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1 Introduction

Soft theories are effective field theories whose amplitudes go to zero as one of the external
momenta are scaled to zero, scaling with some power of this momentum as we approach
zero. Among soft theories consisting of a single scalar φ, there are two exceptional theories
that scale with the highest possible power, a power higher than expected given the number
of derivatives per field in the Lagrangian [1, 2]. These are the Dirac-Born-Infeld (DBI)
theory, whose action is given in (2.1), and the special galileon [1, 3], whose action is given
in (3.1). Both theories depend on a single dimensionful coupling constant α, and are
otherwise completely fixed.

These two theories, among others [4], have a privileged place among scalar effective
field theories; they naturally appear in the Cachazo-Yuan-He (CHY) representation [5–7]
and act as nodes in a web of theories related by the double copy and other procedures [8, 9]
(see [10] for a nice visual representation of this web). Understanding their properties and
what makes these theories unique is a step towards being able to uncover how fundamental
these tools are and their ability to relate gauge and gravitational theories.

DBI and the special galileon exist for any spacetime dimension d, however in [11] it was
noted that if we consider these theories at unphysical values of d, d = 0 for DBI and d = −2
for the special galileon, then the coupling α becomes dimensionless and the theory is scale
invariant. In fact, each term in the Lagrangian is separately scale invariant, as classical scale
invariance is automatic and trivial once there are no dimensionful couplings. In [11] it is
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shown that these theories also have full conformal invariance in addition to scale invariance,
and that the conformal invariance is non-trivial and fixes the structure of the Lagrangian
to be that of DBI/special galileon. For example, it was argued that the stress tensor on flat
space could be improved to be traceless, and that the amplitudes satisfy conformal Ward
identities, only if the structure of the theory was that of DBI/special galileon.

However, conformal symmetry as we usually understand it is linearly realized on the
fields, and a linear symmetry can never relate terms with different powers of the field, as
would be required to fix the full non-linear structure of these theories. We therefore expect
that this conformal symmetry is realized in a novel non-linear way. On the other hand,
conformal symmetry should still be unbroken, so that the usual Ward identities on the
amplitudes are satisfied. Here we resolve this puzzle and find the field transformations that
leave the Lagrangians invariant and fix their non-linear structure, without spontaneously
breaking conformal symmetry. The transformations include non-linearities in the special
conformal generators (shown in (2.6) for DBI and (3.3) for the special galileon), but preserve
the φ = 0 vacuum and satisfy the same conformal algebra as their linear counterparts.

Another defining feature of these theories is that they possess non-trivial shift symme-
tries, where the field shifts by powers of the spacetime coordinate xµ. The shift symmetries
for DBI have up to one power of xµ (shown in (2.11)), and the shift symmetries for the spe-
cial galileon have up to two powers of xµ (shown in (3.4)). These shift symmetries also fix
the full non-linear structure of the theory, and are responsible for the enhanced soft limits.

These shift symmetries do not close with the conformal symmetries under commuta-
tion, and instead produce new symmetries. In the DBI case, we find a new symmetry (2.12)
which has 2 powers of xµ, and in the special galileon case we find several new symme-
tries (3.5) which have up to 4 powers of xµ. These new symmetries combined with the
conformal symmetries and shift symmetries then close to form a larger algebra. In the DBI
case, this larger algebra is the conformal algebra of one dimension higher. In section 2.3,
we explain this from the brane embedding point of view; the DBI theory can be thought of
as the worldvolume theory of a d dimensional brane embedded in a d+1 dimensional bulk,
and from this perspective, the symmetries all descend from conformal symmetries of the
bulk. In the special galileon case, the full symmetry algebra is a real form of the special
linear algebra.

Finally, we consider coupling these theories to a metric and look for a local Weyl
symmetry that descends to the new non-linear global conformal symmetries when the
metric is frozen to flat space. This Weyl symmetry requires new non-linear terms in the
scalar field transformation in order to reproduce the non-linear terms in the global special
conformal transformations. We find the improvement terms necessary to add to the theories
so that they are Weyl invariant, to lowest order in the coupling for the special galileon,
and to second order in the coupling for DBI.

Conventions. The spacetime dimension is d. We use the mostly plus metric. The
curvature conventions are those of [12].
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2 DBI

The DBI action for a single scalar φ in d spacetime dimensions is

S =
∫
ddx − 1

α

√
1 + α(∂φ)2 . (2.1)

It depends on a single coupling constant, α.
In any d, this action is manifestly invariant under the standard translations and Lorentz

transformations,
Pµ φ = −∂µφ, Jµν φ = (xµ∂ν − xν∂µ)φ , (2.2)

which satisfy the commutation relations of the Poincare algebra,

[Jµν , Jσρ] = ηµσJνρ − ηνσJµρ + ηνρJµσ − ηµρJνσ ,
[Jµν , P ρ] = ηρµP ν − ηρνPµ ,
[Pµ, P ν ] = 0 . (2.3)

2.1 Conformal symmetry

The DBI coupling constant in (2.1) has mass dimension [α] = −d. As was noted in [11], if
we consider the unphysical value d = 0, the coupling becomes dimensionless, and the the-
ory becomes scale invariant under the standard dilation symmetry Dφ = − (xµ∂µ + ∆)φ,
where ∆ is the scaling dimension of the field. Scale invariance requires the field φ to have
dimension ∆ = d−2

