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1 Introduction

Multi-loop scattering amplitudes are core ingredients in high-precision perturbative calcu-
lations in Quantum Field Theory. The complexity of these amplitudes rapidly increases
with the number of loops, external legs, and kinematic scales in a process. Scattering
amplitudes in Quantum Chromodynamics (QCD) and Electroweak theory are of particu-
lar interest due to their central role in theoretical predictions for processes at the Large
Hadron Collider (LHC).

The last few years have seen many advances in the calculation of multi-loop integrals
and amplitudes [1-30]. Two-loop 5-point amplitudes are at the frontier of current ampli-
tude calculations and have been the subject of particularly intense research [31-46]. That
research has notably led to the calculation of the 2-loop QCD leading-colour amplitude for
qq — vy [40, 42, 43], which in turn has enabled, for the first time, the computation of the
Next-to-Next-to-Leading-Order (NNLO) QCD corrections for a 2 — 3 process [40, 47].

In this work we calculate the complete set of 2-loop leading-colour QCD helicity ampli-
tudes for the processes qq¢ — gy and qg — ¢y7y. These amplitudes enable the calculation
of the double-virtual QCD corrections to v7yj production at hadron colliders. They are
also required, alongside the recently-calculated 3-loop QCD amplitude gq — v [48], to
calculate the N3LO QCD correction to 4y production, which is an important background
for inclusive Higgs boson measurements at the LHC.

This paper is organised as follows. Our calculation is described in section 2, including
details of the infrared subtraction and helicity projections. Our results are presented in
section 3 and our conclusions are presented in section 4. Some benchmark results are
given in appendix A. The analytic results derived in this paper are rather compact and are
available for download in electronic form.



2 Calculation

We consider the partonic processes

@ (1)@ (p2) — g (p3)7™ (pa)y"* (ps) ,

a2 (p1)gh? (p2) — 4 (p3)7" (pa)7"* (ps) (2.1)

where h; € {4, —} denotes the helicity of the i parton, i = 1,...,5. The indices ¢ and
¢ denote the colours of the quarks while the index a denotes the colour of the gluon.
The momenta p; and po are incoming while ps, p4, and ps are outgoing. All partons are
massless and on-shell: pg = 0. Momentum conservation and on-shell conditions leave five
independent parity-even Lorentz invariants s;; = (p; + pj)2 and one parity-odd invariant
trs = 4icp, popsps- We choose the following set of variables to parametrise the amplitudes:

x = {512, 523, 534, 545, 551, tI5} . (2.2)

All other Lorentz invariants can be expressed in terms of this set in the following way:

S$13 = S12 — 523 — S45,
814 = —S51 + S23 + S45,
824 = S51 — S23 + 834,
8§25 = 812 — S15 — S34,

835 = 812 — S34 — S45 -

~~ ~~ —~~ —~
~N O Ut = W
~— — ~— ~— ~—

The physical scattering region satisfies [7] the following equations:

- 2
s12 >0, s12 > 834, Sa5 < S12— 834, S23 > S12 — 845, S5 < S51 < S4p, (tr5)° <0, (2.8)

with
2 2 2 2
(tr5)® = s7o(S23 — s51)" + (523534 + 545(534 + S51))
—2512(533534 + 523534545 — 523(534 + 545)551 + 545551 (534 + 851)),  (2.9)
and
3?1 = ;2 (8%2823 + S$12834545 — $23834545 — 83484215
(s12 — S45)

—512523(534 + S45) £ 2\/812823834845(345 + 593 — 512)(S45 + 534 — 312)) . (2.10)

The UV-renormalised amplitude for these processes is denoted by:

M(as)f,h1h2h3h4h5 (3?) _ TgC/M(Oés)f’hthh3h4h5 (33) = Tgc/ijL , (2.11)

ccla

where we have factored out the tree-level colour structure. The index f denotes the flavour
structure, which is f = qq and f = qg for the qg- and gg-initiated processes respectively. We



summarise the helicity configuration by h = {h1, ha, hs, hq, hs} and suppress the kinematic
dependence for brevity. The amplitude can be expanded in as:

