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1 Introduction

Although quark and gluon fields are considered to be the most fundamental degrees of
freedom of Quantum Chromodynamics (QCD), in a variety of situations they are definitely
not the most effective ones. There are several quite distinct aspects of the QCD theory
where this becomes manifest. For example, in QCD factorization theorems, which are
essential tools to relate the theory to high energy experiments, one needs to account not
just for a single quark or gluon exchanged between subprocesses separated by a large energy
scale, but also for all collinear and soft gluons; these resummed exchanges of gluons can
be included by using Wilson lines (see [1] for a comprehensive review of the factorization
theorems). Similar collective degrees of freedom appear naturally in the high energy limit
of QCD (see e.g. [2, 3]). In the domain of non-perturbative QCD, further example can
be provided by lattice QCD, where instead of the gauge fields one uses Wilson lines and
Wilson loops. It is also known that, in the limit of large number of colors, the gauge theory
can be completely formulated in loop space, i.e. in terms of various contours of the Wilson
loop [4] (see also a textbook [5]).
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The subject of interest of the following work are scattering amplitudes, in particular the
pure gluonic amplitudes. In that context, it is already well understood that the elementary
triple and four-gluon interactions are not the most effective bricks to build the amplitudes.
Pictorially, they are way too small, so that the number of Feynman diagrams can become
intractable for multi gluon processes. Instead, one should rather use the smaller amplitudes
(i.e. with fewer legs) as the building blocks, but they must be deformed to the non-physical
domain according to the Britto-Cachazo-Feng-Witten (BCFW) method [6, 7]. A particu-
larly interesting example of the BCFW method is when the only type of amplitudes used
are the maximally helicity violating (MHV) amplitudes [8]. This type of recursion has
been found earlier based on the twistor space formulation of quantum field theory by Cac-
hazo, Svrcek and Witten (CSW) [9], who suggested that the MHV amplitudes continued
off-shell are really the multileg vertices (this formalism was later proved to be equivalent to
the standard Yang-Mills theory in [10]). Indeed, an explicit action has been found, where
the MHV vertices are reproduced as a result of the canonical field transformation on the
Yang-Mills action in light-cone gauge [11, 12] This so-called “MHV action” has also been
developed for spontaneously broken gauge theory in [13] and also for supersymmetric gauge
theories in [14–16]. It was also shown that the action reproduces correctly the one-loop
same helicity amplitudes [15, 17–22]. Furthermore, in the supersymmetric regime, using
the MHV vertices, MHV loop amplitudes in N = 4 super Yang-Mills theory were derived
explicitly in [23]. This was later extended for N = 1 (and N = 2) super Yang-Mills
in [24]. Following this, non-supersymmetric one-loop amplitudes, using MHV diagrams,
were explored in [25].

Interestingly, the new fields appearing in the MHV action turn out to be related to
the straight infinite Wilson line of the Yang-Mills fields [26, 27].

As the above result is central to the present paper, let us describe it in more detail. The
light-cone Yang-Mills action can be expressed in terms of just two transverse gluon fields,
that correspond to two polarization states in the on-shell limit. The MHV action is obtained
by transforming both fields to a new pair of fields. In [26] it was found that the plus helicity
field in the MHV action is given as the straight infinite Wilson line along the complex di-
rection determined by the plus helicity polarization vector. This means that the line lies on
the so-called self-dual plane, i.e. the plane on which the tensors are self-dual. In the recent
paper [27], we found that the minus helicity field is given by a similar Wilson line, but with
an insertion of the minus helicty gluon field somewhere on the line. Additionally, we postu-
lated, that it should be a part of a bigger structure, extending beyond the self-dual plane.

Indeed, in the present work we find a more general canonical transformation based
on path ordered exponentials of the gauge fields, extending over both the self-dual and
anti-self-dual planes. The field transformation can be most easily derived as a subsequent
canonical transformation of the anti-self-dual part of the MHV action, but we also discuss
a direct link between the new action and the Yang-Mills action. The key property of the
new action is that it does not have the triple-gluon vertices at all. The reason for this
structure is that the triple-gluon vertices have been effectively resummed inside the Wilson
lines. The absence of the (+ +−) vertex already occurs at the level of the MHV action, as
previously demonstrated in [11]. The second canonical transformation of the anti-self-dual
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part of the MHV action results in the absence of (−−+) triple-gluon vertex as well. Thus,
the lowest multiplicity vertex is the four-point MHV vertex. Higher-point vertices include
not only the MHV vertices, but also other helicity configurations. The number of diagrams
needed to obtain amplitudes beyond the MHV level is thus greatly reduced. We perform
explicit calculations within the new formulation of several higher multiplicity amplitudes,
to verify the consistency of the results.

The paper is organized as follows. In section 2 we introduce the new action, first on a
general ground, and then we proceed to a more technical derivation. In section 3 we apply
the new theory to actual amplitude computations. In section 4 we summarize the work
and discuss some aspects of the new action, in particular the geometric picture behind the
field transformation. Finally, in the appendix we provide more technical details of selected
calculations.

2 A new classical action for gluodynamics

2.1 General idea

Motivated by our earlier results [26, 27], we look for a new set of classical fields describing
scattering processes with gluons in the simplest possible way. That is, we want to find an
action, which has interaction vertices as close to the real scattering processes, as possible.
It is known, that the lowest non-zero scattering amplitude in the physical domain (i.e.
on-shell real momenta satisfying the momentum conservation) is the four-point amplitude.
Therefore, we will look for an action that has no triple-field coupling. In addition, we want
the new fields to have a closed form in terms of the ordinary Yang-Mills fields. This is
necessary for practical applications of the new action.

In general, a field transformation relates four components of fields, thus, in principle
we have four transformations. In order to reduce the number of degrees of freedom, our
starting point will be the Yang-Mills Lagrangian in the light-cone gauge, on the constant
light-cone time x+. As we shall recall below, such formulation reduces the four components
of the gauge field Âµ = taAµa to just two. Here, ta are color generators in the fundamental
representation.1 To this end, we introduce the “plus” and “minus” light-cone coordinates
for a four-vector vµ

v+ = v · η , v− = v · η̃ , (2.1)

where η = (1, 0, 0,−1) /
√

2, η̃ = (1, 0, 0, 1) /
√

2, and two transverse coordinates

v• = v · ε+
⊥ , v? = v · ε−⊥ , (2.2)

defined by the complex null vectors ε±⊥ = (0, 1,±i, 0) /
√

2. The scalar product of two four-
vectors in these coordinates reads u ·w = u+w−+ u−w+− u•w?− u?w•. In order to lower
the indices one needs to flip + ↔ − and ? ↔ •, where the latter operation also causes a
sign change.

1We use the following normalization of the color generators, common in amplitude-related literature:[
ta, tb

]
= i
√

2fabctc and Tr(tatb) = δab. We re-scale the coupling constant as g → g/
√

2 to accommodate
for the additional factors of

√
2 resulting in that normalization.
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The light-cone Yang-Mills action is obtained by setting the light-cone gauge Â+ = 0
and integrating out the Â− field from the partition function. The resulting action has only
two transverse fields Â• and Â? and reads [28]

S
(LC)
Y−M [A•,A?] =

∫
dx+

∫
d3x

{
−TrÂ•�Â?−2igTr∂−1

− ∂•Â
•
[
∂−Â

?, Â•
]

−2igTr∂−1
− ∂?Â

?
[
∂−Â

•, Â?
]
−2g2 Tr

[
∂−Â

•, Â?
]
∂−2
−

[
∂−Â

?, Â•
]}

, (2.3)

where the bold position-space three-vector is defined as x ≡ (x−, x•, x?) so that x = (x+,x).
The nabla operator reads � = 2(∂+∂− − ∂•∂?) in these coordinates. The presence of just
the physical degrees of freedom in the action leads to a natural identification of the helicity
content of the vertices. Assigning the “plus” helicity to Â• field, and the “minus” helicity
to the field Â?, we see that there are (++−), (−−+) and (++−−) vertices in the action.