2 , so when d = 0 we have ∆ = −1, and the action (2.1) is invariant under

Dφ = −xµ∂µφ+ φ . (2.4)

This scale symmetry, like the Poincare transformations (2.2), is linear in the fields, and
each term in the expansion of the square root in the action (2.1) in powers of α is separately
scale invariant when d = 0.1

Conformal symmetry also includes special conformal transformations, and the standard
linear action of these on a field of weight ∆ is

Kµ φ =
(
−2xµxν∂ν + x2∂µ − 2xµ∆

)
φ. (2.5)

In [11] it was argued that conformal symmetry should fix the square root structure in the
DBI action when d = 0; a generic scalar effective theory in d = 0 with one derivative
per field would be scale invariant, but not conformally invariant, and only the particular
square root structure of DBI would have full conformal invariance. However this cannot
be achieved with the standard linear special conformal transformations (2.5), since they
cannot relate terms with differing powers of φ in order to fix the square root structure.

The non-linear special conformal transformation which does accomplish this is

Kµ φ =
(
−2xµxν∂ν + x2∂µ + 2xµ

)
φ+ αφ2∂µφ. (2.6)

1In checking invariance for this and other symmetries below in d = 0, we proceed as in dimensional
regularization, manipulating everything in general d, setting d = 0 only at the end and never using any
dimensionally dependent identities.
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This transformation contains a new non-linear piece which depends on α, and when α = 0
it reduces to the standard linear special conformal transformation (2.5) with ∆ = −1.
The non-linear transformation (2.6) is a symmetry of the DBI action when d = 0, and
it fixes the square root structure of the action. Note that despite the non-linearities,
the transformation (2.6) preserves the vacuum φ = 0, so we can still say that conformal
symmetry is unbroken.2 Usually non-linear transformations are associated with broken
symmetries, but in these cases there is always a leading term in the transformation that is
independent of the fields so that the vacuum is not preserved. Here we have no such term,
the transformation starts at linear order in φ.

We can now compute the commutators of the scale symmetry (2.4) and non-linear
special conformal symmetries (2.6) with the Poincare symmetries (2.2) and we get

[Pµ, D] = Pµ ,

[Kµ, D] = −Kµ ,

[Kµ, P ν ] = −2(ηµνD − Jµν) ,
[Jµν ,Kρ] = ηρµKν − ηρνKµ,

[Kµ,Kν ] = [Jµν , D] = 0 , (2.7)

along with the Poincare commutators (2.3). These are the standard commutation rela-
tions of the conformal algebra. They hold independently of α, so despite the non-linear
term in (2.6), we have the usual conformal algebra. In computing these we have not fixed
the spacetime dimension d, though we did need to fix ∆ = −1 in writing the genera-
tors (2.4), (2.6). As is well known, we can define J−1,0 = D, J−1,µ = 1

2(Pµ −Kµ), J0,µ =
1
2(Pµ+Kµ), and assemble the conformal generators into a d+2 dimensional anti-symmetric
matrix JAB with A,B = −1, 0, 1, · · · , d

JAB ≡


0 D 1

2(P ν −Kν)

−D 0 1
2(P ν +Kν)

−1
2(Pµ −Kµ) −1

2(Pµ +Kµ) Jµν

 . (2.8)

Then the commutation relations (2.7), (2.3) become[
JAB, JCD

]
= gACJBD − gBCJAD + gBDJAC − gADJBC , (2.9)

where

gAB ≡

−1
1
ηµν

 , (2.10)

showing that the conformal algebra is so(2, d).
Since the field φ has conformal dimension ∆ = −1 in dimension d = 0, it might

be thought that it satisfies the standard scalar unitarity bound ∆ ≥ d−2
2 [14, 15]. This

2A special conformal transformation similar to (2.6) occurs in the worldvolume theory of a flat brane
probing an AdS bulk, but in this case conformal symmetry is broken [13].
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unitarity bound comes from demanding positivity of the second level descendent state
P 2|ψ〉, given that the primary |ψ〉 has positive norm. But there is also a bound ∆ ≥ 0
coming from positivity of the first level descendant Pµ|ψ〉. When d ≥ 2 this bound is
subsumed by the standard bound, but in our case where d = 0, ∆ = −1 it is stronger
and it is violated. This is a moot point, however, since the non-linear action (2.6) of the
conformal algebra is not the standard one that leads to these bounds, and so the bounds
may not apply.

2.2 Including shift symmetries

The DBI action (2.1) is also invariant in any d under the extended shift symmetries,

C φ = 1, Bµ φ = xµ + αφ∂µφ, (2.11)

where xµ is the spacetime coordinate. These are spontaneously broken, since they do not
preserve the vacuum φ = 0. Any theory with one derivative per field has the simple shift
symmetry C, but the extended shifts Bµ, which include terms linear in the spacetime
coordinate xµ, are α dependent and fix the square root structure of the action in any d.

