
J
H
E
P
0
7
(
2
0
2
1
)
1
3
0

Published for SISSA by Springer

Received: May 17, 2021
Accepted: June 28, 2021
Published: July 20, 2021

Standard Model prediction of the Bc lifetime

Jason Aebischer and Benjamín Grinstein
Department of Physics, University of California at San Diego,
La Jolla, CA 92093, U.S.A.

E-mail: jaebischer@physics.ucsd.edu, bgrinstein@ucsd.edu

Abstract: Applying an operator product expansion approach we update the Standard
Model prediction of the Bc lifetime from over 20 years ago. The non-perturbative velocity
expansion is carried out up to third order in the relative velocity of the heavy quarks. The
scheme dependence is studied using three different mass schemes for the b̄ and c quarks,
resulting in three different values consistent with each other and with experiment. Special
focus has been laid on renormalon cancellation in the computation. Uncertainties result-
ing from scale dependence, neglecting the strange quark mass, non-perturbative matrix
elements and parametric uncertainties are discussed in detail. The resulting uncertainties
are still rather large compared to the experimental ones, and therefore do not allow for
clear-cut conclusions concerning New Physics effects in the Bc decay.

Keywords: QCD Phenomenology

ArXiv ePrint: 2105.02988

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP07(2021)130

mailto:jaebischer@physics.ucsd.edu
mailto:bgrinstein@ucsd.edu
https://arxiv.org/abs/2105.02988
https://doi.org/10.1007/JHEP07(2021)130


J
H
E
P
0
7
(
2
0
2
1
)
1
3
0

Contents

1 Introduction 1

2 Mass schemes 3
2.1 The MS mass-scheme 5
2.2 The Upsilon scheme 5
2.3 The “meson” scheme 6
2.4 Light quarks 7
2.5 Nomenclature 8
2.6 Comparison of schemes 8

3 Effective Hamiltonian 10

4 Non-Relativistic QCD 11

5 Operator product expansion 16
5.1 C

(3)
c : free c-quark decay 18

5.2 C
(3)
b̄

: free b̄-quark decay 20
5.3 C

(5)
b̄

: chromomagnetic operator Ob8 20
5.4 C

(5)
c : chromomagnetic operator Oc8 22

5.5 Pauli interference 22
5.6 Weak annihilation 23

6 Matrix elements 24

7 Numerical analysis 26
7.1 Results 28
7.2 Uncertainties 29

7.2.1 Perturbative expansion and QCD-scale uncertainty 30
7.2.2 Non-relativistic expansion and Non-perturbative uncertainties 32
7.2.3 Parametric and numerical uncertainties 33
7.2.4 Strange quark mass 33

8 Conclusions 33

1 Introduction

The Bc meson is the lightest state with both “naked” beauty and charm. As such it is
stable against both strong and electromagnetic decay. Its weak decay can proceed through
three distinct mechanisms: either b̄-quark decay, c-quark decay or b̄-c annihilation. Exper-
imentally, the Bc lifetime has been measured by LHCb [1, 2] and CMS [3] with a world
average of [4]:

τ exp
Bc

= 0.510(9) ps , (1.1)
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which corresponds to a decay width

Γexp
Bc

= 1.961(35) ps−1 . (1.2)

Since both valence quarks in the Bc meson are heavy, the state is similar in structure
to it’s quarkonium cousins, the ηc and ηb pseudoscalar mesons, the lightest members of the
J/ψ and Υ towers of states. This circumstance allows for an effective treatment in terms
of Non-Relativistic QCD (NRQCD), where (much as in the case of heavy quarkonium) the
anti-quark corresponding to the valence quark, or the quark corresponding to the valence
anti-quark, is integrated out at the respective scale. This method has been used to estimate
the lifetime of the Bc meson in the Standard Model (SM) [5–7].

The most precise value has been obtained in [6] to be τBc = 0.52 ps, with an uncer-
tainty from varying the input charm quark1 mass that results in 0.4 ps < τBc < 0.7 ps,
corresponding to

ΓBc = 1.92+0.58
−0.49 ps−1 , (1.3)

exclusive of other sources of uncertainty that include, among others, ±22% from scale
uncertainty in the perturbative calculation.

Similar results were found in other OPE calculations [5, 7] as well as using QCD sum
rules [8] or potential models [9]. A comparison of the different predictions can be found
in [10].

The experimental measurement in eq. (1.1) has a much smaller uncertainty than the
theory prediction in eq. (1.3). This motivates a reinvestigation of the SM prediction from
over 20 years ago with the goal of improving the theoretical precision, and the eventual
hope of a precision comparable to the experimental one.

Renewed interest in the Bc lifetime has arisen because it is susceptible to New Physics
(NP) effects. Consequently a more precise SM prediction allows to place stronger constrains
on NP models. In particular, experimentally measured deviations from SM expectations
in the semileptonic decays B → Dτν, B → D∗τν and Bc → ψτν suggest NP contributions
to the quark level process b → cτν [11–17]. These so-called R(D), R(D∗) and R(Bc)
anomalies can be accounted for by several extensions of the SM. If the NP is realized
as an effective pseudoscalar interaction, that is, a four-fermion interaction involving a
pseudoscalar hadronic bilinear times a leptonic S − P bilinear, then the Bc lifetime is
especially effective in placing constraints on its strength [18, 19]. This type of interaction
is often found in models of NP proposed in the interpretation of the R(D(∗)) anomalies,
such as the two-Higgs-doublet model (2HDM) and leptoquarks. The Bc lifetime constraint
rules out any of the 2HDM interpretations of R(D∗), including the type III versions of
the model that contain general Yukawa couplings to the different fermions [20], which can
explain simultaneously R(D) and R(D∗), [21–26], going beyond the more restricted set
of models [27–30] on which BaBar [11, 12] and Belle [14] place constraints. Leptoquark
models have also been proposed to explain these anomalies and they are susceptible to
these bounds when they generate sizable pseudo-scalar operators [18, 31].

1More precisely, ref. [6] varies the charm mass in the range 1.4GeV < mc < 1.6GeV, and then fixes the
b-quark mass by the requirement that the Bd lifetime is reproduced.
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In this work we follow the OPE methodology of ref. [6] (henceforth “BB”). There are
several ways in which we can improve the result of that work. First and foremost, we
use and compare three mass schemes to eliminate pole (or “on-shell”) masses in flavour
of well defined masses and therefore eliminate renormalon ambiguities that arise in the
on-shell scheme. The largest source of uncertainty in the calculation of the width is from
the pole masses, since the width scales as the fifth power of these. BB use ad hoc values
for b and c pole masses. We perform the calculation in the MS mass scheme, the “Upsilon”
scheme [32, 33], and a “meson” scheme that incorporates some aspects of the Upsilon
scheme. We will expand on these below but for now we point out that the Upsilon scheme
organizes the perturbative expansion in a manner that not only eliminates renormalon
ambiguities from the expression for the decay width but in addition is empirically seen
to have better convergence than other schemes. Moreover, the masses of the Υ and J/ψ
particles, used as inputs, are determined accurately. Second, for the one-loop calculation of
the subprocess b→ cc̄s BB uses the result of Bagan et al. [34, 35]. Later, Krinner, Lenz and
Rauh (henceforth KLR) inferred the presence of typos in the analytic expressions of Bagan
et al. [36], because those expressions do not produce the numerical results and graphs they
present. KLR compute the 1-loop corrections anew and agree with the numerical results of
Bagan et al., inferring thus the presence of typos. We have used, and verified partially, the
results of KLR. Third, BB neglect, and we include, the contribution of penguin operators,
that are formally of the same order as other contributions retained in the calculation albeit
numerically small. Fourth, we use better determined input parameters, such as the strong
coupling constant αs(MZ), the CKM matrix elements, and the non-perturbative Bc decay
constant, fBc , for which there is now a lattice calculation [37], among others. Fifth, we
use spin symmetry to relate some of the non-perturbative matrix elements appearing in
the calculation.

In addition to updating and improving on the BB result, we have tried to clarify several
issues in their presentation. Among these we clarify below the need to go up to fourth order
in velocity in the NREFT, the role of spin symmetry in the calculation of matrix elements,
the relative (un)importance of various corrections, the distinction between quarks and anti-
quarks in the NREFT as well as the interpretation and precise value of the momenta pb±pc
that enter the operators in the OPE for weak annihilation (WA) and Pauli interference (PI)
diagrams.

The rest of the paper is organized as follows: in section 2 the different mass schemes
used for the calculation are discussed. In section 3 we outline the Effective Field Theory
approach used at the electroweak (EW) scale involving the effective Hamiltonian. The
matching onto NRQCD is performed in section 4. The Operator Product Expansion (OPE)
is discussed in section 5. Section 6 describes the computation of relevant matrix elements
and in section 7 the numerical computation and analysis of the uncertainties for the SM
prediction is performed before we summarize our results and offer some observations in the
conclusions, in section 8.

2 Mass schemes

The largest source of uncertainty in the calculation of the inclusive rate of the Bc decay is
in the value of the pole mass. As we will review below, the calculation of the rate, ΓBc ,
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is based on an OPE of the two point function of the effective Hamiltonian, cf eqs. (5.1)
and (5.2). The leading term in the calculation corresponds to Γb + Γc, the sum of decay
rates of b and c quarks computed perturbatively as if the quarks were not bound to the
Bc meson. The rate Γq is given in terms of the pole mass, mq, as an expansion in powers
of αs

Γq = κm5
q(f0(x) + εαsf1(x) + ε2α2

sf2(x) + · · · ) , (2.1)

where κ is a constant independent of mq, x and αs chosen so that the tree-level rate has
f0(0) = 1. For reasons that will be explained momentarily, we have introduced the power
counting parameter ε = 1 that is set to unity at the end of the calculation. The coefficients
of the expansion, fi(x) are functions of the ratios of final state pole masses, mq′ , to the
mass of the decaying quark, x = mq′/mq. Pole masses are convenient for the perturbative
calculations, but are beset by both computational and conceptual difficulties: their pertur-
bative expansion is poorly convergent and suffers from a renormalon ambiguity. Moreover,
the roots of the implicit equation that relates them to short distance (Lagrangian) masses
are complex for the light quarks.

