ +H− +O(λ3) . (B.54)

B.2 T T̄ deformation of free fermion

This appendix will present the details of the perturbative calculations for the fermion in
section B.2. We proceed with the equation (2.81)

H[ψ+, ψ−] = H̃[b, b̄] . (B.55)
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The Hamiltonian H[ψ+, ψ−] is obtained from the Hamiltonian density (2.71) of the T T̄
deformed fermion, and it can be expressed in terms of the Fourier modes ψ±,k of the
fermion

H[ψ+, ψ−] = π

L

∑
k

(−kψ+,−kψ+,k + kψ−,−kψ−,k) . (B.56)

On the other hand, H̃[b, b̄] on the right-hand side is defined in terms of the free fermi
oscillators bk and b̄k by

H̃[b, b̄] = L

2λ

√1 + 4λ
L

(H+ +H−) + 4λ2

L2 (H+ −H−)2 − 1

 , (B.57)

H+ ≡−
π

L

∑
k

kb−kbk , H− ≡
π

L

∑
k

kb̄−k b̄k . (B.58)

And T T̄ deformed spectrum immediately follows from H̃[b, b̄].
Although the idea here differs a little from the bosonic case, since there the trans-

formation preserves the canonical commutator, a key identity that helps us to solve the
problem is again,

{ψ+,k, H}D = {ψ+,k, H̃}D . (B.59)

In addition, we demand that the algebra of ψ+,k , ψ−,k

i{ψ+,k, ψ+,q}D = δk+q,0 + λ

L2S−,k+q + 2λ2

L4 (S+S−)k+q , (B.60)

i{ψ−,k, ψ−,q}D = δk+q,0 −
λ

L2S+,k+q + 2λ2

L4 (S+S−)k+q , (B.61)

i{ψ+,k, ψ−,q}D =− λ

L2Kk+q . (B.62)

is realized by bk , b̄k which obey the following Dirac brackets:

i{bk, bq}D = δk+q,0 , i{b̄k, b̄q}D = δk+q,0 , i{bk, b̄q}D = 0 . (B.63)

Hence, we may evaluate the Dirac bracket on the left-hand side of eq. (B.59) with respect
to ψ±,k whereas we may calculate the Dirac bracket on the right-hand side of eq. (B.59)
with respect to bk and b̄k,

{ψ+,k, H}D,ψ+,ψ− = {ψ+,k, H̃}D,b,b̄ . (B.64)

To avoid the ordering ambiguity, we will find the map classically. The left-hand side of
eq. (B.64) is found to be

{ψ+,k, H}D = 2πik
L

ψ+,k −
8π2iλ

L3

∑
r,s

(k − r − s)sψ+,k−r−sψ−,rψ−,s , (B.65)

{ψ−,k, H}D =− 2πik
L

ψ−,k −
8π2iλ

L3

∑
r,s

(k − r − s)sψ+,rψ+,sψ−,k−r−s . (B.66)
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Using the expansion of ψ+,k and ψ−,k

ψ+,k = bk + λ

L2ψ
(1)
+,k + · · · , ψ−,k = b̄k + λ

L2 ψ̄
(1)
−,k + · · · , (B.67)

one can write eqs. (B.65) and (B.66) as

{ψ+,k, H}D = 2πik
L

bk + λ

L2

(
2πik
L

ψ
(1)
+,k −

8π2i

L

∑
r,s

(k − r − s)sbk−r−sb̄r b̄s
)

+O(λ2) ,

(B.68)

{ψ−,k, H}D =− 2πik
L

b̄k + λ

L2

(
−2πik

L
ψ

(1)
−,k −

8π2i

L

∑
r,s

(k − r − s)sbrbsb̄k−r−s
)

+O(λ2) .