We can now ask how these shift symmetries interplay with the conformal symme-
tries (2.2), (2.4), (2.6) by computing the commutators. In fact, taken together, the con-
formal symmetries and shift symmetries (2.11) do not quite close under the commutators.
By computing [Kµ, Bν ], we find a new scalar symmetry,

Nφ = −x2 + α
(
φ2 − 2xµφ∂µφ

)
. (2.12)

This new transformation is also a symmetry of DBI when d = 0, and it starts with a
quadratic shift in the spacetime coordinate. (For example, we can quickly see that the
kinetic term ∼ (∂φ)2 is invariant under the lowest order shift N (0)φ ∼ x2: N (0) ((∂φ)2)

)
∼

∂µφ∂
µ(N (0)φ) ∼ ∂µφxµ, which integrates by parts to ∼ dφ, which vanishes when d = 0.)
After including N , the algebra closes. The complete set of commutators, in addition

to the conformal algebra (2.7), (2.3), is

[Jµν , Bρ] = ηρµBν − ηρνBµ , [Jµν , C] = [Jµν , N ] = 0 , (2.13)
[N,D] = −N , [Bν , D] = 0 , [C,D] = C , (2.14)

[Pµ, N ] = −2Bµ , [Pµ, Bν ] = ηµνC , [Pµ, C] = 0 , (2.15)
[Kµ, C] = −2Bµ , [Kµ, Bν ] = ηµνN , [Kµ, N ] = 0 , (2.16)

[Bµ, Bν ] = αJµν , [C,Bµ] = −αPµ , [N,Bµ] = −αKµ , [C,N ] = 2αD . (2.17)

As before, we do not need to fix d = 0 in computing these, though we have used ∆ = −1
in defining the generators.

The relations (2.13) indicate that the shift symmetries N,Bµ, C transform under
Lorentz transformations simply as their tensor indices indicate, with spins 0, 1, 0 respec-
tively. The relations (2.14) indicate that they are eigenvectors under the action of com-
mutation with D to the right, with eigenvalues −1, 0, 1 respectively. The relations (2.15)
and (2.16) indicate that Pµ and Kµ are like raising and lowering operators respectively
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between the different D eigenstates. These relations (2.13), (2.14), (2.15), (2.16) are all
the commutators between elements of the conformal algebra and shift symmetries, and are
independent of α. They can be summarized in this figure:

(2.18)

The DBI symmetries thus form a finite dimensional Verma module under the conformal
algebra, where the new symmetry N is like a conformal primary and Bµ, C are descendants.
This short finite dimensional module, which occurs when a scalar conformal primary has
dimension −1 as is the case here,3 is nothing but the fundamental vector representation
of the so(2,d) conformal algebra. To see this, define S−1 =−1

2 (C−N), S0 =−1
2 (C+N),

Sµ =Bµ, and assemble the DBI symmetries into a d+2 dimensional vector SA,

SA =


−1

2 (C −N)

−1
2 (C +N)
Bµ

 . (2.19)

Then the commutators (2.13), (2.14), (2.15), (2.16) become[
JAB, SC

]
= gACSB − gCBSA, (2.20)

with the conformal generators packaged into JAB as in (2.8) with gAB as in (2.10). This is
the statement that SA is a vector under the conformal algebra so(2, d). The relations (2.17),
which give the commutators between the shift symmetries, are proportional to α, and can
now be summarized as [

SA, SB
]

= αJAB . (2.21)

To identify the full algebra, we assemble JAB and SA into an d+ 3 dimensional anti-
symmetric matrix JAB with A,B = −1, 0, 1, · · · , d, d+ 1,

JAB =

 JAB − 1√
α
SB

1√
α
SA 0

 , α > 0 . (2.22)

3This is a type I shortening condition in the language of [16], which occur for scalar primaries when they
have weight 0,−1,−2, · · · . The trivial case with weight 0 would describe a simple shift symmetric field with
conformal symmetry. The next case with weight −2 will occur in section 3.2 for the special galileon.
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The commutators (2.21), (2.20), (2.9) can now all be summarized as[
JAB, JCD

]
= gACJBD − gBCJAD + gBDJAC − gADJBC , (2.23)

where
gAB =

(
gAB 0

0 1

)
, α > 0 . (2.24)

These are the commutation relations of so(2, d + 1). In writing (2.22), (2.24), we have
assumed that α > 0, which is the “right sign” from the standard UV completion point of
view [17]. If instead we have the “wrong sign” α < 0 [18], then the d+ 3 metric (2.24) will
have a minus sign in the lower right corner, and the full algebra will be so(3, d).

The smallest symmetry algebra of DBI that includes the conformal symmetry of [11]
and the shift symmetries is thus isomorphic to the conformal algebra of a space of di-
mension d+ 1. The breaking pattern is to the d dimensional conformal algebra, since the
shifts (2.11), (2.12) are the only ones that do not preserve the vacuum φ = 0,

so(2, d+ 1)→ so(2, d) , α > 0. (2.25)

In fact, this is isomorphic to the symmetry breaking pattern of the AdS DBI theory, the
theory of a d+ 1 dimensional AdS brane in a d+ 2 dimensional AdS bulk [19, 20] (or the
k = 1 non-abelian AdS scalar shift theory, in the language of [21]).