Following the idea of [11], we look for a field transformation{
Â•, Â?

}
→
{
Ẑ•
[
A•, A?

]
, Ẑ?

[
A•, A?

]}
, (2.4)

which maps the kinetic term and both the triple-gluon vertices into a free term in the new
action. In addition, we demand that the transformation is canonical, so that the functional
measure in the partition function is preserved, up to a field independent factor.

Before we present the details on the transformation facilitating the above requirements,
let us make some introductory remarks. Suppose we have a set of generalized coordinates
and momenta qi, pi. Consider a canonical transformation to a new set Qi, Pi. Consider
now a particular generating function G for the canonical transformation between {q, p}
and {Q,P}, depending only on the generalized coordinates, G(q,Q). Then, the relation
between the original and the transformed coordinates is

pi = ∂G(q,Q)
∂qi

, Pi = −∂G(q,Q)
∂Qi

. (2.5)

In our context, the role of qi coordinate is played by the Â•(x) field, and the canonical
momentum pi is ∂−Â?(x). In the new theory, we identify Qi with Ẑ?(x) and Pi with
∂−Ẑ

•(x). Therefore, the analogous relations are

∂−A
?
a(x+,y) = δ G[A•, Z?](x+)

δA•a (x+,y) , ∂−Z
•
a(x+,y) = −δ G[A•, Z?](x+)

δZ?a (x+,y) , (2.6)

where we have explicitly denoted the fact, that the transformation is performed on the
hyper-surface of constant light-cone time x+. Although the transformation (2.4) is rather
complicated, we found that, quite amazingly, the generating functional G[A•, Z?] can be
written in the following simple form:

G[A•, Z?](x+) = −
∫
d3x Tr Ŵ −1

(−)[Z](x) ∂−Ŵ(+)[A](x) , (2.7)
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where the functional W(±)[K], for a generic vector field Kµ, is directly related to the
straight infinite Wilson line in the following way:

Wa
(±)[K](x) =

∫ ∞
−∞

dαTr
{ 1

2πg t
a∂− P exp

[
ig

∫ ∞
−∞

ds ε±α · K̂
(
x+ sε±α

)]}
, (2.8)

with

ε±µα = ε±µ⊥ − αηµ . (2.9)

The above four vector has the form of a gluon polarization vector. Indeed for α = p ·ε±⊥/p+,
it is the transverse polarization vector for a gluon with momentum p. This type of functional
has been used for the first time in [26] in the context of the MHV Lagrangian. The inverse
functional to the Wilson line, W−1, is defined using the relation W[W−1[K]] = K. Note,
that the functionals W(+) and W(−) are not exactly hermitian conjugates of each other;
only the projection on ε+

α or ε−α changes inside the path-ordered exponential, but the sign
of ig remains unchanged.

In the following sections we shall present more details on the implication of the trans-
formation given by (2.6) and the exact form of the vertices in the new action. In the
remaining part of this section, we will outline the general structure of the new action.

From eqs. (2.6)–(2.7) one can see that the fields Â• and Â? have the following general
expansion in terms of the new fields:

A•a(x+;x) =
∞∑
n=1

∫
d3y1 . . . d

3yn
n∑
i=1

Ξab1...bn
i,n−i (x;y1, . . . ,yn)

i∏
k=1

Z•bk
(x+;yk)

n∏
l=i+1

Z?bl
(x+;yl) ,

(2.10)

A?a(x+;x) =
∞∑
n=1

∫
d3y1 . . . d

3yn
n∑
i=1

Λab1...bn
i,n−i (x;y1, . . . ,yn)

i∏
k=1

Z?bk
(x+;yk)

n∏
l=i+1

Z•bl
(x+;yl) ,

(2.11)

where Ξab1...bi+j

i,j (x; y1 . . .yi+j) is an apriori unknown kernel for i number of Z• fields and
j number of Z? fields in the expansion of Â•, depending on the adjoint color indices
a, b1 . . . bi+j and not depending on the light-cone time. Similarly, Λab1...bi+j

i,j (x; y1 . . .yi+j)
is the kernel for i number of Z? fields and j number of Z• fields in the expansion of Â?.
At lowest order we must have

A•a(x+; x) = Z•a(x+; x) + . . . , A?a(x+; x) = Z?a(x+; x) + . . . . (2.12)

In principle, one could find explicitly the kernels Ξi,j , Λi,j from eqs. (2.6)–(2.7). How-
ever, as we demonstrate in the next section, there is a much better way of doing that, which
utilizes the existing results on the MHV Lagrangian [26, 27]. Since we want to describe a
general structure of the action, for the rest of this section we shall assume that the kernels
are known.
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Inserting the solutions (2.10)–(2.11) to the Yang-Mills action (2.3), we find the follow-
ing structure of the new action:

S
(LC)
Y−M [Z•, Z?] =

∫
dx+

{
−
∫
d3x Tr Ẑ•�Ẑ?

+ L(LC)
−−++ + L(LC)

−−+++ + L(LC)
−−++++ + . . .

+ L(LC)
−−−++ + L(LC)

−−−+++ + L(LC)
−−−++++ + . . .

...

+ L(LC)
−−−···−++ + L(LC)

−−−···−+++ + L(LC)
−−−···−++++ + . . .

}
, (2.13)

where the n-point interaction vertex, n ≥ 4, that couples m minus helicity fields, m ≥ 2,
and n−m plus helicity fields, has the following general form:

L(LC)
− · · · −︸ ︷︷ ︸

m

+ · · · +︸ ︷︷ ︸
n−m

=
∫
d3y1 . . . d

3yn U b1...bn
−···−+···+ (y1, · · ·yn)

m∏
i=1

Z?bi
(x+; yi)

n−m∏
j=1

Z•bj
(x+; yj) .

(2.14)
The above action has the following properties, which we will elaborate on in the next

sections:

i ) There are no three point interaction vertices.

ii ) At the classical level there are no all-plus, all-minus, as well as (−+ · · ·+), (− · · ·−+)
vertices.

iii ) There are MHV vertices, (− − + · · ·+), corresponding to MHV amplitudes in the
on-shell limit.

iv ) There are MHV vertices, (− · · · − ++), corresponding to MHV amplitudes in the
on-shell limit.

v ) All vertices have the form which can be easily calculated.

Because the lowest vertex is the single MHV four-point vertex that corresponds to the
four-gluon MHV amplitude in the on-shell limit, the new action provides an efficient way
to construct tree amplitudes with high multiplicity of legs, as we will demonstrate later in
section 3 by computing several examples.

2.2 Derivation

As we shall see in the following, the easiest way to derive the action (2.13) from the Yang-
Mills action (2.3) is to first transform the latter into an action containing the MHV vertices.
Thus, we start by a brief summary of this procedure.

– 6 –
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2.2.1 MHV action

As explained in detail in [11], the MHV action implementing the CSW rules [9] is obtained
by performing a canonical field transformation with a requirement that the kinetic term
and the (+ +−) triple-gluon vertex is mapped to a free kinetic term in the new action:

Tr Â•�Â? + 2igTr ∂−1
− ∂•Â

•
[
∂−Â

?, Â•
]
−→ Tr B̂•�B̂? . (2.15)

Note that, the two terms on the l.h.s. constitute the self-dual sector of the Yang-Mills the-
ory [29–33]. Therefore, as shown in [27] the solution to the required transformation of fields
can be expressed in terms of the straight infinite Wilson line lying on the self-dual plane,
i.e. the plane spanned by the ε+

⊥ and η. It is exactly the Wilson lineW(+) introduced in the
preceding section. The new fields B, expressed in terms of the Yang-Mills fields A, read

B•a[A•](x) =Wa
(+)[A](x) , B?

a[A•, A?](x) =
∫
d3y

[
∂2
−(y)
∂2
−(x)

δWa
(+)[A](x+; x)
δA•c(x+; y)

]
A?c(x+; y) .

