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1 Introduction

In the low energy limit of superstring theory, spacetime fields satisfy supergravity (SUGRA)
equations of motion, which are super-analogues of the Einstein equations. It is one of the
main principles of string theory, that these target space equations of motion are equivalent
to the BRST invariance of the string worldsheet theory. In the case of pure spinor string,
the action of the BRST operator on matter fields and pure spinor ghosts does not contain
worldsheet derivatives.1 This means that, if we think of the pure spinor ghosts as part
of target space, the BRST operator defines on the target space an odd nilpotent vector
field, which we denote Q. In other words, the target space of the sigma-model becomes a
Q-manifold. Moreover, in generic space-time (for example in AdS5 × S5, but not in flat
space-time) the energy-momentum tensor and the b-ghost can be interpreted as symmetric
tensors on the target space (see [1]).

Generally speaking, the space of fields in BV formalism is a Q-manifold. It is, however,
infinite-dimensional. Here we point out that to a pure spinor sigma-model corresponds a
finite-dimensional Q-manifold (its target space). It is easier to study finite-dimensional
objects than infinite-dimensional objects.

In particular, we can try to bring this Q to a normal form. Usually, an odd nilpotent
vector field can be “simplified” by a clever choice of coordinates. This is called “normal
form”. If a vector field is non-vanishing, one can choose coordinates so that the it is ∂

∂θ

where θ is one of fermionic coordinates. If it vanishes at some point, then the normal form
would be (in the notations of [2]) ηa ∂

∂xa . But in out case, the target space is not a smooth
supermanifold, because pure spinor ghosts live on a cone. The vector Q vanishes precisely
at the singular locus, and the problem of classification of normal forms is a nontrivial
cohomological computation.

1.1 Definition of M

The particular singularity which we are interested in can be described as follows. Consider
the space M with bosonic coordinates xm (m running from 1 to 10) and λαL, λα̂R (α and α̂
both running from 1 to 16), and fermionic θαL and θα̂R, with the constraint:

λαLΓmαβλ
β
L = λα̂RΓm

α̂β̂
λβ̂R = 0 (1.1)

where Γm are ten-dimensional gamma-matrices. These constraints are called “pure spinor
constraints”. We understand eqs. (1.1) as specifying the singular locus in M , from the
point of view of differential geometry. All we need from these equations is to know how M

deviates from being smooth. The singular locus is the tip of the cone (1.1):

λL = 0 or λR = 0 (1.2)

Pure spinor constraints (1.1) are invariant under the action of the group

G = Spin(10)L ×C×L × Spin(10)R ×C×R (1.3)
1The worldsheet derivatives will appear when we consider the action on the conjugate momenta to

matter fields and pure spinor ghosts, but they can be considered separately. Their BRST transformations
can be derived from the BRST transformations of matter fields and ghosts.
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The diagonal
C× ⊂ C×L ×C×R (1.4)

is called “ghost number symmetry”. Infinitesimal ghost number symmetry is generated by
λαL

∂
∂λαL

+ λα̂R
∂
∂λα̂R

.
Consider an odd vector field Q satisfying the following properties:

• Q has ghost number 1, i.e.
[
λαL

∂
∂λαL

+ λα̂R
∂
∂λα̂R

, Q

]
= Q

• Q2 = 0

• Q is “smooth” in the sense that it can be obtained as a restriction to the cone (1.1)
of a smooth (but not nilpotent) vector field in the space parametrized by uncon-
strained x, θ, λ

• Q is zero at λL = λR = 0

We want to classify such vector fields modulo coordinate transformations. Coordinate
transformations are supermaps (x, λ, θ) 7→ (x̃, λ̃, θ̃) such that λ̃ satisfy the same con-
straints (1.1).

Such a vector field is one of the geometrical structures associated to the pure spinor
superstring worldsheet theory [3, 4]. In particular, flat background (empty ten-dimensional
spacetime) corresponds to Q = Qflat:

Qflat = Qflat
L +Qflat

R where: (1.5)

Qflat
L = λαL

∂

∂θαL
+ (λαLΓmαβθ

β
L) ∂

∂xm

Qflat
R = λα̂R

∂

∂θα̂R
+ (λα̂RΓm

α̂β̂
θβ̂R) ∂

∂xm

String worldsheet theory also has, besides Q, some other structures which are less geo-
metrically transparent (various couplings in the string worldsheet sigma-model). All these
structures should satisfy certain consistency conditions.

Question: is it true, that just a nilpotent vector field Q already includes, as
various coefficients in its normal form, all the supergravity fields, and the super-
gravity equations of motion are automatically satisfied (i.e. follow from Q2 = 0)?

This may be false in two ways. First, it could be that some supergravity fields do not enter
as coefficients in the normal form of Q (i.e. they would only appear as some couplings in
the sigma-model, but would not enter in Q). Second, it could be that just Q2 = 0 would
not be enough to impose SUGRA equations of motion (i.e. one would have to also require
the Q-invariance of the worldsheet sigma-model action).
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1.2 Our results

In this paper we will derive the normal form of Q as a deformation of Qflat:

Q = Qflat + εQ1 + ε2Q2 + . . . (1.6)

Our analysis will be restricted to the terms linear in ε (i.e. Q1). It turns out that Q1
is parameterized by some tensor fields satisfying hyperbolic partial differential equations.
(This means that the solutions are determined by Cauchy data on spacelike hypersurface.)
These equations are similar to the linearized supergravity equations, but contain some
additional components, section 5.4.