When expressed in terms of the pole mass, the perturbative rate also suffers from a
renormalon ambiguity. Remarkably, eliminating the pole mass in favour of well defined
(e.g., short distance) masses, gives a perturbative expansion of the rate that is free of
renormalon ambiguities [38–41]. For each choice of well defined mass the manner in which
renormalon ambiguities cancel in the rate suggests how to organize the perturbative ex-
pansion. We refer to any one choice of mass and of reorganization of the perturbative
series as a “mass-scheme”. When the well defined quark masses are chosen as the modified
minimally subtracted masses, mq, the expansion of the pole mass takes the form

mq = mq(1 + εαsd
(1)
q + ε2α2

sd
(2)
q + · · · ) , (2.2)

so that the renormalon free expansion for the rate for the flavour transition q → q′ takes
the form

Γq→q′ = κm5
q

[
f0(x̄) + εαs

(
5d(1)

q f0(x̄) + (d(1)
q′ − d

(1)
q )x̄df0(x̄)

dx̄
+ f1(x̄)

)
+O(ε2)

]
, (2.3)

where x̄ = mq′/mq. As we see, in this “MS scheme” the expansion in ε is equivalent to the
perturbative expansion in powers of αs.

By contrast, in the “Upsilon scheme” the power counting in ε does not correspond to
powers of αs. Up to small non-perturbative corrections the q pole mass is given in terms
of that of the mass Mq̄q of some quarkonium q̄q state by

mq = 1
2Mq̄q(1 + εα2

sD
(1)
q + ε2α3

sD
(2)
q + · · · ) . (2.4)

For example, if in Γb→cud we neglect the light quark masses and use this scheme for both
b and c quarks, then

Γb→cud =κ

(
Mb̄b

2

)5 {
f0(X)

+ε
[
α2
s

(
5D(1)

b f0(X) + (D(1)
c −D

(1)
b )Xdf0(X)

dX

)
+ αsf1(X)

]
+O(ε2)

}
, (2.5)

where now X = Mc̄c/Mb̄b.
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While any good choice of well defined masses yields a well behaved perturbative ex-
pansion in the sense that it is free of renormalon ambiguities, different mass-schemes may
differ in how rapidly the expansion converges (in the asymptotic expansion sense). Were
we able to compute to high order, all mass-schemes would give the same numerical value
for the rate (up to a small higher order term). But computations of rates are available
only to low orders in perturbation theory, often only including 1-loop corrections to the
leading, tree level term. In practical term it is best to choose a scheme that converges most
rapidly. In the sub-sections below we present and compare the three schemes in which we
perform calculations.

As stated above, the leading term in the OPE for the decay width of Bc mesons is the
perturbative Γb+Γc. The corrections to those are expressed as products of non-perturbative
matrix elements and Wilson coefficients. The latter are perturbatively computed as func-
tions of pole masses. In the calculations below we use the same scheme choice for these
sub-leading terms as for the leading ones.

2.1 The MS mass-scheme

This scheme uses the running renormalized Lagrangian masses mb(µ) and mc(µ) evaluated
at a sufficiently high renormalization scale µ. In this scheme the expansion parameter ε
simply counts powers of αs, making its use particularly simple. The expansion of mb,c in
terms of the MS masses is known to third order in αs [42, 43], but we only need it to
first order:

mq = mq(µ)
[
1 + ε

αs(µ)
π

(
4
3 − ln

(
mq(µ)2

µ2

))]
+O(α2

s) , (2.6)

where we have retained explicitly the power of ε used in organizing the perturbative expan-
sion, corresponding to eq. (2.2). It is convenient to cast the c-quark decay rate in terms of
the running mass evaluated at itself, mc(mc), and the b-quark decay rate in terms of both
quark masses evaluated at the shorter distance scale, mb(mb) and mc(mb). The value of
the masses, mb(mb) and mc(mc), is reported by the PDG with 1%-2% accuracy. Because
the rates scale as the fifth power of the mass, this results in an uncertainty of 5%-10%.
In addition, as discussed below, the convergence of the perturbative series is slow in the
case of semileptonic b and c decays, and there is no reason to suspect it is any better for
non-leptonic decays.

2.2 The Upsilon scheme

The Upsilon expansion was introduced by Hoang, Ligeti and Manohar in refs. [32, 33]
(henceforth “HLM”) to address the largest source of uncertainty in the calculation of the
inclusive rate of semileptonic B and D meson decays. The calculation of the rate for
semileptonic B decays is based on an operator product expansion of the two-point function
of hadronic charged currents

i

∫
d4x eiq·x〈B|T (jµ(x)jν†(0))|B〉

in terms of operators in the Heavy Quark Effective Theory (HQET) [44]. The expansion
is naturally given in inverse powers of the pole mass of the decaying heavy quark, and the

– 5 –



J
H
E
P
0
7
(
2
0
2
1
)
1
3
0

resulting rate is proportional to the fifth power of the pole mass. In the Upsilon scheme
the masses are chosen to be the well measured 1S masses,2 Mb̄b = mΥ and Mc̄c = mJ/ψ,
resulting in a negligible uncertainty in the decay rate from the value of these masses. The
expansion of the pole masses in terms of mΥ and mJ/ψ has been determined to fourth order
in αs, with corrections that start at order α2

s [45, 46]:

1
2mΥ
mb

= 1− (αsCF )2

8

{
1ε+ αs

π

[(
ln
(

µ

αsCFmb

)
+ 11

6

)
β0 − 4

]
ε2 + · · ·

}
, (2.7)

where β0 = 11 − 2
3nf is the coefficient of the first term in the QCD β-function, CF =

(N2
c − 1)/2Nc = 4/3, and we have omitted the known term of order α4

s. For quarkonium
systems the quark potential suffers from a renormalon ambiguity, as does the pole mass,
but the resulting quarkonium state energy is free from ambiguities and hence the onium
mass is a good candidate for an unambiguous, well defined mass [47, 48].

The organization of the expansion is unusual. The parameter ε = 1 is inserted to
indicate the order in the expansion. For the expansion of the rate in eq. (2.1) the power
of ε matches that of αs. But, as seen above, the parameter ε in eq. (2.4) carries one
additional power of αs, i.e., εnαn+1

s . As seen in eq. (2.5) the leading correction to the rate
includes order αs terms from the perturbative corrections to the rate, and order α2

s from
the perturbative expansion of the masses. This is dictated by the requirement that the
renormalons cancel in the expression for the rate.

In the implementation of this scheme for non-leptonic decays HLM expand the Wilson
coefficients of the electroweak effective Hamiltonian in powers of αs ln(mW /mb) and trun-
cate in the power of αs to which they perform the calculation of the rate. We do not adopt
this prescription and instead retain the full resummed values of the Wilson coefficients.
The reason is that this series does not contribute to the cancellation of renormalons, as can
be seen from the fact that MW is an arbitrary parameter. This is the case for the other
mass schemes as well.

2.3 The “meson” scheme

The HQET gives the heavy baryon masses as an expansion in inverse powers of the pole
masses. To second order in the heavy quark expansion one has

mb −mc = mB −mD + 1
2λ1

( 1
mb
− 1
mc

)
+ · · · (2.8)

This is written in terms of the spin- and isospin-averaged masses mB = 1
4(3mB∗+mB) and

mD = 1
4(3mD∗ + mD), and the non-perturbative HQET parameter λ1 =

−1
2〈H

Q|Q̄vD2
⊥Qv|HQ〉, where Qv is a heavy quark with 4-velocity v and HQ stands for the

heavy-light meson in the HQET; for details see, e.g. ref. [49]. Using the spin average mass
eliminates dependence on the second non-perturbative parameter that enters at this order,
λ2, that is responsible for the mass splitting of the B −B∗ and D −D∗ heavy quark spin
multiplets. In the meson scheme one eliminates the charm mass mc in favour of mb, the

2The masses of other quarkonium states can be used instead.
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very well measured physical meson masses and non-perturbative parameters of the heavy
quark expansion. For mb one may then choose one of the previous schemes; for our work
we take mb from mΥ as in the Upsilon scheme above.

Notably, the leading correction to the relation between pole and meson masses, given by
the non-perturbative parameter Λ̄, cancels out in the mass difference in eq. (2.8), improving
the precision and eliminating the renormalon in Λ̄. Another important advantage of this
scheme is that the “phase space” functions fi(x) incorporate the dependence on the mass
difference which is now fixed accurately.

If one chooses, as we do, to give mb in terms of mΥ then the organization of the
expansion in the meson scheme is analogous to that of the Upsilon scheme. Instead of
eq. (2.4) we now have

mc = m(0)
c + εα2

sm
(1)
c + · · ·

= mΥ
2 −mB +mD −

1
2λ1

( 2
mΥ
− 2
mΥ − 2(mB −mD)

)
+ εα2

sC
(1)
b

mΥ
2

[
1 + 2λ1

(
1
m2

Υ
− 1

(mΥ − 2(mB −mD))2

)]
+ · · · (2.9)

and the rate expansion takes a form similar to that of eq. (2.5)

Γb→cud =κ

(
mΥ
2

)5 {
f0(X)

+ ε

[
α2
s

(
5C(1)

b f0(X) + 2
(
m

(1)
c

mΥ
− C(1)

b

m
(0)
c

mΥ

)
df0(X)
dX

)
+ αsf1(X)

]

+O(ε2)
}
. (2.10)

2.4 Light quarks

The available 1-loop calculations give decay rates in terms of pole masses. At L-loops the
pole mass mq is determined implicitly, as a root of the equation

mq

mq(mq)
= 1 +

L∑
n=1

dn

(
αs(mq)

4π

)n
, (2.11)

where the MS-mass,mq(µ), and the running coupling, αs(µ), are computed at L-loops [42].3

Beyond 1-loop this relation has only complex roots for small input MS-mass; that is,
the relation involves necessarily ln(ln(mq/ΛQCD)) which is complex for the light quarks,
q = u, d, s. The effect of including the light quark masses is expected to be small, so one
may get around this difficulty by working in the massless limit; chiral symmetry guarantees,
perturbatively, the vanishing of the pole mass. Yet, the strange quark is sufficiently heavy
as to have a significant effect on charm decays. Therefore, in principle eq. (2.11) has to
be solved iteratively in order to give mq in terms of mq(µ) at a sufficiently high scale µ,

3A compendium of useful formulae for on-shell masses can be found in ref. [50].
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where perturbation theory is still valid. In this work however we only use the 1-loop result
given in eq. (2.6) together with the results from Monte Carlo simulations of QCD on the
lattice that reliably determine mq(µ) at µ = 2GeV. For the expansion in ε we use the
power counting indicated in eq. (2.6), regardless of the scheme used for the heavy quarks.