(2.16)
The expressions for the fields in the momentum space have the following form [26, 27]

B̃•a(x+;P) =
∞∑
n=1

∫
d3p1 . . .d

3pn Γ̃a{b1...bn}
n (P;{p1, . . . ,pn})

n∏
i=1

Ã•bi
(x+;pi) , (2.17)

B̃?
a(x+;P) =

∞∑
n=1

∫
d3p1 . . .d

3pn Υ̃ab1{b2...bn}
n (P;p1,{p2, . . . ,pn})Ã?b1(x+;p1)

n∏
i=2

Ã•bi
(x+;pi) ,

(2.18)

where

Γ̃a{b1...bn}
n (P;{p1, . . . ,pn}) = (−g)n−1

δ3 (p1+· · ·+pn−P) Tr
(
tatb1 . . . tbn

)
ṽ∗1(1···n)ṽ

∗
(12)(1···n) · · · ṽ

∗
(1···n−1)(1···n)

, (2.19)

Υ̃ab1{b2···bn}
n (P;p1,{p2, . . . ,pn}) =n

(
p+

1
p+

1···n

)2

Γ̃ab1...bn
n (P;p1, . . . ,pn) . (2.20)

Above, the tildes over the fields and the kernels Γ, Υ denote the Fourier transformed quan-
tities with respect to the three momenta p = (p+, p•, p?). The curly brackets denote the
symmetrization with respect to the pairs of momentum and color indices. The ṽij , ṽ?ij are
quantities similar to spinor products 〈ij〉, [ij], with the following explicit definitions (first
introduced in [34] in the context of the gluon wave function):

ṽij = p+
i

(
p?j

p+
j

− p?i
p+
i

)
, ṽ∗ij = p+

i

(
p•j

p+
j

− p•i
p+
i

)
. (2.21)

They appear quite naturally in the Wilson line approach, because

ṽ∗ij = −(ε+
i · pj) , ṽij = −(ε−i · pj) , (2.22)

where ε±i is the polarization vector for a momentum pi obtained from (2.9) which appears
as the direction of the Wilson line. See [35] for several useful properties of the ṽij symbols.
We also use a shorthand notation for the sum of momenta p1 + · · ·+ pn ≡ p1...n.
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The expressions with Wilson lines (2.16) (or equivalently (2.17), (2.18)) can be inverted
to obtain the power expansions for A•, A? in terms of B•, B?, which are consistent with [12].
In the momentum space we get:

Ã•a(x+;P) =
∞∑
n=1

∫
d3p1 . . .d

3pn Ψ̃a{b1...bn}
n (P;{p1, . . . ,pn})

n∏
i=1

B̃•bi
(x+;pi) , (2.23)

Ã?a(x+;P) =
∞∑
n=1

∫
d3p1 . . .d

3pn Ω̃ab1{b2···bn}
n (P;p1,{p2, . . . ,pn})B̃?

b1(x+;p1)
n∏
i=2

B̃•bi
(x+;pi) ,

(2.24)

where the kernels are

Ψ̃a{b1···bn}
n (P;{p1, . . . ,pn}) =−(−g)n−1 ṽ

?
(1···n)1
ṽ?1(1···n)

δ3(p1+· · ·+pn−P) Tr(tatb1 · · · tbn)
ṽ?21ṽ

?
32 · · · ṽ?n(n−1)

,

(2.25)

Ω̃ab1{b2···bn}
n (P;p1,{p2, . . . ,pn}) =n

(
p+

1
p+

1···n

)2

Ψ̃ab1···bn
n (P;p1, . . . ,pn) . (2.26)

Inserting the above solutions to the Yang-Mills action we can derive the MHV action:

S
(LC)
Y−M [B•, B?] =

∫
dx+

(
−
∫
d3x Tr B̂•�B̂? + L(LC)

−−+ + · · ·+ L(LC)
−−+···+ + . . .

)
, (2.27)

where the n-point MHV interaction terms are

L(LC)
−−+···+ =

∫
d3p1 . . . d

3pnδ3 (p1 + · · ·+ pn) Ṽb1...bn
−−+···+ (p1, . . . ,pn)

B̃?
b1

(
x+; p1

)
B̃?
b2

(
x+; p2

)
B̃•b3

(
x+; p3

)
. . . B̃•bn

(
x+; pn

)
, (2.28)

with the MHV vertices

Ṽb1...bn
−−+···+ (p1, . . . ,pn) =

∑
noncyclic

permutations

Tr
(
tb1 . . . tbn

)
V
(
1−, 2−, 3+, . . . , n+

)
, (2.29)

where the color ordered vertex reads

V
(
1−, 2−, 3+, . . . , n+

)
= (−g)n−2

(n− 2)!

(
p+

1
p+

2

)2
ṽ∗421

ṽ∗1nṽ
∗
n(n−1)ṽ

∗
(n−1)(n−2) . . . ṽ

∗
21
. (2.30)

Above, we defined the momentum space color ordered vertex without the tilde, as this
will not lead to any confusion. Note that, we have written the MHV vertices in a form,
where the negative helicity fields are always adjacent, but there is a sum over the color
permutations, together with the proper symmetry factor.

The vertices (2.30) are fully off-shell quantities, but they correspond to the MHV
amplitudes in the on-shell limit (which is evident from the fact that the ṽij symbols are
in one-to-one correspondence to the spinor products). These vertices are in general not
gauge invariant for off-shell kinematics, but as shown in [26, 35], they do constitute a gauge
invariant off-shell amplitude, when only one plus-helicity leg is kept off-shell.

– 8 –



J
H
E
P
0
7
(
2
0
2
1
)
1
8
7

2.2.2 Canonical transformation of the MHV action

In [27] we argued, that the second equation in (2.16) suggests, that there should exist a more
general structure spanning not only on the ε+

⊥-η plane. The latter should be just a slice of
this more general structure. That is, there should exist a functional which path-orders the
A? fields in the plane perpendicular to the ε+

⊥-η plane.
In order to actually introduce such an object, let us consider a canonical transformation

of the MHV action itself. We demand that

L−+[B•, B?] + L−−+[B•, B?] −→ L−+[Z•, Z?] , (2.31)

where L−+ is just the kinetic term in either B or Z fields, cf. eq. (2.15). The vertex
L−−+[B•, B?] appearing in (2.27) has exactly the same form as the (− − +) triple-gluon
vertex in the original Yang-Mills action (2.3), but with A fields replaced by B fields.
Therefore, the corresponding transformations are analogous to those leading to the MHV
action, but with the replacement • ↔ ?. More precisely

Z?a [B?](x) =Wa
(−)[B](x) , Z•a [B•, B?](x) =

∫
d3y

[
∂2
−(y)
∂2
−(x)

δWa
(−)[B](x+; x)
δB?

c (x+; y)

]
B•c (x+; y) .