2.3 Brane point of view

The DBI theory (2.1) can be thought of as a gauge fixed worldvolume theory of a d

dimensional flat brane probing a d + 1 dimensional flat bulk [22]. The fact that the full
symmetry algebra including the conformal and shift symmetries is the conformal algebra
of one dimension higher suggests that they have their origin as conformal symmetries of
the bulk. Here we will see that this is indeed the case. (In this subsection we’ll assume
α > 0 and suppress the coupling, for clarity.)

As detailed in [19, 23], we consider the theory of scalars XA(x), A = 1, · · · , d + 1,
describing the embedding of a d dimensional worldvolume into a d + 1 dimensional bulk.
The fixed bulk metric is GAB(X), and the induced metric on the brane is

ḡµν(x) = ∂XA

∂xµ
∂XB

∂xν
GAB(X(x)). (2.26)

The action is
S = −

∫
ddx

√
−ḡ, (2.27)

and is manifestly invariant under worldvolume diffeomorphisms ξµ(x), under which the XA

transform as scalars δξXA = ξµ∂µX
A.

Given a transformation by a bulk diffeomorphism KA(X), δXA = KA(X), the induced
metric is invariant if KA is a Killing vector of the bulk metric,

LKGAB ≡ KC∂CGAB + ∂AK
CGCB + ∂BK

CGAC = 0, (2.28)

and this is a global symmetry of the action in any d.
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Suppose instead that KA is a conformal Killing vector,

LKGAB = ΦGAB, (2.29)

where Φ = 2
d+1∇AK

A. Then under such a diffeomorphism we have

δḡµν = Φḡµν , (2.30)

and the change in the action (2.27) is then

δS = −
∫
ddx δ

(√
−ḡ
)

= −d2

∫
ddx

√
−ḡΦ . (2.31)

This vanishes when d = 0, which means that the shift by a bulk conformal Killing vector
is a symmetry of (2.27) when d = 0.

To recover the DBI theory (2.1), we consider a flat bulk metric GAB(X) = ηAB, and we
fix the worldvolume diffeomorphisms by going to the unitary gauge Xµ = xµ, Xd+1 = φ.
The induced metric (2.26) becomes ḡµν = ηµν +∂µφ∂νφ, and the action (2.27) becomes the
DBI action (2.1). The transformation resulting from a bulk diffeomorphism KA must be
compensated by a worldvolume diffeomorphism with ξµ = −Kµ in order to preserve the
unitary gauge condition, so that the resulting global transformation acting on φ is

δKφ = −Kµ(x, φ)∂µφ+Kd+1(x, φ). (2.32)

When the KA are isometries of ηAB, we get global symmetries valid in any d; the isometries
along the brane directions µ give the Poincare symmetries (2.2), the translation in the d+1
direction gives the shift C in (2.11), and the Lorentz boosts mixing the d+1 and µ directions
give the extended shifts Bµ in (2.11).

We can now ask about the conformal Killing vectors of ηAB that are not Killing vectors,
which will give symmetries only when d = 0. The bulk dilation vector field is

KA(X) = XA, (2.33)

which plugging into (2.32) leads to

δφ = −xµ∂µφ+ φ, (2.34)

which is precisely the dilation in (2.4), including the correct scaling weight ∆ = −1. The
bulk special conformal vector fields are

KA
(B)(X) = 2XBX

A −X2δAB. (2.35)

Looking at the B = µ components, plugging into (2.32) leads to

δ(µ)φ =
(
−2xµxν∂ν + x2∂µ + 2xµ

)
φ+ φ2∂µφ, (2.36)

which, once the coupling is restored, is precisely the special conformal transformation
in (2.6), with the correct scaling weight ∆ = −1, and including the new non-linear term.
Looking at the B = d+ 1 component, plugging into (2.32) leads to

δ(d+1)φ = −x2 +
(
φ2 − 2xµφ∂µφ

)
, (2.37)

which, once the coupling is restored, is precisely the new transformation in (2.12).
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This construction makes it clear that new symmetries for d = 0 will also be present
in any brane theory where the bulk has conformal Killing vectors which are not Killing
vectors. This includes the AdS and dS DBI theories discussed in [19–21, 24, 25], and more
general cases such as the cosmological setup in [26].

3 Special galileon

We now turn to the special galileon. The action can be written as

Ssgal = −1
2

∫
ddx

b d+1
2 c∑

n=1

αn−1

(2n− 1)! (∂φ)2 LTD
2n−2

=
∫
ddx− 1

2(∂φ)2 − α

12(∂φ)2
[
(�φ)2 − (∂µ∂νφ)2

]
+ · · · , (3.1)

where the total derivative combinations are LTD
n ≡

∑
p(−1)pηµ1p(ν1) · · · ηµnp(νn)∂µ1∂ν1φ

· · · ∂µn∂νnφ with the sum running over all permutations of the ν indices with (−1)p the
sign of the permutation. As with DBI, the theory depends on a single coupling constant,
α, and in any d it is manifestly invariant under the standard translations and Lorentz
transformations (2.2).