The numerical impact of the non-zero strange quark mass will be discussed below. We
use a non-zero strange mass for charm decays and neglect ms in b̄-decays as well as in
WA and PI. Clearly the non-vanishing mass tends to decrease rates as it restricts, if only
marginally, the phase space available to the decay products. But this effect is very small
in decays of the heavier b quark and even smaller in WA. Because we do not consistently
include a non-zero strange quark mass in all Bc decay channels, we give our results using
a vanishing strange quark mass in all Bc decay channels, and then, in addition, we list the
results of decay channels from charm decay anew with non-zero strange quark mass.

2.5 Nomenclature

For clarity we summarize our definitions of “schemes” as applied to the computation of the
Bc lifetime in the rest of this work:

MS: for all partial rates we use mb and mc given in terms of mb(µb) and mc(µc) respec-
tively.

Meson: for all partial rates we use eq. (2.8) to give mc in terms of mb and mB −mD, and
we use the Upsilon expansion to give mb in terms of mΥ.

Upsilon: the contributions to the total width that arise from b̄ decays, WA and PI are
computed as in the meson scheme, but for those from c decays the c-quark pole mass
is given by the Upsilon expansion in terms of mJ/ψ.

The contributions to the total width arising from b̄ decays, WA and PI are computed with
µb = µc = mb(mb), while for c decays we use µc = mc(mc). These choices are motivated by
the typical total energy released in each of these processes. In all three schemes the light
quarks, q = u, d, s are assumed to be massless, except for the strange quark for which we
use ms in terms of ms(µc) when computing partial Bc decay widths from c-quark decays.

2.6 Comparison of schemes

We have already indicated that both the Upsilon and the meson schemes have the advantage
that the input masses are extremely well known. This gives them a clear advantage over
the MS scheme. However, one should keep in mind that the relation giving the pole mass in
terms of the 1S mass is subject to poorly known non-perturbative corrections. The authors
of HLM estimate the non-perturbative mass shift δm as δm ∼ a3Λ4

QCD, where a is the Bohr
radius of the 1S. For the Upsilon state they estimate this correction as δm ∼ 15 MeV for
ΛQCD = 350 MeV (δm ∼ 60 MeV for ΛQCD = 500 MeV). The leading contribution to the
mass shift is from the gluon condensate 〈αsG2

µν〉, and has been calculated in refs. [51, 52]:

δm = 1.41mb

π〈αsG2
µν〉

(mbCFαs(a−1))4 .

– 8 –
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This is estimated as δm ≈ 60 MeV in ref. [45]. HLM uses δm ∼ 100 MeV as a conservative
estimate of the error in the pole mass relation. This seems to result from an abundance
of caution. We do not include the condensate correction in our calculations. Were we to
include it in the calculations in the Upsilon scheme the uncertainty in the charm quark
mass would render it useless. Instead we assume it can be neglected. This can be checked
a posteriori, and much like the implicit assumption that quark-hadron duality can be used
for the implementation of the OPE method we view this as an assumption that can be
validated either by further theoretical progress or by experimental results.

Turning to the nature of the expansions, we present calculations of semileptonic decay
rates of B and D mesons to compare some of the schemes. Using ε = 1 to indicate orders
of the expansion, the rate for B → Xueν in the Upsilon scheme behaves as4

1− 0.115ε− 0.030ε2 + · · ·

while for the MS scheme
1 + 0.30ε+ 0.20ε2 + · · ·

For the numerical estimate we have used αs = 0.223, corresponding to the running cou-
pling evaluated at µ = mb(mb). The ellipses stand for higher orders of ε as well as non-
perturbative corrections. These estimates seem to indicate more rapid convergence of the
Upsilon scheme than for the MS scheme. For comparison we also give the expansion for
the rate in terms of the pole mass:

1− 0.17ε− 0.11ε2 + · · ·

The expansion in the Upsilon scheme seems to be approaching a limit quickly, as each
term in the expansion is an order of magnitude smaller than the previous. By contrast the
expansion in the MS scheme displays much slower convergence. One expects of course that
after a sufficient number of terms are included, both Upsilon and MS scheme expansions
will give equivalent rates. But in practice only a small number of terms in the series can
be computed and it is most practical to use the scheme that converges fastest. We note
that the convergence in terms of the pole mass is similar to that of the MS scheme. This
should not suggest to use the pole mass as a scheme: as mentioned above, both the mass
and rate expansion are ambiguous.

For B → Xceν we find the following expansions

1− 0.10ε− 0.03ε2 + · · · (meson/Upsilon scheme)
1 + 0.27ε+ 0.09ε2 + · · · (MS scheme)
1− 0.20ε− 0.20ε2 + · · · (pole mass)

4HLM only include the BLM part of the ε2 term. Since the publication of HLM the full 2-loop correction
has become available [53, 54]. For some semileptonic decays HLM compare the Upsilon scheme to the pole
mass expansions. We always include the more relevant comparison to the MS scheme.
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and, using αs = 0.373 corresponding to evaluating the running coupling constant at µ =
mc(mc), we find for D → Xs+deν the expansions

1− 0.13ε+ 0.02ε2 + · · · (Upsilon scheme)
1 + 0.51ε+ 0.64ε2 + · · · (MS scheme)
1− 0.29ε− 0.30ε2 + · · · (pole mass)

In addition, the reader may find in HLM similar estimates for B → Xu,cτν, and B →
Xc(s̄+d̄) (that only retain the BLM part of the ε2 term). In all cases it is apparent that the
expansion in the Upsilon scheme converges faster than in the MS scheme and faster than
for the (a priori ill defined) rate in terms of pole masses.

3 Effective Hamiltonian

We employ the standard Effective Field Theory approach where the heavy SM particles
(top quark, Higgs and EW gauge bosons) are integrated out at the EW scale and matched
onto the following effective Hamiltonian [55, 56]:5

Heff = 4GF√
2
VcbV

∗
cs

6∑
i=1

CiQi + h.c. , (3.1)

with the current-current operators

Q1 = (s̄γµPLb)(c̄γµPLc) , Q2 = (s̄αγµPLbβ)(c̄βγµPLcα) , (3.2)

and the QCD-penguin operators

Q3 = (s̄γµPLb)
∑
q

(q̄γµPLq) , Q4 = (s̄αγµPLbβ)
∑
q

(q̄βγµPLqα) , (3.3)

Q5 = (s̄γµPLb)
∑
q

(q̄γµPRq) , Q6 = (s̄αγµPLbβ)
∑
q

(q̄βγµPRqα) .

Here PR,L = 1
2(1 ± γ5) and α, β denote colour indices. We have used VtbV

∗
ts ≈ −VcbV ∗cs,

which holds to high precision. The sums run over the active quarks at the given scale.
To compute the relevant partial decay rates at one-loop, one has to combine one-

loop matrix elements together with Wilson coefficients resulting from a one-loop matching
and two-loop running calculation. In our approach we only work up to this order for the
operators Q1,2 but not for the QCD penguin operators. This simplification is justified by
the fact that the operators Q3,4,5,6 have much smaller Wilson coefficients. For convenience
we report in table 1 the LO Wilson coefficients of the operators in eq. (3.1) at the scales
of the b- and c-quark.

The semileptonic channels also contribute to the decay rate of the Bc meson. Integrat-
ing out the W at the EW scale leads to the following effective charged-current operators:

HSL
eff = 4GF√

2
Vcb

∑
`

C`(c̄γµPLb)(¯̀γµPLν`) , (3.4)

5At one loop-order the electroweak penguin operators Q7 −Q10 are generated as well. We neglect their
contributions, since they correspond to higher order corrections in our expansion.
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Wilson coefficient mb = 4.195GeV mc = 1.2734GeV
C1 −0.241 −0.420
C2 1.103 1.205
C3 0.011 0.021
C4 −0.025 −0.043
C5 0.007 0.012
C6 −0.030 −0.060

Table 1. Wilson coefficients at the b- and c-scale, taking tree-level matching and one-loop RG
running effects into account.

where the sum runs over all lepton flavours. At tree-level in the SM with the chosen
normalization the Wilson coefficients are equal to one for all lepton flavours, C` = 1. These
operators do not run under QCD due to current conservation and have a small running
under QED [57]. Therefore, we only consider the tree-level matching at the electroweak
scale and neglect RG effects for these operators.

With a slight abuse of notation, we use the same symbols to denote operators and
Wilson coefficients of the effective Hamiltonian for charm hadronic decay,

H(c)
eff = 4GF√

2
V ∗csVud(C1Q1 + C2Q2) + h.c. , (3.5)

with the current-current operators

Q1 = (s̄γµPLd)(ūγµPLc) , Q2 = (s̄αγµPLdβ)(ūβγµPLcα) . (3.6)

Because these operators carry four separate flavours, there is no QCD mixing from Penguin
operators. For semileptonic decays we have the analogue of (3.4),

H(c)SL
eff = 4GF√

2
Vcs

∑
`

C`(c̄γµPLs)(¯̀γµPLν`) + h.c. (3.7)

As described in section 5 below, the effective Hamiltonians in eqs. (3.1), (3.4), (3.5)
and (3.7) are then used together with an OPE to obtain the Bc lifetime.