(2.32)
Let us point out an important feature of the above formula. Unlike the transformation

leading to the MHV action, eq. (2.16), which involved the Wilson lines W(+) along ε+
α ,

here we have the Wilson line W(−) that have directions ε−α , see the definitions (2.8). Thus,
pictorially, the Z? field is the Wilson line on the η-ε−⊥ plane, where the path ordered fields
are themselves Wilson lines on the η-ε+

⊥ plane (see also figure 9 in section 4).
Already at this stage one can check that the generating functional (2.7) is consistent

with the above transformations. Inserting (2.7) to (2.6) we have

∂−A
?
a

(
x+; x

)
= −

∫
d3y Wc −1

(−) [Z](x+; y) ∂−
δ

δA•a (x+; x)W
c
(+)[A](x+; y) , (2.33)

and

∂−Z
•
a

(
x+; x

)
=
∫
d3y

[
δ

δZ?a (x+; x)W
c −1
(−) [Z](x+; y)

]
∂−Wc

(+)[A](x+; y) . (2.34)

Integrating eq. (2.33) by parts and using the first equation of (2.16) we get

∂−A
?
a

(
x+; x

)
=
∫
d3y

[
∂−Wc −1

(−) [Z](x+; y)
] δB•c (x+; y

)
δA•a (x+; x) . (2.35)

Comparing this with the canonical transformation rule for the A? field of [11] which reads

∂−A
?
a

(
x+; x

)
=
∫
d3y δB•c

(
x+; y

)
δA•a (x+; x) ∂−B

?
c

(
x+; y

)
, (2.36)

we see that
B?
c [Z?](x) =Wc −1

(−) [Z](x) , (2.37)
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Figure 1. Two ways to derive the new action. First is the direct method which involves the
generating functional (2.7). Second involves two consecutive canonical field transformation.

or, upon inverting,
Z?c [B?](x) =Wc

(−)[B](x) , (2.38)

which gives the left equation of (2.32). Inserting now (2.37) into (2.34) and using the first
equation of (2.16) we get

∂−Z
•
a

(
x+; x

)
=
∫
d3y δB?

c

(
x+; y

)
δZ?a (x+; x) ∂−B

•
c

(
x+; y

)
, (2.39)

or
∂−B

•
a

(
x+; x

)
=
∫
d3y δZ?c

(
x+; y

)
δB?

a (x+; x) ∂−Z
•
c

(
x+; y

)
, (2.40)

which, is virtually the same as (2.36), but with the replacement • ↔ ? and the Z fields
instead of B fields and B fields instead of A fields. Since (2.36), together with the left
equation of (2.16), leads to the solution given by the right equation of (2.16), we can argue
that (2.40), together with (2.38), leads to the right equation of (2.32). Note that because
of the replacement • ↔ ?, the Wilson line W(+) in (2.16) becomes W(−) in (2.32).

To conclude, we have shown that the generating functional (2.7) takes care of the chain
of both canonical transformations, from A fields to B fields and from B fields to Z fields,
simultaneously, as shown in the diagram in figure 1.

2.2.3 Solution to the transformations

We have just seen that the transformation from the Yang-Mills action to the new action
generated by the functional (2.7) is equivalent to two canonical transformations: first
transforming the self-dual part of the Yang-Mills action to a free action in B-field theory,
and then transforming the anti-self-dual part in the latter to a free term in the new Z-field
theory. Therefore we can readily write the relations between the Z fields and B fields in
momentum space.

In order to derive the content of the Z-field action, we need to insert the expansions
of B fields in Z fields. For the B? field we find

B̃?
a(x+; P) =

∞∑
n=1

∫
d3p1 . . . d

3pn Ψ̃ a{b1...bn}
n (P; {p1, . . . ,pn})

n∏
i=1

Z̃?bi
(x+; pi) , (2.41)
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with

Ψ̃ a{b1···bn}
n (P; {p1, . . . ,pn}) = −(−g)n−1 ṽ(1···n)1

ṽ1(1···n)

δ3(p1 + · · ·+ pn −P) Tr(tatb1 · · · tbn)
ṽ21ṽ32 · · · ṽn(n−1)

.

(2.42)
Note that, the above quantity has the same form as (2.25), however with ṽ?ij replaced by
its complex conjugate ṽij . The expansion for the B• field follows from (2.24) and reads

B̃•a(x+;P) =
∞∑
n=1

∫
d3p1 . . .d

3pn Ω̃ab1{b2···bn}
n (P;p1,{p2, . . . ,pn})Z̃•b1(x+;p1)

n∏
i=2

Z̃?bi
(x+;pi) ,

(2.43)
where

Ω̃ ab1{b2···bn}
n (P; p1, {p2, . . . ,pn}) = n

(
p+

1
p+

1···n

)2

Ψ̃ ab1···bn
n (P; p1, . . . ,pn) . (2.44)

Inserting the above expansions to (2.17)–(2.18) makes it in principle possible to derive
an explicit form of the expansions between A fields and Z fields. One can thus explicitly
find the kernels Ξi,j , Λi,j introduced in eqs. (2.10)–(2.11). However, it turns out that this
is not necessary. It is much more efficient to insert the above expressions into the MHV
action, as we shall do in the following.

2.2.4 General form of the vertex

Although, formally, both field transformations A → B and B → Z are such that they
remove the triple-gluon vertices, it is interesting to see how they actually cancel in the
Yang-Mills action. Therefore, in the appendix A we directly check that the first terms of
the expansions (2.10)–(2.11) indeed cancel both of the triple-gluon vertices in the Yang-
Mills action.

The remaining terms are obtained by inserting the expansions (2.41), (2.43) into the
MHV vertices (2.29), for n ≥ 4. We shall find a general expression for the vertex when the
negative helicity fields are adjacent. Without loosing the generality we shall focus on the
color ordered vertex, defined as

U b1...bn
−···−+···+ (p1, . . . ,pn) =

∑
noncyclic

permutations

Tr
(
tb1 . . . tbn

)
U
(
1−, . . . ,m−, (m+ 1)+, . . . , n+

)
,

(2.45)
where we assumed there are m minus helicity legs. We shall also need the color ordered
versions of the kernels in the expansions (2.41)–(2.43). We define

Ψ̃ a{b1...bm}
m (P; {p1, . . . ,pm}) =

∑
noncyclic

permutations

Tr
(
tb1 . . . tbm

)
Ψ
(
1−, . . . ,m−

)
, (2.46)

and

Ω̃ ab1{b2...bm}
m (P; p1, {p2, . . . ,pm}) =

∑
noncyclic

permutations

Tr
(
tb1 . . . tbm

)
Ω
(
1+, 2−, . . . ,m−

)
, (2.47)
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Figure 2. Left: color ordered vertex in the Z-field theory with m minus helicity legs. Right: a
general contribution to the Z-theory vertex. The central blob is the MHV vertex.

where for further convenience we explicitly denoted the helicity of the legs in the color
ordered kernels. Note, that the Ψm kernel multiplies the minus helicity leg into m minus
helicity legs, whereas the Ωm kernel multiplies the plus helicity leg into one plus helicity
leg and (m − 1) adjacent minus helicity legs. Note also, that similar to (2.30), we have
omitted the tilde signs in the momentum space color-ordered vertex and kernels.

We observe, that the most general contribution has the form depicted in figure 2. In-
deed, substitution of the plus helicity field B• in the MHV vertex by the Z fields, eq. (2.43),
results in one plus helicity leg in addition to several negative helicity legs. Thus it must be
adjacent to other minus helicity legs multiplied by the Ψ kernels. Therefore, there can be
at most two Ω kernels. Also, there can be at most two Ψ kernels, because there are only
two negative helicity legs in the MHV vertex. In addition to the above general situation,
there are cases when the kernels are trivial, i.e. Ψ1 = 1 or Ω1 = 1. Let us note, that the
MHV vertex has always outgoing momenta, but the Ψ and Ω kernels have the off-shell line
incoming. In addition, there is no propagator connecting the kernels with the MHV vertex.
Therefore, we can identify the internal lines by a single helicity flow, given by the helicity
of the MHV vertex.