(B.69)

On the other hand, using the Dirac brackets of the free fermi oscillators bk and b̄k, one can
calculate the right-hand side of eq. (B.64),

{ψ+,k, H̃}D = 2πik
L

bk + λ

L2

∑
u

2πiu
L

←−
δ ψ

(1)
+,k

←−
δ bu

bu −
2πiu
L

←−
δ ψ

(1)
+,k

←−
δ b̄u

b̄u

− 8π2i

L
krbk b̄−r b̄r


+O(λ2) , (B.70)

{ψ−,k, H̃}D =− 2πik
L

b̄k + λ

L2

∑
u

2πiu
L

←−
δ ψ

(1)
−,k

←−
δ bu

bu −
2πiu
L

←−
δ ψ

(1)
−,k

←−
δ b̄u

b̄u

− 8π2i

L
krb−rbr b̄k


+O(λ2) , (B.71)

where we represented the Dirac bracket as follows:

{A,B}D ≡ −i
∑
u

( ←−
δ A
←−
δ b−u

−→
δ B
−→
δ bu

+
←−
δ A
←−
δ b̄−u

−→
δ B
−→
δ b̄u

)
. (B.72)

Putting all together, eq. (B.64) becomes inhomogeneous first-order differential equations,

∑
u

u←−δ ψ(1)
+,k

←−
δ bu

bu − u
←−
δ ψ

(1)
+,k

←−
δ b̄u

b̄u

− kψ(1)
+,k = −4π

∑
r,s

r+s 6=0

(k − r − s)sbk−r−sb̄r b̄s , (B.73)

∑
u

u←−δ ψ(1)
−,k

←−
δ bu

bu − u
←−
δ ψ

(1)
−,k

←−
δ b̄u

b̄u

+ kψ
(1)
−,k = −4π

∑
r,s

r+s 6=0

(k − r − s)sbrbsb̄k−r−s . (B.74)

We take the following ansatz for a particular solution ψ
(1)
±,k of the equations (B.73)

and (B.74),

ψ
(1)
+,k =

∑
r,s

fk;r,sbk−r−sb̄r b̄s , (B.75)

ψ
(1)
−,k =

∑
r,s

f̄k;r,sbrbsb̄k−r−s , (B.76)
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where fk;r,s and f̄k;r,s is a function of k, r, s. Then, eqs. (B.73) and (B.74) become

−2
∑
r,s

(r + s)fk;r,sbk−r−sb̄r b̄s =− 4π
∑
r,s

r+s 6=0

(k − r − s)s bk−r−sb̄r b̄s , (B.77)

2
∑
r,s

(r + s)f̄k;r,sbrbsb̄k−r−s =− 4π
∑
r,s

r+s 6=0

(k − r − s)s brbsb̄k−r−s , (B.78)

and we have

fk;r,s = 2π (k − r − s)s
r + s

(r + s 6= 0) , (B.79)

f̄k;r,s =− 2π (k − r − s)s
r + s

(r + s 6= 0) . (B.80)

Adding a solution of the homogeneous part of the equations, ψ(1)
±,k can be written as

ψ
(1)
+,k = 2π

∑
r,s

r+s 6=0

(k − r − s)s
r + s

bk−r−sb̄r b̄s +
∑
r

gk,rbk b̄−r b̄r , (B.81)

ψ
(1)
−,k =− 2π

∑
r,s

r+s 6=0

(k − r − s)s
r + s

brbsb̄k−r−s +
∑
r

ḡk,rb−rbr b̄k . (B.82)

By construction, gk,r and ḡk,r satisfy

gk,r = −gk,−r , ḡk,r = −ḡk,−r . (B.83)

Now, we determine gk,r and ḡk,r from the algebras. Note that in terms of b and b̄, S±,p can
be written as

S+,p =− 2π
∑
k

kbp−kbk +O(λ) , (B.84)

S−,p =− 2π
∑
k

kb̄p−k b̄k +O(λ) . (B.85)

It is useful to define Sp, S̄p and Kp by

Sp ≡ − 2π
∑
k

kbp−kbk , (B.86)

S̄p ≡ − 2π
∑
k

kb̄p−k b̄k , (B.87)

Kp ≡ − 2πp
∑
k

bk b̄p−k . (B.88)