4 Non-Relativistic QCD

The b-quark and c-antiquark in the B̄c meson can be well described in NRQCD. There are
several advantages in utilizing this effective theory. First, it organizes the computation in
an expansion in powers of the relative velocity v = |~v| of the heavy quarks bound in the
meson. Second, the expansion makes explicit additional approximate “spin” symmetries for
the b and c quarks separately. These then give relations among matrix elements that hold
even non-perturbatively (in the QCD coupling expansion). Third, separate conservation of
b and c numbers fixes, non-perturbatively, the values of the matrix elements of the leading
operators in the OPE that determines the semi-inclusive partial lifetimes Bc → Xcc̄ and
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Bc → Xbb̄. The corrections arise from the order in perturbation theory to which the Wilson
coefficients are computed, and from the higher order terms in the OPE. The matrix elements
of the latter can be estimated with, say, potential models; to the extent that the expansion
in v is well behaved, the potentially large uncertainty in the sub-leading matrix elements
may still translate in a manageable uncertainty in the total rate. We briefly review elements
of NRQCD.

In our treatment the quark NRQCD fields are still given in terms of Dirac spinors,
much like is commonplace in HQET. The 4-velocity of the quarkonium state is uµ, with
u2 = 1. We take away the fast oscillation in the near on-shell evolution of the field of
the QCD heavy quark, Q(x), of mass m, and furthermore project out the positive energy
components Ψ+ (that correspond to the particle annihilation operator),

Q(x) = e−imu·x(Ψ+(x) + Ψ−(x)) , where Ψ± =
(1± /u

2

)
Ψ± .

The equation of motion, (i /D−m)Q = 0 can then be used to solve for the “small component”

Ψ− = 1
2m+ iu ·D

i /D⊥Ψ+ ,

where for any vector aµ the spatial component in the quarkonium restframe is aµ⊥ =
aµ − (u · a)uµ. Using this in the QCD Lagrangian for the quark gives

L = Ψ+

(
iu ·D + i /D⊥

1
2m+ iu ·D

i /D⊥

)
Ψ+ . (4.1)

The NRQCD Lagrangian is obtained by expanding the Lagrangian in eq. 4.1 in powers
of iu · D/2m and truncating the expansion. The characteristic scale of the derivatives
on the field Ψ+ is 1

2mv
2 for the energy, iu · D, and mv for the spatial momentum, D⊥.

Hence, counting powers of v one has iu · D ∼ D2
⊥/2m ∼ v2. In addition, the integral∫

d3x Ψ̄+Ψ+ ∼ 1 will be concentrated over the volume ∼ (Mv)−3 of a quarkonium state
of mass M , and it follows that Ψ+ ∼ v3/2. Counting rules for all fields and derivatives
follow from these and the additional field equations [58].6 In particular, for the gauge field
in Coulomb gauge, gsu · A ∼ v2, gsA⊥ ∼ v3, which determines the velocity-scaling of the
chromo-electric and magnetic fields (in the quarkonium restframe) gs ~E ∼ v3 and gs ~B ∼ v4.
Finally, since the typical momentum is the inverse Bohr radius, one has αs(Mv) ∼ v.
Expanding the Lagrangian and retaining the lowest order (∼ v5) one has

L0 = Ψ+

(
iu ·D − 1

2mD2
⊥

)
Ψ+ . (4.2)

The NRQCD treatment of antiquark fields is analogous. Now one has

Q(x) = e+imu·x(X+(x) +X−(x)) = e+imu·x
(

1 + 1
2m− iu ·Di

/D⊥

)
X− ,

6Alternatively one can restore the speed of light, c, and expand in inverse powers, 1/cn [59]. This method
shows in addition the requirement to incorporate a multipole expansion of the gauge fields.
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where X− is an antiquark creation operator (containing only negative energy components).
It follows that

L = X−

(
−iu ·D + i /D⊥

1
2m− iu ·Di

/D⊥

)
X−

= X−

(
−iu ·D − 1

2mD2
⊥ + · · ·

)
X− .

In order to compare these results to calculations that use the non-relativistic 2-
component spinor notation, and to use estimates of matrix elements that use quark poten-
tial models, we recast them in the rest frame, u = (1,~0). In the Dirac basis of γ-matrices,
γ0 = σ3 ⊗ 1, ~γ = iσ2 ⊗ ~σ, the matrices (1 + /u)/2 and (1 − /u)/2 project out the upper
and lower two components of the 4-component spinor, which we denote as ψq and χq,
respectively. Then, for the quark we have

Lψ = ψ†q

(
iDt −

1
2m(i ~D)2 + gs

2m~σ ·
~B

)
ψq ,

and for the antiquark

Lχ = χ†q

(
iDt + 1

2m(i ~D)2 − gs
2m~σ ·

~B

)
χq .

While ψq is only an annihilation operator, χq is only a creation operator. It is convenient
to rewrite the Lagrangian for the antiquark in terms of the annihilation spinor

ψq ≡ iσ2(χq†)T .

In terms of this the anti-quark Lagrangian is

Lχ = ψ†q

(
iDt −

1
2m(i ~D)2 + gs

2m~σ ·
~B

)
ψq ,

where it should be noted that the covariant derivatives involve the generators −T aT , cor-
responding to those of anti-triplets.

The lowest order quark and antiquark Lagrangian in NRQCD is symmetric under
unitary transformations of the components of the Dirac spinors Ψ+ and X− that preserve
the conditions 1

2(1 + /u)Ψ+ = Ψ+ and 1
2(1 − /u)X− = X−. These transformations form

an internal symmetry group isomorphic to SU(2) × SU(2), and hence the heavy quark
spin component of total angular momentum is separately conserved, precisely as expected
from non-relativistic quantum mechanics. This is the additional spin-symmetry alluded
to above.

The spin symmetry has considerable implications relating matrix elements of composite
operators. An important example is for the matrix elements of the four-fermion operators
entering our computation. For gamma-matrices Γ and Γ′ spin symmetry implies

〈Bc|Ψ
(c)
+ ΓX(b)

− X
(b)
− Γ′Ψ(c)

+ |Bc〉 = −〈〈Q〉〉Tr
[
Γγ5

(1 + /u

2

)]
Tr
[
Γ′
(1 + /u

2

)
γ5

]
, (4.3)
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where Ψ(c)
+ and X(b)

− stand for the Ψ+ and X− fields of the c and b quarks. This relates all
of the matrix elements of these 4-fermion operators to a single invariant “reduced matrix
element” 〈〈Q〉〉. It also gives

〈Bc|X
(b)
− ΓbX

(b)
− Ψ(c)

+ ΓcΨ(c)
+ |Bc〉 = 〈〈Q〉〉Tr

[
γ5

(1 + /u

2

)
Γc
(1 + /u

2

)
γ5Γb

]
, (4.4)

for arbitrary Dirac matrices Γc and Γb.
Higher order terms in the Lagrangian are readily incorporated. The first corrections

to L0 are of order v7 (relative order v2). Operators with powers of iu · D are difficult
to simulate on the lattice, and therefore it is conventional (but unnecessary) to eliminate
them from the higher order corrections by means of field transformations. For example,
the terms

L = L0 + Ψ+

(
− 1

4m2
(
i /D⊥(iu ·D)i /D⊥

)
+ 1

8m3

(
i /D⊥(iu ·D)2i /D⊥

))
Ψ+ + · · ·

are eliminated in favour of the ones without temporal derivatives by the transformation

Ψ+ →
(

1 + 1
8m2 (i /D⊥)2 + 1

16m3

(
(i /D⊥)2iu ·D − 2(i /D⊥)(iu ·D)(i /D⊥)

))
Ψ+ , (4.5)

which is chosen such that temporal derivatives in L appear only in commutators with
spatial derivatives, thus:

L =L0 + Ψ+

(
− 1

8m2
(
[i /D⊥, iu ·D]i /D⊥ + i /D⊥[iu ·D, i /D⊥]

)
+ 1

8m3

(
(i /D⊥)4 − [i /D⊥, iu ·D]2

))
Ψ+ + · · · (4.6)

In order to use the result of this expansion in inverse powers ofm together with an expansion
in powers of the relative velocity v, it is necessary to display explicitly the (restframe)
electric and magnetic fields. Using [i /D⊥, iu ·D] = −igsγµuνGµν (which contains only the
chromo-electric field ~E in the quarkonium restframe) and /D⊥ /D⊥ = D2

⊥ + 1
2gsσ

µνG⊥µν ,
with G⊥µν = (δλµ − uλuµ)(δσν − uσuν)Gλσ (the chromomagnetic field ~B in the quarkonium
restframe), this gives,

L =L0 + Ψ+

(
− igs

8m2

(
uν [iDµ

⊥Gµν ]− iσµνuλ(iD⊥µGνλ +GνλiD⊥µ)
)

+ 1
8m3

(
(iD⊥)4 − 1

2gs(iD⊥)2σµνG⊥µν

− 1
2gsσ

µνG⊥µν(iD⊥)2 + 1
2g

2
sG⊥µνG

µν
⊥ + ig2

sσ
µνG⊥µλG

λ
⊥ν

− g2
su

µuνGµλG
λ
ν − ig2

sσ
µνuλuρGµλGνρ

))
Ψ+ + · · · (4.7)

where [iDµ
⊥Gµν ] indicates the derivative acting only on the field strength tensor. The last

line in (4.7) is from the square of the commutator, the last term in (4.6). Therefore, at
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order v7

L1 = Ψ+

(
c1

1
8m3D

4
⊥ − c2

gs
8m2u

µ[Dν
⊥Gµν ]− c3

gs
8m2 iσ

µνuλ(D⊥µGνλ +GνλD⊥µ)

− c4
gs
4mσµνG⊥µν

)
Ψ+ . (4.8)

The dimensionless coefficients cn, n = 1 . . . , 4 are functions of αs and are determined by
standard EFT matching procedures.7 The tree-level calculation above gives cn = 1 +
O(αs), for all four coefficients. Beyond tree level other operators may appear. Using
dimensional analysis, and imposing symmetries, the additional possible operators can be
listed. Reparametrization invariance implies that the coefficient of the second term in the
Lagrangian in (4.2) remains unrenormalized (relative to the first term). It also imposes
relations on the coefficients of higher dimensional operators. In particular c1 = 1 and
c3 = 2c4 − 1 [60].