Specifically, consider now the vertex for n external legs with the momenta p1 . . .pn,
where p1 . . .pm correspond to the minus helicity legs. Let us introduce a collective index
[i, i+1, . . . , j] labeling the momentum, pi(i+1)...j = pi+pi+1 + · · ·+pj . Using this notation,
the general form of the color ordered vertex can be written as:

U
(
1−,2−, . . . ,m−,(m+1)+, . . . ,n+

)
=
m−2∑
p=0

m−1∑
q=p+1

m∑
r=q+1

V
(

[p+1, . . . , q]−, [q+1, . . . , r]−, [r+1, . . . ,m+1]+,(m+2)+, . . . ,(n−1)+, [n,1, . . . ,p]+
)

Ω
(
n+,1−, . . . ,p−

)
Ψ
(
(p+1)−, . . . , q−

)
Ψ
(
(q+1)−, . . . , r−

)
Ω
(
(r+1)−, . . . ,m−,(m+1)+

)
(2.48)
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Although the analytic formulas do not seem to collapse, in general, to any simple form,
the above expression is operational and can be readily applied in the actual amplitude
calculation, as we shall demonstrate in section 3.

2.3 Summary: Feynman rules for the new action

Let us summarize the content of the new action. It contains a set of vertices with increasing
multiplicity, starting at n = 4. Each vertex has at least two minus helicity legs, and at most
n−2. Thus, we have MHV vertices, next-to-MHV (NMHV) vertices, next-to-next-to-MHV
(NNMHV) vertices and so on. The vertices with maximal number of minus helicity legs
are just MHV vertices. Both the MHV and MHV vertices alone give the corresponding
on-shell amplitudes. In addition to these vertices we have a scalar propagator joining two
opposite helicity legs.

In the following section we shall demonstrate how various amplitudes are calculated.
To this end we introduce the following color-ordered Feynman rules:

i ) scalar propagator joining a plus and a minus helicity leg

+ −
p

= i

ii ) n-point vertex, n ≥ 4, with m negative helicity legs, 2 ≤ m ≤ n− 2

+
1 = iU

(

1−, . . . ,m−, (m+1)+, . . . , n+
)

++

−
− −

m2

m + 2n

m + 1

3 Applications

In this section we shall calculate several tree amplitudes using the new action.

3.1 4-point and 5-point amplitudes

The lowest non-zero amplitude is the 4-point MHV amplitude. It is simply given by the
4-point vertex in the theory.

The non-zero 5-point amplitudes are MHV (− − + + +) and MHV (− − − + +).
Both amplitudes are given just by a single vertex, respectively U(1−, 2−, 3+, 4+, 5+) and
U(1−, 2−, 3−, 4+, 5+). For the MHV it is the expression (2.30), giving for the amplitude

A(1−, 2−, 3+, 4+, 5+) = −g3
(
p+

1
p+

2

)2
ṽ∗421

ṽ∗15ṽ
∗
54ṽ
∗
43ṽ
∗
32ṽ
∗
21
. (3.1)
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Figure 3. The contributions to the color-ordered MHV vertex, with helicity (−−−+ +).
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Figure 4. Diagrams contributing to the 6-point NMHV amplitude (−−−+ ++).

For the MHV the expression is easily obtained from (2.48). In figure 3 we show the
contributing terms. Using the explicit expressions we have:

U(1−, 2−, 3−, 4+, 5+) = g3
[(

p+
1
p+

23

)2 ṽ∗4(23)1
ṽ∗15ṽ

∗
54ṽ
∗
4(23)ṽ

∗
(23)1

×
ṽ(23)2

ṽ32ṽ2(23)

+
(
p+

12
p+

3

)2 ṽ∗43(12)
ṽ∗(12)5ṽ

∗
54ṽ
∗
43ṽ
∗
3(12)

×
ṽ(12)1

ṽ21ṽ1(12)

+
(
p+

2
p+

3

)2
ṽ∗432

ṽ∗2(15)ṽ
∗
(15)4ṽ

∗
43ṽ
∗
32
×
(
p+

5
p+

15

)2
ṽ(15)5

ṽ15ṽ5(15)

+
(
p+

1
p+

2

)2
ṽ∗421

ṽ∗15ṽ
∗
5(34)ṽ

∗
(34)2ṽ

∗
21
×
(
p+

4
p+

34

)2
ṽ(34)3

ṽ43ṽ3(34)

]
. (3.2)

We have checked, that the above expression reduces in the on-shell limit to the known
formula for the MHV amplitude:

A(1−, 2−, 3−, 4+, 5+) = g3
(
p+

4
p+

5

)2
ṽ4

54
ṽ15ṽ54ṽ43ṽ32ṽ21

. (3.3)

3.2 6-point amplitudes

The MHV and MHV amplitudes are always given by the single vertices. For the lat-
ter we need the U(1−, 2−, 3−, 4−, 5+, 6+) vertex which is given by the formula (2.48), see
appendix B. We have verified that it recovers the correct result in the on-shell limit.

The remaining amplitude is the NMHV amplitude with helicity configuration (− −
− + ++). We have just three contributing diagrams depicted in figure 4. First two di-
agrams connect two MHV vertices, whereas the last one is the NMHV vertex, given by
U(1−, 2−, 3−, 4+, 5+, 6+). We have checked that the sum of those diagrams reproduce the
known result in the on-shell limit [36].
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Figure 5. Diagrams contributing to the 7-point NMHV amplitude (−−−+ + + +).

3.3 7-point amplitudes

In addition to the MHV and MHV amplitudes, which are again calculated through just a
single vertex, we have the NMHV and NNMHV amplitudes.

The diagrams contributing to the NMHV amplitude are depicted in figure 5. We have
four diagrams connecting 4-point and 5-point MHV vertices and one diagram which consists
of the single vertex with NMHV helicity configuration. The corresponding expression is

D1 +D2 +D3 +D4 + 1
2D5 , (3.4)

where the individual diagrams are calculated as:

D1 = iU
(
1−, 2−, [3, 4, 5]+, 6+, 7+

)
× i

p2
6712
× iU

(
[6, 7, 1, 2]−, 3−, 4+, 5+

)
(3.5)

D2 = iU
(
1−, [2, 3, 4]−, 5+, 6+, 7+

)
× i

p2
234
× iU

(
2−, 3−, 4+, [5, 6, 7, 1]+

)
(3.6)

D3 = iU
(
1−, 2−, [3, 4, 5, 6]+, 7+

)
× i

p2
3456
× iU

(
[7, 1, 2]−, 3−, 4+, 5+, 6+

)
(3.7)

D4 = iU
(
1−, [2, 3, 4, 5]−, 6+, 7+

)
× i

p2
2345
× iU

(
2−, 3−, 4+, 5+, [6, 7, 1]+

)
(3.8)

D5 = iU
(
1−, 2−, 3−, 4+, 5+, 6+, 7+

)
. (3.9)

In the above, i/p2
i1...im = i/(pi1 + · · · + pim)2 is the scalar propagator. The factor 1/2

multiplying D5 comes from the fact that there are two possible color orders contributing
to diagrams D1-D4. We have compared the sum of those diagrams, i.e. eq. (3.4) with
the on-shell result obtained using the GGT Mathematica package [37] together with the S@M
package [38] and found an exact match, up to an overall normalization due to the difference
in our symbol ṽij and 〈ij〉.

For the NNMHV amplitude the number of diagrams stays the same, see figure 6. Here,
however, we encounter a new feature, namely there are now diagrams that connect the 4-
point MHV vertex with 5-point MHV vertex. That is, starting with this amplitude we
utilize the new vertices appearing in the theory in a nontrivial way (i.e. by gluing them
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Figure 6. Diagrams contributing to the 7-point NNMHV amplitude (−−−−+ + +).
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Figure 7. Diagrams contributing to the 8-point NMHV amplitude (−−−+ + + ++).

with other vertices). We again find the on shell limit of the result consistent with the
GGT package.

3.4 8-point amplitudes

We have also calculated some of the non-trivial 8-point amplitudes, all of which agree with
the standard results calculated numerically using the GGT package.