In order to demand that the algebra of Ak , Āk in (B.60)–(B.62) is realized by αk , ᾱk via
the solution (B.81) and (B.82), we have at order O(λ)

i{bk, ψ
(1)
+,q}D + i{ψ(1)

+,k, bq}D = S̄k+q , (B.89)

i{b̄k, ψ
(1)
−,q}D + i{ψ(1)

−,k, b̄q}D =− Sk+q , (B.90)

i{bk, ψ
(1)
−,q}D + i{ψ(1)

+,k, b̄q}D =− Kk+q . (B.91)
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First, eq. (B.89) gives

−2π
∑
r

sb̄k+q−r b̄r(1− δk+q,0) +
∑
r

(gk,r + gq,r)δk+q,0b̄−r b̄r =S̄k+q , (B.92)

and we obtain
gk,r + g−k,r = −2πr . (B.93)

In the same way with eqs. (B.90) and (B.91), one can get

ḡk,r + ḡ−k,r = 2πr , (B.94)
ḡq,k − gk,q = π(k + q) . (B.95)

A simple solution of eqs. (B.93), (B.94) and (B.95) is found to be

gk,r = −πr , ḡk,r = πr . (B.96)

Then, the map from ψ±,k to bk and b̄k is written as

ψ
(1)
+,k = 2π

∑
r,s

r+s 6=0

(k − r − s)s
r + s

bk−r−sb̄r b̄s − πbk
∑
r

rb̄−r b̄r , (B.97)

ψ
(1)
−,k =− 2π

∑
r,s

r+s 6=0

(k − r − s)s
r + s

brbsb̄k−r−s + π
∑
r

rb−rbr b̄k . (B.98)

It is easy to confirm that this map indeed gives the conjectured form of Hamiltonian and
the momentum up to order O(λ):

H = π

L

∑
k

(−kb−kbk + kb̄−k b̄k) + 2π
L

λ

L2

∑
k

[
−kb−kψ

(1)
+,k + kb̄−kψ

(1)
−,k

]
+O(λ2) ,

= H+ +H− −
4λ
L2H+H− +O(λ2) , (B.99)

P =
∫
dx

i

2
(
ψ+ψ

′
+ + ψ−ψ

′
−
)

= H+ −H− +O(λ2) . (B.100)

C Path integral and J -norm

In this appendix, we will show how the path integral of the quantum mechanical toy model
in section 5.2 implies the operator formalism with J -norm.

Before discussing the toy model, let us first recall how the canonical formulation and
the path integral are related using a simple example of the fermi oscillator, with the free
Hamiltonian,

H = −mb†b , (C.1)

where the fermi oscillator b and b† obeys the anti-commutation relation

{b, b†} = 1 . (C.2)
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For the relation between path integral and operator formalism, we introduce the coherent
state defined by

|η〉 ≡ e−ηb
† |0, 0〉 = (1− ηb†)|0, 0〉 . (C.3)

where η is a complex Grassmannian variable. With the coherent state, the completeness
relation can be written as

1 =
∫
dη̄dη e−η̄η|η〉〈η̄| . (C.4)

We will find the path integral representation of the transition amplitude 〈η̄out|e−iTH |ηin〉.
For this, we discretize the time, and we insert the completeness relations (C.4) of ηj (j =
1, 2, · · · , N) into the transition amplitude at each time slice. Then, we have

〈η̄out|e−iTH |ηin〉 =
∫ N∏

j=1
dη̄jdηj exp

[1
2 η̄N+1ηN −

1
2

N∑
j=1

η̄j(ηj − ηj−1)

+ 1
2 η̄1η0 + 1

2

N∑
j=1

(η̄j+1 − η̄j)ηj + iε
N∑
j=1

mη̄jηj−1

]
, (C.5)

where ε denotes the interval of the discrete time T = Nε. Also, we defined η̄N+1 and η0 by

η̄N+1 ≡ ηout , η0 ≡ ηin . (C.6)