At the next order in the expansion in inverse powers of m one has

L = · · ·+ Ψ+

(
− 1

16m4

(
i /D⊥(iu ·D)3i /D⊥

))
Ψ+ + · · ·

from the expansion of the Lagrangian in eq. (4.1), and various terms containing a single
power of iu · D and four powers of i /D⊥ that arise from the product of the lower order
terms in eq. (4.1) and those in the change of field variables in (4.5). Terms containing a
single power of iu ·D can be combined into commutators so as to eliminate single temporal
derivatives, iu ·D, at order 1/m4, provided one further changes field variables via

Ψ+ →
(

1 + 1
16m4 (i /D⊥)4

)
Ψ+ . (4.9)

On the other hand, commutators of D⊥ with u · D alone cannot remove all temporal
derivatives from the Lagrangian at order 1/m4.8

The conserved Noether current associated with quark number that follows from L0 is

Jµ = uµΨ+Ψ+ + 1
2mΨ+i

←→
Dµ
⊥Ψ+ . (4.10)

Therefore one has 〈Bc(p′)|u · J |Bc(p)〉 = 〈Bc(p′)|Ψ+Ψ+|Bc(p)〉, since u · D⊥ = 0. Then
evaluating at p′ = p = MBcu and using spin symmetry9

1
2MBc

〈Bc(p)|Ψ+ΓΨ+|Bc(p)〉 = 1
2Tr

[
Γ
(1 + /u

2

)]
, (4.11)

7See ref. [58]. The formalism there is in terms of 2-component spinor fields. Below, when we quote results
from the literature that uses 2-component spinor fields, we denote them by their lowercase counterparts,
Ψ+ → ψq and X− → χ; with ψq̄ = iσ2(χ†)T .

8Although higher temporal derivatives are acceptable in effective field theories, as mentioned above,
they are better avoided in lattice simulations of the quantum field theory. That these order (iu ·D)3 terms
cannot be removed may have escaped attention because they come in at order v11, or relative to the lowest
order, they constitute a relativistic correction of order v6.

9In the QCD case, defining the quark form factor f(q2) by 〈Bc(p′)|jµ|Bc(p)〉 = f(q2)(p + p′)µ, where
jµ = c̄γµc and q = p− p′, charge conservation gives f(0) = 1.
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and an analogous expression for the antiquark. This expression holds non-perturbatively in
αs and receives corrections of order v2 from the symmetry breaking terms in L1. This is the
basis for the statement above that quark number conservation gives, non-perturbatively,
the values of the matrix elements of the leading operators in the OPE that determines
Γ(Bc → Xcc̄) and Γ(Bc → Xbb̄). Furthermore we have

〈Bc(p)|Ψ+i
←→
Dµ
⊥Ψ+|Bc(p)〉 = 0 .

This has a simple physical interpretation: the right hand side is a vector, but can only
depend on the 4-velocity u, which however has no perp-component (no spatial component
in the Bc rest-frame).

5 Operator product expansion

To obtain the lifetime of the Bc meson, the optical theorem is used to relate the decay
width to the forward scattering of the Bc meson:

ΓBc = 1
2MBc

〈Bc|T |Bc〉 , (5.1)

where the transition operator is given by the absorptive part of the time-ordered product:

T = Im i

∫
d4xT Heff(x)Heff(0) . (5.2)

Invoking quark-hadron duality one expects that for a large energy release an OPE can be
performed to express the transition operator as a series of local operators of increasingly
higher dimensions with coefficients suppressed by the large energy released, corresponding
in the case at hand to the heavy quark masses, mq. The calculation of the transition
operator is organized by separating the contributions for b and c decays, and those of WA
and PI terms,

T = Tb + Tc + TWA + TPI .

Each of these is an expansion of operators, with Tb,c starting at dimension 3 while TWA,PI
starting at dimension 6. In NRQCD, these correspond to expansions starting at order v3

and v6, respectively. Retaining the contributions TWA,PI is physically important. It would
appear then that for consistency we need a full calculation to order v6 which, since αs ∼ v,
should include corrections of order α3

s to the coefficients of the dimension-3 operators.
However, for WA and PI the 2-body final state is enhanced relative to the 3-body phase
space of single quark decay by 16π2 which is numerically ∼ αs(mb)−3, and suppressed by
the probability that the quarks in the Bc meet at a point, controlled by the wave-function at
the origin, |Ψ(0)|2 ∝ f2

Bc
, where fBc is the Bc-meson decay constant. Therefore we consider

the expansions of Tb,c and TWA,PI independently and carry out each to some fixed order.
It must be noted that, since we use NRQCD to organize the calculation in powers of

the relative velocity u, the OPEs are reorganized. For example, the 4-fermion operator
X

(b)
− Ψ(c)

+ Ψ(c)
+ X

(b)
− and the magnetic moment operator Ψ(c)

+ σµνgsG
µν
⊥ Ψ(c)

+ are of mass dimen-
sion 6 and 5 respectively but of order v6 and v7, respectively. We follow ref. [6] in including
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some terms of order v7 in the expansion, merely to explore their significance. We do, in
contrast, retain all operators of order v6 in the expansion of TWA,PI. In particular, we
retain the operator Ψ(c)

+ γµDνG
µν
⊥ Ψ(c)

+ which we count as of order v6 since it is equivalent
to a combination of 4-fermion penguin operators Q3-Q6 which we keep in our calculations.
The expansion of Tb,c is done consistently to order v4. The first non-perturbative effect
in the calculation of Tb,c comes in at order v5 and we retain this together with the next
non-perturbative effect, of order v7, to explore the relevance of non-perturbative correc-
tions. These corrections are particularly important for charm decays, namely roughly of
order 20%. By comparison the omitted perturbative corrections are expected to be of order
α2
s(mc) ∼ (0.37)2.

As inferred from the discussion above, we choose to expand in terms of operators
in NRQCD. This has several advantages, if only conceptually. First, it organizes the
expansion systematically. To see this consider that in the QCD expansion, an operator
with (∂/mq)nq, where q is a heavy quark, is not suppressed even though it carries arbitrary
powers of the large mass in the denominator. In NRQCD i∂/mq is replaced by v + i∂/mq

the rest-frame velocity plus a derivative that corresponds to the residual momentum, a
small quantity by the NRQCD power counting. Second, as we will see, the QCD expansion
contains non-local operators, but not so the NRQCD expansion. This is often ignored
by writing Wilson coefficients as functions of the momenta, pb,c, of the b, c quarks in the
corresponding operators, but one should keep in mind that these just stand for derivatives
acting on the fields in the operators. The Wilson coefficients often contain negative powers
of these momenta, that is, they are non-local operators. In NRQCD, p−2 = (mqu + k)−2

has a local expansion in terms of the derivative k → i∂. The third advantage is that
spin symmetry allows for vast simplifications which are absent in QCD. And finally, if
using NRQCD there is no non-trivial perturbative matching correction of the leading OPE
operator, as we now explain.

The perturbative matching calculation involves on-shell, or near on-shell external
quarks. The leading terms in the OPE consist of dimension 3 operators of the form Ψ+ΓΨ+
(or the analogous anti-quark operators) with Γ a Dirac matrix. The matching calculation
consists of evaluating the matrix element in single quark states |~p.s〉 of the transition op-
erator in (5.2) on the one hand, and the same matrix element of the OPE on the other,
and then fixing the Wilson coefficients by imposing equality between the two calculations:

〈~p, s|T |~p, s〉 =
∑
i

C
(3)
i 〈~p, s|Ψ+ΓiΨ+|~p, s〉+ · · ·

In order to compute C(3)
i at n-th order in perturbation theory one must compute the matrix

elements on the right- and left-hand sides of this equation. However in NRQCD (but not
in QCD) the dimension 3 operators on the right-hand side are all protected from radiative
corrections at zero momentum transfer because they are related by spin symmetry to the
conserved current (4.10) and just as in the case of mesons, the quark form factor has
F (0) = 1.10 Incidentally, spin-symmetry allows us to treat the dimension 3 operators as

10That the electron form factor in QED satisfies F (0) = 1 is clear from symmetry but non-trivial in
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a single one, and this is standard practice: by choosing an operator in eq. (4.11) that has
a unit matrix element the imaginary part of the Wilson coefficient takes the value of the
perturbative quark decay width.

With this understanding we can now write

Tq = C(3)
q Q̄Q+ C(5)

q

1
m2
q

Q̄σµνgsG
µνQ+

∑
i

C
(6)
q,i

1
m3
q

O
(6)
i +O

( 1
m4
q

)
. (5.3)

The computation of the C(i)
q as well as that of TWA,PI will be discussed in the following

subsections.

5.1 C(3)
c : free c-quark decay

We turn first to the leading order term in the expansion in (5.3). C
(3)
c in

eq. (5.3) parametrizes the leading contribution to the transition operator resulting from
c-quark decay.