It is useful to compare to the pure spinor description of the super-Yang-Mills equations.
The super-Yang-Mills equations are equivalent to having an odd nilpotent operator:

QSYM = λα
(

∂

∂θα
+ Γmαβθβ

∂

∂xm
+Aaα(x, θ)ta

)
(1.7)

where ta are generators of the gauge group, and Aaα(x, θ) is vector potential. Zero solution
corresponds to Aα = 0. In this sense, the SYM solutions can be considered as deformations
of the differential operator:

Q
(0)
SYM = λα

(
∂

∂θα
+ Γmαβθβ

∂

∂xm

)
(1.8)

where the leading symbol (i.e. the derivatives) remains undeformed. Here we consider,
instead, the deformations of the leading symbol.

1.3 Relation to partial G-structures

The variables λL and λR parametrize the normal direction to the singularity locus Z ⊂M :

i : Z →M (1.9)

The first infinitesimal neighborhood is a bundle over Z with the fiber CL × CR — the
product of two cones. Filling the cones, we obtain a vector bundle over Z with the fiber
V = C32. The vector field Q is power series in λL, λR, with zero at the tip of CL × CR.
The derivative of Q at the zero locus defines a linear map:

Q∗ : V → i∗TM (1.10)

This map is not an isomorphism, since the image of Q∗ only covers a (0|32)-dimensional
subbundle of TZ. We can interpretM as (CL×CR)×G Ẑ where Ẑ is a partial frame bundle
of Z and G is given by eq. (1.3). It was shown in [5] that Q defines a connection in a partial
G-structure on Z with some constraints on torsion, modulo some equivalence relation.

1.4 Open questions

At least at the linearized level, our conclusion is that Q2 = 0 is actually a bit weaker than
SUGRA equations of motion. In order to reproduce the SUGRA equations of motion, we
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have to require the existence of some additional objects. Do they correspond to some addi-
tional (besides the nilpotent vector field Q) geometrical structures on M? One additional
requirement could be that the cohomology of Q in the ghost number 2 should be sufficiently
rich. In the pure spinor formalism the cohomology of Q in the ghost number 2 corresponds
to the deformations of the pure spinor sigma model. These deformations correspond to
solutions of linearized (around the given background) SUGRA equations. Therefore, the
cohomology of Q in the space of functions on M of ghost number 2 should also correspond
to solutions of hyperbolic equations. Another structure, suggested by the considerations
of [1, 6], might be a Q-invariant 2-form B satisfying ιQdB = 0. This two-form is a rational
function of λL, λR; it is not clear to us, at this point, which poles should be allowed in B.

It is necessary to extend this analysis to full nonlinear SUGRA equations, i.e.
higher order terms in eq. (1.6). The potential obstacle to extending linearized solu-
tions to the solution of the nonlinear equation Q2 = 0 lies in H2

([
Qflat
L +Qflat

R ,_
])
.

We will not compute H2
([
Qflat
L +Qflat

R ,_
])

in this paper, but the results of [7] suggest
that H2

([
Qflat
L +Qflat

R ,_
])

is actually nonzero. (We would expect it to be similar to
H1

([
Qflat
L +Qflat

R ,_
])

which we compute here, perhaps isomorphic to it.) But we also
know that the actual obstacle is zero, because of the consistency of the nonlinear super-
gravity equations of [3]. For some reason, {Q1, Q1} is a coboundary.

2 Notations

To avoid the discussion of reality conditions, we consider complex vector fields. The nota-
tion:

C〈v1, v2, . . .〉 (2.1)

means the space of all linear combinations of vectors v1, v2, . . . with complex coefficients.
We introduce the abbreviated notations:

((λθ))m = λαΓmαβθβ

((λθθ))γ = λαΓmαβθβθδΓmδγ
[v ⊗ ψ]1/2α = Γmαβvmψβ

[v ⊗ ψ]α1/2 = Γmαβvmψβ

3 Setup for cohomological perturbation theory

3.1 Definition of θαL and θα̂R

We define odd coordinates θ so that:

QLθ
α
L = λαL +O(θ2), QLθ

α̂
R = O(θ2), QRθ

α̂
R = λα̂R +O(θ2), QRθ

α
L = O(θ2) (3.1)
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3.2 Flat Q and expansion around it

Flat spacetime corresonds to Q = Qflat = Qflat
L +Qflat

R where:

Qflat
L = λL

∂

∂θL
+ ((λLθL)) ∂

∂x

Qflat
R = λR

∂

∂θR
+ ((λRθR)) ∂

∂x

Let us consider Q as a small deformation of Qflat:

Q = Qflat + εQ1 (3.2)

to the first order in ε. Such deformations form a linear space. They correspond to odd
vector fields Q1 satisfying:

[Qflat, Q1] = 0 (3.3)
modulo the equivalence relation, corresponding to the action of diffeomorphisms:

Q1 ' Q1 + [Qflat, R] (3.4)

where R is a ghost number zero vector field on M . Therefore, the classification of nilpotent
vector fields of the form (3.2) is equivalent to the computation of the cohomology of the
operator [Qflat,_] on the space of vector fields.