In the continuum limit (N → ∞), one can express the transition amplitude by the path
integral as follows,

〈η̄out|e−iTH |ηin〉 =
∫ η̄(T )=η̄out

η(0)=ηin
Dη̄Dη ei

∫
dt L+ 1

2 η̄outη(T )+ 1
2 η̄(0)ηin , (C.7)

where the first order Lagrangian L is given by

L = i

2 η̄η̇ −
i

2
˙̄ηη +mη̄η = i

2 η̄η̇ −
i

2
˙̄ηη −H . (C.8)

Note that the first order Lagrangian (C.8) is expressed in terms of η(t) and η̄(t) because of
the second-class constraint of this system. The extra term 1

2 η̄outη(T )+ 1
2 η̄(0)ηin in eq. (C.7)

plays a crucial role in imposing the anti-periodic boundary condition of the path integral
representation of the thermal partition function. Namely, after the Wick rotation, we have

tr (e−βH) =
∫
dη̄outdηin e

η̄outηin〈η̄out|e−βH |ηin〉 ,

=
∫
dη̄outdηin

∫ η̄(T )=η̄out

η(0)=ηin
Dη̄Dη e

1
2 η̄out

[
ηin+η(T )

]
+ 1

2

[
η̄out+η̄(0)

]
ηine−Sβ ,

=
∫
η(0)=−η(T ) , η̄(0)=−η̄(T )

Dη̄Dη e−Sβ , (C.9)

where Sβ denotes the Euclidean action given by

Sβ =
∫ β

0
dτ

[1
2 η̄∂τη −

1
2∂τ η̄η −mη̄η

]
. (C.10)
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Now, we will find the path integral representation of the transition amplitude of our
toy model in section 5.2. In this appendix, we will not demand that Hamiltonian is J -
Hermitian. That is, for the arbitrary real value of θ we define the fermi oscillators by

π̄ + i

2ψ = i(sinh θb+ cosh θc) , (C.11)

π − i

2 ψ̄ =− i(sinh θb† + cosh θc†) , (C.12)

π̄ − i

2ψ =− i(cosh θb+ sinh θc) , (C.13)

π + i

2 ψ̄ = i(cosh θb† + sinh θc†) , (C.14)

Recall that by construction the fermi oscillators b , b† , c and c† still obey the anti-
commutation relations

{b, b†} = 1 , {c, c†} = −1 . (C.15)

For the arbitrary value of θ, we can still define the unitary and Hermitian operator J as
before,

J ≡ 1 + 2c†c . (C.16)

and it has the same properties

J cJ = −c , J c†J = −c† , J bJ = b , J b†J = b† . (C.17)

Note that the operator J and the oscillators depend on the value of θ (e.g., J = J (θ)),
but we omit θ for simplicity. Now, the Hamiltonian is not J -Hermitian except for the
special value of θ (i.e., tanh θ = − 2mλ

2mλ+1 .)
Using the fermi oscillators, we define a coherent state by

|η, ζ〉 = e−ηb
†−ζc† |0, 0〉 = (1− ηb†)(1− ζc†)|0, 0〉 . (C.18)

One can evaluate the eigenvalue of the oscillators with respect to the coherent state,

b|η, ζ〉 = η|η, ζ〉 , (C.19)
c|η, ζ〉 =− ζ|η, ζ〉 , (C.20)
〈η̄, ζ̄|b† = 〈η̄, ζ̄|η̄ , (C.21)
〈η̄, ζ̄|c† =− 〈η̄, ζ̄|ζ̄ . (C.22)

Due to the anti-commutation of c and c†, the inner product of the coherent state is also
different from that of usual fermi oscillators. Namely,

〈η̄, ζ̄|η′, ζ ′〉 = eη̄η
′−ζ̄ζ′ . (C.23)