Writing Q(x) in terms of Ψ+(x) and performing the change of field variables in (4.5)
and (4.9), and retaining only terms up to order u7, one obtains

QQ = Ψ+

(
1 + 1

2m2 (iD⊥)2 − gs
4m2σ

µνG⊥µν + gs
4m3u

ν [Dµ
⊥Gµν ]

− igs
4m3u

νσλµ(D⊥λGµν +GµνD⊥λ)− 3
16m3

(
(iD⊥)2iu ·D + iu ·D(iD⊥)2)

+ 13
64m4 (iD⊥)4 + · · ·

)
Ψ+ . (5.4)

This can be used for Tc and an analogous expansion in terms of X− for Tb. When we need
to evaluate matrix elements of the right hand side of eq. (5.4) we use the equations of
motion to eliminate iu ·D in favour of −(iD⊥)2/2m, we go to the restframe of the meson
to decompose the field strength into chromo-electric and magnetic components and use
2-component spinors:

Q̄Q→ψ†q

(
1 + 1

2m2 ( ~D)2 + gs
2m2~σ · ~B + gs

4m3 [ ~D · ~E]

+ igs
4m3~σ · ( ~D × ~E − ~E × ~D) + 25

64m4 ( ~D)4 + · · ·
)
ψq . (5.5)

Below we neglect the spin-orbit coupling ψ†qgs~σ ·( ~E× ~D− ~D× ~E)ψq, since it has a vanishing
matrix element.11

The coefficient C(3)
c is given by the decay rate of the charm quark as if it were unbound,

Γc = Γc→sud̄ + Γc→sus̄ + Γc→dud̄ + Γc→dus̄ + Γc→s`ν + Γc→d`ν . (5.6)

perturbation theory. Not only does it have to be carefully defined due to infrared divergences, but the
perturbative series exponentiates. See [61] and references therein.

11For a central potential ~E ∝ ~r and together with ~p = i ~D this gives ~σ · (i ~D× ~E) ∝ ~σ · (~p× ~r) ∼ ~S · ~L, the
spin-orbit interaction. States, like the Bc meson, with L = 0 have 〈~L · ~S〉=0.
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Throughout we approximate the light quarks, u, d as massless; as explained in section 2.4
we compute both for ms = 0 and with a non-vanishing s-quark pole mass given in terms
of the running MS mass. The partial decay rate for c→ sud̄ at ms = 0 and in the absence
of running of Wilson coefficients was first calculated by Guberina, Peccei and Rückl [62].
Altarelli, Curci, Martinelli and Petrarca first computed 2-loop running and computed the
1-loop corrections to the decay rate anew using a subtraction scheme common to both
calculations [63], and a missing ln(µ/m) term was corrected by Altarelli and Petrarca [64].
Their result was confirmed by Buchalla [65]. Hokim and Pham computed the αs corrections
to the decay rate for arbitrary final quark masses, including only the effect of Q2 [66]; their
results are trivially adapted to compute the αs corrections to the decay rate if the only
operator were Q1. The contribution to the rate from Q1-Q2 interference, for one massive
and two massless quarks in the final state, as is the case in, e.g., c→ sud̄ and in b→ cūd,
was given by Bagan, Ball, Braun and Gosdzinsky [34].

Cabibbo and Maiani computed the αs corrections to the semileptonic decay neglecting
the charged lepton mass; the dependence on the final state quark mass was computed
numerically [67]. Finally, Nir gives Γb̄→c̄`ν , or equivalently, Γc̄→s̄`ν , for massless leptons [68].
The analytic expression for the 1-loop correction to the semileptonic rate can be inferred
from the work of Hokim and Pham cited above. We note in passing that, although not
stated explicitly, it may be inferred that these works provide the rates in terms of quark
pole (on-shell) masses [68]. We assume this is also the case for the non-leptonic decay rates.
As explained above, given a mass scheme one has a perturbative expansion of the pole mass
in terms of a well defined mass. Consistency requires that when expressed in terms of the
well defined mass, the rate can be expanded (and truncated) to the appropriate order, i.e.,
αns with n = 2 in the Upsilon and meson schemes, and n = 1 in the MS scheme. We
compute the quark decay rates at the one-loop order for the semi-leptonic decays and also
for the contributions of the operators Q1,2 in Heff in the case of hadronic decays. For the
penguin operators, Q3−6, however we only compute the rate to leading order.

Using the decay rate Γc to compute the coefficient C(3)
c of Q̄Q in the OPE is only

appropriate for the Ψ̄+Ψ+ term in the expansion of Q̄Q in terms of NRQCD fields, that is,
the first term on the right side of eq. (5.4). The coefficients of each of the remaining terms
should be computed from individually matching them: in the OPE one should really write

Tq =C(3)
q Ψ+Ψ+ + C(3,1)

q

1
2m2 Ψ+(iD⊥)2Ψ+ −

gs
4m2C

(3,2)
q Ψ+σ

µνG⊥µνΨ+

+ gs
4m3C

(3,3)
q Ψ+u

ν [Dµ
⊥Gµν ]Ψ+ −

igs
4m3C

(3,4)
q Ψ+u

νσλµ(D⊥λGµν +GµνD⊥λ)Ψ+ + · · ·

where the ellipsis stand both for other terms in the matching of Q̄Q and for the higher
order terms in eq. (5.3). At lowest order C(3,n)

q = C
(3)
q , with n = 1, 2, . . . for operators that

are present in the expansion (5.4) and vanish for operators that arise in the Q̄Q expansion
only at or above 1-loop order. Reparametrization invariance requires that some of these
operators come in fixed combinations, and this is reflected in exact relations between some
of these coefficients, e.g., C(3,4)

q = C
(3,2)
q [69].

In our calculations we have used the leading order expression for Γq (q = c, b̄) for the
coefficients C(3,n)

q , and the next to leading expression for Γq for C(3)
q . Since the subleading
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operators in (5.4) are of order v2 and higher, this truncation introduces uncertainties of
order v2αs ∼ v3.

5.2 C
(3)
b̄

: free b̄-quark decay

The leading contribution to the transition operator resulting from the b̄-quark stems from
the coefficient C(3)

b̄
in eq. (5.3), which is given by the free anti-quark decay rate Γb̄,spec for

the transition b̄→ c̄. The spectator decay rate takes the following form:

Γb̄,spec = Γb̄→c̄ud̄ + Γb̄→c̄us̄ + Γb̄→c̄cs̄ + Γb̄→c̄cd̄ + Γb̄→c̄`ν + Γb̄→c̄τν . (5.7)

Throughout we approximate the light quarks, u, d and s as massless; the effect of a non-
vanishing strange quark mass will also be estimated. The perturbative calculation to order
αs of individual (anti)-b quark decay rates can be found in the literature as detailed above,
including the full mc-dependence. In addition, ref. [35] gives Γb̄→c̄τν including both mc and
mτ -dependence. For the transition b̄ → c̄ud̄ the expressions for the decay rate are given
in [34], who also estimated the case of a single massless and a massive pair of quarks in
the final state, which is the case for b→ cc̄s. KLR corrected a misprint in the latter12 and
included additional effects, most importantly that of penguin operators and of writing the
rate in terms of a well defined mass. As in KLR, we treat the penguin Wilson coefficients
as of sub-leading order; while this is not formally correct, it is practical, since the full
calculation of the decay rate at 1-loop is unavailable. We also follow KLR in including also
Q1,2 contributions to the rate through “penguin diagrams”, and the contribution of the
chromomagnetic operator, b̄σµνGAµνTAb.

5.3 C
(5)
b̄

: chromomagnetic operator Ob8

The coefficient C(5)
b̄

governs the contribution of the chromomagnetic operator

Ob8 = (X(b)
− σ

µνgsT
AX

(b)
− )GAµν , (5.8)

to the total decay rate ΓBc .
Writing Q(x) in terms of Ψ+(x) and performing the change of field variables in (4.5)

and (4.9), and retaining only terms up to order v7, one obtains

QσµνGµνQ = Ψ+

(
σµνG⊥µν −

1
m

(
uν [D⊥µGµν ] + iεµνλρGµνD⊥λγργ5

)
+ · · ·

)
Ψ+ . (5.9)

This can be used for Tc and an analogous expansion in terms of X− for Tb. When we need
to evaluate matrix elements of the right-hand side of eq. (5.9) we go to the restframe of

12The full decay rate has first been reported in [70]. As pointed out by KLR, there are several misprints
in [70], resulting in a much lower decay rate for b → c̄cs. Also, KLR reports complex values for the
contributions of vertex corrections to the decay rate. We have determined that the contribution to the rate
is from the real part of those results (i.e., not twice the real part, nor the imaginary part). We have verified
this by an explicit recalculation of some of the vertex graphs and the corresponding real emission graphs.
In addition we have verified that with this interpretation the resulting width has a finite limit as the gluon
(IR regulator) mass approaches zero.
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the meson to decompose the field strength into chromo-electric and magnetic components
and use 2-component spinors:

Q̄σµνgsG
µνQ→ ψ†q

(
−2gs~σ · ~B −

gs
m

[ ~D · ~E]− igs
m
~σ · ( ~D × ~E − ~E × ~D)

)
ψq . (5.10)

The chromomagnetic moment operator, with coefficient C(5)
q above is of order v7 in the

NR expansion, so to this order there are no additional operators resulting from the field
redefinition. An electromagnetic moment operator has been ignored since it is further
suppressed by the smallness of the fine structure constant.

The coefficient C(5)
b̄

consists of several contributions:

C
(5)
b̄

= − Γ0b
[
Pceν + Pcµν + Pcτν +Na(µb)(Pcu(s+d)1 + Pcc(s+d)1)

+Nb(µb)(Pcu(s+d)2 + Pcc(s+d)2)
]
, (5.11)

where the normalization constant

Γ0b = G2
Fm

5
b

192π3 |Vcb|
2 , (5.12)

sets the scale for tree-level decay rate of the b̄ quark. The subscript of the “phase space”
factors13 Pi denote the particles in the loop and Ni denote the following combinations of
Wilson coefficients:

Na(µ) = 3C1(µ)2 + 3C2(µ)2 + 2C1(µ)C2(µ) , (5.13)
Nb(µ) = 8C1(µ)C2(µ) .