3.1 Conformal symmetry

The galileon coupling constant in (3.1) has dimension [α] = −(d+2). As was noted in [11],
if we consider the unphysical value d = −2, then the coupling becomes dimensionless, and
the theory becomes scale invariant. In this case the theory will have the standard dilation
symmetry Dφ = − (xµ∂µ + ∆)φ, where ∆ is the conformal dimension of the field. The
field has dimension ∆ = d−2

2 , so when d = −2 we have ∆ = −2, and each term in the
action (3.1) is separately invariant under

Dφ = −xµ∂µφ+ 2φ . (3.2)

As with DBI, if conformal symmetry is to fix the theory as claimed in [11], the spe-
cial conformal transformations should include non-linear parts. The form of the special
conformal generators which does this is

Kµ φ =
(
−2xµxν∂ν + x2∂µ + 4xµ

)
φ− α(∂φ)2∂µφ . (3.3)

When α = 0, it reduces to the standard linear special conformal transformation (2.5) with
∆ = −2. The non-linear transformation (3.3) is a symmetry of the galileon action (3.1)
when d = −2, and it fixes the coefficients of the various galileon terms [27] relative to
each other into the special galileon combination. As with DBI, the transformation (3.3)
preserves the vacuum φ = 0, so we can still say that conformal symmetry is unbroken, even
though it is non-linearly realized. The transformations (3.2), (3.3) along with the Poincare
symmetries (2.2) satisfy the conformal algebra (2.7), (2.3) in any d, despited the non-linear
α dependent terms in (3.3).
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3.2 Including shift symmetries

The generators of the galileon shift symmetries are [3]

Cφ = 1 , Bµφ = xµ , Sµνφ = xµxν − 1
d
x2ηµν − α

[
∂µφ∂νφ− 1

d
(∂φ)2ηµν

]
. (3.4)

The shifts C, Bµ are zeroth and first other in the spacetime coordinate xµ, and they are
symmetries of a generic galileon [27]. The symmetric traceless tensor shifts Sµν are second
order in xµ, and they are symmetries of the special galileon that fix the coefficients of the
galileon terms relative to each other.

The shift symmetries (3.4) do not close with the conformal symmetries of section 3.1
under the commutator. We find 3 new transformations, two scalars and a vector and
involving up to four powers of xµ, appearing on the right hand side of commutators before
everything closes,

Aµφ = x2xµ + α
[
4φ∂µφ− 2∂µφxν∂νφ− xµ(∂φ)2

]
,

Tφ = x2 − α(∂φ)2 ,

Nφ = x4 − 2α
[
x2(∂φ)2 + 2xµxν∂µφ∂νφ− 8xµφ∂µφ+ 8φ2

]
+ α2(∂φ)4 . (3.5)

The new transformations N,Aµ are indeed new symmetries of the special galileon ac-
tion (3.1) when d = −2. (For example, we can quickly see that the kinetic term ∼ (∂φ)2

is invariant under the lowest order shift N (0)φ ∼ x4: N (0) ((∂φ)2)
)
∼ ∂µφ∂

µ(N (0)φ) ∼
∂µφx

2xµ, which integrates by parts to ∼ (d + 2)x2φ, which vanishes when d = −2.) The
transformation T is not a symmetry, however, as we’ll see it always appears in the com-
mutators with a factor of d+ 2 which vanishes when d = −2.

The commutators of the original shift transformations (3.4) and new transforma-
tions (3.5) with the conformal generators are as follows. They transform in the expected
way as tensors under Lorentz transformations,[

Jµν , Sλσ
]

= ηµλSνσ − ηνλSµσ + ηµσSλν − ηνσSλµ ,

[Jµν , Bρ] = ηρµBν − ηρνBµ ,

[Jµν , Aρ] = ηρµAν − ηρνAµ ,
[Jµν , C] = [Jµν , T ] = [Jµν , N ] = 0 . (3.6)

They are eigenstates of the dilation operator,

[C,D] = 2C ,
[Bµ, D] = Bµ ,

[Sµν , D] = [T,D] = 0 ,
[Aµ, D] = −Aµ ,
[N,D] = −2N , (3.7)

– 10 –
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and they transform into each other under K,P ,

[Pµ, N ] = 4Aµ ,

[Pµ, Aν ] = 2Sµν + d+ 2
d

ηµνT ,

[Pµ, T ] = 2Bµ ,[
Pµ, Sνλ

]
= ηµνBλ + ηµλBν − 2

d
Bµηνλ ,

[Pµ, Bν ] = ηµνC ,

[Pµ, C] = 0 , (3.8)

[Kµ, C] = −4Bµ ,

[Kµ, Bν ] = −2Sµν − d+ 2
d

ηµνT ,[
Kµ, Sνλ

]
= −ηµνAλ − ηµλAν + 2

d
Aµηνλ ,

[Kµ, T ] = −2Aµ ,
[Kµ, Aν ] = −ηµνN ,

[Kµ, N ] = 0 . (3.9)

These relations can be summarized in this figure,

(3.10)

The shift transformations thus form a finite dimensional Verma module of the confor-
mal algebra where N is a conformal primary of weight −2. This Verma module describes a
symmetric traceless tensor representation of the conformal algebra so(2, d). Group the shift
generators into a d+ 2 dimensional symmetric g-traceless matrix, SAB = SBA, SABgAB =
0, with g as in (2.10),

SAB =


1
4(C +N + 2T ) 1

4(C −N) −1
2 (Aµ +Bµ)

1
4(C −N) 1

4(C +N − 2T ) 1
2 (Aµ −Bµ)

−1
2 (Aµ +Bµ) 1

2 (Aµ −Bµ) Sµν + 1
Dη

µνT

 . (3.11)

– 11 –
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Grouping the conformal generators as in (2.8), the commutators (3.6), (3.7), (3.8), (3.9)
become simply [

JAB, SCD
]

= gACSBD − gBCSAD + gADSCB − gBDSCA , (3.12)

which is the statement that SAB transforms as a symmetric traceless tensor representation
under the conformal algebra.