] ] ] 2
M = Jadn (Mf’h(o) + (Z;j)/\/lﬁ"“) + <Z‘j> MR O(a§)> . (2.12)

The UV-renormalised amplitude M is related to the bare amplitude computed in d =
4 — 2¢ dimensions M"?B through:

— 2 YE —2 —
MIP(0) = (“ c ) MIB (g0 (2.13)
4
The bare coupling a? is renormalised in the MS scheme according to:
e’YE €
ol = <47T> P Zo s . (2.14)

The renormalisation constant Z,, is given in appendix B.
The IR divergences of the UV-renormalised amplitude can be factorised by means of

the so-called Z operator: ) .
MM = zf Fhi (2.15)

We define Z7 in the MS scheme. Its explicit expression through 2 loops in QCD is given
in appendix B. We note that eq. (2.15) completely specifies the finite remainder F fh,

Once the Z7 factor, the finite remainder F, and the amplitude M have been expanded
in powers of a/(47), eq. (2.15) reduces to'

MImO) — FFh0) (2.16)
MERWD) = 7D A FRO) . FFRQ) (2.17)
M@ = ZH@) pFhO) 7 () FFh() L FHR2) (2.18)

The amplitude can be decomposed in terms of colour factors and the electric charges
Q4 and Q; of, respectively, the external quark ¢ and the quarks ¢ propagating in loops.
The tree-level and 1-loop results will be given in section 3 below. The complete 2-loop
finite remainder, including the non-planar topologies, can be decomposed as follows:

FO = Q2F®Q 1 QuQuy F R 4 Ql,z}_@)’Qz' ; (2.19)

where we have introduced the abbreviation Q. = >, Q;‘,.
In this work we only calculate the contributions from planar diagrams. To single them
out, we expand the charge structures in the large- N, limit

@.Q2 _ 2 [ 7@.Q2N2 | T £(2).Q2n; (1)>
F Nc<]-“ N FFOGn L o( 1))

FRQs = N, (F #iQaQurMe 4 O<J\17>) ’

: n 1
]:(2)762(21/ — NC (I(Q)’QZ/’NL + %]:(2)7625/7 f +O<N)> , (220)

The o, expansion of Fhh s analogous to the one in eq. (2.12).
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Figure 1. Representative two-loop diagrams for the contributing colour/charge coefficients.

where the O(1/N,) terms receive contributions from non-planar diagrams. Furthermore,
the contributions F (2),Q5Ne and F®)QaQyNe a150 have contributing non-planar diagrams
and are not considered in this work. The explicit expressions for the 2-loop finite remainders
are given in section 3 below.

The partonic process ¢§ — gy given in eq. (2.1) has three independent helicities. We
choose the following set:

Fult———=} = palt—+--} g Fualt——+-} (2.21)

All other helicity configurations can be obtained from the above three by conjugation
and/or permutation of the external momenta. We note that the helicity amplitudes
Fao{t———=} Faa{t++-—} and Fe@{+—+++} vanish at tree-level. For this reason they
do not contribute to the 2-loop squared matrix element and enter NNLO QCD computa-
tions only through the 1-loop-squared matrix element.

The partonic process gg — ¢y specified in eq. (2.1) can similarly be expressed in terms
of three independent helicities, and the remaining helicities can be obtained by conjugation
and/or permutation of external legs. Unlike the ¢q initiated process, however, the gg one
involves crossings between the initial and the final states. Such crossings involve a practical
complication related to the nature of the pentagon functions [49] used to express these
amplitudes; it originates in the fact that these functions’ representation does not allow
crossings between the initial and final states in the course of their numerical evaluation.
For this reason, we have computed analytically six helicities from which all remaining ones
can be obtained by crossing final-state momenta only:

FagA+—+—-} Fuodtttt=}  apnd  Faolttt——1

}-qg,{—l-——i-—i-—}’ Faglt++++t gnq  Faoit—+++} (2.22)

All other helicities for this process can be obtained from the above six by conjugation
and /or permutation of final-state momenta.

