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1 Introduction

Entanglement [1] is an intriguing feature of Quantum Mechanics. Its has become increas-
ingly important in quantum information [2], condensed matter [3–6], string theory [7], and
the interpretation of black hole entropy [8]. For example, in the condensed matter systems,
the ground states of the conventional superconductors [9, 10] and the fractional quantum
Hall effect [11] are both entangled states. The level of the entanglement between a certain
region and its surroundings is measured by the entanglement entropy. Such systems may
undergo quantum phase transition at zero temperature by tuning their physical parame-
ters. The quantum phase transition [12] is fundamentally different from the conventional
thermal phase transition occurred at non-zero temperature as the former involves a quali-
tative change of the ground state of a quantum system. In this paper, we are particularly
interested in the insight about the quantum phase transition from the point of view of the
entanglement entropy.

Traditionally, different phases are classified by the order parameters keeping track
of the symmetries broken in the phase transitions. Valuable insights on the change of the
symmetry and the degrees of freedom in a phase transition can be obtained by the symmetry
breaking order parameters and thermal dynamical variables, respectively, both of which
can be studied in thermal equilibrium. On the other hand, by means of the transport
coefficients, one can also study how a phase transition affects the real time responses of
the system perturbed slightly away from thermal equilibrium. One example is the shear
viscosity (η) over the entropy density (s). At the phase transition temperature of a scalar
field system, this η/s ratio tends to minimize locally; the minimum has a smooth structure
for a crossover, forms a cusp for a second order phase transition, and has a jump for a first
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order phase transition [13]. This behavior is seen in many systems in nature and many
theoretical models. However, counter examples can be engineered [14].

We aim to pursue analogous understanding on the behavior of the entanglement en-
tropy under the quantum phase transitions in the present research. As the entanglement
entropy scales with the area of the interface between two entangled regions, at finite tem-
peratures it becomes subleading compared with the thermal entropy which scales with the
volume of the system. The quantum phase transition studies involving the entanglement
entropy had focused on the zero temperatures cases, in particular the lattice systems. For
example, previous work on the 1+1 dimensional transverse Ising model shows the entangle-
ment measure reaches a local maximum at the second order quantum phase transition [3, 6].
Studies on various spin chain models in 1+1 dimensions also reveal the universal scaling
behaviors of the ground-state entanglement near the quantum critical point [4, 5]. For a
broader review on the entanglement properties in many-body systems, see e.g. [15].

As for the systems of the scalar fields in the continuum, through the study of the
conformal cases [16–21] and the non-conformal cases [17, 22], it is known that the entan-
glement entropy (Sent) between a subregion A and its complement Ā of the spacetime has a
leading behavior exhibiting the power law divergence and the area law [23], Sent ∼ Λd−1A⊥,
where A⊥ is the area of the d− 1 dimensional boundary of A, with d denoting the number
of spatial dimensions and Λ is the momentum cutoff. For the non-conformal scalar field
theory to our particular interest in this paper, the subleading part of the entanglement
entropy, according to [22] which deals with a single-component massive scalar field in 3+1
dimensions with both the cubic and the quartic self-couplings, contains the λA⊥Λ2 term
arising from the quartic interaction − λ

4!φ
4, and the g2A⊥ ln(Λ−1) term from the cubic in-

teraction − g
3!φ

3, where λ and g are bare couplings. They are contributed by the two-loop
quantum corrections, and can be absorbed into the mass renormalization of φ. As a result,
the subleading part of Sent, e.g. 1

48π A⊥m
2
r lnm2

r , where mr stands for the renormalized
mass of the scalar field, becomes cutoff-independent, such that as mr varies, the change in
the entanglement entropy is cutoff independent and thus physical.

In this paper, we investigate how the entanglement entropy behaves in the quantum
phase transition of a scalar field system in the continuum under the spontaneous symmetry
breaking (SSB), by the path integral approach and the replica trick. The theoretical model
we explore is the O(N) σ-model, which is a weakly coupled N -component scalar field
theory, in 3+1 dimensions.1 Our scalar fields live in a bipartite infinite flat spacetime,
where each of the semi-infinite half-spaces is denoted by A, Ā. In the O(N) symmetric
phase, Our model has the quartic interactions λ

4

[∑N
i=1(φi)2

]2
as the mass squared µ2 of φi

is positive. By tuning µ2 from positive to negative, the O(N) symmetry is spontaneously
broken into O(N −1), and the field composition of the system turns into a massive mode σ
with a mass mσ =

√
−2µ2, and N −1 massless Goldstone bosons πi’s. In the broken phase

the cubic interactions 1√
2gmσ

(∑N−1
i=1 (πi)2σ + σ3

)
emerge, where g =

√
λ. This phase is

characterized by the emergence of a non-trivial order, i.e. a non-trivial scalar field VEV.

1This type of models had been extensively studied on their thermal phase transition properties, e.g.
providing a controlled perturbation to probe η/s. See for example [13, 24, 25].
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O(N) symmetric Spontaneous Symmetry Broken Phase

a 0 − 3
(4πN)2

(
N + 2

)
b 1 2

N

c 0 − 2
(4πN)2

{
9
√

5 ln
(

3+
√

5
2

)
+ (6 ln 2− 2) + (3 ln 2 + 2)N

}
Table 1. The values of the coefficients a, b, c in the entanglement entropy (1.1) for different phases.

As the SSB occurs, the system undergoes a quantum phase transition under which the
vacuum states change. We are interested in the leading and subleading UV divergences
of the entanglement entropy in this paper. We will apply the replica method and the
field theory expansion technique on the cone, to analyze the effect of the quantum phase
transition on the entanglement entropy in the O(N) σ-model due to the SSB. This is a
perturbatively calculable system due to weak coupling, and we present our result up to
two-loop corrections. To achieve our goal, we apply some of the approximation technique
from [22] to the calculation in our symmetric phase. However, in the broken phase, the
calculation method we use is different from [22], and hence the result; this will be explained
later in this section.

We summarize our result of the entanglement entropy divergence structures for the σ
model in the O(N) symmetric and the broken phase below, according to our renormaliza-
tion scheme up to two-loop level:

Sent.(µ2, λ) = A⊥N

48π

{
(ln 4)Λ2 + aλ̃|µ2|

(
ln |µ

2|
Λ2

)2

+ (b+ cλ̃)|µ2| ln |µ
2|

Λ2 +O

(
λ̃2,
|µ2|
Λ2

)}
, (1.1)

where the coefficients a, b, c are listed in table 1.
In these expressions, N is the number of species of the scalar fields, and λ̃ = λ/N . Note

that µ and λ all stand for the renormalized parameters. The area law is clearly observed,
with A⊥ denoting the area of the 2-dimensional boundary surface of A. There is also the
momentum cutoff Λ dependence in the leading divergence.

The a, b and c coefficients can be extracted from (where Λ̄ is some arbitrary cut-off)

a = ∂2

(∂ ln |µ2|)2
∂

∂|µ2|
24πSent.

A⊥Nλ̃

b+ cλ̃ = ∂

∂ ln |µ2|
∂

∂|µ2|

48πSent.

A⊥Nλ̃
− a|µ2|

(
ln |µ

2|
Λ̄2

)2
 . (1.2)

(1.1) is obtained by using the renormalized mass, coupling constant and fields at the
tree level, and introduce the counter terms to cancel the quantum loop corrections, in
contrast to [22]. The counter terms in the symmetry broken phase and those in the O(N)
symmetric phase are of the same origin (cf. appendix A).
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(1.1) shows that the area law is the leading behavior of the entanglement entropy in
both phases, which is expected. In the symmetric phase, the quartic interactions give
rise to the subleading non-analytic structure |µ2| ln |µ

2|
Λ2 at O(λ̃0), agreeing with the result

of [22]. In the broken phase, however, a new log squared term |µ2|
(
ln |µ

2|
Λ2

)2
emerges at

O(λ̃), which is more divergent than log. This term is never seen in previous literature,
including [22]. This term arises from the remnant of cancellation between the two-loop
expansions of the cubic interactions (emerged due to the SSB) and the counter term. The
Goldstone-Goldstone and the Goldstone-massive mode quartic interactions give rise to the
single log divergence (at O(λ̃)) and become sub-subleading.

The origin of the log squared term is explained as follows. We find that the approx-
imation used in [22] for integrating the sunset diagrams on the cone due to the cubic
interactions are over-simplified. Careful treatment of those diagrams in our work yields
the double logarithm behavior of the entanglement entropy in the broken phase. To explain
this schematically, [22] calculates the Green’s function Gn(x, x′) on the cone by assuming
that the leading divergence is dominated by x→ x′, such that the sunset diagram becomes
approximated by the two-loop diagram with one vertex. The divergence from one of the
loops is then canceled by the counter terms, leaving the single log behavior. However, our
analysis shows that the “x away from x′” part of the sunset diagrams on the cone should be
taken into account, and as a result the divergence cannot be canceled by the counter terms,
yielding the double log structure in the broken phase. We refer the readers to section 6 for
a more in-depth explanation, and to the appendix A for the detail of the calculation. We
also argue that the log and the double log structures are independent of the renormalization
schemes, as they are of order λ̃ quantities, while the influence of different schemes takes
effect at O(λ̃2) or higher.