As a result, the completeness relation is given by

1 =
∫
dη̄dηdζ̄dζ e−η̄η

′+ζ̄ζ′ |η, ζ〉〈η̄, ζ̄| . (C.24)
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Note that the term ζ̄ζ ′ in the measure of the completeness relation, which will become
symplectic one-form of the first order Lagrangian, has an opposite sign to the usual fermi
oscillators. Since we need to use the J -norm in the operator formalism, it is more conve-
nient to rewrite the completeness relation with the J operator as follows,

1 =
∫
dη̄dηdζ̄dζ e−η̄η

′−ζ̄ζ′ |η, ζ〉〈η̄, ζ̄|J . (C.25)

Then, one can treat all ζ’s uniformly.29 Also note that the J -inner product of the coherent
state is given by

〈η, ζ|η′, ζ ′〉J = eη̄η
′+ζ̄ζ′ . (C.26)

Now, we will find the path integral representation of the transition amplitude defined
with J -norm30

〈η̄out, ζ̄out|e−iTH |ηin, ζin〉J = 〈η̄out, ζ̄out| J e−iTH |ηin, ζin〉 . (C.27)

After discretizing the time as before, we insert the completeness relation (C.25) to the
transition amplitude at each discrete time,

〈η̄out, ζ̄out| e−iTH |ηin, ζin〉J

=
∫ N∏

j=1
dη̄jdηjdζ̄jdζj exp

(1
2 η̄N+1ηN + 1

2 ζ̄N+1ζN −
1
2

N∑
j=1

[
η̄j(ηj − ηj−1) + ζ̄j(ζj − ζj−1)

])

× exp
(1

2 η̄1η0 + 1
2 ζ̄1ζ0 + 1

2

N∑
j=1

[
(η̄j+1 − η̄j)ηj + (ζ̄j+1 − η̄j)ζj

])

× exp
(
− iε

N∑
j=1

H[ηj−1, η̄j , ζj−1,−ζ̄j ]
)
. (C.28)

Here, we defined η̄N+1 , η̄0 , ζ̄N+1 and ζ0 by

η̄N+1 ≡ ηout , η0 ≡ ηin , ζ̄N+1 ≡ ζout , ζ0 ≡ ζin . (C.29)

Note that c† in the Hamiltonian is replaced by −ζ̄’s because of the J operator insertion in
front of e−iεH . In the continuum limit (N → ∞), we obtain the path integral representa-
tion of the transition amplitude,

〈η̄out, ζ̄out| e−iTH |ηin, ζin〉J

=
∫ η̄(T )=ηout , ζ̄(T )=ζout

η(0)=ηin , ζ(0)=ζin
Dη̄DηDζ̄Dζ ei

∫
dt L+ 1

2 η̄outη(T )+ 1
2 ζ̄outζ(T )+ 1

2 η̄(0)ηin+ 1
2 ζ̄(0)ζin , (C.30)

29Otherwise, one needs to take care of ζ on the boundary (e.g., ζ1 or ζN ) separately.
30Since the Hamiltonian is not J -Hermitian, the transition amplitude depends on the position of the in-

sertion of J operator. Here, we insert J in front of e−iTH because it will be easier to use the completeness
relation (C.25). If we insert J behind of e−iHT , we can put J operator in front of the ket in the com-
pleteness relation in eq. (C.25). Although one should carefully distinguish 〈η̄out, ζ̄out|J e−iTH |ηin, ζin〉 from
〈η̄out, ζ̄out|e−iTHJ |ηin, ζin〉 in general, their traces (e.g., thermal partition function) give identical results.
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where L is found to be

L = i

2 η̄η̇ −
i

2
˙̄ηη + i

2 ζ̄ ζ̇ −
i

2
˙̄ζζ −H[η, η̄, ζ,−ζ̄] . (C.31)

Using the transformation similar to (C.11)–(C.14) (i.e., b , b† , c , c† −→ η , η̄ , ζ , −ζ̄),

π̄ + i

2ψ = i(sinh θη + cosh θζ) , (C.32)

π − i

2 ψ̄ =− i(sinh θη̄ − cosh θζ̄) , (C.33)

