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1 Introduction

The powerful machinery of two-dimensional conformal field theories makes the AdS3/CFT2
duality a special framework for the exploration of the holographic correspondence. One
of its most effective applications is in the description of the near-horizon limit of the
geometry created by the bound state of a large number of D1 and D5 branes in Type-
IIB supergravity [1], where one obtains an AdS3 × S3 background compactified on T 4.1

The corresponding N = (4, 4) supersymmetric CFT lies in the moduli space of the free
(T 4)N/SN orbifold CFT, where SN is the symmetric group of N = N1N5 elements, with
N1, N5 being the large numbers of D1- and D5-branes [2, 3]. The relation between the
gravitational solutions and the CFT states has played a crucial role in counting black hole
degrees of freedom [1–6], and in understanding the microscopic structure of fuzzballs [7–18].
The free orbifold CFT has also provided an important example where the exact realization
of AdS3/CFT2 is within reach [19–25].

The twisted sectors of the CFT correspond to single-cycle permutations of length
n ≤ N in SN . They form the fundamental blocks of the total Hilbert space, as a generic
permutation in SN can be uniquely decomposed in products of cycles of different lengths.
The correlation functions of twisted operators have monodromies determined by how the
cyclic permutations combine with each other, making the orbifold CFT non-trivial even at
the free point of moduli space. The deformation operator which drives the CFT towards
the SUGRA region is itself twisted. Specifically, the deformed action is [2, 6, 26]

Sint(λ) = Sfree + λ

∫
d2z O

(int)
[2] (z, z̄), (1.1)

1It is possible to compactify on K3 instead, but we will not consider this case.
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where λ is a dimensionless coupling constant and O
(int)
[2] (z, z̄) a scalar modulus marginal

operator with twist 2. This twist introduces a further complication, as it changes the
lengths of the cycles of other twisted operators with which O(int)

[2] interacts, either by join-
ing previously disjoint cycles or splitting a cycle in two. The effect of the deformation
operator on states of the orbifold have been investigated in several works [26–38], using
different methods.

The purpose of the present paper is to discuss the effect of O(int)
[2] on the R-neutral

Ramond ground states of the n-twisted sector, extending the analysis of R-charged Ramond
fields R±n done in [39, 40], and thus forming a complete picture for all single-cycle Ramond
ground states in the deformed CFT (1.1). The R-neutral Ramond fields, which we denote by
R0±
n , are single-cycle n-twisted generalizations of spin fields. In the ‘seed’ CFT, which has

c = 6 and target space T 4, there are 4 holomorphic Ramond ground states with conformal
weights hR = c

24 , distinguished by their holomorphic and anti-holomorphic R-charges, and
by their charges under the “internal” SO(4) = SU(2)1× SU(2)2 group. The Ramond fields
R0±
n considered here have zero R-charges, and form a doublet under the internal current

of SU(2)2; they also have hR
n = 1

4n, as the CFT in the n-twisted sector has c = 6n.
Ramond ground states are fundamental pieces of the orbifold CFT. First and foremost

they are, as said, the “spin fields of the twisted sectors”. Spin fields have the responsibility
of creating the anti-periodic boundary conditions of fermions in the Ramond sector of a
(non-orbifolded) CFT defined on the complex plane. The n-twisted Ramond fields have
the equivalent effect in the sectors of the orbifold, but they are even more fundamental
because subtleties of the periodicity of the twisted fermions are such that, for even n,
one is forced to apply either one of R0±

n or R±n on the vacuum, for the theory to be well-
defined [41, 42]. In this sense, when fermions are involved, the Ramond fields are as basic
as the bare twist fields σn which effectively define the n-twisted sectors; for n odd, σn is
the lowest weight field of the sector, but for even n the lowest weight fermionic operators
are the R±n and R0±

n .
The ring of NS chiral operators, which have R-charges equal to their conformal weights,

can be built with an even twist by applying fractional R-current modes on these lowest
weight states [42]. Applying the modes to the R-charged fields R+

n and R−n , one obtains
the chiral operators O(0,0)

n and O(2,2)
n with the highest and the lowest conformal weights,

respectively, i.e. h = n±1
2 = j3, where j3 is the holomorphic R-charge. Meanwhile, starting

with the R-neutral doublet R0±
n with n even, one can create middle-cohomology chiral fields

O
(1,1)±
n , both with h = n

2 = j3, and distinguished by the internal SU(2)2 charge. Chiral
operators are protected against the deformation (1.1) as they saturate a BPS bound, so
their dimensions and charges do not change as one moves in moduli space. In fact, the
single-cycle chiral operators correspond to single-particle excitations of the supergravity
solutions, and the matching between three-point functions of chiral fields in the free orbifold
CFT and the corresponding correlators computed from the asymptotically AdS solutions,
even as each of the two descriptions hold in separate points of moduli space, is a remarkable
success of the holographic correspondence [7, 9, 10, 43–45].

The chiral operators can also be related to the Ramond fields by spectral flow of
the n-twisted algebra, with central charge c = 6n; for example, O(1,1)±

n flows to R0±
n .

– 2 –
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At first sight, this could suggest that R0±
n is protected but, as discussed in [40], O(int)

[2]
changes the length of the n-cycle, so one cannot perform the specific spectral flow with
c = 6n in the deformed theory. The Ramond ground states of the full orbifold CFT,
with h = 1

4N (corresponding to c = 6N), are products of single-cycle R-neutral and/or
R-charged Ramond fields R(i)

ni , with the cycles forming a conjugacy class of the full SN ,
i.e.

∏
i(R

(i)
ni )ki with

∑
i kini = N . These products are protected, as shown in [46]. They are

the CFT translations of two-charge geometries of the D1-D5 system2 under a holographic
dictionary [7, 9–11] but, while all of the ground states contribute to the microscopic entropy
of the system, only those with a definite (and large) R-charge have been associated with
smooth, horizonless, non-singular microstate geometries in the low energy approximation of
supergravity [10, 11]. For example, the simplest of such geometries [7] is dual to (R−n )N/n.
For the total R-charge to be large, there must not be too many R-neutral fields entering the
superposition; in particular, superpositions made with only R-neutral fields, say (R0±

n )N/n,
have exactly zero R-charge. This means that the external SO(4) symmetry of S3 in the
asymptotically AdS3×S3 background is unbroken and, as a consequence, the corresponding
geometries, which have only internal excitations, are indistinguishable in the supergravity
approximation [11]. That is, perhaps, one of the reasons why the R-neutral fields are less
studied than the R-charged ones. This work gives a modest contribution in this regard, as
we examine some properties both of R0±

n and of the chiral fields O(1,1)±
n .

The strategy we use to study the effect of O(int)
[2] on the R-neutral Ramond fields is

to compute 〈
R0+

[n] (∞, ∞̄)O(int)
[2] (1, 1̄)O(int)

[2] (u, ū)R0−
[n] (0, 0̄)

〉
. (1.2)

The [n] indicates the SN -invariant combination of twists. N -dependent factors coming
from combinatoric properties of the permutations involved in (1.2) can be organized in an
1/N -expansion similar in spirit to the ’t Hooft expansion, with the large-N overall scaling
behavior of the function being N−g−1, where g is the genus of the covering surface used to
compute the correlator, related to the permutations by the Riemann-Hurwitz formula [49,
50]. From the brane system perspective, it is natural to take N large, and here we restrict
ourselves to the leading-order contribution, that is, to genus-zero covering surfaces. The
four-point function is a dynamical object, not fixed by conformal symmetry, and it can
be used to extract relevant information about the interaction of the fields. Taking the
appropriate limits, one can find OPEs between operators, along with the corresponding
structure constants. Thus, expanding the function for u→ 0 gives the OPE

[O(int)
[2] ]× [R0±

[n] ] (1.3)

which contains the operators resulting from acting with O
(int)
[2] on R0±

[n] . Similar computa-
tions of four-point functions with two O(int)

[2] insertions have been examined in [34], with
some selected non-twisted operators entering in the place of the Ramond fields in (1.2),
while in [51], four-point functions with only chiral operators but the same twist structure

2There are similar constructions for global AdS3 × S3 geometries made by products of NS chiral
fields [47, 48].
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as (1.2) were computed. As discussed in those references, the use of four-point functions
as the starting point to obtain three-point functions and structure constants has the (very)
pragmatic effect of selecting only the non-vanishing three-point functions that appear in
the OPE. Finding three-point functions (i.e. structure constants) with one O(int)

[2] insertion
gives information about mixing at linear order. Furthermore, working in λ-perturbation
theory, integrating the function (1.2) over the position of the interactions gives us the
anomalous dimension of R0±

n , to second-order in λ. While the first-order correction van-
ishes, we show, following the regularization developed in [39, 40], that the second-order
correction does not, so R0±

n is lifted at order λ2, and at the leading order in the large-N
expansion. The lifting occurs for n < N ; the dimension of R-neutral Ramond fields with
maximal twist n = N is protected, at least at leading order in 1/N . In [52], a function
similar to (1.2), but with the lowest-weight n-twisted chiral primary O(0,0)

n was computed
and integrated to show that the second-order correction to the dimension h = n−1

2 vanishes,
as expected for a protected chiral field. Here we compute the corresponding function for
the chiral operators O(1,1)±

n , with h = n
2 , related to the R-neutral fields R0±

n by spectral
flow, and we show that its integral also vanishes.