The other difference between our work and [22] is in the system setup. [22] employs
a massive single-component scalar field with − g

3!φ
3 − λ

4!φ
4 interactions. Our model deals

with a N -component massive scalar field in the symmetric phase with only the quartic
interactions, while in the broken phase due to SSB, the massless Goldstone bosons and a
massive σ field emerge, and the cubic interactions between them naturally arise beside the
quartic ones, in which the massive scalar mode and the massless Goldstone bosons couple
together. In this sense, our work generalize the result of [22]. If we take N = 1, our model
simplifies to [22]’s setup, as the massless Goldstone bosons disappear. But in the broken
phase, (1.1) doesn’t reduce to [22]’s result because we don’t take x→ x′ approximation for
the Green’s function on the cone, as mentioned above.

Moreover, our work also present the novel result in the numerical behavior of the
entanglement entropy of the O(N) σ-model under the quantum phase transition due to the
SSB. The scaling behavior of the entanglement entropy thus can be spelled out from (1.1).
(See section 5 for details.) We find the entanglement entropy reaches its maximum with a
cusp at the transition point µ2 = 0. While |µ2| shifts away from 0 into either phase, the
entanglement entropy decreases as the correlation length reduces away from the quantum
critical point, as shown in figure 4. Although our result of the entanglement entropy change
in figure 4 is numerical, it would be interesting if an analytic expression of the universal
scaling behavior near the transition point can be unveiled.
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In our O(N) sigma model, the phases are classified by the nontrivial order 〈φN 〉.
Besides this SSB-driven quantum phase transitions, there are also phase transitions which
do not involve any “local” order parameters. One example is the topologically ordered
phases [26]. In these cases, the entanglement entropy remains an important quantity
identifying the topological order [27, 28]. The entanglement entropy contains a part called
the topological entanglement entropy [29, 30], which varies in different topological phases.
Such systems, however, are beyond the scope of this paper.

The structure of this paper is organized as follows. We first review in section 2 the
fundamentals of the entanglement entropy and the replica method in quantum field theory.
Section 3 presents the entanglement entropy of O(N) σ-model in the O(N) symmetric
phase, up to two-loop perturbations. Section 4 performs analogous calculation for the
broken phase. Section 5 presents the numerical behavior of the entanglement entropy versus
µ2 in both phases. The entanglement entropy has a cusped maximum at the quantum phase
transition point. Section 6 discusses and concludes our work, and presents potential future
applications. The appendix A presents the calculation details in deriving the divergence
structures of the entanglement entropy.

2 Entanglement entropy and replica method

The thermal entropy indicates the level of disorder of a system. In the quantum case, the
thermal entropy is given by the von Neumann entropy

S = Tr[ρ ln ρ], (2.1)

where ρ is the density matrix which is normalized to Trρ = 1. In the diagonalized basis, the
von Neumann entropy reads S =

∑
i pi ln pi, where pi is the probability for each microstates

being occupied. By postulating the occupation of any microstate is equally probable, (2.1)
is equivalent to the statistical definition of the entropy S ∼ ln Ω up to the Boltzmann
constant, reflecting the total number of accessible microstates in a quantum system of
microcanonical ensemble.

Consider a bipartite system S in a pure state and composed of subsystems A and Ā,
where the degrees of freedom in A, Ā are entangled in some way. If one is forbidden to
access Ā, then for such an observer, A appears in a mixed state, with a reduced density
matrix given by

ρA = TrĀρ, (2.2)

where Ā is traced out. The information regarding the entanglement is encoded in ρA.
As a result, the level of entanglement between A and Ā is described by the entanglement
entropy, which is defined by

Sent. = TrA[ρA ln ρA]. (2.3)

Since the vacuum wave-function of Ā is buried in the excited wave-functions of the “mix-
state” subsystem A described by ρA, the expectation value of a local operator can be
computed by

〈0|OA|0〉 = Tr[ρAOA]
Tr[ρA] . (2.4)
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One example of such set-up is the black holes. Suppose that the whole spacetime is in a
pure state, but we are unable to access the region inside the event horizon. Therefore the
black hole appears thermal to an outside observer due to the entanglement between the
two regions separated by the horizon, and so the entropy arise. This is one interpretation
of the black hole entropy.

In this paper, we will consider the case that the system S contains the whole space,
while the subsystems A and Ā each occupies the infinite half-space, divided by a codimen-
sion 2 (with respect to the whole spacetime) surface. We follow the convention in [22],
denoting the time t and radial coordinate x‖ as the longitudinal directions, as they are rele-
vant in our field theory calculation, while the transverse directions indicate the dimensions
of the surface enclosing the subsystem A.

In order to calculate the entanglement entropy, we take the generic scalar field theory
as an example and review the replica method in the following. The entanglement entropy
can be calculated by the following trick [17, 18, 22]

Sent. = − ∂

∂n

∣∣∣∣
n→1

ln Tr[ρnA] = −Tr[ρA ln ρA], (2.5)

where the trace is taken within A implicitly. As n→ 1, we can take n = 1 + ε and expand
ln Tr[ρnA] in ε for small ε. Then the entanglement entropy can be spelled out from the
O(ε) term.

To calculate (2.5), we first notice that the elements of the reduced density matrix ρA
can be expressed in the path integral formalism,

〈ϕA|ρA|ϕ
′
A〉 =

ˆ
Dφδ

[
φA(τ = 0+)− ϕA

]
δ
[
φA(τ = 0−)− ϕ′

A

]
e−SE[φ=φA⊕φĀ], (2.6)

where SE is the action of φ over the whole Euclidean space with imaginary time τ . φA, φĀ
are the scalar fields taking values in A, Ā respectively. The field bases |ϕA〉 and |ϕ

′
A〉 are

states in A at certain time. In this expression, Ā region is traced out. Since taking trace
amounts to identifying the Euclidean time of the initial and the final states, (2.6) implies
that ρA is computed on a manifold where Ā is compactified (in τ direction) to a cylinder
while A is left open. When we had identified φ(τ = −∞) = φ(τ =∞), the matrix element
of ρnA is computed on a manifold on which Ā consists of n cylinders on top of each other
while A becomes a n-sheeted spacetime manifold. Taking trace of ρnA then joins the first
sheet with the last for A, compactifying it into a cone with a total angle 2nπ (or an excess
angle δ = 2(n − 1)π), where n ≥ 1. See e.g. figure 1 in [22] or figures 1 and 2 in [18] for
the pictorial realization. As a result, it is natural to define the trace of ρnA by

ln Tr[ρnA] = ln
(
Zn
Zn1

)
, (2.7)

where Zn denotes the partition function of the field theory on the n-sheet manifold. (n = 1
reduces to the case on the ordinary Euclidean space.) The normalization by Zn1 is due to
the requirement that Tr[ρnA]|n→1 = 1.

To summarize, using the replica trick, the entanglement entropy is calculated by

Sent. = − ∂

∂n
[lnZn − n lnZ1]

∣∣∣∣
n→1

= −1
ε

[lnZn − n lnZ1] . (2.8)
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For n > 1, the replication of sheets takes place in the Euclidean time coordinate, which
belong to the longitudinal directions, while the transverse directions remain ordinary Eu-
clidean. We will adopt polar coordinates for the longitudinal part of the spacetime,

(τ, x‖) =
(
r sin θ

n
, r cos θ

n

)
, (2.9)

where r ∈ (0,+∞) and θ is periodical with 2πn. Thus the partition function on the n-sheet
manifold is written down as

Zn =
ˆ
Dφ exp

[
−
ˆ
dd⊥x⊥

ˆ ∞
0

rdr

ˆ 2πn

0
dθLE[φ(r, θ, x⊥)]

]
. (2.10)

Such expression is valid only for the total spacetime dimensions d+ 1 > 2.
Since the partition function in quantum field theory is interpreted as the vacuum

energy, and the entanglement entropy of our model is obtained by (2.8), Sent. can be
interpreted as the derivative of the correction to the vacuum energy due to the cone with
respect to the conical deficit angle. This notion will be more transparent as we calculate
the free field entanglement entropy in the O(N) symmetric phase in next section.

3 Perturbation expansion of the O(N) σ-model in the symmetric phase

The Euclidean Lagrangian of 3 + 1 dimensional O(N) model is given by

LE =
N∑
i=1

[1
2(∂φi)2 + 1

2µ
2(φi)2

]
+ λ

4

[
N∑
i=1

(φi)2
]2

+ Lc.t., (3.1)

which has N species of scalar fields with the same mass µ, admitting O(N) symmetry and
quartic interactions. Lc.t. is the counter terms to cancel the loop corrections.