Neglecting all fermion masses except for the charm and tau mass one finds the following
phase space factors [6]. The light contributions are given by

Pcu(s+d)1 = Pceν = Pcµν = (1− xc)4 , (5.14)
Pcu(s+d)2 = (1− xc)3 , (5.15)

with xc = (mc/mb)2. The semi-leptonic mode is given by

Pcτν =
√

1− 2(xτ + xc) + (xτ − xc)2
[
1− 3(xτ + xc) + 3(x2

τ + x2
c)

−x3
τ − x3

c − 4xτxc + 7xτxc(xτ + xc)
]

(5.16)

+ 12x2
τx

2
c ln

((
1− xτ − xc +

√
1− 2(xτ + xc) + (xτ − xc)2)2

4xτxc

)
,

with xτ = (mτ/mb)2. In the limit of massless tau leptons (xτ → 0) eq. (5.16) reduces to
eq. (5.14). The contributions from Q1 and Q2 are given by

Pcc(s+d)1 =
√

1− 4xc(1− 6xc + 2x2
c + 12x3

c) + 24x4
c ln

(
1 +
√

1− 4xc
1−
√

1− 4xc

)
, (5.17)

13The so-called phase space factors are really integrals over phase space of the square modulus of ampli-
tudes that do not have trivial dependence on kinematic variables.
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and for the second insertion by

Pcc(s+d)2 =
√

1− 4xc(1 + xc
2 + 3x2

c)− 3xc(1− 2x2
c) ln

(
1 +
√

1− 4xc
1−
√

1− 4xc

)
. (5.18)

Again, these expressions are given as a function of pole masses, which have to be written
in terms of well defined masses. At this level we only have expressions at zeroth order in
αs, and for consistency we truncate the expansion of pole masses at zeroth order as well,
e.g., mb = mΥ/2 in the Upsilon scheme.

5.4 C(5)
c : chromomagnetic operator Oc8

The c-quark analogue of the chromomagnetic operator involving b-quarks is given by

Oc8 = (Ψ(c)
+ σµνgsT

AΨ(c)
+ )GAµν , (5.19)

and it contributes in the following way to the transition operator Tc:14

C(5)
c = −Γ0c

[
Pseν + Psµν + |Vud|2(Na(µc)Psud1 +Nb(µc)Psud2)

]
, (5.20)

with the tree-level decay rate

Γ0c = G2
Fm

5
c

192π3 |Vcs|
2 , (5.21)

and the phase space factors [6]

Pseν = Psµν = Psud1 = (1− xs)4 , (5.22)
Psud2 = (1− xs)3 , (5.23)

with xs = (ms/mb)2. The Wilson coefficient combinations are defined in eq. (5.13) but we
have indicated that they are evaluated at a scale µc that may be different than for C(5)

b ,
since the choice of charm scale µc ∼ O(mc) is more appropriate.

5.5 Pauli interference

For the dimension-six contributions to the transition operator in eq. (5.3) we write, as is cus-
tomary, the full contribution coming from the operator insertions rather than the individual

14In this expression we neglect the Cabibbo suppressed mode but include it in the numerical analysis for
ms 6= 0.
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coefficients (C(6)
q )i. This allows for a more compact presentation of the results [6, 7, 71]:

TPI = 4G2
F

π
|Vcb|2p2

−(1− z−)2
{

(C1 + C3)(C2 + C4)(b̄αγµPLbβ)(c̄βγµPLcα)

+ 1
2
(
(C1 + C3)2 + (C2 + C4)2)(b̄γµPLb)(c̄γµPLc)

− mc

4p2
−

[(
(C1 + C3)C5 + (C2 + C4)C6

)
×
(
(b̄γµPLb)(c̄/p−γ

µPLc) + (b̄γµPLb)(c̄γµ/p−PRc)
)

+
(
(C1 + C3)C6 + (C2 + C4)C5

)
×
(
(b̄αγµPLbβ)(c̄β/p−γ

µPLc
α) + (b̄αγµPLbβ)(c̄βγµ/p−PRc

α)
)]

+
[(1− z−)

12 gµν +
(1

2 −
(1− z−)

3

)
pµ−p

ν
−

p2
−

]
×
(
(C2

5 + C2
6 )(b̄γµPLb)(c̄γνPRc) + 2C5C6(b̄αγµPLbβ)(c̄βγνPRcα)

)}
, (5.24)

where p− = pb − pc and z− = m2
c/p

2
−. We have summed over s and d quarks, neglected

their masses and used |Vcd|2 + |Vcs|2 ≈ 1.
The notation p− = pb − pc should be understood in the operator sense, that is, as

derivatives acting on the b and c fields. Recall that we have chosen to match the OPE
directly to NRQCD; by a slight abuse of notation we have denoted the fields in eq. (5.24)
as in the full theory, but it should be understood that they really stand for EFT fields,
i.e., c → Ψ(c)

+ and b → X
(b)
− . One advantage of matching directly to the EFT is that

p− = (mb−mc)u+ (kb−kc) where the derivatives kb−kc correspond to residual momenta,
and are clearly sub-leading in the NR expansion. While some authors use p2

− ≈ 2(m2
b +

m2
c)−M2

Bc
[7], in our approach the leading term in the NR expansion is unambiguous and

the higher order terms correspond to matrix elements of well defined operators.
Another advantage of matching to the effective theory is that one may then avoid non-

local operators in the expansion. Note that there are inverse powers of p2
− implicit in the

functions of z− in eq. (5.24). By matching to the EFT the inverse powers give well defined
expansions in terms of local operators, 1/p2

− = 1/(mb−mc)2[1−2u·(kb−kc)/(mb−mc)+· · · ].

5.6 Weak annihilation

Also for the WA contributions we will report the full contribution to the transition operator
instead of just the coefficients (C(6)

q )i. The semi-leptonic contribution to the transition
operator reads [6]:

T SL
WA = − 4G2

F

π
|Vcb|2p2

+

[
(1− zτ )2

12 gµν +
(

(1− zτ )2

2 − (1− zτ )3

3

)
pµ+p

ν
+

p2
+

]
× (b̄αγµPLbβ)(c̄βγνPLcα) , (5.25)

with p+ = pb + pc and zτ = m2
τ/p

2
+. As was the case for p− in the PI computation, the

notation p+ = pb+pc here should be understood in the operator sense, that is, as derivatives
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acting on the b and c fields. In addition, since we have chosen to match the OPE directly to
NRQCD the fields indicated should be those for NRQCD; by a slight abuse of notation, and
in order to make the long expression more legible, we have denoted the fields in eq. (5.25)
and below in eq. (5.26) as those of the full theory, but it should be understood that they
really stand for fields in the effective theory, i.e., c→ Ψ(c)

+ and b→ X
(b)
− . One advantage of

matching directly to the EFT is that p+ = (mb +mc)u+ (kb + kc) where the derivatives in
kb + kc correspond to residual momenta, and are clearly sub-leading in the NR expansion,
and the leading term is well defined in terms of pole masses and the meson 4-velocity.

The hadronic WA decay gives

TWA = − 4G2
F |Vcb|2

π
p2

+(1− z+)2

×
{[(1− z+)

12 gµν +
(1

2 −
(1− z+)

3

)
pµ+p

ν
+

p2
+

][
(C1 + C3)2(b̄γµPLb)(c̄γνPLc)

+
(
2(C1 + C3)(C2 + C4) +Nc(C2 + C4)2

)
(b̄αγµPLbβ)(c̄βγνPLcα)

]
− mc

4p2
+

[
(C1 + C3)C5

(
(b̄/p+PLb)(c̄c) + i(b̄γµPLb)(c̄σµνpν+γ5c)

)
+
(
C6(C1 + C3) + C5(C2 + C4) +NcC6(C2 + C4)

)
×
(
(b̄α/p+PLb

β)(c̄βcα) + i(b̄αγµPLbβ)(c̄βσµνpν+γ5c
α)
)]

+ 1
2
(
C2

5 (b̄γµPLb)(c̄γµPRc) + (NcC
2
6 + 2C5C6)(b̄αγµPLbβ)(c̄βγµPRcα)

)}
, (5.26)

with z+ = m2
c/p

2
+. We have summed over s and d quarks, neglected their masses and used

|Vcd|2 + |Vcs|2 ≈ 1.

6 Matrix elements

As mentioned above, we denote 2-component spinor fields by the lowercase counterparts
of their 4-component Dirac forebearers, Ψ+ → ψq and X− → χ and ψq̄ = iσ2(χ†)T . The
first correction in eq. (5.3) can be estimated using potential models [72]

〈Bc|ψ†c(i ~D)2ψc |Bc〉
2MBc

=
〈Bc|ψ†b(i

~D)2ψ
b
|Bc〉

2MBc

= 2mcmb

(mc +mb)
T , (6.1)

where T is the expectation value of the kinetic energy computed in potential models.
Note that the first equality above is interpreted as (mcvc)2 = (mbvb)2 which is useful in
estimating the NR-quark velocities, vb and vc. For our calculations we estimate the matrix
element of ~D4 as the square of that of ~D2, from eq. (6.1), thus:

〈Bc|ψ†c(i ~D)4ψc |Bc〉
2MBc

=
〈Bc|ψ†b(i

~D)4ψ
b
|Bc〉

2MBc

= 4m2
cm

2
b

(mc +mb)2T
2 . (6.2)
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The leading matrix elements for the chromomagnetic operator are given by

〈Bc|ψ†bgs~σ ·
~Bψ

b
|Bc〉

2MBc

= −4
3g

2
s

|Ψ(0)|2

mc
, (6.3)

〈Bc|ψ†bgs[
~D · ~E]ψ

b
|Bc〉

2MBc

= 4
3g

2
s |Ψ(0)|2 , (6.4)

and the corresponding matrix elements for the charm quark are obtained by the replacement
mb ↔ mc. The wave function at the origin, Ψ(0), relates these to other physical quantities
that can be determined from Monte Carlo simulations of NRQCD on the lattice:

f2
Bc = 12|Ψ(0)|2

MBc

, MB∗c −MBc = 8
9g

2
s

|Ψ(0)|2

mbmc
. (6.5)

The matrix elements of four quark operators are all related by spin symmetry per
eqs. (4.3) and (4.4). We have