The 8-point NMHV amplitude turns out to be actually very simple, requiring only 7
diagrams, of which 6 join two MHV vertices, see figure 7.

In order to really test the new theory we calculated the 8-point NNMHV amplitude. In
that case, we encounter only 13 diagrams, shown in figure 8, of which some consist of three
MHV vertices joined by the scalar propagators, but there are also diagrams combining the
5-point MHV vertex as well as 6-point NMHV vertex appearing in the Z-field theory. As
this calculation is less trivial, let us list the structure of the diagrams (they correspond to
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the diagrams in figure 8 from the top left, going to the right):

D1 = iU
(
[7,8,1,2,3]−,4−,5+,6+

)
× i

p2
456
×iU

(
1−, [2,3,4,5,6]−,7+,8+

)
× i

p2
781
×iU

(
2−,3−, [4,5,6]+, [7,8,1]+

)
, (3.10)

D2 = iU
(
3−,4−,5+, [6,7,8,1,2]+

)
× i

p2
67812

×iU
(
1−, [2,3,4,5,6]−,7+,8+

)
× i

p2
781
×iU

(
2−, [3,4,5, ]−,6+, [7,8,1]+

)
, (3.11)

D3 = iU
(
[7,8,1,2,3]−,4−,5+,6+

}
× i

p2
456
×iU

(
1−,2−, [3,4,5,6,7]+,8+

)
× i

p2
812
×iU

(
[8,1,2]−,3−, [4,5,6]+,7+

)
, (3.12)

D4 = iU
(
3−,4−,5+, [6,7,8,1,2]+

)
× i

p2
67812

×iU
(
1−,2−, [3,4,5,6,7]+,8+

)
× i

p2
812
×iU

(
[8,1,2]−, [3,4,5]−,6+,7+

)
, (3.13)

D5 = iU
(
1−, [2,3,4,5]−,6+,7+,8+

)
× i

p2
2345
×iU

(
2−,3−,4−,5+, [6,7,8,1]

)
, (3.14)

D6 = iU
(
1−,2−, [3,4,5,6]+,7+,8+

)
× i

p2
3456
×iU

(
[7,8,1,2]−,3−,4−,5+,6+

)
, (3.15)

D7 = iU
(
1−,2−,3−, [4,5,6,7]+,8+

)
× i

p2
4567
×iU

(
[8,1,2,3]−,4−,5+,6+,7+

)
, (3.16)

D8 = iU
(
1−,2−, [3,4,5,6]−,7+,8+

)
× i

P 2
3456
×iU

(
3−,4−,5+,6+, [7,8,1,2]+

)
, (3.17)

D9 = iU
(
1−, [2,3,4,5,6]−,7+,8+

)
× i

p2
23456

×iU
(
2−,3−,4−,5+,6+, [7,8,1]+

)
, (3.18)

D10 = iU
(
1−,2−, [3,4,5,6,7]+,8+

}
× i

p2
34567

×iU
(
[8,1,2]−,3−,4−,5+,6+,7+

)
, (3.19)

D11 = iU
(
3−,4−,5+, [6,7,8,1,2]+

)
× i

p2
67812

×iU
(
1−,2−, [3,4,5]−,6+,7+,8+

)
, (3.20)

D12 = iU
(
[7,8,1,2,3]−,4−,5+,6+

)
× i

p2
456
×iU

(
1−,2−,3−, [4,5,6]+,7+,8+

)
, (3.21)

D13 = iU
(
1−,2−,3−,4−,5+,6+,7+,8+

)
. (3.22)

The above diagrams have to be combined as follows, due to the additional combinatorial
factors as explained in the previous subsection:

D1 +D2 +D3 +D4 + 1
2 (D5 +D6 +D7 +D8 +D9 +D10 +D11 +D12)+ 1

4D13 . (3.23)
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Figure 8. Diagrams contributing to the 8-point NNMHV amplitude (−−−−+ + ++).

4 Discussion

In the present work we have constructed a new action for gluodynamics by applying two
consecutive canonical transformations on the light-cone Yang-Mills action, see figure 1. The
same action can be also obtained by a single canonical transformation, whose generating
functional is given by eq. (2.6).

The most striking property of the new action is that it has no triple-gluon vertex.
Effectively, the triple-gluon vertices are resummed inside the Wilson lines (see [26] for the
explicit demonstration of that fact for the (+ + −) vertex). Consequently, the number of
diagrams needed to calculate the amplitudes is reduced, as compared for example to the
CSW method. For example, for the NMHV amplitudes with adjacent helicity, the CSW
rules give 2(n− 3) diagrams, whereas the new theory gives 2(n− 5) + 1 diagrams, n ≥ 5.
We give the number of diagrams for various adjacent helicity configurations in table 1. It
is important to stress, that we do not mean here the number of contributing terms, as the
vertices in the new theory are not, in general, given by a single term in our representation.
The structure of those vertices can be however easily obtained by means of the master
equation (2.48).

One of the very interesting aspects of the field transformations leading to the new
action is its incredibly rich geometric structure. Let us recall, that the new minus helicity
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# legs helicity # diagrams

4 point
MHV 1
MHV 1

5 point
MHV 1
MHV 1

6 point
MHV 1

NMHV 3
MHV 1

7 point

MHV 1
NMHV 5

NNMHV 5
MHV 1

8 point

MHV 1
NMHV 7

NNMHV 13
NNNMHV 7

MHV 1

Table 1. Total number of diagrams for helicity amplitudes of different multiplicities.

field Z? is given by the straight infinite Wilson line on the anti-self-dual plane (i.e. the plane
spanned by ε−⊥ and η), integrated over all directions. This is the Wilson line functional of
the minus helicity field of the MHV theory, which itself is given as the analogous Wilson
line of the usual gauge fields lying on the self-dual plane, with insertion of the minus helicity
field (i.e. the functional derivative, see eq. (2.32)). We schematically depict the structure
of the Z? field in figure 9. A similar figure can be drawn for the Z• field. We stress, that
although the overall picture looks very non-local, it is local in the light-cone time.

In our recent work [27] we have discussed the fields in the MHV theory, where the
fields can be expressed as the Wilson line functionals of the standard gauge fields lying
exclusively on the self-dual plane. We see that the transformations derived in the present
work extend this picture to the whole 3-space, with the light-cone time fixed.

One of the future directions is obviously to find the quantum corrections to the new
action. There is an immediate difficulty in that program, namely, the fact that in the quan-
tum MHV action there are contributions evading the S-matrix equivalence theorem [17],
and we expect similar contributions in the new action. An alternative approach is based
on the world-sheet regularization, which successfully recovered one loop all-plus helicity
vertex in the MHV action [19].

Another interesting direction of future study is related to the rich geometric structure
of the transformations, sketched in figure 9, which has not been fully explored.
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y A•
A⋆
A•

A•
x

z

ǫ+⊥-η plane

(self-dual plane)

ǫ−⊥-η plane

(anti-self-dual plane)

B⋆(z)

Z⋆(y)

Figure 9. Schematic presentation of the geometric structure of the Z? field (the structure of Z• is
quite similar). The vertical planes are the self-dual planes, i.e. the planes spanned by the vectors
ε+
⊥ = (0, 1, i, 0) and η = (1, 0, 0,−1). The horizontal plane, in our terminology, is the anti-self-dual
plane, i.e. it is spanned by ε−⊥ = (0, 1,−i, 0) and η. The B? fields (the minus helicity fields in the
MHV action) are the straight infinite Wilson lines on the self-dual plane, integrated over all slopes,
and differentiated functionally to replace one plus gluon helicity field by the minus gluon helicity
field. This structure is represented by the blue lines. The Z? field, i.e. the minus helicity field in
the new theory, is given by a similar Wilson line of the B? fields, lying on the anti-self dual plane,
and integrated over all slopes.
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A Cancellation of triple-gluon vertices

In this appendix we show the cancellation of both the triple-gluon vertices when trans-
forming the Yang-Mills fields to the new fields,{

Â•, Â?
}
→
{
Ẑ•
[
A•, A?