Since in this paper we use the renormalized mass µ and the renormalized coupling
constant λ in the tree level action, the partition function on n-sheet manifold can be
expanded with respect to λ by

lnZn = lnZn,0+
∞∑
j=1

(−λ)j

4j j!

ˆ  j∏
k=1

dd⊥xk⊥

ˆ
n

 j∏
k=1

d2xk‖


〈
[

N∑
m=1

φm(x1)2
]2

. . .

[
N∑
n=1

φn(xj)2
]2

〉0+counter terms

 , (3.2)

where lnZn, 0 denotes the O(λ0) free field part. The counter terms are introduced to cancel
the divergence from the perturbative corrections of loops, such that the renormalized µ and
λ receives no further quantum corrections.

´
n is the integral over the 2-dimensional n-sheet

manifold
´∞

0 rdr
´ 2πn

0 dθ.
In the following we calculate the entanglement entropy up to lowest-order corrections

(in this case, O(λ) bubble diagrams). The free field contribution is computed by the
following method [22]. First, one notices that

∂

∂µ2 lnZn,0 = −1
2

ˆ
n
dd+1xGn(x, x), (3.3)
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where Gn(x, x′) is the Green’s function of the free scalars on the n-sheet Riemann surface,
satisfying (−∇2 +µ2)Gn(x, x′) = δd+1(x−x′). The expression for the Green’s function on
n-sheet Riemann surface Gn(x, x′) is very complicated, see [31] for details. (We will use it
later in (4.4) in the broken phase.) However, if x′ coincides with x, however, the Green’s
function becomes relatively simpler and we employ an approximation used in [17] and [22].
Gn(x, x) can be decomposed into

Gn(x, x) = G1(0) + fn(r). (3.4)

G1(0) = G1(|x− x|) is the (divergent) Green’s function on the Euclidean flat space, which
admits translational invariance, and fn(r) represents the correction to the one-loop vacuum
bubble due to the conical singularity [22]:

fn(r) = 1
2πn

1− n2

6n

ˆ
dd⊥p⊥
(2π)d⊥

K2
0

(√
µ2 + p2

⊥r

)
+ · · ·

n=1+ε= − ε

6π

ˆ
dd⊥p⊥
(2π)d⊥

K2
0

(√
µ2 + p2

⊥r

)
+O(ε2) + · · · , (3.5)

with ˆ ∞
0

dy y K2
0 (y) = 1

2 ⇒
ˆ ∞

0
rdrK2

0

(√
µ2 + p2

⊥r

)
= 1

2
1

µ2 + p2
⊥
, (3.6)

where K0 is the modified Bessel function of the second kind Kν with ν = 0, and · · · denotes
the finite subleading terms. Since fn is finite for r > 0 and decays exponentially at r →∞
(see figure 1), one can see that fn vanishes for n → 1 (i.e. ε → 0, where ε = n − 1 is the
deficit angle of the cone), as expected.

Now we can make use of (3.3) and the subsequent approximation of Gn(x, x) in (3.5)
and (3.6) to calculate the free fields contribution to the entanglement entropy in the O(N)
symmetric phase from (2.8):

Sfree
ent.(µ2) = −1

ε
(lnZ1+ε,0 − (1 + ε) lnZ1,0)

= N

ε

ˆ µ2

∞

dm2

2

ˆ
dd⊥x⊥

{ˆ
1+ε

d2x‖Gn(x, x)− (1 + ε)
ˆ

1
d2x‖G1(x, x)

}
.

The reason for integrating the mass squared parameter from ∞ to µ2 is because we expect
the entanglement entropy to vanish at µ2 =∞, due to vanishing correlation length ξ ∼ µ−1.
We can further decompose the integration range into

´ µ2

∞ dm2 =
(´ 0
∞+
´ µ2

0

)
dm2,

Sfree
ent.(µ2) = N

ε

(ˆ 0

∞
+
ˆ µ2

0

)
dm2

2

ˆ
dd⊥x⊥

ˆ
1+ε

d2x‖ f1+ε(r) (3.7)

= −A⊥
N

12

ˆ
dd⊥p⊥
(2π)d⊥

[ˆ 0

∞

dm2

m2 + p2
⊥

+
ˆ µ2

0

dm2

m2 + p2
⊥

]

= −A⊥
N

12

ˆ
dd⊥p⊥
(2π)d⊥

[
ln p2

⊥
Λ2 + p2

⊥
+ ln µ

2 + p2
⊥

p2
⊥

]

= −A⊥
N

12

ˆ
dd⊥p⊥
(2π)d⊥

ln µ2 + p2
⊥

Λ2 + p2
⊥
, (3.8)
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Figure 1. Behavior of fn(r), giving rise to the subleading divergence in Sfree
ent.(µ2).

where A⊥ =
´
dd⊥x⊥ is the total area of the transverse space separating A and Ā, and Λ is

the mass scale (or momentum) cutoff in the integration over dm2. In the above calculation,´
n d

2x‖G1(0) and n
´

1 d
2x‖G1(0) cancel out exactly.

In (3.8), the leading divergence ∼ Λd−1 comes from
´ 0
∞

dm2

2
´
dd⊥x⊥

´
1+ε d

2x‖ f1+ε(r).
This can be seen from the (K0)2 integral in (3.5) in 3+1 dimensions (d = 3):

1
ε
r2fn(r) ∼ −

ˆ
dp⊥ p⊥K

2
0 (
√
µ2 + p2

⊥r) = µ2

2
(
K0(µr)2 −K1(µr)2

)
(3.9)

∼

−1
2 + (µr)2

2

[
(lnµr)2 + · · ·

]
+O

(
µ3r3), r → 0

−e2µr, r →∞
(3.10)

as displayed in figure 1. Such behavior means, as the location of the quantum bubble
is far away from the tip of the cone, the effect of the conical singularity is exponentially
suppressed, and the bubble sees a flat Euclidean space. While the quantum bubble is very
close to the conical point, it is 1

r2 divergent. Then plug (3.9) into (3.7), one finds that

Sfree
ent.

∣∣∣
leading

∼
ˆ
rdr

ˆ 0

∞
dm2m

2

2
(
K0(µr)2 −K1(µr)2

)
=
ˆ
rdr
−1
3r4 ∝ Λ2. (3.11)

On the other hand, the subleading contribution ∼ ln Λ to the entanglement entropy comes
from the integral

´ µ2

0
dm2

2
´
dd⊥x⊥

´
1+ε d

2x‖ f1+ε(r). It is straightforward to check by
substituting the leading term in (3.10) at small r into (3.7), and then going through the
calculation in (3.11).

Since the calculation of Sfree
ent. in (3.7) stems from (2.8), where fn is the correction to

the one-loop vacuum bubble due to the cone, it would be more clear here to comprehend
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the interpretation of the entanglement entropy as the derivative of the correction to the
vacuum energy due to the cone with respect to the conical deficit angle, as mentioned in
the end of the previous section.

The perturbation at O(λ) level contributes to the partition function by

lnZn,1 = −λ4

ˆ
dd⊥x⊥

ˆ
n
d2x‖〈

[
N∑
i=1

φi(x)2
]2

〉0

= −λ4

ˆ
dd⊥x⊥

ˆ
n
d2x‖(N2 + 2N)

[
Gn(x, x)2

]
, (3.12)

where we had used Gijn (x, x′) = δijGn(x, x′). Then we get

Sent.(µ2,O(λ)) = 1
ε

λ

4 (N2+2N)
ˆ
dd⊥x⊥

[ˆ
1+ε

d2x‖G1+ε(x,x)2−(1+ε)
ˆ
d2x‖G1(x,x)2

]

=−N12 λ(N2+2N)G1(0)A⊥
ˆ

dd⊥p⊥
(2π)d⊥

1
µ2+p2

⊥
, (3.13)

in which we have used (3.4)∼(3.6), and as a result
´
nG

2
1 is canceled out by n

´
G2

1, leaving´
nG1(0)fn(r) as the leading contribution O(ε) in ε.

The following counter term is introduced to cancel the above O(λ) corrections:

− 1
2δµ

2
N∑
i=1

(φi)2, (3.14)

where
δµ2 = −(N + 2)λG1(0). (3.15)

This implies the renormalized mass µ is related to the bare mass µb by µ2 = µ2
b+

(N + 2)λG1(0). This result is consistent with [22]. The derivation of (3.15) is summa-
rized in appendix A for the interested readers. As a result, the entanglement entropy of
the σ-model in the O(N) symmetric phase is given by (3.8).