Although the present results — the OPE (1.3) and the renormalization of the dimension
of R0±

n — follow the same qualitative pattern as the ones in [39, 40], there are relevant
technical differences in both cases. Some fortunate idiosyncratic cancellations occur in the
derivation of the four-point function in the R-charged case of refs. [39, 40], which make them
quite simpler to obtain than the one derived here. In contrast, the present computation
of (1.2) follows a rather general pattern that can be followed directly in the derivation of
similar functions involving other operators instead of the Ramond fields. Furthermore, in
contrast to [39, 40], here we strive for a little more clarity by computing the function in
two different ways.

As mentioned above, the computation of twisted correlation functions such as (1.2)
is, by itself, a non-trivial work, because one must take the complicated monodromies into
account. There are two main methods for doing this. One is the stress-tensor method, first
introduced in [53] for Zn orbifolds, and later used in [50, 52, 54–56] for SN orbifolds. The
other way is the Lunin-Mathur (LM) technique [42, 49], which consists of evaluating the
Liouville contribution from the twists to the path integral, with the aid of the appropriate
ramified covering surface with genus g. While the LM technique has been widely used [34,
35, 51, 57–60], our recent results for R-charged twisted Ramond fields [39, 40] were obtained
with the stress-tensor method. In the present paper, we will compute (1.2) using both
approaches, which gives an interesting opportunity for seeing how they are complementary.
The most complicated aspect of the LM technique is that the computation of the Liouville
factor involves a regularization procedure of “closing holes” around the branching points
which must be carefully done so that the final, physical amplitudes are finite and well-
defined. But, once the Liouville factor is computed, all that remains is to compute a
simple correlation of free fields on the covering surface. The stress-tensor method, on the
other hand, does not require any regularization at all; however, instead of computing the
desired correlation function directly, one first determines a first-order differential equation
which has to be integrated. When applied to the bare twist fields correlation function, the
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stress-tensor method becomes quite trivial [40], and here, when we compute the Liouville
factor for the same covering map (with a specific parameterization and for g = 0, i.e. in the
large-N limit), we can check that both results agree. In short, it is interesting to see how
the stress-tensor method can be used to go around the complicated regularization of the
Liouville factor, while the “rest” of the LM technique can be used to give a direct formula
for the full correlation, bypassing the need to solve a differential equation.

The structure of the paper is as follows. In section 2 we review the most relevant
facts about the D1-D5 SCFT, both at the free-orbifold point and at its deformation, and
fix our notations. In section 3 we compute the four-point function (1.2) in detail, first
via the Lunin-Mathur technique, and then with the stress-tensor method. In section 4
we use the coincidence limits of the function to extract OPEs, including (1.3). We also
present the similar four-point function with middle-cohomology NS chirals O(1,1)±

[n] in place
of the Ramond fields, extract the OPE analogous to (1.3), and compare the two results.
In section 5, we integrate (1.2) using the convenient regularization procedure, and obtain
the anomalous dimensions of the renormalized Ramond fields, at order λ2 and for large
N ; we do the same with the four-point function involving O

(1,1)±
[n] , and verify that this

field is protected, as it should be. We conclude in section 6. Appendix A contains a brief
computation of the correlator of the R-charged Ramond fields using the Lunin-Mathur
technique, using some results derived in section 3.

2 The D1-D5 SCFT

The ‘free point’ in the moduli space of D1-D5 SCFT is a symmetric product orbifold, made
by N copies of the N = (4, 4) super-conformal field theory on the torus T 4, identified under
the action of the symmetric group SN , resulting in the orbifold target space (T 4)N/SN .
Each copy contains four free scalar bosons Xi

I(z, z̄), and four free fermions ψiI(z), where
i = 1, . . . , 4 labels the fields and I = 1, . . . , N the copies; the total central charge with the
4N bosons and 4N fermions is corb = 6N . It is convenient to pair the real bosons Xi

I into
complex bosons Xa

I and Xa†
I , and the Majorana fermions into complex fermions ψaI (z),

with a = 1, 2. In what follows, we always work with the Xa and Xa†, and we bosonize the
complex fermions with 2N new free bosons φaI (z),

ψaI (z) = eiφ
a
I (z), ψa†I (z) = e−iφ

a
I (z). (2.1)

The holomorphic3 N = 4 super-conformal symmetry is generated by the stress-energy
tensor T (z), the SU(2) R-currents Jr(z), r = 1, 2, 3, and the super-currents Ga(z), Ĝa(z),
which can be expressed in terms of the free fields as

T (z) = −1
2 lim
w→z

∑N
I=1

(
∂Xa

I (z)∂Xa†
I (w) + ∂φaI (z)∂φaI (w) + 6

(z−w)2

)
(2.2a)

J3(z) = i
2
∑N
I=1(∂φ1

I + ∂φ2
I) (2.2b)

G1(z) = i
√

2
∑N
I=1

(
ψ1
I∂X

1†
I + ψ2

I∂X
2†
I

)
, (2.2c)

G2(z) =
√

2
∑N
I=1

(
ψ1†
I ∂X

2†
I − ψ

2†
I ∂X

1†
I

)
(2.2d)

3We work with z, z̄, defined on the complex plane.
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along with Ĝa(z) = −Ga†(z). The eigenvalues of the zero-mode of the current J3(z) define
the R-charge j3. The anti-chiral currents, T̃ (z̄), J̃3(z̄), G̃a(z̄), ˜̂

Ga(z̄), have analogous forms
in terms of the right-moving fields.

For each CFT copy, the four bosons Xi
I(z, z̄) are coordinates on the torus T 4 and,

although the periodic identifications break the rotational symmetry of four-dimensional
Euclidean space, it is convenient to use this broken “internal” symmetry group SO(4)I =
SU(2)1 × SU(2)2. The complex fermions transform as doublets of the SU(2)2 factor,
which is an automorphism of the superconformal algebra. More precisely, holomorphic
fermions transform as doublets of SU(2)L×SU(2)2, and anti-holomorphic ones as doublets
of SU(2)R × SU(2)2, where SU(2)L,R are the R-symmetry groups. Note that the same
SU(2)2 acts on both sectors, so the corresponding fermionic charges are the eigenvalues of
the “total” conserved current J(z)+J̃(z̄). After bosonization, the holomorphic contribution
is written as

J3(z) = i
2
∑N
I=1(∂φ1

I − ∂φ2
I)(z) (2.3)

and the anti-holomorphic one as J̃3(z) = i
2
∑N
I=1(∂φ̃1

I − ∂φ̃2
I)(z̄). We will be somewhat

lax with our nomenclature, usually considering just J(z) explicitly, as the treatment of
J̃3(z̄) is analogous. Note that the SU(2) currents all have corresponding raising and low-
ering components as well, J±(z) = e±i

∑
I
(φ1
I+φ2

I), J±(z) = e±i
∑

I
(φ1
I−φ

2
I), etc., creating

the doublets.
The ground states of the orbifold SCFT are organized in twisted sectors with all the

allowed SN -boundary conditions, which can be realized by the insertion of ‘twist fields’
σg(z, z̄) for each g ∈ SN , such that, e.g.,

Xi
I(e2πiz, e−2πiz̄)σg(z, z̄) = Xi

g(I)(z, z̄)σg(z, z̄).

Conjugacy classes of SN are in one-to-one correspondence with the subgroups of cyclic
permutations Zn, n = 1, . . . , N . In this paper, we will be interested in the simplest, single-
cycle permutations corresponding to cycles (n) of length n. To obtain an SN -invariant
operator belonging to the conjugacy class [n] of length-n cycles, we sum over the orbits of
(n), and denote the resulting operator as σ[n] ∼

∑
h∈SN σh−1(1,...,n)h. The conformal weights

of any single-cycle field σn(z, z̄), hence also of σ[n](z, z̄), are given by [53]

hσn = 1
4

(
n− 1

n

)
= h̃σn. (2.4)

2.1 Twisted fermions

When fermions are involved, we must consider their periodicity, along with the twisted
boundary conditions introduced by the orbifold, and then the notion of a strictly periodic
or anti-periodic fermion loses its meaning somewhat [41, 42]. Let us elaborate on this point,
since is important for motivating our main computation. We follow closely a discussion
made in ref. [41]. In the seed CFT, we can parameterize periodicity by a phase τa such that

ψa(e2πiz) = eiπτaψa(z)

τa = 1 Ramond
τa = 0 Neveu-Schwarz

(2.5)

– 6 –
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We will omit the label a in τ from now on. In the n-twisted sector, going around the twist
has the effect of not only changing a phase, but also swapping the field by a different one

ψaI (e2πiz)σ(1,··· ,n)(0) = eiπτψaI+1(z)σ(1,··· ,n)(0), 1 ≤ I ≤ n− 1
ψan(e2πiz)σ(1,··· ,n)(0) = eiπτψa1(z)σ(1,··· ,n)(0),

(2.6)

so we see that the notion of a periodic or anti-periodic fermion becomes ill-defined. We
can return to the same field if we repeat this operation n times, resulting in

ψaI (e2nπiz)σ(1,··· ,n)(0) = einτπ ψaI (z)σ(1,··· ,n)(0). (2.7)

This is the most general way of defining the boundary conditions for the fermions.
A powerful way of disentangling the boundary conditions of the n-twisted sector is to

map the “base sphere” to a covering surface Σ with a branching point of order n at the
pre-image t of the insertion point z of each twist σn(z) [42, 49]. The ramified structure of
the map

z(t) ≈ b0tn (2.8)

in the vicinity of z = 0 implements the twisted boundary conditions in such a way that,
on Σ, there is only one copy of the basic fields, i.e. a CFT with c = 6, and the twist σn|z=0
is lifted to the identity 1|t=0. Since fermions have weight h = 1