]
, Ẑ?

[
A•, A?

]}
. (A.1)

As previously argued, there are two ways of doing this: using directly the generating
functional (2.7), or using two consecutive canonical field transformations. For convenience,
we shall follow the second path. So the strategy is to express A fields in terms of B fields
and then substitute for B fields in terms of Z fields. Then we shall substitute the A fields
(expressed already in terms of Z fields up to the second order) into the standard Yang-Mills
action (2.3) to show that the triple-gluon vertices cancel out.
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Using the relations (2.17)–(2.18) and (2.41)–(2.43), it is easy to see that the expansion
of Ã•, Ã? fields, to second order in Z̃ fields is the following:[

Ã•a(x+; P)
]

2nd
=
∫
d3p1d

3p2 Ω̃ ab1{b2}
2 (P; p1, {p2})Z̃•b1(x+; p1)Z̃?b2(x+; p2)

+
∫
d3p1 d

3p2Ψ̃a{b1b2}
2 (P; {p1,p2})Z̃•b1(x+; p1)Z̃•b2(x+; p2) , (A.2)

and [
Ã?a(x+; P)

]
2nd

=
∫
d3p1 d

3p2 Ψ a{b1b2}
2 (P; {p1,p2})Z̃?b1(x+; p1)Z̃?b2(x+; p2)

+
∫
d3p1 d

3p2 Ω̃ab1{b2}
2 (P; p1, {p2})Z̃?b1(x+; p1)Z̃•b2(x+; p2) . (A.3)

The above kernels represent the momentum space version of Ξab1b2
1,1 (x; y1,y2), Ξab1b2

2,0
(x; y1,y2), Λab1b2

2,0 (x; y1,y2) and Λab1b2
1,1 (x; y1,y2) respectively, introduced in eqs. (2.10)–

(2.11). All the above relations are three dimensional Fourier transforms performed for a
fixed light-come time x+. Since the kernels are independent of the minus component of mo-
mentum k−, the four dimensional transforms will only account for an extra delta function
for the minus component conservation.

In momentum space, the kinetic and triple-gluon terms of the Yang-Mills action (2.3)
read

L(LC)
+− =

∫
d4p1d

4p2 δ
4 (p1 + p2) p2

1 Ã
•
a (p1) Ã?a (p2) , (A.4)

L(LC)
++− =

∫
d3p1d

3p2d
3p3 δ

3 (p1 + p2 + p3) Ṽ abc
++− (p1,p2,p3)

Ã•a

(
x+; p1

)
Ã•b

(
x+; p2

)
Ã?c

(
x+; p3

)
, (A.5)

with the helicity triple-gluon vertex

Ṽ abc
++− (p1,p2,p3) = −igfabc

(
p?1
p+

1
− p?2
p+

2

)
p+

3 (A.6)

and

L(LC)
−−+ =

∫
d3p1d

3p2d
3p3 δ

3 (p1 + p2 + p3) Ṽ abc
−−+ (p1,p2,p3)

Ã?a

(
x+; p1

)
Ã?b

(
x+; p2

)
Ã•c

(
x+; p3

)
, (A.7)

with
Ṽ abc
−−+ (p1,p2,p3) = −igfabc

(
p•1
p+

1
− p•2
p+

2

)
p+

3 . (A.8)

Above, we have used the 3-dimensional Fourier transform at a constant light-cone time
x+ for the interaction terms, and the full 4 dimensional Fourier transform for the kinetic
term, because the inverse propagator acts also on the light-cone time (i.e. it contains ∂+
operator). Since the triple-gluon vertices are independent of x+, we can directly substitute
the A fields in term of Z fields, at a constant x+ time.
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In order to deal with the kinetic term, we need (A.2) and (A.3) written fully in mo-
mentum space. As mentioned, this is straightforward and accounts for a minus momentum
component conservation delta in the kernels. We have, up to the third order in Z fields,

L+− =
∫
d4p1d

4p2 δ
4 (p1 + p2) p2

1

{[∫
d4q1d

4q2 Ω̃ ac1{c2}
2 (p1; q1, {q2})

× Z̃•c1(q1)Z̃?c2(q2) + Ψ̃a{c1c2}
2 (p1; {q1, q2})Z̃•c1(q1)Z̃•c2(q2)

]
Z̃?a (p2)

+ Z̃•a (p1)×
[ ∫

d4q1 d
4q2 Ψ a{c1c2}

2 (p2; {q1, q2})Z̃?c1(q1)Z̃?c2(q2)

+ Ω̃ac1{c2}
2 (p2; q1, {q2})Z̃?c1(q1)Z̃•c2(q2)

]}
. (A.9)

Let us first consider the terms that have (Z̃?Z̃?Z̃•) field configuration:

T−−+ =
∫
d4p1d

4p2 δ
4 (p1+p2) p2

1

[∫
d4q1d

4q2 Ω̃ac1{c2}
2 (p1;q1,{q2})

×Z̃•c1(q1)Z̃?c2(q2)Z̃?a (p2) +Z̃•a (p1)
∫
d4q1 d

4q2 Ψ̃a{c1c2}
2 (p2;{q1, q2})Z̃?c1(q1)Z̃?c2(q2)

]
.

(A.10)

Integrating the first and second term over p1 and p2 respectively, we see that each term
will have only three momentum variables. Both terms can be combined into one integral
by renaming the momentum variables to p1, p2, p3, and color indices to b1, b2, b3. With
this we have

T−−+ =
∫
d4p1d

4p2d
4p3

[
p2

2 Ω̃ b2b3{b1}
2 (−p2; p3, {p1})

+ p2
3Ψ̃ b3{b1b2}

2 (−p3; {p1, p2})
]
Z̃?b1(p1)Z̃?b2(p2)Z̃•b3 (p3) . (A.11)

In order to bring the above expression to the constant light cone time x+ we introduce the
following auxiliary fields (both for Z̃• and Z̃?)

Z̃bi
(pi) = κ̃bi

(pi)
p2
i

. (A.12)

Substituting (A.12) in (A.11) we obtain

T−−+ =
∫
d4p1d

4p2d
4p3

[
p2

2 Ω̃ b2b3{b1}
2 (−p2; p3, {p1})

+ p2
3Ψ̃ b3{b1b2}

2 (−p3; {p1, p2})
]
κ̃?b1

(p1)
p2

1

κ̃?b2
(p2)
p2

2

κ̃•b3
(p3)
p2

3
. (A.13)
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Next, we integrate out the minus momentum components. To this end, the first term
in (A.13) can be rewritten as

∫
d3p1d

3p2d
3p3

∫
dp−1 dp

−
2 dp

−
3 dP

−
∫
dz+

∫
dy+eiz

+(P−−p−
2 )eiy

+(P−+p−
1 +p−

3 )(−p+
13)(P−+p̂13)

Ω̃ b2b3{b1}
2 (−p2;p3,{p1})

1
2p+

1 [p−1 −p̂1+iε]
1

2p+
2 [p−2 −p̂2+iε]

1
2p+

3 [p−3 −p̂3+iε]
κ̃?b1(p1)κ̃?b2(p2)κ̃?b3(p3) , (A.14)

where we introduced the notation

p̂ = p•p?

p+ , (A.15)

for any momentum p. This leads to

∫
d3p1d

3p2d
3p3 p+

13(p̂1 + p̂3 − p̂13) Ω̃ b2b3{b1}
2 (−p2; p3, {p1})