In the rest of this paper we will compute the cohomology of [Qflat,_] on the space of
vector fields.

3.3 Spectral sequence

The grading operator:

N = θL
∂

∂θL
+ θR

∂

∂θR
+ λL

∂

∂λL
+ λR

∂

∂λR
(3.5)

defines a filtration on the algebra of functions on Fun(M), and on the space of vector fields
as a Fun(M)-module. Let FNVect be the space of vector fields with grade at least N . This
filtration defines a spectral sequence converging to the cohomology of [Qflat,_].

3.4 First page

The first page of this spectral sequence is the cohomology of:[
Q

(0)
L +Q

(0)
R , _

]
=
[
λL

∂

∂θL
+ λR

∂

∂θR
, _
]

(3.6)

on the space of vector fields on M . For a set of coordinates x, y, . . . we denote Fun(x, y, . . .)
the space of functions of x, y, . . . and Vect(x, y, . . .) the space of vector fields (i.e. differen-
tiations of Fun(x, y, . . .)). Let us introduce the following complexes:

Cvect
L = Vect(θL, λL) with differential

[
Q

(0)
L ,_

]
Cvect
R = Vect(θR, λR) with differential

[
Q

(0)
R ,_

]
C fun
L = Fun(θL, λL) with differential Q(0)

L

C fun
R = Fun(θR, λR) with differential Q(0)

R

– 6 –
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Then, Vect(M) with differential Q(0)
L +Q

(0)
R decomposes as follows:

Vect(M) = Fun(x)⊗ C fun
R ⊗ Cvect

L (3.7)

⊕ Fun(x)⊗ C fun
L ⊗ Cvect

R (3.8)

⊕ Fun(x)⊗ C fun
L ⊗ C fun

R ⊗ ∂

∂x
(3.9)

(We do not need to take care about the completions of the tensor products, since all our
functions are polynomials in θ and λ.) The cohomology of C fun

L and C fun
R is well known,

see e.g. the review part of [8]:

H0(C fun) = C〈1〉

H1(C fun) = C
〈

((λθ)), [((λθ))⊗ θ]1/2
〉

H2(C fun) = C
〈

((λθ))m((λθ))nΓmnθ, ((λθ))m((λθ))n(θΓlmnθ)
〉

H3(C fun) = C
〈

((λθ))l((λθ))m((λθ))n(θΓlmnθ)
〉

Parts of the cohomology of Cvect
L and Cvect

R which are relevant to this work will be computed
in section 4.

4 Cohomology of Q(0) in the space of vector fields

4.1 Notations

Let X denote the singular supermanifold parametrized by bosonic λα and fermionic θα
satisfying the pure spinor constraint:

λαΓmαβλβ = 0 (4.1)

(The space M introduced in section 1.1 is the direct product of two copies of X, and
the space parametrized by xm.) Let O(X) denote the algebra of polynomial functions on
X, and Vect(X) = Der(O(X)) the space of polynomial vector fields. Consider the odd
nilpotent vector field Q(0):

Q(0) = λα
∂

∂θα
(4.2)

The commutation [Q(0),−] is a nilpotent operator on Vect(X). We will now compute the
cohomology of this operator.

Any vector field V ∈ Vec(X) can be written as

V = ξα(λ, θ) ∂

∂λα
+ uα(λ, θ) ∂

∂θα

(λγm)αξα = 0

The condition (λγm)αξα = 0 is needed because λα is constrained to satisfy eq. (4.1).
Consider the subsheaf U ⊂ TX consisting of vectors of the form uα ∂

∂θα (in other words,
ξα = 0). Its space of sections is:

Γ(U) = {v ∈ Vect(X) | Lvλα = 0} (4.3)

We observe that Γ(U) ⊂ Vect(X) is invariant under the action of [Q(0),_]. Therefore, we
can think of both Γ(U) and Γ(TX/U) as complexes with the differential [Q(0),_].

– 7 –
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4.2 Summary of results for H1(Vect(X))

Using the notations of section 2:

H1(Vect(X))odd = C
〈

[((λθ))⊗ θ]1/2 ⊗ ∂

∂θ
, (4.4)

((λθ))
(
λα

∂

∂λα
+ θα

∂

∂θα

)〉
H1(Vect(X))even = C

〈
[((λθ))⊗ θ]1/2 ⊗

(
λΓmn

∂

∂λ
+ θΓmn

∂

∂θ

)〉
(4.5)

In the rest of this section we will explain the computation.

4.3 Exact sequences

Consider the short exact sequence of complexes:

0 −→ Γ(U) −→ Vect(X) −→ Γ(TX/U) −→ 0 (4.6)

The corresponding long exact sequence in cohomology of [Q(0),_] is:

−→ Hn−1(Γ(U)) −→ Hn−1(Vect(X)) −→ Hn−1(Γ(TX/U)) −→
−→ Hn(Γ(U)) −→ Hn(Vect(X)) −→ Hn(Γ(TX/U)) −→
−→ Hn+1(Γ(U)) −→ . . .