2 , they lift to the covering
surface as4 ψaI (z) ←[ (dz/dt)−

1
2ψa(t). Note the copy index disappears. Hence lifting each

side of eq. (2.7) with (2.8) we find

ψa(e2πit) 1(0) = einτπ+i(n−1)π ψa(t) 1(0). (2.9)

We now do have a definite periodicity for the single fermion living on Σ, with a phase
corrected by the factors of (dz/dt)−

1
2 ,

ei[n(τ+1)−1]π =


−1 for τ = 1 and ∀ n
+1 for τ = 0 and odd n
−1 for τ = 0 and even n

(2.10)

The first case, with τ = 1, corresponded to the Ramond sector in the seed CFT, and we see
that it still corresponds to the Ramond sector of the covering CFT. The two last cases, with
τ = 0, corresponded to the NS case of the seed CFT, but we see that it only corresponds to
the NS sector of the covering CFT if n is odd; for even n, the periodic boundary conditions
in the seed CFT are “mapped” to anti-periodic conditions in the covering CFT.5

In any case, the anti-periodic boundary conditions on the covering surface can be
implemented by the insertion of ‘spin fields’, which create the degenerate set of Ramond
ground states of the c = 6 SCFT. There are four holomorphic spin fields, R±(t) and
R0±(t), all with the conformal weights (hR, h̃R) = ( c

24 , 0) = (1
4 , 0); as well as four anti-

holomorphic ones, R̃±(t̄), R̃0±(t̄), with (hR, h̃R) = (0, 1
4). The (holomorphic) spin fields

4Apart from factors of b0, see the discussion around eq. (3.10) later. These factors do not matter here
since they cancel in (2.9).

5We put quotation marks in “mapped” because the concept of a seed CFT is only auxiliary.
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are distinguished by their charges under the R-current J3(t) and the “internal” current
J3(t), defined as in (2.2b) and (2.3) without the sums over copies, as there is only one copy
on the covering. Inserting a spin field on the covering surface is tantamount to inserting a
corresponding operator, which we call a ‘Ramond field’, on the base. The four holomorphic
Ramond fields in the n-twisted sector are given by

R±n (z) = e±
i

2n
∑n

I=1[φ1
I(z)+φ2

I(z)]σ(1,··· ,n)(z) (2.11)
with hRn = 1

4n = h̃Rn , j3 = ±1
2 , j3 = 0, (2.12)

which form a doublet of the SU(2) R-symmetry generated by the current J i(z), and

R0±
n (z) = e±

i
2n
∑n

I=1[φ1
I(z)−φ2

I(z)]σ(1,··· ,n)(z) (2.13)
with hRn = 1

4n = h̃Rn , j3 = 0, j3 = ±1
2 , (2.14)

which R-neutral, and distinguished by the internal SU(2) symmetry generated by Ji(z).
We can construct SN -invariant operators by summing over the group orbit of the cycle.
Explicitly, for the R-neutral doublet, we have

R0±
[n] (z) ≡ 1

Sn(N)
∑
h∈SN

exp
(
± i

2n

n∑
I=1

[
φ1
h(I)(z)− φ2

h(I)(z)
])
σh−1(1···n)h(z) (2.15)

where the factor Sn(N) is such that the two-point function is normalized. Of course, the
SN -invariant fields have the same quantum numbers as the corresponding non-SN -invariant
ones. We will use basically the same notation for left-moving as well as for left-right moving
fields, usually distinguishing both by the argument e.g.

R0±
n (z, z̄) = e±

i
2n
∑n

I=1[φ1
I(z)−φ2

I(z)]e±
i

2n
∑n

I=1[φ̃1
I(z̄)−φ̃2

I(z̄)]σ(1,··· ,n)(z, z̄). (2.16)

In the twisted sectors there is a ring of NS chiral operators with (h, h̃) = (j3, ̃3). The
lowest- and highest-weight chirals for twist n are O(0,0)

n and O
(2,2)
n , with h = n∓1

2 = j3.
They are related to the R-charged Ramond fields R−n and R+

n , respectively, by spectral
flow of the n-twisted cyclic orbifold CFT with c = 6n. The same spectral flow applied to
the R-neutral fields R0±

n results in the ‘middle-cohomology’ chirals O(1,1)±
n , both of which

have h = n
2 = j3, and are distinguished by their charge j3 = ±1

2 . One can also obtain the
chiral operators by starting with the lowest-weight fermionic field with the lowest R-charge
in the n-twisted sector, and filling a Fermi sea by applying fractional modes Ψ− k

2n
of the

twist-invariant fermion Ψa =
∑n
I=1 ψ

a
I , thus raising the charges and the weight until one

reaches h = j3 [42]. A convenient representation of the chiral operators can be given in the
bosonized language, see e.g. [52, 56]; for example, the middle-cohomology operators are

O(1,1)±
n = e

i
2
∑n

I=1[n±1
n
φ1
I(z)+n∓1

n
φ2
I(z)]e

i
2
∑n

I=1[n±1
n
φ̃1
I(z̄)+n∓1

n
φ̃2
I(z̄)]σ(1,··· ,n)(z, z̄)

(h, h̃) = (1
2n,

1
2n) = (j3, ̃3) , (j3, j̃3) = (±1

2 ,±
1
2),

(2.17)

with a corresponding SN -invariant field given by a sum over orbits as in eq. (2.15). Note
that the middle cohomology chiral operators associated with the R-neutral Ramond fields
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are characteristic of the internal T 4 manifold; the other possible compactification of the
D1-D5 system, with internal K3, has a different set of such operators. Meanwhile, the
chiral fields associated with the R-charged Ramond fields are universal in this sense.

Let us recapitulate. If n is odd, we can have periodic or anti-periodic boundary con-
ditions on the covering surface; if n is even, there is no well-defined notion of a periodic
fermion in the n-twisted sector. Hence we can either choose (n odd) or be forced (n even)
to insert Ramond fields, which are therefore fundamental to the definition of the ground
states. Given the lowest-weight, lowest R-charged fermionic operator, which for even n is
R−n , one can obtain the set of chiral operators by applying fractional modes of fermions; in
this way (and using the relations between fermions and spin fields), the middle-cohomology
operators O(1,1)±

n can be obtained from R0±
n .

We have recently shown in [39] that the bare dimension ∆R
n = hRn + h̃Rn of the R-

symmetry doublet (2.11) is renormalized when the free orbifold theory is deformed. One
of the goals of the present paper is to show that the internal SU(2) doublet (2.15) is
renormalized as well.

2.2 Deformation

In the deformed theory, the scalar modulus interaction operator has to be marginal, i.e. of
conformal dimension ∆ = 2, to preserve the N = (4, 4) supersymmetry and to be invariant
under the SU(2) symmetries. Its explicit form is known to be

O
(int)
[2] (z, z̄) = i

2

(
G1
− 1

2
G̃2
− 1

2
−G2

− 1
2
G̃1
− 1

2

)
O

(0,0)
[2] (z, z̄) + c.c. (2.18)

The NS chiral operators O(0,0)
[n] (z, z̄), which have conformal weight and R-charge h = n−1

2 =
j3, are the lowest-weight operators in the chiral ring for twist n. In (2.18), we have a de-
scendant of O(0,0)

[2] , with twist n = 2, whose total dimension after applying the supercharges
is ∆int = 2.

We are interested in the description of the large-N properties of the twisted Ramond
fields in the deformed orbifold SCFT (1.1), up to second order in the perturbation theory
for the deformation parameter λ and in particular, in the calculation of the corrections
to their bare conformal dimension. The first-order correction to ∆R

n vanishes, because it
is given by the structure constant in the three-point function 〈R0−

[n]O
(int)
[2] R0+

[n] 〉 = 0. The
second-order correction is given by the integral

D = λ2

2

∫
d2z2

∫
d2z3

〈
R0−

[n] (z1, z̄1)O(int)
[2] (z2, z̄2)O(int)

[2] (z3, z̄3)R0+
[n] (z4, z̄4)

〉
. (2.19)

Using conformal invariance, one can bring the four-point function under the integral to
the form〈

R0−
[n] (z1, z̄1)O(int)

[2] (z2, z̄2)O(int)
[2] (z3, z̄3)R0+

[n] (z4, z̄4)
〉

= |z13z24|−4|z14|−n+4G0(u, ū) (2.20)

where u = (z12z34)/(z13z24) and6

G0(u, ū) ≡
〈
R0−

[n] (∞, ∞̄)O(int)
[2] (1, 1̄)O(int)

[2] (u, ū)R0+
[n] (0, 0̄)

〉
. (2.21)

6The index 0 is to emphasize that this function contains R-neutral Ramond fields.
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After a change of integration variables (2.19) becomes

1
|z14|4h

∫
d2w

1
|w|2||1 + w|2

∫
d2uG0(u, ū). (2.22)

The remaining integral over w = z13/z14 is divergent, and must be regularized by a UV
cutoff Λ,

∫
d2w 1

|w|2||1+w|2 = 2π log Λ, resulting in

D = λ2π
log Λ
|z14|n

J(n), (2.23)

where
J(n) ≡

∫
d2uG0(u, ū). (2.24)

The logarithmic dependence on the cutoff Λ is the hallmark of the change in the conformal
dimension of the deformed Ramond fileds in the renormalized two-point function [40]〈

R0−
[n] (z1, z̄1)R0+

[n] (z2, z̄2)
〉
λ

= |z12|−2∆λ , (2.25a)

∆λ(n) = ∆R
n − π

2λ
2J(n) + O(λ3), (2.25b)

where ∆R
n = hRn + h̃Rn = 1

2n is the bare dimension of R0±
[n] . The proper regularization of

J(n) and its explicit evaluation is one of the problems addressed in the present paper.