π̄ − i

2ψ =− i(cosh θη + sinh θζ) , (C.34)

π + i

2 ψ̄ = i(cosh θη̄ − sinh θζ̄) , (C.35)

we can express L in terms of ψ , π , ψ̄ and π̄, and it exactly agrees with the first order
Lagrangian of the toy model,

L = πψ̇ + ˙̄ψπ̄ −
[
−mψ̄ψ − 1

λ

(
π − i

2 ψ̄
)(

π̄ + i

2ψ
)]

. (C.36)

Compared to the transition amplitude (C.7) of the ordinary fermion, the degrees of freedom
in the path integral representation (C.30) of the toy model is doubled, which is due to the
absence of the second-class constraints.

The additional terms 1
2 η̄outη(T ) + · · · in the path integral representation (C.30) will

impose the anti-periodic boundary condition of the thermal partition function. To see this,
after the Wick rotation, we take the trace of the transition amplitude (C.30):

tr (J e−βH)=
∫
dη̄outdηindζ̄outdζin e

η̄outηin+ζ̄outζin〈η̄out, ζ̄out|e−βH |ηin, ζin〉 ,

=
∫
dη̄outdηindζ̄outdζin

∫ η̄(β)=ηout , ζ̄(β)=ζout

η(0)=ηin , ζ(0)=ζin
Dη̄DηDζ̄Dζ e

1
2 η̄out

[
ηin+η(β)

]
+ 1

2

[
η̄out+η̄(0)

]
ηin

× e
1
2 ζ̄out

[
ζin+η(β)

]
+ 1

2

[
ζ̄out+ζ̄(0)

]
ζine−Sβ ,

=
∫ π(0)=−π(β) , π̄(0)=−π̄(β)

ψ(0)=−ψ(β) , ψ̄(0)=−ψ̄(β)
Dπ̄Dψ̄DπDψ e−Sβ [ψ,ψ̄,π,π̄] , (C.37)

where the Euclidean action Sβ [ψ, ψ̄, π, π̄] is found to be

Sβ =
∫ β

0
dτ

(
πψ̇ + ˙̄ψπ̄ −

[
−mψ̄ψ − 1

λ

(
π − i

2 ψ̄
)(

π̄ + i

2ψ
)])

. (C.38)

We can integrate out the conjugate momentum π and π̄ in the path integral representa-
tion (C.37),

tr (J e−βH) =
∫
ψ(0)=−ψ(T ) , ψ̄(0)=−ψ̄(T )

Dψ̄Dψ e−Sβ , (C.39)

and we recover the Euclidean action of our toy model:

Sβ =
∫ β

0
dτ

(1
2 ψ̄∂τψ −

1
2∂τ ψ̄ψ − λ∂τ ψ̄∂τψ −mψ̄ψ

)
. (C.40)

This proves the equivalence of the operator formalism with J -norm and the path integral
formalism for the thermal partition function, as was glimpsed at in section 5.2.

– 71 –



J
H
E
P
0
7
(
2
0
2
1
)
2
1
7

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] A.B. Zamolodchikov, Expectation value of composite field T T̄ in two-dimensional quantum
field theory, hep-th/0401146 [INSPIRE].

[2] F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl.
Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].

[3] A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, T T̄ -deformed 2D Quantum Field
Theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].

[4] S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS2 holography
and TT , JHEP 09 (2017) 136 [arXiv:1706.06604] [INSPIRE].

[5] S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, TT partition function from topological
gravity, JHEP 09 (2018) 158 [arXiv:1805.07386] [INSPIRE].

[6] R. Conti, L. Iannella, S. Negro and R. Tateo, Generalised Born-Infeld models, Lax operators
and the TT perturbation, JHEP 11 (2018) 007 [arXiv:1806.11515] [INSPIRE].

[7] P. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Schience, Yeshiva
University, New York U.S.A. (1964).

[8] G. Jorjadze and S. Theisen, Hamitonian approach to T T̄ deformed 2d CFTs, talk presented
at school and workshop: Joint FAR/ANSEF-ICTP and RDP-VW summer school in
theoretical physics, Yerevan Armenia (2018).