4.4 Computation of H1(Vect(X))odd

4.4.1 Summary of result

We use the following segment of the long exact sequence:

H0(Γ(TX/U))even
δ−→

δ−→H1(Γ(U))odd −→ H1(Vect(X))odd −→ H1(Γ(TX/U))odd
δ−→

δ−→H2(Γ(U))even

The cohomology groups participating in this segment have the following description:

H0(Γ(TX/U))even = C 〈D,Mmn〉 of eq. (4.12)

H1(Γ(U))odd = C
〈

(λΓmθ)(θΓm)α
∂

∂θβ

〉
(4.7)[

δ : H0(Γ(TX/U))even −→ H1(Γ(U))odd
]

= 0 Section 4.4.2 (4.8)

H1(Γ(TX/U))odd = C
〈

(λΓmθ)
(
λα

∂

∂λα

)〉
(4.9)

Section 4.4.2[
δ : H1(Γ(TX/U))odd −→ H2(Γ(U))even

]
= 0 (4.10)

This implies:

H1(Vect(X))odd = H1(Γ(U))odd ⊕H1(Γ(TX/U))odd =

= C
〈

(λΓmθ)(θΓm)α
∂

∂θβ
, (λΓmθ)

(
λα

∂

∂λα
+ θα

∂

∂θα

) 〉
(4.11)

We will now explain the computation.

– 8 –
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4.4.2 Computation

Γ(TX/U). The space Γ(TX/U) is generated as an O(X)-module, by the following vector
fields:

D = λα
∂

∂λα
, Mmn = (λγmn)α ∂

∂λα
(4.12)

However Γ(TX/U) is not a free O(X) module, because there is a relation:

1
10(λγmn)αMmn + λαD = 0 (4.13)

δ : H0(Γ(TX/U))even −→ H1(Γ(U))odd. It is zero because both D and Mmn can
be extended to elements of Vect(X) commuting with Q(0):

D 7→λα
∂

∂λα
+ θα

∂

∂θα
(4.14)

Mmn 7→
(
λΓmn

∂

∂λ

)
+
(
θΓmn

∂

∂θ

)
(4.15)

H1(Γ(TX/U))odd and δ : H1(Γ(TX/U))odd → H2(Γ(U))even. For any tensor
Almn, consider vector fields of the form:

Al,mn(λΓlθ)
(
λΓmΓn

∂

∂λ

)
(4.16)

Such vector fields generate Z1(Γ(TX/U))odd. But some of them are Q(0)-exact:

(λΓ[lθ)
(
λΓm]Γn

∂

∂λ

)
= 1

4

[
Q(0), (θΓlmΓpθ)

(
λΓpΓn

∂

∂λ

)]
mod Γ(U) (4.17)

Therefore the vector fields of the form eq. (4.16) with Almn of the form:

Al,mn = X [lm]n + Y l(mn) , Y lmm = 0 (4.18)

are zero in H1(Γ(TX/U))odd. This implies that H1(Γ(TX/U))odd is generated by the
vector fields of the form:

(λΓiθ)
(
λα

∂

∂λα

)
(4.19)

A vector field of eq. (4.16) is zero in cohomology iff:

Al,lm −Al,ml −Am,ll = 0 (4.20)

Vector fields of the form (4.19) correspond to:

Al,mn = 1
10δilδmn

Al,lm −Al,ml −Am,ll = −δim

Notice that the section of Γ(TX/U) defined by eq. (4.19) can be extended to a [Q(0),_]-
closed section of TX:

(λΓmθ)
((

λα
∂

∂λα

)
+
(
θα

∂

∂θα

))
(4.21)

This means that δ : H1(Γ(TX/U))odd → H2(Γ(U))even is zero.

– 9 –
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4.5 Computation of H1(Γ(TX))even

4.5.1 Summary of result

H1(Vect(X))even =C
〈

(λΓmθ)Γmαβθβ
(
λΓkl

∂

∂λ
+ θΓkl

∂

∂θ

)〉
(4.22)

4.5.2 Computation

We use the following segment of the long exact sequence:

H0(Γ(TX/U))odd
δ−→

δ−→H1(Γ(U))even −→ H1(Vect(X))even −→ H1(Γ(TX/U))even
δ−→

δ−→H2(Γ(U))odd

H0(Γ(TX/U))odd. Is generated by:

Zqα = (Γpθ)α
(
λΓpΓq ∂

∂λ

)
(4.23)

H1(Γ(U))even. Is generated by:

Y m
α = (θΓmλ) ∂

∂θα
(4.24)

δ : H0(Γ(TX/U))odd −→ H1(Γ(U))even.

δZqα = (Γpθ)α
(
λΓpΓq ∂

∂θ

)
=

= (θΓpλ)
(

ΓpΓq
∂

∂θ

)
α

mod [Q(0),_] = (ΓmΓq)βαY m
β mod [Q(0),_] (4.25)

The linear map Y q
α 7→ (ΓmΓq)βαY m

β is a bijection. Therefore H0(Γ(TX/U))odd cancels with
H1(Γ(U))even.

H1(Γ(TX/U))even and δ : H1(Γ(TX/U))even → H2(Γ(U))odd. The space of
cocycles Z1(Γ(TX/U))even is generated by:

[((λθ))⊗ θ]1/2D
[((λθ))⊗ θ]1/2Mmn

where D and Mmn are from eq. (4.12). Since both D and Mmn extend to [Q(0),_]-closed
sections of TX by eqs. (4.14) and (4.15), the coboundary operator δ : H1(Γ(TX/U))even →
H2(Γ(U))odd is zero.