(iπ)3

p+
1 p

+
2 p

+
3

×
[ 3∏
i=1

Θ(−p+
i ) i

p̂1 + p̂2 + p̂3 + iε
+

3∏
i=1

Θ(p+
i )(−1)3 −i

p̂1 + p̂2 + p̂3 + iε

]
× κ̃?b1 (p̂1; p1) κ̃?b2 (p̂2; p2) κ̃?b3 (p̂3; p3) , (A.16)

where Θ(p+
i ) is Heaviside step function. This may be rewritten as

∫
dx+

∫
d3p1d

3p2d
3p3 p+

13(p̂1 + p̂3 − p̂13) Ω̃ b2b3{b1}
2 (−p2; p3, {p1})

× Z̃?b1(x+; p1)Z̃?b2(x+; p2)Z̃•b3

(
x+; p3

)
, (A.17)

where, in going from (A.16) to (A.17), we used the following relation

∫
dx+

∫
d3p1 · · · d3pn f̃(p1 · · ·pn)Z̃?b1(x+; p1) · · · Z̃•bn

(
x+; pn

)
=
∫
d3p1 · · · d3pn f̃(p1 · · ·pn) (iπ)n

p+
1 · · · p

+
n

[
n∏
i=1

Θ(−p+
i ) i

p̂1 + · · ·+ p̂n + iε

+
n∏
i=1

Θ(p+
i )(−1)n −i

p̂1 + · · ·+ p̂n + iε

]
κ̃?b1 (p̂1; p1) · · · κ̃?bn

(p̂n; pn) . (A.18)

Above, f̃(p1 · · ·pn) represents any generic function not depending on the minus momentum
components (or the light-cone time). In a similar way, the second term in (A.13) gives

∫
dx+

∫
d3p1d

3p2d
3p3 p+

12(p̂1 + p̂2 − p̂12)Ψ̃ b3{b1b2}
2 (−p3; {p1,p2})

× Z̃?b1(x+; p1)Z̃?b2(x+; p2)Z̃•b3

(
x+; p3

)
. (A.19)
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Combining eq. (A.17) and (A.19) we get

T−−+ =
∫
dx+

∫
d3p1d

3p2d
3p3

[
p+

13(p̂1+p̂3−p̂13) Ω̃ b2b3{b1}
2 (−p2;p3,{p1})

+p+
12(p̂1+p̂2−p̂12) Ψ̃ b3{b1b2}

2 (−p3;{p1,p2})
]
Z̃?b1(x+;p1)Z̃?b2(x+;p2)Z̃•b3

(
x+;p3

)
.

(A.20)

Using p+
ij(p̂i+ p̂j− p̂ij) = −ṽ(i)(j)ṽ

∗
(j)(i) and substituting for Ω̃ and Ψ̃ the kernels from (2.44)

and (2.42), respectively, after a bit of algebra we obtain

T−−+ =
∫
dx+

∫
d3p1d

3p2d
3p3 δ

3 (p1 + p2 + p3)

×
(
igf b1b2b3p+

3 v
∗
12

)
× Z̃?b1(x+; p1)Z̃?b2(x+; p2)Z̃•b3

(
x+; p3

)
, (A.21)

where ṽij = p+
i vji. Comparing this with (A.8), we may rewrite the above as

T−−+ =
∫
dx+

∫
d3p1d

3p2d
3p3 δ

3 (p1+p2+p3)

×
(
−Ṽ b1b2b3
−−+ (p1,p2,p3)

)
×Z̃?b1(x+;p1)Z̃?b2(x+;p2)Z̃•b3

(
x+;p3

)
. (A.22)

This cancels out the triple-gluon vertex coming from the Yang-Mills action (A.7) when we
substitute the first order expansion of Ã• and Ã? in terms of Z̃• and Z̃? fields.

In exactly same fashion, the cancellation of the other triple-gluon vertex Ṽ b1b2b3
++−

(p1,p2,p3) can be shown.

B Six point MHV amplitude

In this appendix we show the details associated with the calculation of the 6-point MHV
(− − − − ++) amplitude. As mentioned previously, the MHV amplitudes are always
given by a single vertex in the action (2.13). For the color ordered amplitude we need the
U(1−, 2−, 3−, 4−, 5+, 6+) vertex which is given by the formula (2.48). In figure 10 we show
all the contributing terms. Using the explicit expressions we get:

U(1−, 2−, 3−, 4−, 5+, 6+) = g4
[((

p+
12
p+

34

)2 ṽ∗4(34)(12)
ṽ∗(12)6ṽ

∗
65ṽ
∗
5(34)ṽ

∗
(34)(12)

×
ṽ(12)1

ṽ21ṽ1(12)
×

ṽ(34)3
ṽ43ṽ3(34)

)

+
((

p+
2
p+

34

)2 ṽ∗4(34)2
ṽ∗2(16)ṽ

∗
(16)5ṽ

∗
5(34)ṽ

∗
(34)2

×
ṽ(34)3

ṽ43ṽ3(34)
×
(
p+

6
p+

16

)2
ṽ(16)6

ṽ16ṽ6(16)

)

+
((

p+
1
p+

23

)2 ṽ∗4(23)1
ṽ∗16ṽ

∗
6(45)ṽ

∗
(45)(23)ṽ

∗
(23)1

×
ṽ(23)2

ṽ32ṽ2(23)
×
(
p+

5
p+

45

)2
ṽ(45)4

ṽ54ṽ4(45)

)

+
((

p+
23
p+

4

)2 ṽ∗44(23)
ṽ∗(23)(16)ṽ

∗
(16)5ṽ

∗
54ṽ
∗
4(23)

×
ṽ(23)2

ṽ32ṽ2(23)
×
(
p+

6
p+

16

)2
ṽ(16)6

ṽ16ṽ6(16)

)
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Figure 10. The contributions to the color-ordered 6 point MHV vertex, with helicity (−−−−++).

+
((

p+
12
p+

3

)2 ṽ∗43(12)
ṽ∗(12)6ṽ

∗
6(45)ṽ

∗
(45)3ṽ

∗
3(12)

×
(
p+

5
p+

45

)2
ṽ(45)4

ṽ54ṽ4(45)
×

ṽ(12)1
ṽ21ṽ1(12)

)

+
((

p+
2
p+

3

)2
ṽ∗432

ṽ∗2(16)ṽ
∗
(16)(45)ṽ

∗
(45)3ṽ

∗
32

(
p+

5
p+

45

)2
ṽ(45)4

ṽ54ṽ4(45)

(
p+

6
p+

16

)2
ṽ(16)6

ṽ16ṽ6(16)

)

−
((

p+
1

p+
234

)2 ṽ∗4(234)1
ṽ∗16ṽ

∗
65ṽ
∗
5(234)ṽ

∗
(234)1

×
ṽ(234)2

ṽ43ṽ32ṽ2(234)

)

−
((

p+
123
p+

4

)2 ṽ∗44(123)
ṽ∗(123)6ṽ

∗
65ṽ
∗
54ṽ
∗
4(123)

×
ṽ(123)1

ṽ32ṽ21ṽ1(123)

)

−
((

p+
3
p+

4

)2
ṽ∗443

ṽ∗3(612)ṽ
∗
(612)5ṽ

∗
54ṽ
∗
43
×
(
p+

6
p+

612

)2
ṽ(612)6

ṽ21ṽ16ṽ6(612)

)

−
((

p+
1
p+

2

)2
ṽ∗421

ṽ∗16ṽ
∗
6(345)ṽ

∗
(345)2ṽ

∗
21
×
(
p+

5
p+

345

)2
ṽ(345)3

ṽ54ṽ43ṽ3(345)

)]
. (B.1)

We checked, that the above expression reduces in the on-shell limit to the known
expression:

A(1−, 2−, 3−, 4−, 5+, 6+) = g4
(
p+

5
p+

6

)2
ṽ4

65
ṽ16ṽ65ṽ54ṽ43ṽ32ṽ21

. (B.2)
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