In 3+1 dimensions, d⊥ = 2, (3.8) gives rise to the following divergence structure:

Sent(µ2, λ) = A
(2)
⊥ Λ2

48π N

{
ln 4 +

(
µ2

Λ2

)
ln
(
µ2

Λ2

)
+O

(
λ̃2,

µ2

Λ2

)}
, (3.16)

where A⊥ is the area of a 2-dimensional boundary surface of A. All the correction at O(λ)
are canceled by the counter terms.

4 O(N) σ-model in the symmetry broken phase

The spontaneous symmetry breaking of O(N) occurs when the mass squared of the scalar
fields φi is tuned to µ2 < 0. Let’s suppose the SSB occurs in the φN direction, i.e.
φN develops a VEV v. Then the system is left with N − 1 massless Goldstone bosons
π1, . . . , πN−1 and 1 massive scalar σ,

(φ1, φ2, . . . , φN−1, φN ) = (0, 0, . . . , 0, v) + (π1, π2, . . . , πN−1, σ), (4.1)
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where the condensate v takes the value

v = 〈φN 〉 = mσ√
2g
, (4.2)

with mσ =
√
−2µ2 and the new coupling constant g =

√
λ. The Euclidean Lagrangian in

the SSB phase becomes

LE =
N−1∑
i=1

1
2(∂πi)2 + 1

2(∂σ)2 + 1
2m

2
σσ

2

+ g√
2
mσ

(
N−1∑
i=1

(πi)2σ + σ3
)

+ g2

4

[N−1∑
i=1

(πi)2
]2

+ σ4 + 2
N−1∑
i=1

(πi)2σ2

 . (4.3)

Compared to the original O(N) σ-model, the SSB phase contains not only the quartic
interactions but also the cubic ones with coupling gmσ/

√
2.

Since we use the renormalized g and mσ in the action, it requires to add counter
terms to the classical action to cancel the loop effects, The partition function up to O(g2)
corrections with respect to the new coupling constant g and mσ becomes,

lnZSSB
n = lnZSSB

n,0 −
g2

4

ˆ
dd⊥x⊥

ˆ
n
d2x‖

〈
[
N−1∑
i=1

(πi)2
]2

〉+〈σ4〉+2
N−1∑
i=1
〈(πi)2σ2〉


+ g2

4 m
2
σ

ˆ
dd⊥x⊥d

d⊥x
′
⊥

ˆ
n
d2x‖d

2x
′

‖

{
〈σ3(x)σ3(x′)〉

+
N−1∑
i,j=1
〈[πi(x)]2σ(x)[πj(x′)]2σ(x′)〉+2

N−1∑
i=1
〈[πi(x)]2σ(x)σ3(x′)〉


+integral of counter terms

= lnZSSB
n,0

− g
2

4

ˆ
n
dd+1x

[
(N2−1)Gπn(x,x)2+3Gσn(x,x)2+2(N−1)Gπn(x,x)Gσn(x,x)

]
+ g2

4 m
2
σ

ˆ
dd⊥x⊥d

d⊥x
′
⊥

ˆ
n
d2x‖d

2x
′

‖

[
6Gσn(x′,x)3+2(N−1)Gπn(x′,x)2Gσn(x′,x)

]
+integral of counter terms. (4.4)

This is up to O(g2) ∼ O(λ). lnZSSB
1 can also be obtained analogously. Note that the expec-

tation value here is taken with respect to the new vacuum in the symmetry broken phase.
In terms of Feynman diagrams, these O(g2) ∼ O(λ) terms in the second and the third lines
of (4.4) are depicted by the one-vertex and two-vertex two-loops in figure 2 respectively.
The counter terms added to the action for canceling the two-loop contributions are

− g2

2

(
δ(1)µ2+m2

σ

2 δ(2)λ

)N−1∑
i=1

(πi2)2− g2

2

(
δ(1)µ2+ 3m2

σ

2 δ(2)λ

)
σ2− gmσ√

2

(
δ(1)µ2+m2

σ

2 δ(2)λ

)
σ,

(4.5)
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Figure 2. Feynman diagrams contributing to the two-loop corrections to the entanglement entropy
in (4.4). The solid lines denote the massive mode σ while the dashed lines represent the Goldstone
bosons πi. The left column depicts the quartic interaction between σ’s and πi’s. The middle column
is the two-loops arising from the cubic interactions, while the right one represent the counter terms’
effects to cancel the divergence due to the diagrams in the left and central column.

where δ(1)µ2, δ(2)λ denote the coefficients of the mass and the coupling constant renormal-
ization counter terms respectively, with the superscripts (1), (2) labeling the orders in λ

(see (A.2) in the appendix A for the meaning of the superscripts (1), (2)). Note that the
wave function renormalization counter term does not involve up to O(λ) here.

In (4.4), we omit the cubic interactions 〈πi(x)πi(x)σ(x)〉 and 〈σ(x)σ(x)σ(x)〉 at O(g)
level, because they both vanish. Moreover, the tadpole diagrams
g2m2

σ

4

ˆ
n
dd+1x

ˆ
n
dd+1x′

{
9Gσn(x′, x′)Gσn(x′, x)Gσn(x, x) (4.6)

+ (N − 1)2Gπn(x′, x′)Gσn(x′, x)Gπn(x, x) + 6(N − 1)Gπn(x′, x′)Gσn(x′, x)Gσn(x, x)
}

are also dropped out, due to the requirement of the vanishing one-point function 〈σ〉 = 0
in the vacuum of broken phase such that these tadpole corrections to the one-point func-
tion 〈σ〉 should be canceled out by the counter terms. This gets rid of the contribution
from (4.6), and gives rise to the condition

δ(1)µ2 + m2
σ

2 δ(2)λ = −3Gσ(0)− (N − 1)Gπ(0). (4.7)

The Feynman diagrams of the non-vanishing two-loop contributions are displayed in fig-
ure 3. The explicit expressions of the counter terms are given by

δ(2)λ = 9Lσ(p2 = m2
σ) + (N − 1)Lπ(p2 = m2

σ),

δ(1)µ2 = −3Gσ(0)− (N − 1)Gπ(0)− 9m2
σ

2 Lσ(p2 = m2
σ)− m2

σ

2 (N − 1)Lπ(p2 = m2
σ), (4.8)

where Lπ,σ(p2) is defined as

Lπ,σ(p2) =
ˆ

dd+1q

(2π)d+1Gπ,σ(p− q)Gπ,σ(q) . (4.9)
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Figure 3. Feynman diagrams for the mass renormalization of πi’s (the upper row) and σ (the
lower row). The left column represents the contribution from the quartic interactions, while the
middle one from the cubic interactions. The right column stands for the counter terms. The solid
lines denote σ while the dashed lines πi’s.

We can now use (2.8) to calculate the entanglement entropy. The free field contribu-
tion is

S
SSB(free)
ent. (m2

σ) =−N−1
12 A⊥

ˆ
dd⊥p⊥
(2π)d⊥

ln p2
⊥

Λ2+p2
⊥
− 1

12A⊥
ˆ

dd⊥p⊥
(2π)d⊥

lnm
2
σ+p2

⊥
Λ2+p2

⊥
. (4.10)

The first term on the r.h.s. is due to the (massless) Goldstone bosons π1, . . . , πN−1. The
second term is from the massive scalar σ.

The two-loop corrections to the entanglement entropy are obtained as follows. The
one-vertex sector (i.e. the second line in (4.4), or the left column of figure 2) is computed
analogously to (3.13), and the result is

∆SSSB
ent(1-vt)(m

2
σ, g

2) =−A⊥
g2

12

{(
3Gσ1 (0)+(N−1)Gπ1 (0)

)ˆ dd⊥p⊥
(2π)d⊥

1
m2
σ+p2

⊥

+
(
(N−1)Gσ1 (0)+(N2−1)Gπ1 (0)

)ˆ dd⊥p⊥
(2π)d⊥

1
p2
⊥

}
. (4.11)

As for the two-vertex sector (i.e. the third line in (4.4), or the middle column in
figure 2), in general the Green’s function on n-sheet Riemann surface Gn(x, x′) is very
complicated. [22] proposes some approximation to simplify the calculation, but we discover
that part of [22]’s approximation is invalid, as explained below. Then we will adopt the
approach used in [31] instead in our calculation. The Green’s function Gn(x, x′) on the
cone can be decompose into

Gn(x, x′) = G1(|x− x′|) + fn(x, x′), (4.12)

where G1 represents the O(ε0) part while fn the O(ε) (and the higher order) effects of the
Green’s function, in analogy to (3.4), and ε is the deficit angle of the cone. It is noticed
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that
´
n d

d+1x
´
n d

d+1x′G1(|x−x′|)3−n
´

1 d
d+1x

´
1 d

d+1x′G1(|x−x′|)3 is subleading at UV,
where G1(|x−x′|) could either denotes the Green’s function for σ or πi. For convenience we
change the coordinates from (x, x′) to (x, y) with y = x′−x, such that the aforementioned
subtraction becomesˆ

n
dd+1x

ˆ
n
dd+1yG1(|y|)3 − n

ˆ
1
dd+1x

ˆ
1
dd+1yG1(|y|)3. (4.13)