– 10 –
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But some cocycles are exact. Indeed, as sections of TX/U :

Q(0)
(

ΓpqΓmθ (θΓkpqθ)
(
λΓkΓm ∂

∂λ

))
=

= 2ΓpqΓkλ(θΓkpqθ)
(
λ
∂

∂λ

)
+4ΓnqΓmθ(θΓqλ)

(
λΓnΓm ∂

∂λ

)
=

= 2Γkpqλ(θΓkpqθ)
(
λ
∂

∂λ

)
+4ΓnΓqΓmθ(θΓqλ)

(
λΓnΓm ∂

∂λ

)
=

= 2Γkpqλ(θΓkpqθ)
(
λ
∂

∂λ

)
−4ΓnΓmΓqθ(θΓqλ)

(
λΓnΓm ∂

∂λ

)
+8Γnθ(θΓmλ)

(
λΓnΓm ∂

∂λ

)
=

= 2Γkpqλ(θΓkpqθ)
(
λ
∂

∂λ

)
−4ΓnΓmΓqθ(θΓqλ)

(
λΓnΓm ∂

∂λ

)
+16Γmθ(θΓmλ)

(
λ
∂

∂λ

)
=

=−32Γmθ(θΓmλ)
(
λ
∂

∂λ

)
−4ΓnΓmΓqθ(θΓqλ)

(
λΓnΓm ∂

∂λ

)

5 Coefficients of normal form satisfy wave equations

Modulo F 4Vect we can choose the coordinates so that:

QL =λL
∂

∂θL
+((λLθL))mELµm

∂

∂xµ
+ (5.1)

+((λLθL))m
(
λLΩL

L
Lm∂λL+θLΩL

L
Lm∂θL+λRΩL

R
Rm∂λR+θRΩL

R
Rm∂θR

)
+ (5.2)

+((λLθLθL))
(
PLL

∂

∂θL
+PLR

∂

∂θR

)
mod F 4 (5.3)

QR =λR
∂

∂θR
+((λRθR))mERµm

∂

∂xµ
+

+((λRθR))m
(
λRΩR

R
Rm∂λR+θRΩR

R
Rm∂θR+λLΩR

L
Lm∂λL+θLΩR

L
Lm∂θL

)
+

+((λRθRθR))
(
PRL

∂

∂θL
+PRR

∂

∂θR

)
mod F 4 (5.4)

where E,Ω, P are some functions of x. Indeed, using section 3.4:

• H1(C fun
L )odd ⊗ ∂

∂x enters on Line (5.1),

• Second part of H1(Cvect
L )odd (see eq. (4.11)) and H1(C fun

L )odd ⊗ H0(Cvect
R )even on

Line (5.2),

• First part of H1(Cvect
L )odd (see eq. (4.11)) and H1(C fun

L )even ⊗ H0(Cvect
R )odd on

Line (5.3)

5.1 Equations for tetrad and spin connection

5.1.1 Fixing (so(10)⊕ C)L and (so(10)⊕ C)R
Let us study the linearized order in deviations from flat space-time. In flat space-time
ELµm = ERµm = δµm. The deviation from flatness can be written as:

ELµm = δµm + δµne
L
n,m and ERµm = δµm + δµne

R
n,m (5.5)
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where eL and eR are infinitesimal. We assume summation over repeated indices. We can
choose a freedom of so(10)⊕C redefinitions of both (λL, θR) and (λR, θR) to fix:

eL[m,n] = eR[m,n] = 0

eLm,m = eRm,m (5.6)

At this point, the only remaining freedom in redefinition of λ and θ is overall rescaling of
(λL, λR, θL, θR). We fixed both (so(10)⊕C)L ⊕ (so(10)⊕C)R down to the diagonal C.

5.1.2 Fixing ΩL
L
L and ΩR

R
R

According to section 4.4.2, we can choose:

ΩL
L
Lm,lk = 1

10ΩL
L
L

(s)
m δlk (5.7)

From {QL, QR} = 0, the coefficient of ((λLθL))l((λRθR))n
(
λL

∂
∂λL

+ θL
∂
∂θL

)
, projected to

H1(Γ(TX)) (see eq. (4.20)):

2∂mΩR
L
Ln,[ml] − ∂lΩR

L
Ln,mm + ∂nΩL

L
L

(s)
l = 0 (5.8)

Similarly with L↔ R:

2∂mΩL
R
Rn,[ml] − ∂lΩL

R
Rn,mm + ∂nΩR

R
R

(s)
l = 0 (5.9)

Eqs. (5.7) and (5.8) and similar equations with L ↔ R determine ΩL
L
L and ΩR

R
R in

terms of ΩR
L
L and ΩL

R
R Let us denote:

ΩL
m,nk = −ΩR

L
Lm,[nk] + 1

2ΩR
L
Lm,ppδnk (5.10)

and similar definition for ΩR
m,nk in terms of ΩL

R
R.