Just as in our recent 3-photon calculation [43], we have decomposed the ampli-
tudes using the helicity projection method proposed in ref. [50]. The construction of the



gluon/photon polarization vector follows closely ref. [43]. The fermion projector in our
previous work was designed with the permutation symmetry of the final-state photons in
mind. The partonic processes considered here are less symmetric and thus we consider
a simpler projector. In the case of the q¢ — ¢y~ partonic process, the fermionic line is
projected by considering the following trace in spin space:

M = 5(pa, ho)Tu(pr, bn) = Te{ (u@ ) '}, (2.23)

where I' represents the spinor-stripped amplitude. The density operator u ® v can be
rearranged to

(U ® D) = ﬂlﬂ[(u@)a)N(v © 0)]as (2.24)

with any N for which uNv # 0. We choose here N = ps. The projectors for the gg — g7y
process are obtained from those for q¢ — gy by applying the crossing ps <> ps.

The amplitudes are expressed in terms of a minimal basis of irrational functions by
means of the same automated framework that we used in the 3-photon amplitude calcula-
tion [43]. Our framework performs finite-field sampling of the rational coefficients appearing
in the amplitude by evaluating and combining the analytical IBP solutions from ref. [5]
and the master integral solutions from ref. [49]. The analytical results for the amplitude
are obtained by interpolating the finite-field samples using the library FireFly [51]. We
refer the reader to ref. [43] for a detailed description of our framework.

3 Results

We write the finite remainder, suppressing the process (f) and helicity (h) indices, in the
following way:

. T
F = QFOQ (1 + (L) (CFRU),Qg,cF n 071: ROQTE/Ca | 1, %17227%(1)7@5,@)
q

+<Z‘W> <N2R( JRENE 4 Non R Qans 4y %2 Q”"f)>‘ (3.1)
q

In case of a vanishing tree-level amplitude we write

T s T
F = ng:(o),Qﬁ«ZT) (CFR( )@2.Cr CAR(D @Tre/Ca |y, %;R Q2 ,,TF)

2
+<Z‘j> <N2R( VQENE 1 N fROQENS 4 %2 9, "nf>) : (3:2)
q

Our fully-analytic results for the remainders R©%¢, with £ = 1,2 and 4 /c labelling
the charge/colour structure, and for the normalisations F 097 and F©-94 can be found
in the supplementary material attached to this paper.

The remainders R-¢ have the following structure:

O = N ey, (3.3)



The coefficients 7(©4¢ are rational functions of s;; and linear functions of trs. By t.
we denote the elements of the transcendental basis. The parity-odd variable trs has two
distinct origins: the helicity projection and the master integrals of ref. [49]. Scalar integrals
only depend on the invariants s;;, however a physical phase space needs additionally the sign
of Im{trs} to be fully specified and this dependence is kept explicit in this master integral
representation. Internally, we keep these two separate. We relabel the trs originating from
the masters as €5 and include it as part of the basis t.. Since 5 only appears together with
parity-odd combinations of pentagon functions, absorbing €5 in the transcendental basis
effectively renders all elements t. parity-even.

A comment is in order about the crossing of momenta in the presence of the parity-odd
variable 5 and the parity-odd transcendental functions appearing in the basis of ref. [49)].
When the analytic expression for a given helicity is being derived, one needs to match scalar
integrals with permuted momenta to the basis t.. In practice, these scalar integrals are the
master integrals resulting from the IBP reduction of the amplitude. This matching is done
in the following way. Ref. [49] provides the transcendental basis ¢, indirectly, through a
set of master integrals of uniform transcendentality (UTM). These UTMs depend on the
invariants s;; but not on e5. Ref. [49] also provides for a single permutation of momenta a
way of expressing a set of scalar integrals to the set of UTMs. The parity-odd variable ¢35
appears linearly in this relation. This relation allows us to map our own scalar integrals to
UTMs and, from there, to t..