[22] argues that the divergence of G1(|y|) occurs at small y ∼ Λ−1, i.e. as x′ approaches
x, where the fields at x′ couldn’t “sense” the existence of the conical point when x is not
close to the conical singularity. This means that for the divergent part of G1(|y|), the
integration over

´
n d

d+1y actually takes 2π angle for y to encircle x once instead of taking
2nπ, and hence contributes no n factor. The only n factor in the first term of (4.13) is from´
n d

d+1x. Then it is straightforward to see that, at UV, (4.13) schematically behaves as

nV Λd−1 − nV Λd−1,

and the two terms cancel out.
However, we notice that this argument breaks down when x is very close to the conical

singularity, i.e. |x| < Λ−1, such that the conical singularity is located within y < Λ−1.
In this case, both

´
n d

d+1x and
´
n d

d+1y give rise to an n factor, but the former only
produce a A⊥2nπ/Λ2 coefficient due to restricting |x| < Λ−1. So in this scenario, (4.13)
has non-vanishing but finite contribution proportional to

A⊥
n2

Λ2 Λd−1 −A⊥
n

Λ2 Λd−1 = A⊥Λd−3(n2 − n),

whose contribution is of higher order in the entanglement entropy.
In terms of (x, y) coordinates, the leading divergent contribution to ∆SSSB

ent(2-vt)(g
2)

comes from
g2m2

σ

4

ˆ
n
dd+1x

ˆ
n
dd+1y

{
18Gσ1 (|y|)2fσn (x, y)

+ 2(N − 1)
[
2Gσ1 (|y|)Gπ1 (|y|)fπn (x, y) +Gπ1 (|y|)2fσn (x, y)

]}
. (4.14)

By further decomposing y into y⊥ and y‖, the above expression gives rise to the following
corrections to the entanglement entropy:

∆SSSB
ent(2-vt)(m

2
σ, g

2) ∼ g2A⊥
12

ˆ
dd⊥p⊥
(2π)d⊥

m2
σ

m2
σ + p2

⊥

×
[
9Γσ(p2

⊥) + (N − 1)Γπ(p2
⊥) + 2(N − 1)Γπσ(p2

⊥)
]
, (4.15)

where

Γπσ(p2
⊥) =

ˆ
d2k‖
(2π)2

d2k⊥
(2π)2

1
k2 +m2

σ

1
k2
‖ + (k⊥ + p⊥)2 ,

Γπ(p2
⊥) =

ˆ
d2k‖
(2π)2

d2k⊥
(2π)2

1
k2

1
k2
‖ + (k⊥ + p⊥)2 , (4.16)

Γσ(p2
⊥) =

ˆ
d2k‖
(2π)2

d2k⊥
(2π)2

1
k2 +m2

σ

1
k2
‖ + (k⊥ + p⊥)2 +m2

σ

.
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These three expressions correspond to the three one-loop Feynman diagrams from the top
to the bottom in the middle column of figure 3 respectively.

One expects that two-loop contributions from (4.11) and (4.15) will be canceled by the
counter terms in (4.5). This is indeed the case for the one-vertex sector (4.11); however
there are residual terms from (4.15) after the cancellation,

∆SSSB
ent(res)(m

2
σ, g

2) ∼ g2A⊥
12

ˆ
d2p⊥
(2π)2

m2
σ

p2
⊥ +m2

σ

[
9Dσ(p2

⊥, q
2) + (N − 1)Dπ(p2

⊥, q
2)
]∣∣∣
q2=m2

σ

+ g2 (N − 1)A⊥
12

ˆ
d2p⊥
(2π)2

m2
σ

p2
⊥ +m2

σ

[
2Dπσ(p2

⊥, q
2)
]∣∣∣
q2=0

, (4.17)

where

Dσ(p2
⊥, q

2) = Γσ(p2
⊥)− Lσ(q2) 6= 0,

Dπ(p2
⊥, q

2) = Γπ(p2
⊥)− Lπ(q2) 6= 0, (4.18)

Dπσ(p2
⊥, q

2) = Γπσ(p2
⊥)− Lπσ(q2) 6= 0,

with Lσ, Lπ and Lπσ given by (4.9).
The existence of these cancellation remnants means that the expansion of SSSB

ent. involves
non-trivial subleading terms. In 3+1 dimensions, the entanglement entropy reads

SSSB
ent. (m2

σ,λ) = 1
48πNA⊥Λ2

ln4−
3
2N+3
(4πN)2 λ̃

(
m2
σ

Λ2

)[
ln
(
m2
σ

Λ2

)]2

(4.19)

+
(

1
N
− 2(N−1)+9

√
5 ln((3+

√
5)/2)

(4πN)2 λ̃

)(
m2
σ

Λ2

)
ln
(
m2
σ

Λ2

)
+O

(
λ̃2,

m2
σ

Λ2

) .
The calculation detail for obtaining (4.19) from (4.14) is presented in the appendix A. The
λ-independent part represents the exact cancellation between the quantum corrections and
the counter term of the quartic sector, leaving only the tree level effects, as in the O(N)
symmetric phase. In this part, the leading divergence remains the same compared to the
symmetric phase, contributed from N − 1 π’s and one σ, while the N -independent log
divergence arises solely from σ, since it is the only massive component in the broken phase.
The λ-dependent part in (4.19) represents the leftover of the cancellation between the two-
vertex two-loop sector (due to the cubic interactions) and the counter terms, giving rise
to the log squared divergence in the subleading part, which is more divergent than the
subleading log divergence in (3.16) in the O(N) symmetric phase.

We emphasize that the highest subleading divergence of the entanglement entropy we
obtained in (4.19) is log squared in the broken phase. This is different from the single log
result of cubic interaction in [22]. The reason is as follows. The author in [22] argues that
the leading divergence of (4.14) is contributed by y → 0, i.e. both y⊥ → 0 and y‖ → 0,
such that fn(x, y) becomes (3.5), and eventually (4.14) gives rise to a log divergence as the
subleading behavior of entanglement entropy. But our calculation shows that y 6= 0 part
in fn(x, y) is actually more divergent than log, and yields the log squared term, by setting
y‖ → 0 (which allows fn(x, y) to be approximated by (3.5)) while preserving the y⊥ 6= 0
contribution and carrying out the Fourier transformation.
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5 Numerical results of entanglement entropy

In this section, we present how the entanglement entropy varies with mass and how it
behaves upon quantum phase transition in the O(N) σ-model, up to O(λ). This result is
obtained by the numerical computation.

The numerical value of the entanglement entropy normalized by A⊥Λ2N against µ2/Λ2

in both phases are plotted in figure 4. The µ2 > 0 and µ2 < 0 regions are the O(N) symmet-
ric phase and the broken phase, respectively. This plot is shown in terms of renormalized
µ2, with λ̃ set to 10−6. In the O(N) symmetric phase, the leading and subleading parts of
Sent. solely arise from the free fields, and is λ-independent. On the other hand, in the sym-
metry broken phase, SSSB

ent contains the free field contribution and the λ-dependent remnant
from counter terms cancellation of two-loop corrections due to the cubic interactions. The
latter is shown in figure 5.

At the quantum critical point at µ2 = 0, one expects that the system acquires scaling
symmetry, which gives rise to universal properties, including the scaling law of the order
parameters. For the entanglement entropy up to the highest subleading term, we found a
novel scaling behavior near the transition point:

Sent ∼

 1 + 1
Λ2 ln 4µ

2 lnµ2 = (µ2)
µ2

Λ2 ln 4 (symmetric phase)

1− αm2
σ

(
lnm2

σ

)2
=
(
m2
σ

)−αm2
σ lnm2

σ (broken phase),
(5.1)

where α is a λ̃-dependent constant, α =
3
2N+3

(4πNΛ)2 ln 4 λ̃. Note that m2
σ = −2µ2 for µ2 < 0.

One immediately finds that the “critical exponents” are not constants as the conventional
quantum critical phenomena suggests; instead they are related to the mass squared scale
itself, and tends to 0 at µ2 → 0.

Moreover, one can find in figure 4 that the entanglement entropy reduces as µ2 is
tuned up. This is because when the system departs from quantum critical point as µ2

increases from 0, the correlation length ξ ∼ µ−1 decreases, and hence the level of entangle-
ment reduces. The entanglement entropy has a finite local maximum with a cusp at the
phase transition point µ2 = 0. This result is in agreement qualitatively with [3] for the
Ising Model.