[9] M. Baggio, A. Sfondrini, G. Tartaglino-Mazzucchelli and H. Walsh, On TT deformations and
supersymmetry, JHEP 06 (2019) 063 [arXiv:1811.00533] [INSPIRE].

[10] S. Frolov, TT Deformation and the Light-Cone Gauge, Proc. Steklov Inst. Math. 309 (2020)
107 [arXiv:1905.07946] [INSPIRE].

[11] S. Frolov, TT , J̃J , JT and J̃T deformations, J. Phys. A 53 (2020) 025401
[arXiv:1907.12117] [INSPIRE].

[12] N. Callebaut, J. Kruthoff and H. Verlinde, TT deformed CFT as a non-critical string, JHEP
04 (2020) 084 [arXiv:1910.13578] [INSPIRE].

[13] G. Jorjadze and S. Theisen, Canonical maps and integrability in T T̄ deformed 2d CFTs,
arXiv:2001.03563 [INSPIRE].

[14] M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press,
Princeton U.S.A. (1992).

[15] R. Conti, S. Negro and R. Tateo, The TT perturbation and its geometric interpretation,
JHEP 02 (2019) 085 [arXiv:1809.09593] [INSPIRE].

[16] R. Conti, S. Negro and R. Tateo, Conserved currents and TT̄s irrelevant deformations of 2D
integrable field theories, JHEP 11 (2019) 120 [arXiv:1904.09141] [INSPIRE].

[17] E.A. Coleman, J. Aguilera-Damia, D.Z. Freedman and R.M. Soni, TT -deformed actions and
(1, 1) supersymmetry, JHEP 10 (2019) 080 [arXiv:1906.05439] [INSPIRE].

– 72 –

https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/hep-th/0401146
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0401146
https://doi.org/10.1016/j.nuclphysb.2016.12.014
https://doi.org/10.1016/j.nuclphysb.2016.12.014
https://arxiv.org/abs/1608.05499
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.05499
https://doi.org/10.1007/JHEP10(2016)112
https://arxiv.org/abs/1608.05534
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.05534
https://doi.org/10.1007/JHEP09(2017)136
https://arxiv.org/abs/1706.06604
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.06604
https://doi.org/10.1007/JHEP09(2018)158
https://arxiv.org/abs/1805.07386
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.07386
https://doi.org/10.1007/JHEP11(2018)007
https://arxiv.org/abs/1806.11515
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.11515
https://doi.org/10.1007/JHEP06(2019)063
https://arxiv.org/abs/1811.00533
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.00533
https://doi.org/10.1134/S0081543820030098
https://doi.org/10.1134/S0081543820030098
https://arxiv.org/abs/1905.07946
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.07946
https://doi.org/10.1088/1751-8121/ab581b
https://arxiv.org/abs/1907.12117
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.12117
https://doi.org/10.1007/JHEP04(2020)084
https://doi.org/10.1007/JHEP04(2020)084
https://arxiv.org/abs/1910.13578
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.13578
https://arxiv.org/abs/2001.03563
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.03563
https://doi.org/10.1007/JHEP02(2019)085
https://arxiv.org/abs/1809.09593
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.09593
https://doi.org/10.1007/JHEP11(2019)120
https://arxiv.org/abs/1904.09141
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.09141
https://doi.org/10.1007/JHEP10(2019)080
https://arxiv.org/abs/1906.05439
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.05439


J
H
E
P
0
7
(
2
0
2
1
)
2
1
7

[18] A. Hashimoto and D. Kutasov, TT , JT , TJ partition sums from string theory, JHEP 02
(2020) 080 [arXiv:1907.07221] [INSPIRE].

[19] G. Bonelli, N. Doroud and M. Zhu, T T̄ -deformations in closed form, JHEP 06 (2018) 149
[arXiv:1804.10967] [INSPIRE].