Additionally, ref. [49] provides for each UTM its complete set of permutations in all five
momenta. In practice this means that we do not need to perform any crossing of momenta
in the transcendental functions appearing in the basis t., but simply need to identify the
UTMs with the correct crossing that matches the crossing of the scalar integral. The
variable €5, however, needs to be treated separately under permutation of momenta since
it is not part of the pre-crossed set of UTMs. In particular, its sign changes under odd
permutations.

When one numerically crosses momenta in a given helicity amplitude (for example,
in order to derive a different helicity from a known one) the above procedure needs to
be slightly modified. Since in this case one cannot rely on the set of pre-crossed UTMs
anymore, one has to treat correctly the signs of both the parity-odd variable 5 and the
parity-odd functions within the transcendental basis t.. Specifically, if an odd permutation
is involved the signs of both flip. As we previously remarked, the transcendental functions
of ref. [49] allow for the numerical evaluation of crossings only if the momenta are not
switched between the initial and the final states.

(©)i¢ appearing in the amplitudes by express-

We have simplified the rational functions r
ing them as linear combinations of a much smaller set of rational functions. Those have been
further simplified with the help of the partial fractioning package MultivariateApart [52].
In the following we will be referring to this much smaller set as independent rational func-
tions. The number of (independent) rational functions for each colour/charge structure
can be found in table 1. The appearance of these simpler rational structures has already
been discussed in the literature [37, 43-46] and they have been utilized for expressing the

amplitudes in a more compact from. On the other hand, it seems to us that the possible



true structure behind these independent rational functions has not yet been fully explored
and we hope to return to this in a future publication.

To aid future comparisons, benchmark evaluations of the finite remainders in one
kinematic point are presented in appendix A.

We have performed a number of checks on our results. When computing the 2-loop
finite remainders for the two processes (2.1), we have verified that the poles in e cancel.
We have checked our tree-level and 1-loop results against the library Recola [53]. We have
also verified that the dependence on trs (the one originating from the projector) drops out
in the spin-averaged finite remainder.

Recently, the spin-averaged amplitudes for the two processes (2.1) were calculated in
ref. [44]. We have found complete agreement for all terms except for those containing es.
We have investigated the origin of this discrepancy. In the process of doing this we observed
that we could reproduce the results of that reference if we do not flip the sign of €5 under
permutations during the mapping of masters to pentagon functions as well as during the
numerical crossing of momenta in order to obtain all other helicities. As explained above
such a treatment of €5 is inconsistent. In order to verify this, we have calculated the terms
of order € and €? of the one-loop pentagon integral which are sensitive to the treatment of
the parity-odd invariant and functions. We have verified that the calculation in terms of
pentagon functions as described above agrees with a direct numerical calculation of this
integral with the program pySecDec [54]. Our interpretation of the above result is that
the disagreement between our calculation and ref. [44] is due to an inconsistent treatment
in ref. [44] of 5 under permutations.

Note added. After this paper was completed but before it was submitted for publication
we learned that the authors of ref. [44] have independently discovered the inconsistency in
the sign treatment of €5 mentioned above. We now find complete agreement between our
results and their corrected result, which should appear in an updated version of ref. [44].

4 Conclusions

In this work we have calculated the finite remainders for the complete set of 2-loop QCD
leading-colour helicity amplitudes for the processes qq¢ — gvy and qg — ¢vyv. The results
are obtained in a compact, fully-analytical form and can be found in the supplementary
material attached to this paper.

These amplitudes enable the calculation of the double-virtual QCD corrections to ~-yj-
production at hadron colliders. We expect that the calculation of this process in NNLO
QCD is achievable using the framework used in our calculation of yyy-production at the
LHC [40].

In combination with the recently-calculated 3-loop QCD amplitude gg — v~ [48], our
results open the door to the computation of the N®LO QCD corrections to vy production.