This notation is useful, because for any vector Vl:

ΩR
L
Lm,nkVl

(
ΓnΓkΓl + Γl(ΓnΓk)T

)
= 4VpΩL

m,pqΓq (5.11)

From {QL, QR} = 0, the coefficient of ((λLθL))m((λRθR))n ∂
∂x :

∂

∂xm
ERn + ERk ΩR

m,kn = ∂

∂xn
ELm + ELk ΩL

n,km

∂meRn,k + ΩR
m,nk = ∂neLm,k + ΩL

n,mk

This implies:

∂[m(eL + eR)n],k +
(
ΩL + ΩR

)
[m,n]k

= 0 (5.12)

∂(m(eL − eR)n),k +
(
ΩL − ΩR

)
(m,n)k = 0 (5.13)

Eq. (5.12) is zero torsion of the “average” (i.e. left plus right) connection.
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Let us denote:

gmn = eL(m,n) + eR(m,n)

Ωm,nk = 1
2
(
ΩL + ΩR

)
m,nk

Then eq. (5.12) implies the existence of am such that:

Ωm,nk = −gm[n
←
∂ k] +amδnk − 2δm[nak] (5.14)

Infinitesimal coordinate redefinition x̃µ = xµ + εvµ corresponds to:

δveLm,k = δveRm,k = ∂(mvk)

δvΩm,nk = ∂m(∂[nvk])

δΩL
L
L

(s)
m = 2∂p∂[pvn]

The overall rescaling

δγ(λL, λR, θL, θR) = (γλL, γλR, γθL, γθR) (5.15)

corresponds to:

δγgm,n = 2γδmn (5.16)
δγam = −∂mγ (5.17)

δγΩm,nk = −∂mγδnk (5.18)

From {QL, QL} = 0 and {QR, QR} = 0 follows that ΩL
R
Rm and ΩR

L
Lm both satisfy Maxwell

equations:
∂

∂xn
∂

∂x[mΩL
R
Rn]pq = ∂

∂xn
∂

∂x[mΩR
L
Ln]pq = 0 (5.19)

Considering the scalar part, we conclude that am satisfies the Maxwell equations:

∂m∂[man] = 0 (5.20)

and gmn satisfies:

∂p∂[pgm][n
←
∂ k] +2∂p∂[pδm][nak] = 0

⇒ ∂k
(
2∂[pgn][m

←
∂ p] +∂man + δmn∂

pap
)
− (k ↔ n) = 0 (5.21)

⇒ ∃bm : 2∂[pgn][m
←
∂ p] +∂man + δmn∂

pap = −∂nbm

It follows from the symmetry m↔ n that exists φ such that bm = am − ∂mφ. Therefore:

2∂[pgn][m
←
∂ p] +δmn∂pap + 2∂(man) = ∂m∂nφ (5.22)

The rescaling eqs. (5.16), (5.17) and (5.18) are accompanied by:

δγφ = (10− 4)γ (5.23)

Eq. (5.21) is actually the consistency of the sum of eq. (5.8) and eq. (5.9).
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We can fix the δγ gauge transformations by requiring ∂pap = 0. In this gauge eq. (5.22)
implies that the Riemann-Christoffel tensor is harmonic:

∂p∂p ∂[ign][m
←
∂ j]= 0

and therefore, up to a finite-dimesional space, that φ is harmonic.
Eq. (5.13) implies, after total symmetrization:

∂(m(eL − eR)n,k) + ΩL(s)
(m δnk) − ΩR(s)

(m δnk) = 0 (5.24)

Modulo finite dimensional spaces, eqs. (5.24), (5.13) and (5.6) imply that (cf. eq. (A.9)):

eL − eR = 0
ΩL(s)
m − ΩR(s)

m = 0 (5.25)(
ΩL − ΩR

)
(m,n)k = 0

Therefore ΩL − ΩR is antisymmetric:(
ΩL − ΩR

)
k,lm

= Hklm = H[klm] (5.26)

Eqs. (5.19) imply:
∂p∂[pHq]mn = 0 (5.27)

The consistency of the difference of eq. (5.8) and eq. (5.9) implies that Hlmn is har-
monic:

∂p∂
pHlmn = 0 (5.28)

and, modulo a constant, divergenceless:

∂pHpmn = 0 (5.29)

The antisymmetric tensor field Hlmn should be identified with the field strength of the
NSNS B-field: H = dB. However, our considerations do not imlpy that dH = 0. All we
can say is, the space of solutions to eqs. (5.27), (5.29) has a subspace consisting of Hlmn

satisfying the equations:

∂[kHlmn] = 0 and ∂lHlmn = 0 (5.30)

5.2 Equations for Ramond-Ramond bispinor

To get {QL, QR} = 0 we need to require (see section 4.5):

Γmβα∇LmP α̂αRL = 0

∇LmP
α̂β̂
RR = 0

Γm
β̂α̂
∇RmPαα̂LR = 0

∇RmP
αβ
LL = 0
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To get {QL, QL} = 0 and {QR, QR} = 0 we need, in addition:

Γmβα∇LmPαα̂LR = 0

Γm
β̂α̂
∇RmPαα̂RL = 0

For generic E and Ω, there are no covariantly constant tensors. Therefore:

PLL = PRR = 0 (5.31)

and the bispinors PLR and PRL both satisfy Dirac equatins in both spinorial indices.