The commutators of the shift generators with each other give back conformal genera-
tors, and are all proportional to α,[

Sµν , Sλσ
]

= −α
(
ηµλJνσ + ηνλJµσ + ηνσJµλ + ηµσJνλ

)
,[

Bµ, Sνλ
]

= α
(
ηµνP λ + ηµλP ν − 2

d
Pµηνλ

)
,[

Aµ, Sνλ
]

= −α
(
ηµνKλ + ηµλKν − 2

d
Kµηνλ

)
,

[Sµν , C] = [Sµν , T ] = [Sµν , N ] = 0 ,
[Aµ, Aµ] = [Bµ, Bν ] = 0 ,
[Aµ, Bµ] = −2α (ηµνD − Jµν) ,

[Aµ, T ] = −2αKµ, [Aµ, C] = 4αPµ, [Aµ, N ] = 0,
[Bµ, T ] = 2αPµ, [Bµ, N ] = −4αKµ, [Bµ, C] = 0,
[N,C] = 16αD, [N,T ] = [C, T ] = 0. (3.13)

In terms of (3.11) and (2.8), the commutators (3.13) become simply[
SAB, SCD

]
= −α

(
gACJBD + gBCJAD + gBDJAC + gADJBC

)
. (3.14)

We can now identify the full algebra. Put together the anti-symmetric conformal
generators (2.8) and the symmetric traceless shift generators (3.11) into a traceless matrix
as follows

MAB ≡ −1
2

(
JAB + 1√

α
SAB

)
, α > 0. (3.15)

Then the commutators (3.14), (3.12), (2.9) can be summarized as[
MAB,MCD

]
= gCBMAD − gADMCB , (3.16)

which are the commutation relations of sl(d+ 2,R). The smallest symmetry algebra of the
special galileon that includes the conformal symmetry of [11] and all the extended shift
symmetries is thus isomorphic to sl(d + 2,R). In writing (3.15) we have assumed α > 0,
the “right sign” from the point of view of positivity bounds [28, 29]. If α < 0, then the
algebra would instead be the maximally split real form.

The breaking pattern is to the d dimensional conformal algebra, since the shifts SAB

are the only ones that do not preserve the vacuum φ = 0,

sl(d+ 2,R)→ so(2, d) , α > 0. (3.17)

In fact, this is the same symmetry breaking pattern as the AdS special galileon theory in
d+ 1 dimensions (the k = 2 non-abelian AdS scalar shift theory of [21]).

– 12 –
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4 Weyl symmetry

A conformal field theory can generally be coupled to a background metric gµν in such a
way that the conformal symmetry descends from a local Weyl symmetry [30, 31] (there
are some exceptions in non-unitary theories, see e.g. [32–34]). The usual form of the Weyl
symmetry for a field φ of weight ∆ is

δgµν = 2σgµν , δφ = −∆σφ, (4.1)

where σ(x) is the local scalar gauge parameter. This symmetry is present in addition to
ordinary diffeomorphism (diff) symmetry with local parameter ξµ(x),

δgµν = ∇µξν +∇νξµ, δφ = ξµ∂µφ. (4.2)

The global conformal transformations emerge when we go to flat space, gµν = ηµν ,
and restrict to those diff+Weyl symmetries which preserve the flat metric ηµν . Such sym-
metries are those for which ξµ is a conformal Killing vector, ∂µξν + ∂νξν = 2

d∂
λξληµν , and

σ = −1
d∂

µξµ. The conformal Killing vector corresponding to dilations is ξµ = −xµ with
σ = 1. Plugging this into the scalar transformations in (4.1), (4.2) gives the standard
dilation transformation δφ = − (xµ∂µ + ∆)φ. The conformal Killing vector corresponding
to special conformal transformations is ξµ = −2b · xxµ + x2bµ with σ = 2b · x, where
bµ is a constant vector parametrizing the transformations. Plugging this into the scalar
transformations in (4.1), (4.2) gives the standard linear special conformal transformation
δφ = bµ

(
−2xµxν∂ν + x2∂µ − 2xµ∆

)
φ.