N # tot./ # ind. | qg = qyy # dep. / # ind.
R (2).QIN2 96 / 33 RT—+——(2).Q3.N2 6125 / 66
RH————(2)Q2ny 48 / 22 R+ @@y 85 /27
Rt (2.Q2 g 6 /2 R —(2.Q5 ny 36 /8
REH--@QENZ | 7966 /66 | RTHHOGQENE | 6200 / 101
R+ 2@y 504 / 27 | RFHH(2Q0n 478 / 59
R+_+__’(2)’Q§”"f 58 / 8 R++++—7(2)7Q5/7nf 50 / 8
RYTTO@QLNE | 7952 /101 | REHET QLN 92 /33
RA——+—:(2),Q%n; 736 / 59 RAFH- @y 58 / 22
R (2.0 g 58 /8 R D@0 ny 4 /2
RA—+H+-.(2).Q2.N2 6216 / 101
RE—++-.(2),Q5ns 472 / 59
R+ (2.Q5 ny 50 / 8
RA+H+H+(2),QFNE 6125 / 66
RAHHH+.(2).Q5n 85 / 27
R (2,05 my 36 /8
RA—H++(2),Q3,N2 92 / 33
RA—+++.(2),Q2mns 58 / 22
RF—HH(2).Q5 ms 4/2

Table 1. Total (tot.) vs. independent (ind.) number of rational functions of the finite remainders.
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A Benchmark numerical results for the finite remainder

In this appendix we present numerical benchmark results for both amplitudes (2.1) evalu-

ated at the following point
w=1, = ={1,43/157,83/157,61/157,37/157,iv/10196683/24649} , (A1)

where p is the renormalization scale and x is defined in eq. (2.2).



QaNe Qiny Qg
qd — gvy | 156620.2 | —22398.6 | —1382.95
49 — gy | —1772.85 | —564.471 | 4323.60

Table 2. Benchmark evaluations of the squared two loop finite remainders in the point eq. (A.1).
Shown are the coefficients of the charge/color structures.

In table 2 we give the values of the spin- and colour-summed squared two-loop finite
reminders

> 2Re (FOFD) .

h color

For each amplitude we show separately the coefficients of each one of the three
charge/colour structures appearing in egs. (3.1), (3.2). The complete squared ampli-
tude is then obtained by adding these three numbers each multiplied by its corresponding
charge/color factor. We note that the squared amplitude is independent of the helicity
conventions.

In table 3 we present the values of the coefficients R which are defined in
egs. (3.1), (3.2). The reason we show these coefficients, instead of the complete two-loop
finite remainders, is that the coefficients R are independent of the helicity conventions.
Helicities whose values are not explicitly shown are zero. As in table 2 above, the values

are further split by the charge/color structures appearing in egs. (3.1), (3.2).

B Renormalisation constants

We perform the renormalisation in the MS scheme with ny massless fermions. The UV
renormalisation constant Z,, = Zg is given by:

1(as\4niTr —11Cy <as>2 1(-1703  5CansTr
Zg=1+4-(= )L A (22) |- CpnyT,
o +5(47r> 6 ) e\ T T3 o
1 (121C%  11CansTe  2n5T% 5
— - . (B.1
52< 384 18 48 +0(al). B

The IR renormalisation constant depends on the partonic process. Up to order O(a?) we
find

2, 9 3
- as (v To Qs v 0o —5bo) 1+ To(To—2by) Ty
794 — 3( > () ( 2 — B.2
+ A7\ 22 ' 2¢ Am 8et 4e3 + 8e2 + 4e )’ (B-2)
with
11C 4 — 4An T,
by = Afan : (B.3)