3 Computation of the four-point function

In order to derive the second-order correction (2.25) to the conformal dimensions of the
R-neutral twisted Ramond fields, we have to first calculate the four-point function G0(u, ū)
given in (2.21). It is clear that this function should be multi-valued due to the orbifold
boundary conditions. The most convenient way of computing it is to use the covering
surface [42, 49] described in section 2.1. For the correlator in question, the covering map
from the genus-zero covering surface, with coordinates (t, t̄), to the base sphere, with
coordinates (z, z̄), can be parametrized as in refs. [40, 52, 55]

z(t) =
(
t

t1

)n ( t− t0
t1 − t0

)(
t1 − t∞
t− t∞

)
. (3.1)

By construction this map has correct monodromies around the images z = {0,∞} of the
covering points t = {0, t0; t∞,∞}, where n-twists are inserted. To ensure the correct
branching around the insertions of twists n = 2 fields at the points z(t1) = 1 and z(x) ≡ u,
we impose the conditions z − z∗ ∼ (t− t∗)2 for t = t1 and t = x. This fixes the coefficients
in (3.1) as functions of x, which can be put in the form

t0 = x− 1, t∞ = x− x

x+ n
, t1 = 1− n

n
+ x− (n+ 1)x

n(x+ n) (3.2)

With this choice, we get the final form of the u = z(x) parametrization

u(x) = xn−1(x+ n)n+1

(x− 1)n+1(x+ n− 1)n−1 . (3.3)
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The map (3.1) assures that the covering surface has the topology of a sphere. In general,
the twisted four-point function will have contributions from coverings with higher genera,
but for large N the genus-zero contribution is the leading one [49, 50], and it can be shown
that G0(u, ū) vanishes at this leading order when n = N .

3.1 The Lunin-Mathur technique

Perhaps the most standard way of computing G0(u, ū) is to use the Lunin-Mathur (LM)
technique [42, 49]. It uses the fact that functional integrals Zbase and Zcover for correlation
functions on the base and on the covering surfaces are related by a Liouville factor, Zbase =
eSLZcover, where SL is the Polyakov-Liouville action for the Weyl transformation of the
metrics, ds2

base = eφds2
cover. The path integral computation makes it evident that the

correlation function (2.21) factorizes as

G0 = Gσ ×GB ×GF , (3.4)

(or possibly a sum of terms like these) where GB is the path integral for the bosons, GF
is the correlator for the fermions, and Gσ the correlation for the twists. The latter is
given by the Liouville factor, and the bosonic and fermionic functions are the non-twisted
correlation functions at the covering surface.

The twist factor

Gσ =
〈
σ[n](∞, ∞̄)σ[2](1, 1̄)σ[2](u, ū)σ[n](0, 0̄)

〉
= eSL (3.5)

is fixed by the choice of the covering map, and is universal for all correlation functions with
the same twist structure. The function for the specific twists (3.5) was given by LM in [49];
see also [51] for a function with dressed twisted operators with the same twist structure,
and [61] for a general analysis. It is nevertheless instructive to show here how to compute
Gσ, since the parameterization (3.2) of the covering map is different from the one in [49],
resulting in a different form for Gσ. In the vicinity of a point z∗ with a twist σn∗ , the
covering map has the structure

z(t) = z∗ + b∗(t− t∗)n∗ + · · · (3.6)

and the parameters b∗ and n∗ fix the Liouville action as7

SL = −ccover
12

[∑
∗

n∗ − 1
n∗

log |b∗|+
nt∞ + 1
nt∞

log |bt∞ | −
n∞ − 1
n∞

log |b∞|

+
∑
∗

(n∗ − 1) log n∗ − (nt∞ + 1) log nt∞ − (n∞ + 3) log n∞

+ Regulation terms
] (3.7)

The ‘regulation terms’ are singular terms depending on the log of the small regulating
parameters used to cut discs around the singular ramification/branching points. When

7See eq. (D.63) of [61].
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proper, careful account is taken of these terms, one can define a correctly normalized twist
operator such that they vanish in a given correlation function [49]. Note that there is a
distinction between the contribution of the region |t| = ∞, where we define z ≈ b∞t

n∞ ,
and the finite points8 t∞ on the covering where z diverges as z ≈ bt∞(t − t∞)−nt∞ ; here
nt∞ = 1 and n∞ = n.

Expanding z(t) around t = 0,∞, t1, x, t∞, and taking into account (3.2), we can read
the necessary parameters

b0 = x−1(x− 1)−n(x+ n)n+1(x+ n− 1)−n,
b∞ = (x− 1)−n−1(x+ n)n(x+ n− 1)−n+1,

bt1 = −n(x− 1)−2(x+ n)2(x+ n− 1)−2(x+ n−1
2 ),

bx = xn−3(x− 1)−n−1(x+ n)n+1(x+ n− 1)−n+1(x+ n−1
2 ),

bt∞ = nx−1(x− 1)−n−1(x+ n)−1(x+ n− 1)−n.

(3.8)

Note that the coefficient at t = t0 is not necessary, since z ≈ bt0(t − t0) has a trivial
monodromy, hence there is no Liouville contribution at this point. Inserting (3.8) into the
Liouville action we find

SL = −2 + 5n(n− 1)
4n log |x|+ 2 + 5n(n+ 1)

4n log |x− 1|

+ 2− n(n+ 1)
4n log |x+ n| − 2− n(n− 1)

4n log |x+ n− 1|

− 1
2 log |x+ n−1

2 |

− log 2 + 1
2 log n+ Regulation terms

(3.9)

The numerical terms in the last line are normalization-dependent, and can be absorbed in
the definition of σn.9 The dynamical part of the four-point function eSL is given by the
three first lines, parameterized by x. As expected, the result is the same as found in [40]
via the stress-tensor method, cf. section 3.2 below.

As said, the bosonic and fermionic factors in (3.4) are computed from the untwisted
theory living on the covering surface, and are also naturally parameterized by x. The
fermions appear in (2.21) as exponentials inserted at branching points (3.6). As shown by
LM [42], an exponential operator lifts to the covering surface as

eip(φ
1−φ2)(z∗)←[ b−p

2/n∗
∗ eip(φ

1−φ2)(t∗). (3.10)

At t =∞, the coefficient at the r.h.s. is instead (1/b∗)−p
2/n∗ , obtained by mapping t 7→ 1/t′,

then taking t′ = 0. Thus the Ramond fields R0±
[n] (z, z̄) lift to the covering as

R0±
n (0, 0̄)←[ b

− 1
4n

0 e±
i
2 (φ1−φ2)(0)× c.c

R0±
n (∞, ∞̄)←[ b

1
4n∞ e±

i
2 (φ1−φ2)(∞)× c.c

(3.11)

8Here we have only one such point.
9In a sense, the LM technique really gives a path-integral definition of twist operators, through the

covering map and the insertion of regular (“vacuum”) patches at the circles cut off from the covering
surface in the regularization procedure.
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and the fermionic exponentials in the interaction operators lift as

b
− 1

8
t1 e±

i
2 (φ1−φ2)(t1)× c.c. and b

− 1
8

x e±
i
2 (φ1−φ2)(x)× c.c. (3.12)

When looking at the product of interaction terms, we note that, since they are inside cor-
relation functions, only terms multiplied by the self-conjugate combinations ∂Xa†∂Xa and
∂Xa∂Xa† do not vanish. The product of interaction operators lifted to the covering surface,

O
(int)
[2] (1, 1̄)O(int)

[2] (u, ū)←[ O(int)(t1, t̄1)O(int)(x, x̄) = I + II + III + IV (3.13)

can then be organized as a sum of four terms, respectively

I ∼ e−
i
2 (φ1−φ2)∂X2†(t1)e

i
2 (φ1−φ2)∂X2(x)

×
(
e
i
2 (φ̃1−φ̃2)∂̄X2(t̄1)e−

i
2 (φ̃1−φ̃2)∂̄X2†(x̄) + e−

i
2 (φ̃1−φ̃2)∂̄X1(t̄1)e

i
2 (φ̃1−φ̃2)∂̄X1†(x̄)

)
II ∼ e

i
2 (φ1−φ2)∂X2(t1)e−

i
2 (φ1−φ2)∂X2†(x)

×
(
e−

i
2 (φ̃1−φ̃2)∂̄X2†(t̄1)e

i
2 (φ̃1−φ̃2)∂̄X2(x̄) + e

i
2 (φ̃1−φ̃2)∂̄X1†(t̄1)e−

i
2 (φ̃1−φ̃2)∂̄X1(x̄)

)
III ∼ e

i
2 (φ1−φ2)∂X1†(t1)e−

i
2 (φ1−φ2)∂X1(x)

×
(
e−

i
2 (φ̃1−φ̃2)∂̄X1(t̄1)e

i
2 (φ̃1−φ̃2)∂̄X1†(x̄) + e

i
2 (φ̃1−φ̃2)∂̄X2(t̄1)e−

i
2 (φ̃1−φ̃2)∂̄X2†(x̄)

)
IV ∼ e−

i
2 (φ1−φ2)∂X1(t1)e

i
2 (φ1−φ2)∂X1†(x)

×
(
e
i
2 (φ̃1−φ̃2)∂̄X1†(t̄1)e−

i
2 (φ̃1−φ̃2)∂̄X1(x̄) + e−

i
2 (φ̃1−φ̃2)∂̄X2†(t̄1)e

i
2 (φ̃1−φ̃2)∂̄X2(x̄)

)

(3.14)

We note that, to obtain the correct signs in the above expressions, we must insert the proper
cocycles in the bosonization of ψa and ψa†, see [34, 58]. We have ignored multiplicative
factors coming from the lifting, given in (3.12). These factors are crucial, and we will
carefully restore them later.