4.1 DBI

To reproduce the flat space non-linear terms in (2.6) after coupling to a general background
metric, we need new non-linear terms proportional to α in the Weyl transformation. We
will assume that the Weyl transformation for the metric, and the diffeomorphisms, retain
their standard forms and do not depend on α. The Weyl transformation for the scalar
will be modified. Each power of α comes with 2 derivatives and 2 powers of φ, so the
most general possible modification at order α that reduces to (2.4) for σ = 1 and (2.6) for
σ = 2b · x is

δφ = σφ+ α

(1
2φ

2∂µφ∂
µσ + a1φ

3Rσ + a2φ
3�σ

)
+O

(
α2
)
, (4.3)

with constants a1, a2.
We now want to couple (2.1) to the metric such that this new Weyl transformation is

a symmetry when d = 0. The most general coupling to the metric, to order α, is

S=
∫
ddx
√
−g
[ 1
α
− 1
α

√
1+α(∂φ)2+b0Rφ

2

+α
(
b1R

µνφ2∂µφ∂νφ+b2Rφ
2(∂φ)2+b3Rφ

3�φ+b4W
2
µνλρφ

4+b5R
2
µνφ

4+b6R
2φ4

)
+O

(
α2
)]
,

(4.4)

– 13 –
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where Wµνλρ is the Weyl tensor and b0, . . . , b6 are constants. Requiring Weyl invariance
up to order α when d = 0 then fixes a1 = 0, b0 = −1/4, b1 = 1/4, b2 = 0, b3 = −a2/2,
b5 = 1/32, b6 = a2/4, while leaving a2, b4 free.

Thus the Weyl symmetry and invariant action to order α is

S =
∫
ddx
√
−g
[ 1
α
− 1
α

√
1 + α(∂φ)2 − 1

4Rφ
2

+ α

(1
4R

µνφ2∂µφ∂νφ+ 1
32R

2
µνφ

4 − a

2Rφ
3�φ+ a

4R
2φ4 + bW 2

µνλρφ
4
)

+O
(
α2
) ]

,

δgµν = 2σgµν , δφ = σφ+ α

(1
2φ

2∂µφ∂
µσ + aφ3�σ

)
+O

(
α2
)
. (4.5)

where a, b are the two unfixed free parameters. The parameter a can be further removed
by the field redefinition

φ→ φ+ 1
2aαRφ

3 , (4.6)

as in [30]. This is the only allowed field redefinition at order α that does not transform
the scalar, and hence does not modify the DBI form of the Lagrangian, when restricted to
flat space. The parameter b remains arbitrary since it comes in front of the Weyl-squared
term, which is separately Weyl invariant to lowest order. This term would presumably be
completed at higher order into some invariant of the α-deformed Weyl symmetry, or else
forced to vanish if no such invariant exists. Note that the coupling to the metric generically
breaks all the shift symmetries.

This new Weyl symmetry satisfies the same algebra as the standard Weyl symmetry,
namely that the Weyl transformations are abelian,

[δσ1 , δσ2 ] = 0, (4.7)

up to order α. In fact this requirement alone is enough to fix the form of the transformation:
demanding (4.7) alone for (4.3) when d = 0 fixes a1 = 0, and then taking into account the
possible field re-definition (4.6) removes a2.

In [11], an action linear in the curvatures and including all powers of φ was provided
which makes the stress tensor on flat space traceless. The terms linear in the curvature in
the action (4.5) match the terms linear in the curvature from [11], up to order α (and when
a = 0). However the action in [11] cannot itself be Weyl invariant in the manner we are
requiring, because, as we can see from (4.5), terms quadratic in the curvature are required.

Pushing to next order in α we find that the action can be made Weyl invariant when
d = 0 to quadratic order in α, with the addition of the following terms to the action,

S

∣∣∣∣
α2

=
∫
ddx
√
−g
{
−α

2

32Rφ
2(∂φ)4−α

2

8 Rµνφ2(∂φ)2∇µφ∇νφ (4.8)

+α2

64φ
4
[(
R2
µν+ 1

2R
2
)

(∂φ)2−2RRµν∇µφ∇νφ−6RµνRνσ∇µφ∇σφ
]

+α2

48Wµνρσ

[
2φ3∇µφ∇ρφ∇ν∇σφ−3Rµρφ4∇νφ∇σφ− 1

6φ
6∇σ∇νRµρ−φ5∇νRµρ∇σφ

]
− α2

192φ
6
[
WµνρσR

µρRνσ+RµνRντRτµ−
1
4R

3
]}
,
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along with the additional non-linear terms in the Weyl transformation,

δφ

∣∣∣∣
α2

= α2

4 Sµνφ4∇µφ∇νσ. (4.9)

Here Sµν is the Schouten tensor, defined in general d as

Sµν = 1
(d− 2)

(
Rµν −

1
2(d− 1)Rgµν

)
. (4.10)

This action and Weyl transformation will also have ambiguities due to field re-definitions
that vanish in flat space (coming from order α2 terms in (4.6)), as well as ambiguities
from possible Weyl invariants. Here we have not attempted to parameterize all these
ambiguities but have simply made a choice for which the action and Weyl transformation
are manageable, in order to illustrate that there is no obstruction to extending the Weyl
symmetry to order α2. The first line of (4.8) matches those found in the action linear in
the curvatures constructed in [11] by demanding the theory have a vanishing stress tensor
in flat space. In the third line of (4.8) there are additional terms linear in the curvature
that do not appear in [11], but these are proportional to the Weyl tensor and so they do
not contribute to the flat space stress tensor. Thus what we find is consistent with [11] up
to order α2. It would be interesting if the action in [11] could be extended to an action
which is fully Weyl invariant to all orders.