5.3 Conclusion: Q is defined by solutions of hyperbolic partial differential
equations

How many solutions does the equation Q2 = 0 have? In principle, it could be that the
solutions are parametrized by arbitrary functions of x. However, it so happens, that Q
is comletely determined by a set of solutions of hyperbolic equations (such as Maxwell or
Einstein equations). Indeed, the structure of the cohomology of

[
λL

∂
∂θL

,_
]

+
[
λR

∂
∂θR

,_
]

on vector fields (section 4.4.2) imlplies that the Q is completely determined by the first
few terms in the θ-expansion listed in eqs. (5.3) and (5.4). The coefficients ΩL

R
Rm and

ΩR
L
Lm satisfy Maxwell equations, and then ΩL

L
Lm is determined by eq. (5.8), and ΩR

R
Rm

by a similar equation with L ↔ R. The coefficients PLL and PRR are zero modes. The
coefficients PLR and PRL satisfy the Dirac equations.

5.4 Difference with SUGRA equations

Nevertheless, Q2 = 0 is weaker (less constraining) than supergravity equations of motion.
We have ingnored several finite-dimensional spaces of solutios, somewhat similar to the
“nonphysical vertices” of [9]. But besides that, even the “main” spaces of solutions those
which satisfy hyperbolic equations, are larger than the spaces of supergravity solutions:

5.4.1 Vector field am
The field am defined in eq. (5.14) is absent in Type II supergravity. If am = 0, the field φ
corresponds to the dilaton and gij − 1

2δijφ to the graviton in the Einstein frame.

5.4.2 Extra components of Hlmn

Eqs. (5.27), (5.29) are weaker than the SUGRA eqs. (5.30).

5.4.3 Doubling of the RR bispinor

Instead of one RR field P we have two: PLR and PRL.

6 Fermionic fields

In section 4.4.2 we restricted ourselves with QL and QR parameterized by even functions
EL, ER, . . .. We will now add the terms parameterized by odd functions. According to
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section 4.5 these terms are:

Q′L = ((λLθLθL))αψαµL (x) ∂

∂xµ
+ ξβ̂LRm(x)((λLθL))m ∂

∂θβ̂R

+

+ ΞLLL
α[mn](x)((λLθLθL))α

(
λLΓmn

∂

∂λL
+ θLΓmn

∂

∂θL

)
+

+ ΞLRR
αmn(x)((λLθLθL))α

(
λRΓmΓn

∂

∂λR
+ θRΓmΓn

∂

∂θR

)
+

Q′R = ((λRθRθR))α̂ψα̂µR (x) ∂

∂xµ
+ ξβRLm(x)((λRθR))m ∂

∂θβL
+

+ ΞRRR
α̂[mn](x)((λRθRθR))α̂

(
λRΓmn

∂

∂λR
+ θRΓmn

∂

∂θR

)
+

+ ΞRLL
α̂mn(x)((λRθRθR))α̂

(
λLΓmΓn

∂

∂λL
+ θLΓmΓn

∂

∂θL

)
+

Considering the coefficient of ((λLθLθL))((λRθR)) ∂
∂x , we deduce that ψαµL satisfies:

∂νψαµL + 4ΞLRR
α[νµ] − 2ΞLRR

αmm
gµν = 0 (6.1)

and a similar equation for ψα̂µR . This implies (see section A) that modulo finite dimensional
subspaces (which we ignore):

ψαµL = 0
ΞLRR

ανµ = 0
ψα̂µR = 0

ΞRLL
α̂νµ = 0

The coefficients ξα̂LRm and ξαRLm come with gauge transformations:

δφLξ
α̂
LRm = ∂mφ

α̂
L

δφRξ
α
RLm = ∂mφ

α
R

Considering the coefficient of ((λLθLθL))((λRθR))
(
λL

∂
∂λL

+ θL
∂
∂θL

)
, we conclude that

ΞLLL
α[mn] (and similarly ΞRRR

α̂[mn]) are constants, and we ignore them.
Requiring Q2

L = 0, the “Maxwell bishop move”:

ξβ̂LRm(x)((λLθL))m ((λLθL))∂x−→ ∂nξ
β̂
LRm(x)((λLθL))m((λLθL))n

(λL∂θL )−1

−→ . . .
((λLθL))∂x−→

−→ ∂n∂[nξ
β̂
LRm](x)((λLθL))p((λLθL))q((θLθL))pqm

we conclude that ξLR (and similarly ξRL) should satisfy the Maxwell equations:

∂m∂[mξLRn] = 0 (6.2)
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To summarize, the part of Q which involves fermionic fields is very simple:

Q′L = ξβ̂LRm(x)((λLθL))m ∂

∂θβ̂R

Q′R = ξβRLm(x)((λRθR))m ∂

∂θβL

The only fermionic superfields of [3] are Cαγ̂β and Cα̂γ
β̂

. The top component of Cαγ̂β corre-
sponds to ∂[mξ

γ̂
LRn](Γ

mn)αβ , and the top component of Ĉα̂γ
β̂

to ∂[mξ
γ
RLn](Γ

mn)α̂
β̂
.

7 Supersymmetries and dilatation

The vector field Qflat of eq. (1.5) is manifestly supersymmetry-invariant. In other words,
it commutes with the super-Poincare algebra, which is generated by ∂

∂θαL
− Γmαβθ

β
L

∂
∂xm and

∂
∂θα̂R
− Γm

α̂β̂
θβ̂R

∂
∂xm . It is also invariant under dilatations, if we define the weight of x to

be twice the weight of θL, θR. It is perhaps less straightforward to see that there are no
other symmetries. For example, there are no conformal symmetries. (But the dilatation
symmetry is present.) We will now prove that there are no other symmetries.