Such behavior of the entanglement entropy can also be interpreted from the point of
view of lattice models. The spatial derivative term in action of field theory is regarded as
the key for producing non-trivial entanglement. In the lattice models, the spatial derivative
term corresponds to the difference between the fields at one site and its nearest neighbor,
which is called the lattice link. Without the lattice links, the vacuum of the total system
would be just the direct product of local oscillator’s vacuum at each site,

|Ω〉 = |0〉1 ⊗ |0〉2 ⊗ . . . , (5.2)

i.e. there is no entanglement. However, when the lattice link is present, vacuum can be the
non-trivial superposition of the oscillator’s state at each site.

|Ω〉 =
∑
i1i2...

ci1i2...|φi1(1)〉 ⊗ |φi2(2)〉 ⊗ . . . , (5.3)

where |φi1(1)〉 is the i-th state of oscillator at site i.
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Figure 4. Entanglement entropy of the O(N) σ-model in 3+1 dimensions, in units of NA⊥Λ2

magnified by a factor of 100, against the mass squared of fields µ2 normalized by Λ2. The left half
(µ2 < 0, with m2

σ = −2µ2) is the spontaneous symmetry broken phase while the right half (µ2 > 0)
is the symmetric phase. In this plot, we take λ̃ = 10−6 in order for the perturbation calculation to
be valid. There is a cusped finite maximum at the quantum phase transition point µ2/Λ2 = 0.
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Figure 5. λ-dependent subleading part of the entanglement entropy at O(λ) in the symmetry
broken phase. Note that this plot is λ̃-independent, as it is in units of Nλ̃A⊥Λ2, magnified by a
factor of 10000.

On the other hand, the mass term in the action corresponds to the harmonic potential
for the oscillators at each site. As the mass increases, the potential wall becomes more steep,
which enhances on-site localization and suppresses hopping. The tunneling of quantum
fluctuations is also suppressed. All these effects reduce the level of entanglement against
increasing µ2.

When the number of φ species N > 1, the Goldstone bosons emerge in the symmetry
broken phase. The contribution to the entanglement entropy from each Goldstone mode is
fixed and independent of µ2, as been demonstrated in (4.10). On the contrary, the massive
mode always has N = 1 contribution. Therefore as the mass-varying contribution from σ is
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suppressed by increasing N , and becomes flatter. While N →∞, entanglement entropy in
the broken phase is dominated by the massless Goldstone bosons, and becomes completely
flat in the plot.

6 Discussion, conclusion and outlook

In this paper, we perturbatively calculate the entanglement entropy of O(N) σ-model with
spontaneous symmetry breaking of O(N) by tuning µ2 from being positive to negative in
3+1 dimensions, up to the O(λ) order. The entanglement entropy of this model in the
symmetric phase is given in (3.16), while in the broken phase it becomes (4.19). These two
expressions are combined in (1.1). We find that the area law is preserved in the quantum
phase transition. However, due to the emergence of the cubic interactions, the subleading
structure changes from log in O(N) symmetric phase to log squared in the broken phase.
We also numerically display the behavior of the entanglement entropy against µ2, as shown
in figure 4. There occurs a cusped peak at the quantum phase transition point µ2 = 0.
While |µ2| shifts away from 0, the level of entanglement reduces, in both phases. This
implies that such behavior of the entanglement entropy can be regarded as the signature
signifying the quantum phase transition in the O(N) σ-model with the order parameter 〈σ〉.

Generally speaking, in the quantum field theory calculation, each quantum loop gives
rise to a log divergence. The calculation for the symmetric phase (section 3) shows that
the two-loops of φ’s in general yield the (log)2 divergence, but one of the double logs is
canceled by the counter terms under the on-shell mass renormalization conditions, leaving
the single log result in (3.16). In the broken phase (section 4), similar cancellation happens
for the two-loop diagrams with one vertex due to the quartic interaction (in the left column
of figure 2) under the corresponding on-shell renormalization conditions.2 However, the
double log divergences of the two-loops with two vertices at x and x′ due to the cubic
interactions (in the middle column of figure 2) can not be canceled by the counter terms,
yielding the log squared structure in the entanglement entropy expression in (4.19). The
double log structure does not appear in [22] because their approximation assumes that
the x → x′ part dominates the Green’s function on the cone, which simplifies the sunset
diagrams from the cubic interactions in the middle column of figure 2 to the one-vertex two-
loop diagrams in the left column of the same figure. We had argued that this approximation
is incorrect in the last paragraph of section 4. If we take into account the "x away from
x′" contribution, the log squared divergence appears naturally. Note that the log and the
double log structures do not depend on the renormalization schemes because they are of
order λ̃ quantities. The effect of different schemes will take place at O(λ̃2) above.

In the expression of the entanglement entropy of our paper, we employ the renormalized
mass and coupling constant in the tree level, such that the final result is expressed in terms
of these renormalized parameters. From this point of view, our results of the log divergence
and the coefficients in Sent. of the O(N) symmetric phase is consistent with those in [22]
in terms of bare parameters. Despite that our renormalization prescription is different

2See the appendix A for the details.
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from [22]’s, but they should be equivalent. This is because their cutoff dependence in the λ-
independent subleading part is hidden in the renormalized mass, i.e. m2

r = m2
bare +δm2(Λ),

while we use renormalized parameters since the tree level, so that in our corresponding part
the cutoff dependence is manifest. These two results in fact describe the same physics.

The behavior of the entanglement entropy under spontaneous symmetry breaking had
been studied in some quantum systems, for example [32, 33]. [32] shows that, for the bi-
partite 1+1 dimensional Heisenberg ferromagnet with spontaneously broken global sym-
metry, the entanglement entropy in general diverges as n

2 logm as m is large, where m
is the number of the local degrees of freedom and is related to the subsystem size l by
m = ld, and n is interpreted as the number of zero-energy Goldstone bosons. In 1+1
dimensions, the boundary between the bipartite subsystems is a point; as a result, the
area law is replaced by a log. In our model, the subsystem size l is infinitely large, and
therefore we don’t have the finite volume (ld) contribution in the entanglement entropy.
[33] deals with the O(N) quantum non-linear sigma models in a finite volume of size L in
d+ 1 ≥ 2 + 1 dimensions. The O(N) symmetry is spontaneously broken into O(N −1) and
the Goldstone bosons pick up an induced mass by applying a small external field ~h. The
entanglement entropy between the bipartite subsystems is calculated by the wave function
method. For the cases of a smooth boundary in d = 2 and a straight boundary in d = 3
between the subsystems, the entanglement entropy they obtain has a power law lead term
divergent with the cutoff scale a exhibiting the area law, A⊥/ad−1, and a subleading log
term divergent with L, log(ρsL/c), where ρs comes from the Goldstone boson mass due
to explicit symmetry breaking and c is the Goldstone boson velocity. The coefficient of
the log term is proportional to the number of the Goldstone modes. Their model is the
so-called non-linear sigma model as their σ field is taken to be infinitely heavy and hence
integrated out. In our model, the Goldstone bosons remain massless so we do not see this
subleading log term, while the massive σ field in our model is included, giving rise to our
double log term (due to the cubic interaction) and log term (due to the quartic interaction)
in the broken phase. The absence of the massive σ field in [33] also explains why their
entanglement entropy lacks our double log term.

There are many interesting directions to be explored based on this work. Straight for-
ward generalization includes introducing the gauge fields into the O(N) σ-model, imposing
a chemical potential, or external electric-magnetic fields, and then study the quantum
phase transition in terms of entanglement. Such a system would be more complicated yet
more realistic. Moreover, in high energy physics, pion gas with isospin chemical potential
has quantum phase transition into Bose-Einstein condensate, which is also of interest to
study from the perspective of entanglement entropy.
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A Renormalization of O(N) model and entanglement entropy

In the symmetric phase, the action of O(N) sigma-model is composed of the renormalized
part and the counter terms,

L =
N∑
i=1

[1
2
(
∂φi

)2
− 1

2µ
2
(
φi
)2
]
− λ

4

[
N∑
i=1

(
φi
)2
]2

+
N∑
i=1

[1
2δZ

(
∂φi

)2
− 1

2δµ
2
(
φi
)2
]
− δλ

4

[
N∑
i=1

(
φi
)2
]2

, (A.1)

where

δZ = O(λ2),

δµ2 = λ δ(1)µ2 +O(λ2), (A.2)

δλ = λ2 δ(2)λ+O(λ3)

denote the wave-function, mass, and coupling constant counter terms expanded w.r.t. λ.
The superscripts (1), (2) in δ(1)µ2 and δ(2)λ label the coefficients of the corresponding
λ expansion order of δµ2 and δλ respectively. It can be demonstrated that wave-function
renormalization counter term δZ and the coupling renormalization counter term are no less
than second order. In O(λ), only the mass renormalization counter term δµ2 is involved.
So we have,