4.2 Special galileon

A similar procedure can be applied in the case of the special galileon in d = −2, and once
again we find that the theory can be improved to be Weyl invariant, at least to O(α). The
non-linear conformal transformations (3.2), (3.3) get uplifted to

δφ = 2σφ− α

2 (∂φ)2∇µσ∇µφ , (4.11)

in a general background metric. A priori there are many more terms that could enter
this transformation, however requiring that the Weyl transformations commute as in (4.7)
reduces this number, and employing field redefinitions that vanish on flat space analogous
to (4.6) removes the rest. We find the following action is Weyl invariant under (4.11) in
d = −2, up to order α,

S =
∫
ddx
√
−g

{
− 1

2(∂φ)2 − 1
6Rφ

2 − α

12(∂φ)2
[
(�φ)2 − (∂µ∂νφ)2

]
(4.12)

− α

12R
µνφ2∇µ∇τφ∇ν∇τφ+ α

72Rφ
2∇µ∇νφ∇µ∇νφ

+ α

12R
µνφ2�φ∇µ∇νφ−

α

72Rφ
2(�φ)2

− α

35W
µνρσφ

[13
6 ∇ρφ∇µφ∇σ∇νφ− φ∇ρ∇µφ∇σ∇νφ+Wτρνσφ∇µφ∇τφ

]
− α

48

[
9RµνRµτφ2∇τφ∇νφ−

7
2R

2
µν(∂φ)2φ2 − 1

6R
2(∂φ)2φ2 − 3RRµνφ2∇µφ∇νφ

]
− α

210

[
15Rνρ∇σWµνρσφ

3∇µφ− 14WµνρσR
µρφ2∇σφ∇νφ− 1

2R
µρ∇ν∇σWµνρσφ

4
]

+ α

48

[1
7WµνρσR

µρRνσ − 1
2RµνR

µρRνρ + 1
4R

2
µνR+ 1

36R
3
]
φ4
}

+O
(
α2
)
.
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The terms in the second line are the same as those in [11] found by demanding tracelessness
of the stress tensor in flat space.4 In the third line there are additional terms linear in the
curvature that do not appear in [11], but these can be removed by field re-definitions that
vanish in flat space with σ = 2b·x, at the expense of making the Weyl transformation (4.11)
more complicated. Although admittedly not very illuminating, we present these results
both to demonstrate there is no immediate obstruction to Weyl invariance, and in the
hope that these actions may be found to arise from a more fundamental understanding of
the Weyl invariance of these theories to all orders in α.

5 Conclusions

We have found the field transformations behind the conformal symmetries for DBI in
dimension d = 0 and the special galileon in dimension d = −2 that were found in [11]. Using
these, we have studied how these symmetries interplay with the extended shift symmetries,
finding new symmetries that close them into a larger algebra. In the DBI case, this larger
algebra can be seen as the conformal algebra of the d+ 1 dimensional target space in the
embedded brane way of understanding DBI. In the special galileon case it is a real form
of the special linear algebra (it would be interesting if this could be understood from a
geometric picture of the special galileon [29, 35]). We have also found the corresponding
Weyl invariances, to second order in the coupling in the DBI case and to lowest order in
the coupling in the special galileon case.

A natural question is whether theories with higher order shift symmetries [36, 37],
δφ ∼ xk for k > 2, could emerge and have conformal symmetry. Continuing the pattern
we see here for DBI (k = 1) and special galileon (k = 2), we would expect such a theory
to be conformal in dimension d = −2(k − 1), where the scalar has weight ∆ = −k. We
would expect the shift symmetries and new symmetries found by commuting with the
conformal generators to form a rank k symmetric-traceless representation of the so(2, d)
conformal algebra, where the conformal primary has weight −k. However, as shown in [21],
the commutators of these generators among themselves cannot close back to the conformal
algebra when k > 2, except in the trivial case where such commutators are all abelian, which
would presumably correspond to a free theory or one whose structure is not fixed in a non-
trivial way by the symmetry (this is consistent with the results of [38, 39] forbidding a non-
trivial algebra for k > 0 theories in flat space). This conclusion does not apply if multiple
fields of higher spin are allowed, for which non-trivial algebras are possible [21, 40, 41].

Given that these theories have a formal conformal invariance in unphysical d, it would
be interesting to explore whether the tools of the modern conformal bootstrap [42, 43]
could be extended to these unphysical dimensions and brought to bear in order to non-
perturbatively explore these theories. An immediate obstacle is that the conformal trans-
formations we have are non-linear and so the fields do not transform as conformal primaries
in the usual way, so the form of correlators, crossing symmetry, etc. are all presumably
modified. Alternatively, perhaps there are composite operators that transform in the usual
linear way as conformal primaries, given that the basic field φ transforms non-linearly. If

4Our expressions match those in [11] for α = −1.
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such operators exist, their correlators could be a target for the bootstrap. But there is
no guarantee that they should exist, especially given expectations that these soft scalar
theories are not true local field theories with local operators all the way to the UV [44, 45].
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