Helicity R(2)Q5NE R(@)Qms ROy

qq — gvv
+———— | —9.0529 — 2.1449i 1.8348 +0.193917 | —0.0051350 — 0.0432213
— 4 — — — | =9.1772 4+ 0.054019 | 1.8181 — 0.22935; 0.036676 + 0.023436i
— 4+ +++ | —9.2761 — 0.30316¢ 1.8348 — 0.193914 —0.032907 — 0.028487:
+—+++ | —89122 —2.2729; 1.8181 + 0.22935; | —0.0011607 + 0.043509:
+—-4+—-- 29.541 + 2.3640i —3.3044 — 0.36765¢ —0.98915 — 1.3505¢
—++-—- 25.228 — 3.0190i —2.0349 + 0.69140i —0.67582 — 1.52604
—+ —++ | 30.472 — 1.4840i —3.3044 + 0.367657 —0.56354 — 1.5763i
+——++ 24.168 + 3.2096 —2.0349 — 0.69140¢ —0.88457 — 1.4153i
+——4+- 27.867 + 24.4014 —3.2863 — 5.2198i —0.38329 — 0.51472i
+—-——+4 131.03 — 151.42i —18.442 + 33.892i —0.71375 — 2.16544
—4+—4- 76.984 + 16.456i —12.948 — 1.6300¢ —0.39323 — 0.50343i
—+ ——+ | —53.799 — 79.874i 18.001 + 12.817: —1.3095 — 1.9617:
— 4+ —+ | 72.634+18.963i —12.119 — 2.2083i —0.21126 — 0.60598:
— 4+ +— | —51.989 — 89.280i 17.474 + 15.070¢ —1.3927 — 1.8052i
+—+—+ | 29.848 +27.439i —3.9115 — 5.88651 —0.19635 — 0.60788:
+—++- 121.36 — 156.87i —16.282 + 34.7461 —0.88995 — 2.1843:

q9 = qvY
+4+4+4+— | 0.55209 — 21.589; 0.61496 + 6.60731 0.49135 — 3.81244
+4++—+ | 27157+ 25.079i —56.389 — 8.8970i 17.075 — 24.896i
—— ——+ | —7.5468 + 7.5743i 2.7324 4 0.49795i 0.16991 — 2.5756
—— —+— | —64.889 +100.82i 26.351 — 23.482i 39.726 — 4.2734i
+—++- 4.7570 — 72.345i —8.0046 + 16.377i 6.4309 + 7.8100¢
+—-4+—+ 1.7860 — 64.731i —2.5875 + 16.3144i —1.1489 — 1.8506
—4+—-—+ 17.411 — 140.014 —9.4010 + 29.890i —1.1923 + 20.567i
—4+—4- 21.245 — 133.79i —12.116 + 28.169i —0.45528 — 3.0363i
+—4+—-- 7.5129 — 120.03i —8.7572 + 26.290i 1.3220 — 2.1771i
-+ —++ 13.107 — 92.756i —17.0224 + 20.685i 1.3220 + 2.17714
+4++++ | —7.3151 —11.657i 2.6393 + 3.4849i 1.6828 + 1.6226i
fffff 2.2900 — 38.856i —0.39700 + 9.5972i 1.6828 — 1.6226i
+ 4+ 4+ —— | 3.137340.084647i | —0.57085 — 0.18319i | —0.42571 + 0.64703i
— — — 4+ | 2.4545+0.89149; | —0.53179 — 0.29430i | —0.42571 — 0.64703¢
+— 44+ | —1.9218 +1.5696i | 0.53536 — 0.44837i 0.30067 — 0.71377i
—+ = —— | —2.9417 —1.1496i | 0.39743 + 0.27087i 0.30067 + 0.71377¢

Table 3. Benchmark evaluations of the two loop finite remainders in the point eq. (A.1).

~10 -




and with the following anomalous dimensions

Y0

il
Iy

I'y

— 9(Ca +2CK), (B.4)
2

= §(2CF + CA)(CA(*67 + 18(2) + QOTLfTF) ,

= —(GCF + bo) — QCA(ZMS + luzs) + Q(CA — QCF)ZMQ , (B.G)

= 5%1 (54012’(—3 +24¢2) + C4(—1384 + 1982) + 8CFTrn (92 + 54¢2)

—2C4 (Cp(961 + 594(2) + 2Trn p(—128 + 18(3)) + 108(C3 + 26C4CF — 24CF)(3

112 (O (—67 + 18C2) + 200 Tr) (Ca (s + Lugy) — (Ca — ch)zm)) | (B.7)

In the above equations we have introduced the following notation: l,,, = log(—u?/s12),
luas = log(,uz/523), and [, = log(1?/s13)-

The factor Z% is obtained from Z97 by replacing l,,,, — Ly, and I,y — 1yy,-
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