The ∂Xs in (3.14) give the bosonic contribution. It is not hard to see from their
structure that all four terms give the same, very simple contribution, namely products of
one holomorphic and one anti-holomorphic two-point function of bosonic currents:

GB = 4× 2×
〈
∂X†(t1)∂X(x)

〉
×
〈
∂̄X†(t̄1)∂̄X(x̄)

〉
= 8|(t1 − x)−2|2

= 1
2
∣∣(x+ n)2(x+ n−1

2 )−2∣∣2,
(3.15)

where here ∂X is one of the bosonic currents ∂Xa. In the last line, we have used (3.2).
The numerical factor of 2× 4 comes from the two contributions in each of the four terms.
Clearly, GB really factorizes as in (3.4). Note that the bosonic currents do not carry factors
of b when lifted.

The fermionic contributions to the terms (3.14) are more complicated, but can be
reduced to a basic correlation of exponentials. The holomorphic fermionic contribution
from the term I, apart from the b factors, is〈

e−
i
2 (φ1−φ2)(∞)e−

i
2 (φ1−φ2)(t1)e

i
2 (φ1−φ2)(x)e

i
2 (φ1−φ2)(0)

〉
= (t1 − x)−

1
2 (x/t1)

1
2 (3.16)
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while the anti-holomorphic part of I gives〈
e
i
2 (φ̃1−φ̃2)(∞̄)

[
e
i
2 (φ̃1−φ̃2)(t̄1)e−

i
2 (φ̃1−φ̃2)(x̄)

+ e−
i
2 (φ̃1−φ̃2)(t̄1)e

i
2 (φ̃1−φ̃2)(x̄)

]
e−

i
2 (φ̃1−φ̃2)(0̄)

〉
= (t̄1 − x̄)−

1
2
[ (
x̄/t̄1

) 1
2 +

(
t̄1/x̄

) 1
2
]
.

(3.17)

The term IV gives exactly the same contribution. The terms II and III both give, also,
equal contributions, which are slightly different from the one above: the holomorphic terms
are now〈

e−
i
2 (φ1−φ2)(∞)e

i
2 (φ1−φ2)(t1)e−

i
2 (φ1−φ2)(x)e

i
2 (φ1−φ2)(0)

〉
= (t1 − x)−

1
2 (t1/x)

1
2 (3.18)

while the anti-holomorphic part turns out the same as before,〈
e
i
2 (φ̃1−φ̃2)(∞̄)

[
e−

i
2 (φ̃1−φ̃2)(t̄1)e

i
2 (φ̃1−φ̃2)(x̄)

+ e
i
2 (φ̃1−φ̃2)(t̄1)e−

i
2 (φ̃1−φ̃2)(x̄)

]
e−

i
2 (φ̃1−φ̃2)(0̄)

〉
= (t̄1 − x̄)−

1
2
[ (
t̄1/x̄

) 1
2 +

(
x̄/t̄1

) 1
2
] (3.19)

Combining I + II + III + IV , the full fermionic part of G0(u, ū) is therefore

GF =
∣∣∣b− 1

4n
0 b

1
4n∞ b
− 1

8
1 b

− 1
8

x (t1 − x)−
1
2
[

(x/t1)
1
2 + (t1/x)

1
2
]∣∣∣2

=
∣∣∣23x

2−n(n+1)
8n (x− 1)−

2−n(n−1)
8n (x+ n)−

2+n(n+3)
8n (x+ n− 1)

2+n(n−3)
8n

× (x+ n−1
2 )−

3
4
[
x(x+ n− 1)− n−1

2

]∣∣∣2
(3.20)

We have restored the factors of bt1 , bx coming from lifting the exponentials in O
(int)
[2] , and

the factors of b0, b∞ coming from lifting the Ramond fields. Their powers are dictated
by eq. (3.10). To obtain the final expression for the four-point function, we must be very
careful and recall that when lifting O(int)

[2] to the covering, there is an additional factor of∣∣b−1/2
t1 b−1/2

x

∣∣2 (3.21)

coming from the Jacobian of the contour integrals defining O(int)
[2] as the action of super-

current modes on a chiral field. Combining all the factors above, we finally obtain the
complete function (3.4) as

G0(x, x̄) =
∣∣∣Cx− 5n

4 +2(x− 1)
5n
4 +2(x+ n)−

3n
4 (x+ n− 1)

3n
4 (x+ n−1

2 )−4

×
[
x(x+ n− 1) + 1−n

2

]∣∣∣2. (3.22)

We have grouped factors of 2 and of n inside an overall constant C which depends on the
normalization of the fields. It will be determined to be

C = 1
16n2 (3.23)

in section 4 below. Let us note that the corresponding function for R-charged fields, which
we have derived in [39, 40] using the stress-tensor method, is computed with the LM
technique in appendix A.
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In eq. (3.22), the four-point function has been written completely in terms of (x, x̄),
which is the pre-image of (u, ū) on the covering surface. This is achieved after writing
explicitly all the bs, as well as t1, etc., according to eqs. (3.2) and (3.8). To find G0(u, ū)
from G0(x, x̄), we have to invert the function u(x) in eq. (3.3). In general, there is a
collection of 2n inverses xa(u), which are related to the possible configurations between
the permutation cycles entering the twists. Since G0(u, ū) is a sum over all orbits of the
cycles, every inverse contributes, and

G0(u, ū) =
2n∑
a=1

G0(xa(u), x̄a(ū)). (3.24)

See e.g. [40] and references therein for a detailed discussion of this point.

3.2 The stress-tensor method

A second way of computing the function G0(x, x̄) is the stress-tensor method [50, 53, 55],
which we have recently implemented in the derivation of an analogous function for R-
charged Ramond fields [39, 40]. The central idea is to solve a first-order differential equation
resulting from the conformal Ward identity:

∂u logG0(u, ū) = Res
z=u

F (z), (3.25)

where

F (z) =
〈
T (z)R0−

[n] (∞, ∞̄)O(int)
[2] (1, 1̄)O(int)

[2] (u, ū)R0+
[n] (0, 0̄)

〉
G0(u, ū) . (3.26)

We are again faced with the difficult monodromies, so instead of finding F (z) we calculate
the corresponding function Fcover(t), obtained after insertion of the stress-tensor T (t) into
the correlator of the lifted operators on the covering surface. The stress-tensor on the
covering is given by (2.2a) without the sum over copies. The Ramond fields and the
interaction operator lift to the covering as in (3.11) and (3.14). An advantage of the stress-
tensor method is that the overall factors of b, crucial in the LM technique, are irrelevant
here, as they cancel in the fraction. So let us denote by

S0± = e±
i
2 (φ1−φ2) (3.27)

the covering-surface spin fields corresponding to the lifted Ramond fields R0±
n . We find

Fcover =
〈
T (t)S0−(∞, ∞̄)O(int)(t1, t̄1)O(int)(x, x̄)S0+(0, 0̄)

〉〈
S0−(∞, ∞̄)O(int)(t1, t̄1)O(int)(x, x̄)S0+(0, 0̄)

〉
= (t1 − x)2

(t− t1)2(t− x)2

− 1
4

[
1
t2

+
( 1
t− t1

− 1
t− x

)2
− 2
t(t− t1) −

2
t(t− x)

+ 4
t(t− t1)

〈
S0−(∞, ∞̄)V+(t1, t̄1)V−(x, x̄)S0+(0, 0̄)

〉〈
S0−(∞, ∞̄)O(int)(t1, t̄1)O(int)(x, x̄)S0+(0, 0̄)

〉
+ 4
t(t− x)

〈
S0−(∞, ∞̄)V−(t1, t̄1)V+(x, x̄)S0+(0, 0̄)

〉〈
S0−(∞, ∞̄)O(int)(t1, t̄1)O(int)(x, x̄)S0+(0, 0̄)

〉]

(3.28)
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(Note that, on covering-surface correlators, we remove the twist label of O(int)
[2] .) The

expression in the first line is the bosonic part of Fcover, coming from contractions of ∂Xa

and ∂Xa†; it does not depend on the Ramond fields, and is the same as the one found
in [39, 40]. The remaining terms come from fermionic contractions between the normal-
ordered : ∂φa∂φa : on T (t) and the exponentials in the other operators. The operators V±
are part of the interaction operator on the covering surface,

O(int)(t, t̄) = a
[
V+(t, t̄) + V−(t, t̄)

]
; (3.29)

a is the appropriate combination of b coefficients used in section 3.1, which are unimportant
here, and

V+(t, t̄) = e+ i
2 (φ1−φ2)

[
∂X2†

(
∂̄X1e

i
2 (φ̃1−φ̃2) − ∂̄X2e−

i
2 (φ̃1−φ̃2)

)
− ∂X1

(
∂̄X1†e−

i
2 (φ̃1−φ̃2) + ∂̄X2†e

i
2 (φ̃1−φ̃2)

)] (3.30a)

V−(t, t̄) = e−
i
2 (φ1−φ2)

[
∂X2

(
∂̄X1†e−

i
2 (φ̃1−φ̃2) + ∂̄X2†e

i
2 (φ̃1−φ̃2)

)
+ ∂X1†

(
∂̄X1e

i
2 (φ̃1−φ̃2) − ∂̄X2e−

i
2 (φ̃1−φ̃2)

)]
.