[20] A. LeClair and M. Neubert, Semi-Lorentz invariance, unitarity, and critical exponents of
symplectic fermion models, JHEP 10 (2007) 027 [arXiv:0705.4657] [INSPIRE].

[21] D.J. Robinson, E. Kapit and A. LeClair, Lorentz Symmetric Quantum Field Theory for
Symplectic Fermions, J. Math. Phys. 50 (2009) 112301 [arXiv:0903.2399] [INSPIRE].

[22] M.B. Green and J.H. Schwarz, Covariant Description of Superstrings, Phys. Lett. B 136
(1984) 367 [INSPIRE].

[23] M.B. Green and J.H. Schwarz, Properties of the Covariant Formulation of Superstring
Theories, Nucl. Phys. B 243 (1984) 285 [INSPIRE].

[24] L. Mezincescu and P.K. Townsend, Quantum 3D Superstrings, Phys. Rev. D 84 (2011)
106006 [arXiv:1106.1374] [INSPIRE].

[25] C.-K. Chang, C. Ferko and S. Sethi, Supersymmetry and TT deformations, JHEP 04 (2019)
131 [arXiv:1811.01895] [INSPIRE].

[26] L. Susskind, Another conjecture about M(atrix) theory, hep-th/9704080 [INSPIRE].

[27] J.A. de Azcarraga, J.P. Gauntlett, J.M. Izquierdo and P.K. Townsend, Topological
Extensions of the Supersymmetry Algebra for Extended Objects, Phys. Rev. Lett. 63 (1989)
2443 [INSPIRE].

[28] S. Datta and Y. Jiang, T T̄ deformed partition functions, JHEP 08 (2018) 106
[arXiv:1806.07426] [INSPIRE].

– 73 –

https://doi.org/10.1007/JHEP02(2020)080
https://doi.org/10.1007/JHEP02(2020)080
https://arxiv.org/abs/1907.07221
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.07221
https://doi.org/10.1007/JHEP06(2018)149
https://arxiv.org/abs/1804.10967
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.10967
https://doi.org/10.1088/1126-6708/2007/10/027
https://arxiv.org/abs/0705.4657
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.4657
https://doi.org/10.1063/1.3248256
https://arxiv.org/abs/0903.2399
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0903.2399
https://doi.org/10.1016/0370-2693(84)92021-5
https://doi.org/10.1016/0370-2693(84)92021-5
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB136%2C367%22
https://doi.org/10.1016/0550-3213(84)90030-0
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB243%2C285%22
https://doi.org/10.1103/PhysRevD.84.106006
https://doi.org/10.1103/PhysRevD.84.106006
https://arxiv.org/abs/1106.1374
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.1374
https://doi.org/10.1007/JHEP04(2019)131
https://doi.org/10.1007/JHEP04(2019)131
https://arxiv.org/abs/1811.01895
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.01895
https://arxiv.org/abs/hep-th/9704080
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9704080
https://doi.org/10.1103/PhysRevLett.63.2443
https://doi.org/10.1103/PhysRevLett.63.2443
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C63%2C2443%22
https://doi.org/10.1007/JHEP08(2018)106
https://arxiv.org/abs/1806.07426
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.07426

	Summary
	Hamiltonian analysis of T bar T deformation
	T bar T deformation of free scalar field
	T bar T deformation of free fermion

	T bar T eigenvalue flows via worldsheet theories
	Via Polyakov worldsheet in lightcone: a review
	NSR-like extension
	GS-like extension, or a failure thereof

	T bar T deformation and N=(1,1) supersymmetry
	Two distinct constructions via GS-like worldsheet theory
	Does N=(1,1) SUSY survive ordinary T bar T?
	Lessons from the GS-like worldsheet

	The question of which energy-momentum tensor
	Examples of the other T bar T deformations
	A toy model with J-hemiticity
	Two-dimensional models with J-hermiticity near UV

	Convention
	Details of perturbative calculations
	T bar T deformation of free scalar field
	T bar T deformation of free fermion

	Path integral and J-norm