L =
N∑
i=1

[1
2
(
∂φi

)2
− 1

2µ
2
(
φi
)2
]
− λ

4

[
N∑
i=1

(
φi
)2
]2

−
N∑
i=1

[1
2δµ

2
(
φi
)2
]

(A.3)

up to O(λ). After the SSB, however, the fields split into

(φ1, φ2, . . . , φN−1, φN ) =
(

0, 0, . . . , 0, mσ√
2λ

)
+ (π1, π2, . . . , πN−1, σ). (A.4)

where mσ =
√
−2µ2, and the Lagrangian with the counter terms in (A.1) becomes

L =
N−1∑
i=1

[1
2
(
∂πi

)]
+
[1

2 (∂σ)2 − 1
2m

2
σσ

2
]

− λ

4

[
N−1∑
i=1

(
πi
)2
]2

− λ

4σ
4 − λ

2

[
N−1∑
i=1

(
πi
)2
]
σ2

−

√
λ

2mσ

[
N−1∑
i=1

(
πi
)2
]
σ −

√
λ

2mσσ
3

− λ

2

[
δ(1)µ2 + 1

2m
2
σδ

(2)λ

]N−1∑
i=1

[(
πi
)2
]

− λ

2

[
δ(1)µ2 + 3

2m
2
σδ

(2)λ

]
σ2

−

√
λ

2mσ

[
δ(1)µ2 + 1

2m
2
σδ

(2)λ

]
σ +O(λ2). (A.5)
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up to O(λ). By demanding the 1-loop mass correction be zero (see (A.7) below) and the
tadpole contribution (A.17) vanish, the two different combinations of the coefficients in the
counter terms in the last three lines of (A.5) are fixed, and the infinity in this Lagrangian
is canceled. The calculation is in the following.

The renormalization scheme depends on the renormalization condition. To fix the
mass renormalization counter terms which appear in both the symmetric and the broken
phases, we choose the on-shell mass renormalization condition, such that the renormalized
masses of φ (in the symmetric phase) and σ (in the broken phase) equal to their tree level
ones respectively. Assuming the propagator takes the form G−1(p2) = p2 +M2(p2).

As a result, in the symmetric phase, φ physical mass is defined by the renormalization
condition

M2
φ(p2 = µ2) = µ2, (A.6)

and in the broken phase, σ physical mass is fixed by

M2
σ(p2 = m2

σ) = m2
σ = −2µ2. (A.7)

In the O(N) symmetric phase, the entanglement entropy of the scalar field theory in
3 + 1 dimensions is UV divergent,

Sent.(µ2, λ) = #A⊥Λ2
[

(a0 + a1λ)

+ (b0 + b1λ)
(
|µ2|
Λ2

)
ln
(
|µ2|
Λ2

)
+O

(
λ2,
|µ2|
Λ2

)]
, (A.8)

where Λ is cut-off of momentum. This is indeed the case for the O(N) σ-model in symmetric
phase. As |µ2|/Λ2 → 0, the leading order is a0 +a1λ+O(λ2), while the subleading order is

(
b0 + b1λ+O(λ2)

)( |µ2|
Λ2

)
ln
(
|µ2|
Λ2

)
.

In this phase, the wave-function and the coupling renormalization counter terms are not
involved, so the renormalization condition at O(λ) level is given by

M2
φ,(0) +M2

φ,(1)λ+O(λ2) = µ2 , (A.9)

where

M2
φ,(0) = µ2, (A.10)

M2
φ,(1) = N

[
δ(1)µ2 + (N + 2)Gφ(0)

]
. (A.11)

Thus, we have
δµ2 = −λ(N + 2)Gφ(0) +O(λ2). (A.12)

The Sent. can be expressed by the transverse mass m2
⊥,

Sent.(µ2 > 0) = −NA⊥12

ˆ
d2p⊥
(2π)2 ln p

2
⊥ +m2

⊥(µ2)
p2
⊥ + Λ2 . (A.13)
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With the counter term, the transverse mass is just renormalized mass,

m2
⊥ = µ2 + λ(N + 2)Gφ(0) + λδ(1)µ2 +O(λ2)

= µ2 +O(λ2). (A.14)

If we express the entanglement entropy in the following general form,

Sent.(µ2> 0) = #A⊥Λ2
[
(a0+a1λ)+(b0+b1λ)

(
µ2

Λ2

)
ln
(
µ2

Λ2

)
+O

(
λ2,

µ2

Λ2

)]
, (A.15)

the coefficients then are

a0 = N log 4 ,
b0 = N, (A.16)
a1 = b1 = 0.

In the broken phase, to fix the coupling constant renormalization counter terms which
now appear at the leading order, we use the on-shell mass renormalization condition (A.7)
along with the requirement that the tadpole contribution of σ vanishes,

〈σ(x)〉 = VσGσ(x) = 0, (A.17)

where the tadpole VEV is decomposed into the coefficient Vσ and the Green’s function
Gσ(x). They give rise to the conditions

M2
σ,(0) +M2

σ,(1)(p
2 = m2

σ)λ+O(λ2) = m2
σ, (A.18)

Vσ,(0) + Vσ,(1)
√
λ+O(λ) = 0, (A.19)

where the subscripts (1), (2) denotes the coefficients of the corresponding order in λ ex-
pansions. We find

M2
σ,(0) = m2

σ, (A.20)

M2
σ,(1)(p

2 = m2
σ) = 3Gσ(0) + (N − 1)Gπ(0)

− 9m2
σLσ(p2 = m2

σ)− (N − 1)m2
σLπ(p2 = m2

σ)

+
(
δ(1)µ2 + 3

2m
2
σδ

(2)λ

)
, (A.21)

Vσ,(0) = 0, (A.22)

Vσ,(1) = −mσ√
2

[
3Gσ(0) + (N − 1)Gπ(0)

+
(
δ(1)µ2 + 1

2m
2
σδ

(2)λ

)]
, (A.23)

in which L(p2) is defined by

L(p2) =
ˆ

d4q

(2π)4G(p− q)G(q). (A.24)
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Thus, we have

δµ2 = −λ [3Gσ(0) + (N − 1)Gπ(0)

+9
2m

2
σLσ(p2 = m2

σ) + 1
2(N − 1)m2

σLπ(p2 = m2
σ)
]

+O(λ2), (A.25)

δλ = λ2
[
9Lσ(p2 = m2

σ) + (N − 1)Lπ(p2 = m2
σ)
]

+O(λ3). (A.26)

Now the entanglement entropy reads

Sent.(µ2 < 0) = −A⊥12

ˆ
d2p⊥
(2π)2 ln

p2
⊥ +m2

σ,⊥(m2
σ)

p2
⊥ + Λ2

− (N − 1)A⊥
12

ˆ
d2p⊥
(2π)2 ln

p2
⊥ +m2

π,⊥(m2
σ)

p2
⊥ + Λ2

+ λ
A⊥
12

ˆ
d2p⊥
(2π)2

m2
σ

p2
⊥ +m2

σ

[
Dσ(p2

⊥, q
2) + (N − 1)Dπ(p2

⊥, q
2)
]∣∣∣
q2=m2

σ

+ λ
(N − 1)A⊥

12

ˆ
d2p⊥
(2π)2

m2
σ

p2
⊥ +m2

σ

[
Dπσ(p2

⊥, q
2)
]∣∣∣
q2=0

+O(λ2), (A.27)

where

Dσ(p2
⊥, q

2) = 9
ˆ

d2k‖
(2π)2

d2k⊥
(2π)2

1
k2+m2

σ

[
1

k2
‖+(k⊥+p⊥)2+m2

σ

− 1
(k+q)2+m2

σ

]

= 9
[
Γσ(p2

⊥)−Lσ(q2)
]
, (A.28)

Dπ(p2
⊥, q

2) =
ˆ

d2k‖
(2π)2

d2k⊥
(2π)2

1
k2

[
1

k2
‖+(k⊥+p⊥)2−

1
(k+q)2

]

= Γπ(p2
⊥)−Lπ(q2) , (A.29)

Dπσ(p2
⊥, q

2) = 2
ˆ

d2k‖
(2π)2

d2k⊥
(2π)2

1
k2+m2

σ

[
1

k2
‖+(k⊥+p⊥)2−

1
(k+q)2

]

= 2
[
Γπσ(p2

⊥)−Lπσ(q2)
]
. (A.30)

The explicit calculation of D is shows that

Dσ(p2
⊥, q

2) =
ˆ

d2k‖
(2π)2

d2k⊥
(2π)2

9
k2+m2

σ

[
1

k2+m2
σ+2k⊥ ·p⊥+p2

⊥
− 1
k2+m2

σ+2k·q+q2

]