We have to compute the cohomology of Qflat in the space of vector fields of ghost
number 0. The cohomology of λαL ∂

∂θαL
+ λα̂R

∂
∂θα̂L

at the ghost number 0 is (see section 4):

Tm = ∂

∂xm

SLα = ∂

∂θαL

SRα̂ = ∂

∂θα̂R

DL = λαL
∂

∂λαL
+ θαL

∂

∂θαL

ML
mn =

(
λLΓmn

∂

∂λL

)
+
(
θLΓmn

∂

∂θL

)
DR =λα̂R

∂

∂λα̂R
+ θα̂R

∂

∂θα̂R

MR
mn =

(
λRΓmn

∂

∂λR

)
+
(
θRΓmn

∂

∂θR

)
This means that any infinitesimal symmetry can be brought to the form:

v = Tm(x) ∂

∂xm
+

+DL(x)
(
λαL

∂

∂λαL
+ θαL

∂

∂θαL

)
+Mmn

L (x)
((

λLΓmn
∂

∂λL

)
+
(
θLΓmn

∂

∂θL

))
+

+DR(x)
(
λα̂R

∂

∂λα̂R
+ θα̂R

∂

∂θα̂R

)
+Mmn

R (x)
((

λRΓmn
∂

∂λR

)
+
(
θRΓmn

∂

∂θR

))
+

+ SαL(x) ∂

∂θαL
+ Sα̂R(x) ∂

∂θα̂R
+ . . .
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where . . . stand for terms of the higher order in the grading defined by eq. (3.5). Com-
muting v with (((λLθL))m + ((λRθR))m) ∂

∂xm , we have to cancel the coefficients of all gen-
erators of [Q(0)

L + Q
(0)
R , _] (see section 3.4). The vanishing of the coefficient of ((λRθR))m(

λαL
∂
∂λαL

+ θαL
∂
∂θαL

)
implies that DL(x) = DL0 (constant in x). Similarly, Mmn

L (x) = Mmn
L0 ,

DR(x) = DR0, Mmn
R (x) = Mmn

R0 . The vanishing of the coefficient of ((λLθL))m ∂
∂xn and

((λRθR))m ∂
∂xn imply:

DL0 = DR0 =: D0

Mmn
L0 = Mmn

R0 =: Mmn
0

Tm(x) = Tm0 + 2D0x
m +Mmn

0 xn

The vanishing of the coefficients of ((λRθR)) ∂
∂θL

and ((λLθL)) ∂
∂θR

imply SαL(x) = SαL0 and
Sα̂R(x) = Sα̂R0 (do not depend on x).
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A Higher spin conformal Killing tensors

Consider tensor fields on the flat N -dimensional space RN with coordinates:

xm , m ∈ {1, . . . , N} (A.1)

They are functions with indices: fm1,...mr(x), where r is the rank of the tensor. There
are some differential equations which only have finite-dimensional spaces of solutions. For
example:

∂

∂x(m fn)(x) = 0 (A.2)

The solutions of this equation are parameterized by constant antisymmetric tensors bmn:

fm = bmnx
n (A.3)

More generally, consider the equation:

∂

∂x(m0
fm1...mn)(x) = 0 (A.4)

We want to classify the solutions of this equation. Consider the Taylor expansion of
fm1...mn near x = 0. Since eq. (A.4) is homogeneous in x, we can consider each order of
the Taylor expansion separately. In other words, it is enough to consider fm1...mn(x) a
homogeneous polynomial of x. Let us introduce auxiliary variable ym and consider the
generating function:

f̂(x, y) = ym1 · · · ymnfm1...mn(x) (A.5)
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Homogeneous polynomials f̂(x, y) of x, y of the order N form a finite-dimensional repre-
sentation of sl(2,R), with the generators defined as follows:

E = ym
∂

∂xm
, F = xm

∂

∂ym
, H = ym

∂

∂ym
− xm ∂

∂xm
(A.6)

Eq. (A.4) implies that f̂(x, y) is a highest weigh vector:

Ef̂ = 0 (A.7)

On the other hand, f̂ being a polynomial of the order n in y implies:

Fn+1f̂ = 0 (A.8)

Therefore, the space of polynomial solutions of eq. (A.4) decomposes into the direct sum
of representations of dimension 0, 1, 2, . . . , n. They correspond to polynomials of degree
0, 1, 2, . . . , n in x. We conclude that all solutions of eq. (A.4) are polynomials of order n in
x (not necessarily homogeneous).

Let us now consider a weaker equation. Instead of requiring ∂(m0fm1...mn) be zero, we
require the existence of gm2,...mn(x) such that:

∂

∂x(m0
fm1...mn)(x) = δ(m0m1gm2...mn)(x) (A.9)

δm1m2fm1...mn = 0 (A.10)

(We can think of eq. (A.9) as having a gauge symmetry δfm1...mn = δ(m1m2hm3...mn),
δgm2...mn = ∂(m2hm3...mn), and eq. (A.10) as fixing the gauge.) The solutions of eq. (A.9)
are higher spin conformal Killing tensors. They correspond to traceless Killing tensors in
AdS [10]. Given a traceless Killing tensor in AdS, we can consider the leading Taylor coef-
ficient of its expansion around a point in AdS. It will satisfy eq. (A.4) (with an additional
condition δm1m2fm1m2...mn = 0) implying that the space of solutions is finite-dimensional.
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