(3.30b)

The terms containing products of V± in (3.28) are absent in the analogous computation with
R-charged Ramond fields R±[n] detailed in [40], because of a cancellation of factors peculiar
to that case. This simplification can also be seen in the LM technique computation, as we
show in appendix A. Direct computation of the correlators in the last lines of (3.28) leads
again to the four-point functions of exponentials found in section 3.1, and we finally obtain

Fcover(t) = (t1 − x)2

(t− t1)2(t− x)2

+ 1
4

[( 1
t− t1

− 1
t− x

)2
+ 1
t2

+ 2(t1 − x)2

t(t− t1)(t− x)(t1 + x)

]
.

(3.31)

The next step in the stress-tensor method is to map this function back to the base,
taking into account the Schwarzian derivative {t, z} in the anomalous transformation of T ,
which actually accounts for the twists’ contribution, playing the role of the Liouville factor
in the LM technique, but without requiring any regularized normalization of the twist field
σn.10 Again, what we get is an expression fully parameterized by x, as it is already clear
from (3.31). So, instead of solving (3.25), we make a change of variables, to solve

∂x logG0(x) = u′(x)H0(x) (3.32a)

where H0(x) = Res
z=u

F (z) = 2 Res
z=u

[
1
2{t, z}+ (dt/dz)2 Fcover(t(z))

]
. (3.32b)

The factor of 2 comes from the sum over the two copies involved in the twist σ2 around
z = u. Here t(z) is any of the two local inverses of z(t) near z = u. Details of the inverse
map can be found in [40]. The function H0(x) is rational, and integration of (3.32a)

10The solution of (3.32) with Fcover = 0 is precisely the function Gσ = eSL with SL given in eq. (3.9),
see [40].

– 16 –



J
H
E
P
0
7
(
2
0
2
1
)
2
1
1

gives the expression inside the absolute value bars in eq. (3.22), with C as the integration
constant. Of course, G0(x, x̄) = G0(x)G0(x̄), where G0(x̄) = G0(x) is found with the same
procedure, but carried on with the anti-holomorphic stress-tensor T̃ (t̄).

4 OPE channels

The behavior of G0(u, ū) near the singular points u = 0, 1,∞ give the OPE channels of
the fields involved in the correlation function. As explained before, for each of these points
there is a collection of distinct limits xa(u), related to the different possibilities of combining
permutations in the conjugacy class defined by the twists. Each of these different limits
of x will therefore give a different OPE channel corresponding to operators in distinct
twisted sectors.

Let us start with the limit u → 1, the OPE of two interaction operators. Examining
the explicit expression (3.3) we see that there two channels, x → ∞ and x → 1−n

2 . In
the former,

G0(u, ū)|x→∞ = |16n2C|2

|1− u|4 + non-sing. (4.1)

The powers of u imply that this expression corresponds to the two-point function of the
interaction operator. We first notice that since the latter, as well as the two-point function
of Ramond fields, are normalized to one, then C is indeed fixed to the value (3.23). Second,
there is no subleading term of order |1−u|−2, which would correspond to a field of dimension
one. So there is no such field in the OPE of the interaction fields, confirming it is a truly
marginal deformation. In the other channel x→ 1−n

2 ,

G0(u, ū)|x→ 1−n
2

=
∣∣223

4
3 (n− 1)

2−3n
6 (n+ 1)

2+3n
6 n−

2
3
∣∣2

|1− u|8/3
+ O(|1− u|−

4
3 ). (4.2)

The leading singularity corresponds to the twist field σ3 with dimension ∆σ
n = 4

3 , and its
coefficient gives the product of the structure constants of the interaction fields and the
Ramond fields R0± with the twist field σ3. We notice again the absence of the subleading
term ∼ |1 − u|−2, that would correspond to a field of dimension one in the OPE of the
interaction fields.

Let us turn now to the limit u → 0 and the OPE of the interaction and the Ramond
fields, O(int)

[2] (u, ū)R0+
[n] (0). From (3.3), it follows that there are again two channels, x → 0

and x→ −n,

G0(u, ū)|x→0 =
∣∣2−1(n− 1)−

n−2
2 n

n2−4n
2(n−1) |2

|u|
5n−8

4(n−1)

∣∣∣1 + const. u
1

n−1 + · · ·
∣∣∣2 (4.3)

G0(u, ū)|x→−n =
∣∣2−1(n+ 1)

n−2
2 n

− n
2+4n

2(n+1)
∣∣2

|u|
3n

4(n+1)

∣∣∣1 + const. u
1

n+1 + · · ·
∣∣∣2 (4.4)

The leading singularities in the above channels reveal operators Y0+
n−1 and Y0+

n+1, respec-
tively, in the twisted sectors with σn±1, i.e. we get the fusion rule

[O(int)
[2] ]× [R0+

[n] ] = [Y0+
[n−1]] + [Y0+

[n+1]]. (4.5)
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We can read the dimension of Y0+
[m] to be ∆Ym = hYm + h̃Ym with the weights

hYm = m

4 + 3
4m = h̃Ym, (4.6)

where the dimension of the twist field is given in (2.4). By charge conservation, Y0+
[m] is

R-neutral and part of a doublet of the internal SU(2) symmetry; the second field in the
doublet, Y0−

[m], can be found by taking the corresponding OPE limit for O(int)
[2] R0−

[n] .
11

The leading coefficients in the expansions (4.2)–(4.4) are the structure constants of
the operators involved in the respective OPE channels, which can be expressed in terms of
three-point functions:〈

R0−
n (∞, ∞̄)σ3(1, 1̄)R0+

n (0, 0̄)
〉

= 2−
5
2 3−

4
3 (n− 1)

2−3n
3 (n+ 1)

2+3n
3 n−

4
3 (4.7)∣∣∣〈R0∓

n (∞, ∞̄)O(int)
2 (1, 1̄)Y0±

n−1(0, 0̄)
〉∣∣∣2 = 2−2(n− 1)2−nn

n2−4n
n−1 (4.8)∣∣∣〈R0∓

n (∞, ∞̄)O(int)
2 (1, 1̄)Y0±

n+1(0, 0̄)
〉∣∣∣2 = 2−2(n+ 1)n−2n−

n2+4n
n+1 (4.9)

To obtain (4.7) we have used the structure constant 〈O(int)
2 σ3O

(int)
2

〉
= 2

13
3 34, derived in [40].

These expressions give the values of structure constants of operators whose twists are one
representative of their conjugacy classes, i.e. there is no sum over orbits; see the discussion
in [40].

Chiral fields. We can compare the operators Y0±
n found above to the ones that appear in

the OPE between O(int)
[2] and the chiral fields O(1,1)

n . As discussed in [34, 51], computing four-
point functions like G0(u, ū) and then taking the coincidence limits is a very efficient way
of finding only the non-vanishing structure constants, as well as the set of fields appearing
in the OPE of an operator with the deformation. For the middle-cohomology chiral fields,
the functions we need are

G±(u, ū) ≡
〈

[O(1,1)±
[n] ]†(∞, ∞̄)O(int)

[2] (1, 1̄)O(int)
[2] (u, ū)O(1,1)±

[n] (0, 0̄)
〉
. (4.10)

The same methods used in section 3 can be directly applied here. The covering map and
the Liouville factor (3.9) are the same, and so is the bosonic factor (3.15), since there are no
new bosons in (4.10) when compared to (2.21). The only difference is in the fermionic con-
tractions on the covering, e.g. (3.16)–(3.19), which now involve slightly different coefficients
in the exponentials corresponding to the bosonized expression for O(1,1)±

n , cf. eq. (2.17).
(Alternatively, formula (3.31) is changed.) Note that [O(1,1)±

n ]† 6= O
(1,1)∓
n , but nevertheless

it has charges j3 = ∓1
2 (and is R-neutral). Hence the two functions G± are not the complex

conjugate of one another, and both are allowed by charge conservation. It turns out, how-
ever, that the two functions are equal, G+ = G− = G , where, with the parameterization in
terms of x as before,

G (x, x̄) =
∣∣∣C x2−n(x− 1)2+n(x+ n)−n(x+ n− 1)n

(x+ n−1
2 )4

[
x(x+ n− 1)− n−1

2

]∣∣∣2. (4.11)

11This requires bringing R0−
[n] from infinity by a conformal transformation of the four-point function (2.21),

i.e. fixing the points in (2.20) differently, but note that this gives the conjugate of same function we have
analyzed, hence the same dimensions, etc.
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From here, one can proceed to compute the OPEs. The channels from u → 0, u → 1
are the same functions of x (recall the covering map is the same). The OPE of the two
interactions as u→ 1 are the same as before, as expected, and fix C = 1/16n2 again. Now
for u→ 0 we find

G (u, ū)|x→0 = |2
−1(n− 1)−1n−

2n
n−1 |2

|u|
2(n−2)
n−1

∣∣∣1 + const. u
1

n−1 + · · ·
∣∣∣2 (4.12)

G (u, ū)|x→−n = |2
−1(n+ 1)−1n−

2n
n+1 |2

|u|
2n
n+1

∣∣∣1 + const. u
1

n+1 + · · ·
∣∣∣2 (4.13)

The two channels give operators with twists n− 1 and n+ 1, respectively, in an OPE

[O(int)
[2] ]× [O(1,1)±

[n] ] = A0±
[n−1] + B0±

[n+1] (4.14)

where the conformal weights of the m-twisted fields A0±
[m] and B

0±
[m] can be read from the

power of u,
hAm = m

2 + 1
m

+ 1
2 = h̃Am, hBm = m

2 + 1
m
− 1

2 = h̃Bm. (4.15)

The operators have the same charges as O(1,1)±
m , namely j3 = 1

2m and j3 = ±1
2 . The

coefficients of the leading-order terms give the three-point functions∣∣∣〈[O(1,1)±
n ]†(∞, ∞̄)O(int)

2 (1, 1̄)A0±
n−1(0, 0̄)