= 9
ˆ

d4l

(2π)4

ˆ 1

0
dx

( 1
l2+m2

σ−x2p2
⊥+xp2

⊥

)2

−
( 1
l2+m2

σ−x2q2+xq2

)2


= 9
(4π)2

ˆ 1

0
dx ln

(
m2
σ+x(1−x)q2

m2
σ+x(1−x)p2

⊥

)
, (A.31)
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Dπ(p2
⊥, q

2) =
ˆ

d2k‖
(2π)2

d2k⊥
(2π)2

1
k2

[
1

k2+2k⊥ ·p⊥+p2
⊥
− 1
k2+2k·q+q2

]

=
ˆ

d4l

(2π)4

ˆ 1

0
dx

( 1
l2−x2p2

⊥+xp2
⊥

)2

−
( 1
l2−x2q2+xq2

)2


= 1
(4π)2 ln

(
q2

p2
⊥

)
, (A.32)

Dπσ(p2
⊥, q

2) = 2
ˆ

d2k‖
(2π)2

d2k⊥
(2π)2

1
k2+m2

σ

[
1

k2+2k⊥ ·p⊥+p2
⊥
− 1
k2+2k·q+q2

]

= 2
ˆ

d4l

(2π)4

ˆ 1

0
dx

[(
1

l2+(1−x)m2
σ−x2p2

⊥+xp2
⊥

)2

−
( 1
l2+(1−x)m2

σ−x2q2+xq2

)2
]

= 2
(4π)2

ˆ 1

0
dx ln

[
m2
σ+xq2

m2
σ+xp2

⊥

]
. (A.33)

The transverse masses of π and σ are

m2
σ,⊥ = m2

σ + λ
[
3Gσ(0) + (N − 1)Gπ(0)− 9m2

σLσ(p2 = m2
σ)− (N − 1)m2

σLπ(p2 = m2
σ)
]

+ λ

[
δ(1)µ2 + 3

2m
2
σδ

(2)λ

]
+O(λ2), (A.34)

m2
π,⊥ = λ

[
Gσ(0) + (N + 1)Gπ(0)− 2m2

σLπσ(p2 = 0)
]

+ λ

[
δ(1)µ2 + 1

2m
2
σδ

(2)λ

]
+O(λ2). (A.35)

The mass of π is always zero. This gives rise to the condition

δ(1)µ2 + 1
2m

2
σδ

(2)λ = −3Gσ(0)− (N − 1)Gπ(0). (A.36)

One can demonstrate that

M2
π(p2 = 0) = 0 +O(λ2), (A.37)

m2
π,⊥ = 0 +O(λ2). (A.38)

And, by normalizing mσ at q2 = m2
σ, we have

m2
σ,⊥ = m2

σ +O(λ2). (A.39)

The explicit calculation of residual part of the entanglement entropy that cannot be
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absorbed by mass renormalization shows that ∆Sres.
ent. is given by

∆Sres.
ent.

= +λA⊥12

ˆ
d2p⊥
(2π)2

m2
σ

p2
⊥+m2

σ

[
Dσ(p2

⊥, q
2)+(N−1)Dπ(p2

⊥, q
2)
]∣∣∣
q2=m2

σ

+λ(N−1)A⊥
12

ˆ
d2p⊥
(2π)2

m2
σ

p2
⊥

[
Dπσ(p2

⊥, q
2)
]∣∣∣
q2=0

+O(λ2)

=λ
A⊥
12

ˆ
d2p⊥
(2π)2

1
(4π)2

{
m2
σ

p2
⊥+m2

σ

[
9
ˆ 1

0
dx ln

(
m2
σ+x(1−x)m2

σ

m2
σ+x(1−x)p2

⊥

)
+(N−1) ln

(
m2
σ

p2
⊥

)]

+m2
σ

p2
⊥

[
2(N−1)

ˆ 1

0
dx ln

(
m2
σ

m2
σ+xp2

⊥

)]}
+O(λ2)

= A⊥Λ2

48π

{
λ

(4π)2

ˆ 1

0
dt

{
m̃2
σ

t+m̃2
σ

[
9
ˆ 1

0
dx ln

(
m̃2
σ+x(1−x)m̃2

σ

m̃2
σ+x(1−x)t

)
+(N−1) ln

(
m̃2
σ

t

)]

+m̃2
σ

t

[
2(N−1)

ˆ 1

0
dx ln

(
m̃2
σ

m̃2
σ+xt

)]}
+O(λ2)

}

= A⊥Λ2

48π

 λ

(4π)2

ˆ 1

0
dt

 m̃2
σ

t+m̃2
σ

−18
arcth

√
t

t+4m̃2
σ√

t
t+4m̃2

σ

+9
√

5ln
(

3+
√

5
2

)
+(N−1) ln

(
m̃2
σ

t

)

+m̃2
σ

t
2(N−1)

[
1+(1+ m̃2

σ

t
) lnm̃2

σ/(t+m̃2
σ)
]+O(λ2)


= A⊥Λ2

48π

{
λ

(4π)2

{
−18m̃2

σSl2(m̃2
σ)+

[
9
√

5ln
(

3+
√

5
2

)]
m̃2
σ ln

(
m̃2
σ+1
m̃2
σ

)

+(N−1)m̃2
σ

[
ln
(
m̃2
σ+1
m̃2
σ

)
ln(m̃2

σ)−Li2
(
− 1
m̃2
σ

)]

+2(N−1)m̃2
σ

[
−1+(1+m̃2

σ) ln
(
m̃2
σ+1
m̃2
σ

)
+Li2

(
− 1
m̃2
σ

)]}
+O(λ2)

}

= A⊥Λ2

48π

{
λ

(4π)2

{
−9

2m̃
2
σ ln2(m̃2

σ)+O(m̃2
σ)−

[
9
√

5ln
(

3+
√

5
2

)]
m̃2
σ ln(m̃2

σ)+O(m̃2
σ)

+(N−1)m̃2
σ

[
− ln2(m̃2

σ)+ 1
2 ln

2(m̃2
σ)+O(m̃2

σ)
]

+2(N−1)m̃2
σ

[
− ln(m̃2

σ)− 1
2 ln2(m̃2

σ)+O(m̃2
σ)
]}

+O(λ2)
}

= A⊥Λ2

48π

{
λ

(4π)2

{
−
[9

2 + 3
2(N−1)

]
m̃2
σ ln2(m̃2

σ)

−
[
9
√

5ln
(

3+
√

5
2

)
+2(N−1)

]
m̃2
σ ln(m̃2

σ)
}

+O(λ2, m̃2
σ)
}
,

where Li2 is the polylog function Liα=2, and we also define the function of integral for the
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σ loop by

Sl2(m̃2
σ) =

ˆ 1

0
dt

1
t+ m̃2

σ

arcth
√

t
t+4m̃2

σ√
t

t+4m̃2
σ

 , (A.40)

such that

lim
x→0

Sl2(x)
ln2 x

= 1
4 , (A.41)

lim
x→0

−Li2(− 1
x)

ln2 x
= 1

2 . (A.42)

To summarize,

∆Sres.
ent.

= +λA⊥12

ˆ
d2p⊥
(2π)2

m2
σ

p2
⊥ +m2

σ

[
Dσ(p2

⊥, q
2) + (N − 1)Dπ(p2

⊥, q
2)
]∣∣∣
q2=m2

σ

+ λ
(N − 1)A⊥

12

ˆ
d2p⊥
(2π)2

m2
σ

p2
⊥

[
Dπσ(p2

⊥, q
2)
]∣∣∣
q2=0

+O(λ2)

= A⊥Λ2

48π

{
λ

(4π)2

ˆ 1

0
dt

{
m̃2
σ

t+ m̃2
σ

[
9
ˆ 1

0
dx ln

(
m̃2
σ + x(1− x)m̃2

σ

m̃2
σ + x(1− x)t

)
+ (N − 1) ln

(
m̃2
σ

t

)]

+m̃2
σ

t

[
2(N − 1)

ˆ 1

0
dx ln

(
m̃2
σ

m̃2
σ + xt

)]}
+O(λ2)

}

= A⊥Λ2

48π

[
c

′
Nλ

(
m2
σ

Λ2

)
ln2
(
m2
σ

Λ2

)
+ cNλ

(
m2
σ

Λ2

)
ln
(
m2
σ

Λ2

)
+O

(
λ2,

m2
σ

Λ2

)]
, (A.43)

where

cN = − 1
(4π)2 [β + 2(N − 1)] , (A.44)

c
′
N = − 1

(4π)2

[
β

′ + 3
2(N − 1)

]
, (A.45)

with

β = 9
√

5 ln 3 +
√

5
2 , (A.46)

β
′ = 18 lim

x→0

1
ln2 x

ˆ 1

0
dt

1
t+ x

arcth
√

t
t+4x√
t

t+4x

= 9
2 . (A.47)

At last, we can see that there is an extra order that is more divergent than m2
σ log(m2

σ/Λ2)
but less divergent than 1 as m2

σ/Λ2 → 0. This order comes from all the two-vertex loops
due to the cubic interactions.
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