〉∣∣∣2 = 2−2(n− 1)−2n−
4n
n−1 (4.16)∣∣∣〈[O(1,1)±

n ]†(∞, ∞̄)O(int)
2 (1, 1̄)B0±

n+1(0, 0̄)
〉∣∣∣2 = 2−2(n+ 1)−2n−

4n
n+1 (4.17)

which are equivalent to structure constants.
Let us make some comments. In the r.h.s. of the OPE (4.5), involving R0±

n , we have
found only one operator Y0±

m , but with the two possible twist configurations resulting of
the combination of the cycles (2)(n). By contrast, in the r.h.s. of the OPE (4.14), involving
O

(1,1)±
n , we found two different operators, each with one of the allowed twists. Looking at

the dimensions (4.6) and (4.15) of the new-found operators, we can note that they have
the structure

hYm = hR
m + 3

4m , hAm = h(1,1)
m + 1

m
+ 1

2 , hBm = h(1,1)
m + 1

m
− 1

2 (4.18)

The presence of the dimension of the Ramond field, hR
m, in the OPE involving R0±

m , and
the dimension of O(1,1)±

m , h(1,1)
m = 1

2m, in its OPE, suggests that, in each case, the effect of
the deformation operator is to excite a fractional mode over the field it acts upon. These
modes must belong to neutral fields, since the charges are preserved. Based on this, one
can try to infer what are the possible explicit constructions of the operators, as was done
in [51] for similar OPEs involving the lowest-weight chiral O(0,0)

n .
The existence of two operators, A0±

[m] and B
0±
[m], in the OPE with the chiral fields, in

contrast with only one operator, Y0±
[m], in the OPE with the Ramond fields, is, in itself,

interesting. In the Zn orbifold theory with central charge c = 6n defined on the n-twisted
sector, there is a spectral flow relation between R0±

[n] and O(1,1)±
[n] . Obviously, the relation
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is not present between the results of the OPEs of these operators with O
(int)
[2] . Here, we

note that the fields in the r.h.s. of the OPEs belong to twist sectors different from the
sectors of the fields in the l.h.s., but one can apply, for example, a spectral flow of the
algebra with c = 6(n − 1) and see where Y0±

n−1 is mapped to: it is neither to A0±
n−1 nor to

B0±
n−1. As discussed in [40], one should not expect that spectral flow relations be preserved

in this way, when we make products of operators, such as R0±
[n] and O

(int)
[2] , belonging to

different twist sectors. Analogous phenomena are also observed in the OPEs of the R-
charged Ramond fields, R±[n], and of the universal cohomology chirals, O(1±1,1±1)

[n] , with the
interaction O(int)

[2] .12 It would be very interesting to investigate further the nature of these
operators in the r.h.s. of the OPEs, and try to understand what is, exactly, the relation
between A0±

[m], B
0±
[m] and R

0±
[n] , etc. This could even provide some insight into the reason why

the dimensions of the chiral fields are protected to second order in λ-perturbation, while
the Ramond fields are not, as we now show.

5 Anomalous dimensions

The second order λ2-correction to the conformal dimension of the R-neutral twisted Ra-
mond fields R0±

n is given by the integral in eq. (2.23). In possession of an analytic formula
for G0(x, x̄), we can change variables from u to x,

J(n) =
∫
d2x |u′(x)|2G0(x, x̄), (5.1)

and obtain a more recognizable form after a further change of variables,

y(x) = −(n+1
2 )−2(x− 1)(x+ n), (5.2)

leading to

J(n) = 1 + 2n− 3n2

64n2(n+ 1)2

∫
d2y |y|2a|1− y|2b|y − wn|2c

+ (n+ 1)2

256n2

∫
d2y |y|2a|1− y|2b|y − wn|2(c+1)

+ n− 1
128n2

∫
d2y |y|2a|1− y|2b|y − wn|2c

(
y + ȳ

)
(5.3)

where we have introduced the parameters

a = 1
4n, b = −3

2 , c = −1
4n, wn = 4n

(n+ 1)2 . (5.4)

The integral in the last line of (5.3) vanishes. Its imaginary part is zero because Im(y) =
−Im(ȳ); meanwhile, the integrand of the real part, containing 2Re(y), is odd so the integral
over the Real line vanishes. We are thus left with

J(n) = 1 + 2n− 3n2

64n2(n+ 1)2

∫
d2y |y|2a|1− y|2b|y − wn|2c

+ (n+ 1)2

256n2

∫
d2y |y|2a|1− y|2b|y − wn|2(c+1)

(5.5)

12The OPE [O(int)
[2] ] × [R±[n] was found in [40]. The OPE [O(int)

[2] ] × [O(0,0)
[n] ] was found in [52]; see also [51].
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The integrals
∫
d2y |y|2a|1− y|2b|y − w|2c appearing in (5.5) are Dotsenko-Fateev inte-

grals, used as a representation of correlation functions of specific minimal models in [62–64].
For the values of the parameters (5.4), the integrals are divergent. Nevertheless, they can
be regularized by deforming contours in the complex plane [40], after which they are ex-
pressed as regular functions I(a, b, c;w) of their parameters. The latter are a combination
of Gamma and regularized Hypergeometric functions F(α, β; γ; z) ≡ F (α, β; γ; z)/Γ(γ).
Following the procedure detailed in [40], we find that∫

d2y |y|2a|1− y|2b|y − wn|2(c+q) = − sin(πa)Ĩ(q)
1 I

(q)
2 − sin(πb)I(q)

1 Ĩ
(q)
2 (5.6)

where, for q = 0, 1, the ‘canonical functions’ in the r.h.s. are given by

I
(q)
1 =

2q(1− n
4 )qn2+qπ

(n+ 1)2(1+q) F
(

3
2 ,

n+4
4 ; 2 + q; 4n

(n+1)2

)
(5.7)

I
(q)
2 =

2qn2+q(1− n
4 )q

(n+ 1)2(1+q)
π

sin(πn4 )F
(

3
2 ,

n+4
4 ; 2 + q; 4n

(n+1)2

)
(5.8)

Ĩ
(q)
1 = (−2)q

√
πF
(
n
4 − q, (−1)q 1

2 ; n+6−4q
4 ; 1− 4n

(n+1)2

)
(5.9)

Ĩ
(q)
2 = −2

√
π
(
1− 4n

(n+1)2

)−n4− 1
2 +q

Γ(−n
4 + 1 + q)F

(
− n

4 ,−
1
2 ; 2+4q−n

4 ; 1− 4n
(n+1)2

)
(5.10)

Therefore we have

J(n) = − 1 + 2n− 3n2

64n2(n+ 1)2

[
sin(πn4 ) Ĩ(0)

1 (n) I(0)
2 (n) + I

(0)
1 (n) Ĩ(0)

2 (n)
]

− (n+ 1)2

256n2

[
sin(πn4 ) Ĩ(1)

1 (n) I(1)
2 (n) + I

(1)
1 (n) Ĩ(1)

2 (n)
] (5.11)

The expressions above are well-defined for n 6= 4k + 4, k ∈ N. In this latter case,
while sin(πa) = sin(πc) = 0, the expressions for I(q)

2 and Ĩ
(q)
2 are not defined because

of a pole in the Gamma functions.13 A completely analogous situation occurs with the
R-charged Ramond fields [40]. Now, one can use the fact that I(q)

2 = I
(q)
1 / sin(πn4 ) and

make a regularization of the Gamma functions in Ĩ
(q)
2 , by taking k 7→ k − ε with ε → 0,

and extracting the finite part of a regularized DF integral J(4k + 4) = Jreg(4k + 4) +
ε−1Jsing(4k + 4), whose finite part is

Jreg(4k + 4) = 39 + 88k + 48k2

1024(5 + 9k + 4k2)2 I
(0)
1 (4k + 4)

[
Ĩ

(0)
1 (4k + 4) + Ĩ

(0) reg
2 (k)

]
− (5 + 4k)2

4096(1 + k)2 I
(1)
1 (4k + 4)

[
Ĩ

(1)
1 (4k + 4) + Ĩ

(1) reg
2 (k)

] (5.12)

where (see ref. [40] for details)

Ĩ
(q) reg
2 (k) = −2

√
π

(1− 16k
(1+4k)2 )k+ 3

2−q

× (−1)k−qψ(k + 1− q)
(k − q)! F

(
− 1

2 ,−k − 1;−k + q − 1
2 ; 1− 16k

(1+4k)2

) (5.13)

13The peculiarity of this case is due to a change in the analytic properties of the DF integrals, which lose
two branch cuts.
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Figure 1. Numerical result of the integrals J(n); for n = 4k + 4, the plot corresponds to Jreg(n).

Here ψ(k) is the digamma function. The divergent part, Jsing, is expressed as in (5.12),
but with Ĩ(q) reg

2 replaced by Ĩ(q) sing
2 = Ĩ

(q) reg
2 /ψ(k + 1− q).

In figure 1 we plot J(n) given in eq. (5.11) for n 6= 4k+4, and Jreg(n) given by eq. (5.12)
when n = 4k+ 4. Because the Gamma functions and the Hypergeometrics are (piecewise)
continuous, we can see four families of “almost continuous” functions, distinguished by
the discrete values assumed by sin(πn4 ). All four families stabilize around small, negative
asymptotic values for large n.

We have thus found that, after the regularization, the R-neutral twisted Ramond fields
with n < N acquire an anomalous dimension at second order in perturbation theory:

∆R
λ (n) = 1

2n+ π
2λ

2|J(n)|+ · · · (5.14)

where for n = 4k + 4 we have Jreg in the r.h.s. Note that the integrals we have computed
also give the structure constant 〈R0−

[n] (∞)O(int)
[2] (1)R0+

[n] 〉 = λJ(n) + · · · , which vanishes in
the free theory. The fields with maximal twist n = N are protected at this order of the
large-N expansion, since their covering surface has genus one.

We can perform the analogous integral using the function (4.11), to compute the
anomalous dimension of the chiral field O

(1,1)±
[n] . Since the chiral field saturates a BPS

bound, with h = j3, we expect that it is protected under the deformation, hence the anoma-
lous dimension vanishes. This is also expected from more general considerations [44, 45].

We can use the same change of variables (5.2) to reduce the integral, analogous to (5.1),
to a Dotsenko-Fateev form (5.6). But now, the exponents corresponding to (5.4) are
a = c = 0, while b = −3

2 . Thus, instead of (5.5) we arrive at

J (n) =
∫
d2x |u′(x)|2G (x, x̄)

= 1 + 2n− 3n2

64n2(n+ 1)2

∫
d2y |1− y|−3 + (n+ 1)2

256n2

∫
d2y |1− y|−3|y − wn|2

(5.15)
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The remaining integrals are again clearly divergent, and must be regularized. One can
proceed just as before, but now the result is much simpler [64]∫

d2y |y|2a|y − 1|2b = sin(πb)Γ(1 + a)Γ2(1 + b)Γ(−1− a− b)
Γ(−a)Γ(2 + a+ b)

(5.16)

where we represent the integral as an analytic function of a, b. For the r.h.s. of eq. (5.15),
and making u = (y − wn)/(1 + wn) in the last integral, we get∫

d2y |y − 1|−3 = lim
a→0

4π
Γ(−a) = 0,∫

d2y |1− y|−3|y − wn|2 = (1 + wn) lim
a→1

−16π
Γ(−a) = 0,

(5.17)

hence
J (n) = 0, (5.18)

confirming that the anomalous dimension of O(1,1)±
n is protected to second order in λ,

as predicted.
Again, this is the same qualitative result found for the R-charged Ramond fields R±n in

contrast with the corresponding chirals O(1±1,1±1)
n ; the latter are protected while the former

renormalize [39, 40]. Since these fields are related by spectral flow of the algebra of the
n-twisted sectors, the result might seem odd at first sight. This is a different manifestation
of the phenomenon discussed at the end of section 4 in relation to the OPEs — as explained
in ref. [40], the sectorial algebras with c = 6n do not survive the deformation of the theory
because the operator O(int)

[2] mixes different twisted sectors. Note that the Ramond fields
R0±

[N ] with conformal weight hR
N = 1

4N = 1
24corb, which are related to the chirals with

h = 1
2N = j3 by a spectral flow of the total orbifold algebra with corb = 6N , are still

protected, at least in the large-N limit — but the fields with twist n < N are not.

6 Conclusion

In the present paper we have extracted conformal data from the four-point function
G0(x, x̄), parameterized by the covering-surface coordinate x, and obtained in eq. (3.22).
It is instructive to compare this function with its R-charged counterpart G+(x, x̄), given
in eq. (A.6). Although the R-neutral and the R-charged fields have the same twist and
the same dimensions, the corresponding four-point functions have different analytic struc-
tures. For generic n, the positions of the branching points of G+ and G0 coincide (for
special values of n, in each case, the branching points may become non-branched zeros or
poles); meanwhile, G0 has two additional simple zeros at x = 1−n

2 ±
√
n2−1
2 . In particular,

the two functions have singularities at the same points, xa = {−n, 1−n
2 , 0,∞},14 with the

branching structure at these points being different in each case. This is, of course, a direct
consequence of the covering map parameterization, and of the fact that the singular points
correspond to (non-trivial) OPE limits: at xa = {n−1

2 ,∞}, both G+ and G0 have the
14Note that these points have negative exponents for all n > 2.
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same behavior, because this is the coincidence limit of the interaction operators present in
both functions, while at xa = {0,−n} the functions have different branching structures,
reflecting the different dynamics of the R-charged and R-neutral fields as they are taken
near the interaction operator.

In recent works [39, 40], we have shown that the R-charged Ramond ground states in
the n-twisted sectors, R±[n], acquire λ

2-dependent anomalous dimensions in perturbation
theory, for n < N . For n = N , the dimensions are protected at least at leading order in
the genus-zero, large-N approximation. Here we have expanded these results to include
the remaining Ramond fields R0±

[n] , with zero R-charge. Although the dynamics is different,
the results are qualitatively similar: Ramond fields with non-maximal twists are renormal-
ized, and their dimensions are lifted at order λ2. The qualitative agreement of behavior
between the renormalization properties of R-charged and R-neutral Ramond fields extends
beyond the results presented here to include composite fields [65]; in particular, there is
no renormalization of the Ramond ground states of the full orbifold theory, i.e.

∏
i(R

(i)
ni )ki ,

with
∑
i kini = N , where each R(i)

ni is an R-neutral or an R-charged Ramond field [46].
Let us note that using Ward identities, it is possible to use the functions computed here

and in [39, 40, 46, 65] to obtain correlators involving excited fields such as the ones relevant
for the study of the three charge D1-D5-P system [13, 31, 66–70], in a rather straightforward
manner. In contrast to the 1/4-BPS two-charge solutions, the R-neutral Ramond ground
states do enter as crucial ingredients of the CFT realization of 1/8-BPS microstates where,
instead of the product of pure Ramond fields

∏
i(R

(i)
ni )ki , now the R-neutral fields must be

excited by R-current modes, for example [R+
1 ]N−kn[(J+

−1)`R0±
n ]k see e.g. [69]. More than

being tools for obtaining anomalous dimensions, the four-point functions we have computed
contain important information about the dynamics of the Ramond fields, and the effect
of the interaction operator upon them. We found new non-BPS fields Y0±

[m] of conformal
weight hYm = m

4 + 3
4m in the OPE channels, with twists m dictated by the composition

of the cycles of R0±
[n] and O

(int)
[2] . This R-neutral doublet should be compared with the

corresponding R-charged doublet Y ±[m] found in the OPEs with the R-charged Ramond
fields R±[n] and O

(int)
[2] , whose conformal weight is hYm = m

4 + 5
4m [40]. The OPEs and the

conformal blocks are a fundamental part of a conformal field theory, and since the twisted
Ramond fields are very basic building blocks of the orbifold CFT, exploring their detailed
dynamics as one moves the theory away from the free orbifold point is an important task.
In this respect, we would like to investigate further the nature of the “intermediate” fields
Y0±

[m], their relation to the fields A0±
[m] and B0±

[m] appearing in the OPE of the interaction
operator with O(1,1)±

[n] , and how these OPEs are related to the failing of the Ramond fields
from being protected, while the chiral fields are.
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A Four-point functions with R-charged fields

Let us use the LM technique to compute the four-point function

G+(u, ū) =
〈
R−[n](∞)O(int)

[2] (1)O(int)
[2] (u, ū)R+

[n](0)
〉

(A.1)

for the R-charged Ramond fields R±0
[n] . This function was found in [39, 40] via the stress-

tensor method. The goal here is to show that it is much simpler to find than the R-neutral
function of section 3.1. Since the Ramond fields are purely fermionic, the bosonic factor
GB of the correlator is the same as before, given by eq. (3.15). The twist factor Gσ = eSL is
universal for the fixed twist structure, and again given by the Liouville action (3.9). What
we need to compute anew is the fermionic factor GF . The R-charged Ramond fields lift to

R±n (0, 0̄)←[ b
− 1

4n
0 e±

i
2 (φ1+φ2)(0)× c.c

R±n (∞, ∞̄)←[ b
1

4n∞ e±
i
2 (φ1+φ2)(∞)× c.c

(A.2)

Let us first consider the first term I in the interaction product (3.14). The holomorphic
correlator is, now, instead of (3.16),〈

e−
i
2 (φ1+φ2)(∞)e−

i
2 (φ1−φ2)(t1)e

i
2 (φ1−φ2)(x)e

i
2 (φ1+φ2)(0)

〉
= (t1 − x)−

1
2 , (A.3)

and the anti-holomorphic part is, instead of (3.17),〈
e
i
2 (φ̃1+φ̃2)(∞̄)

[
e
i
2 (φ̃1−φ̃2)(t̄1)e−

i
2 (φ̃1−φ̃2)(x̄)

+ e−
i
2 (φ̃1−φ̃2)(t̄1)e

i
2 (φ̃1−φ̃2)(x̄)

]
e−

i
2 (φ̃1+φ̃2)(0̄)

〉
= 2(t̄1 − x̄)−

1
2

(A.4)

Next, it is easy to see that all the other interaction terms II, III, IV give the exactly the
same result. The product of the two correlators (A.3) and (A.4) gives, directly, a real
function |t1 − x|−1. By contrast, the product of correlators (3.16) and (3.17) is not real,
only the sum of the four terms I, II, III, IV is real.

The fermionic factor takes into account also the factors coming from the covering map,

GF =
∣∣∣b− 1

4n
0 b

1
4n∞ b
− 1

8
1 b

− 1
8

x (t1 − x)−
1
2

∣∣∣2 (A.5)

Multiplying Gσ×GB×GF by the additional factor (3.21), expressing everything explicitly
in terms of x using (3.8), we obtain

G+(x, x̄) =
∣∣∣∣∣Cx−

5n
4 + 5

2 (x− 1)
5n
4 + 5

2 (x+ n)−
3n
4 + 1

2 (x+ n− 1)
3n
4 + 1

2

(x+ n−1
2 )4

∣∣∣∣∣
2

, (A.6)

in agreement with [39, 40].
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