〈Bc|(X
(b)α
− γµPLX

(b)β
− )(Ψ(c)β

+ γνPLΨ(c)α
+ )|Bc〉 =

f2
Bc
BBc
4

(1
2q

2gµν − qµqν
)
, (6.6)

〈Bc|(X
(b)
− γµPLX

(b)
− )(Ψ(c)

+ γνPLΨ(c)
+ )|Bc〉 =

f2
Bc
B′Bc

12

(1
2q

2gµν − qµqν
)
,

where q is the momentum of the Bc. If 〈Bc|(X
(b)
− T

AγµPLX
(b)
− )(Ψ(c)

+ TAγνPLΨ(c)
+ )|Bc〉 = 0

then B′Bc = BBc . Using spin symmetry, we find for the new matrix elements for the penguin
operators that enter the calculation of PI:

〈Bc|(X
(b)
− γµPLX

(b)
− )(Ψ(c)

+ γνγµPLΨ(c)
+ )|Bc〉 =

f2
Bc
B′Bc

12 MBcq
ν , (6.7)

〈Bc|(X
(b)
− γµPLX

(b)
− )(Ψ(c)

+ γµγνPRΨ(c)
+ )|Bc〉 =

f2
Bc
B′Bc

12 MBcq
ν ,

〈Bc|(X
(b)
− γµPLX

(b)
− )(Ψ(c)

+ γνPRΨ(c)
+ )|Bc〉 = −

f2
Bc
B′Bc

24 M2
Bcgµν .

The colour-crossed matrix elements are obtained from these by replacing B′Bc → 3BBc .
For WA the additional matrix elements are given by:

〈Bc|(X
(b)
− γ

µPLX
(b)
− )(Ψ(c)

+ Ψ(c)
+ )|Bc〉 = −

f2
Bc
B′Bc

12 MBcq
ν , (6.8)

〈Bc|(X
(b)
− γ

µPLX
(b)
− )(Ψ(c)

+ σµνγ5Ψ(c)
+ )|Bc〉 = i

f2
Bc
B′Bc
4 MBcqν ,

The “bag parameters” BBc and B′Bc have been chosen so that BBc = B′Bc = 1 in the
vacuum insertion approximation.15 The vacuum insertion approximation can be justified
in the large Nc limit, so the errors incurred in using these expressions with BBc = B′Bc = 1

15We hasten to indicate that the many bag parameters used in ref. [7] to characterize various matrix
elements are not independent at this order in the NR-expansion because of the spin symmetry relations,
given in eqs. (4.3) and (4.4).
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are of the order O(1/Nc) and O(v).16 For the numerical estimates below we adopt this
approximation and then analyze the error incurred in the computation of the lifetime by
varying BBc and B′Bc away form unity. Eventually, calculations of these matrix elements in
Monte Carlo simulations of NRQCD on the lattice will remove this uncertainty. In terms
of these parameters WA and PI contributions to the width are obtained from the matrix
elements of the transition operators in eqs. (5.26) and (5.24), respectively, yielding:

ΓWA =
G2
F f

2
Bc
MBc

2π |Vcb|2(1− z+)2(mb +mc)2

×
{
z+

[
(C1 + C3)2B

′
Bc

12 +
(
2(C1 + C3)(C2 + C4) + 3(C2 + C4)2

)BBc
4

]
− mc

mb +mc

[
(C1 + C3)C5

B′Bc
3 +

(
C6(C1 + C3) + (C2 + C4)(C5 + 3C6)

)
BBc

]
+ C2

5
B′Bc

3 + (3C2
6 + 2C5C6)BBc

}
, (6.9)

and

ΓPI =
f2
Bc
G2
FMBc

4π |Vcb|2(1− z−)2(mb −mc)2

×
{

2(C1 + C3)(C2 + C4)BBc +
(
(C1 + C3)2 + (C2 + C4)2

)B′Bc
3

− mc

mb −mc

[(
(C1 + C3)C5 + (C2 + C4)C6

)B′Bc
3

+
(
(C1 + C3)C6 + (C2 + C4)C5

)
BBc

]
− (C2

5 + C2
6 )
B′Bc

6 − C5C6BBc

}
, (6.10)

where z± = (mb/mc ± 1)−2.

7 Numerical analysis

In this section we present the results for the Bc decay width in the MS, the meson and
the Upsilon scheme. For our analysis we use the input values summarized in table 2. The
matrix elements of the relevant operators are determined using potential models and spin-
symmetry (see section 6). The MS masses are the averages of the two most recent and
precise lattice calculations: for mb we average the results of [73] and [74] and find

mb(mb) = 4.195(9)GeV ,

and for mc using [73, 75] we obtain

mc(mc) = 1.2734(44)GeV .
16Ref. [6] states that large Nc is not required because “deviations from factorization arise from higher

Fock components of the Bc wavefunction”.
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Parameter Value Ref. Parameter Value Ref.
GF 1.166379× 10−5 GeV−2 [76] αs(MZ) 0.1179± 0.0010 [76]
|Vcb| 0.0410(14) [76] |Vud| 0.97370
|Vcs| 0.97320(11) [76] |Vcd| 0.22636
MW 80.385GeV MZ 91.1876GeV
MBc

6274.9± 0.8MeV [76] fBc
0.427(6)GeV [77]

MB∗
c
−MBc

54(3)MeV [78] mc(mc) 1.2734(44)GeV [73, 75]
MΥ(1S) 9460.30(26)MeV [76] mb(mb) 4.195(9)GeV [73, 74]
MJ/Ψ(1S) 3096.900(6)MeV [76] ms(2GeV) 93+11

−5 MeV [76]
mb/mc 4.577±0.008 [73] T 0.37±0.04GeV [72]
mτ 1776.86± 0.12MeV [76] λ1 −0.27± 0.14 [32]

Table 2. Input parameters used for the numerical analysis.

The QCD coupling constant in the QCD corrections are calculated using the 1-loop
beta function. As explained in previous sections, the QCD corrections are carried out
to 1st order in αs, with the Wilson coefficients computed to NLL order. The running of
the Wilson coefficients C1,2 incorporates analytically the effect of the 2-loop beta function,
while that of C3−6 is computed only at LL; since C3−6 are very small, the numerical effect of
this approximation is negligible in the total rate. As is well known, the consistent counting
for resummation of logs involves 2-loop beta functions and anomalous dimensions in the
running and 1-loop matching and matrix elements. Hence it is appropriate to include only
a 1-loop running αs(µ) in the matrix elements. In particular, including the effects of 2-
loop running in the matrix elements only increases the µ dependence of the final results for
partial and total decay widths. The renormalization scale µ has been chosen differently for
different partial widths. In calculations of b̄ decays and for WA and PI we use µ = mb(mb),
while for c-decays we use µ = mc(mc).17

For the semileptonic b̄-decays and for WA the mτ -dependence is taken into account,
whereas the light leptons are assumed to be massless. Furthermore we neglect the light
quark masses. In particular, the strange mass, ms, is neglected in the b̄-decays.

It is worth repeating that for the computation we take into account QCD corrections
truncated to order αs and carry out the non-relativistic expansion up to v7 (relative order v4

since the leading order is v3) as presented in the previous sections. Since the power counting
in NRQCD has v ∼ αs this is not fully consistent. However, the numerically important
effects of WA and PI come in first at order v6. Roughly, these effects are amplified by a
factor of 16π2 from the 2-body vs 3-body decay phase space, and suppressed by a relative
order v3 factor of (fBc/MBc)2, and 16π2(fBc/MBc)2 = 0.73. Corrections to 3-body decays
of relative order v2 and v4 are included, so their numerical effect can be estimated and
analyzed. We do not include any QCD corrections to WA and PI, since these would
correspond to higher-order velocity terms which are neglected in our counting.

17In BB the WA and PI contributions were evaluated at an intermediate scale µ3 = 2 mbmc

mb+mc
.
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7.1 Results

The results obtained for each individual channel as well as for the total decay width are
collected in table 3 and can be compared to the results obtain previously by BB shown in
the first column. For the b̄-decays the values of all three schemes are significantly smaller
than those obtained by BB. Since BB use an on-shell (OS) scheme, with masses declared
as having some particular values, a direct comparison is difficult. For one thing, the OS
corrections enhance the partial decay widths by up to 21% and 11% for b decays, and 68%
and 57% for c decays, in MS and meson schemes, respectively. For instance, for the decay
b̄→ c̄u(s̄+ d̄) we find for the partial width Γb̄→c̄u(s̄+d̄) in ps−1:18

0.21 = 0.17 + 0.05− 0.01 , (MS)
0.27 = 0.27 + 0.01− 0.01 , (meson, Upsilon)

(7.1)

where the first number on the right-hand side is the OS value and the second number is
the OS correction. The third number corresponds to non-perturbative corrections which
are about 4–5% of the partial decay width, which is consistent with the NRQCD counting
v2 ∼ α2

s ≈ 0.04.
We only estimate the effect of a non-vanishing strange quark mass on charm decays,

that comprise 60–70% of the total width. Table 4 gives the partial decay rates for c decays
including the effect of a non-zero strange quark mass. The partial inclusive width for c
decays includes also a contribution of the doubly Cabibbo suppressed c → dus̄ channel,
which is simply estimated as |VcdVus/VcsVud|2Γc→sud̄. The strange quark mass effect is
expected to be suppressed in b̄-decays relative to c-decays by a factor of ∼ (mc/mb)2 ∼
0.1, and in any case its computation requires a calculation of QCD corrections to the
decay b → cc̄s with ms 6= 0 which is not available.19 The total decay width of the
Bc listed in table 4 includes the contributions of b̄-decays and of WA and PI listed in
table 3. As a consistency check we confirm that the semi-leptonic b̄-decay agrees with
the determination of Vcb. The PDG’s B0 partial semileptonic width is 0.068± 0.002 ps−1.
The central values of the perturbative contributions to b → ceν in table 3 are 0.055 ps−1

and 0.071 ps−1 for the MS scheme, and for the meson and Upsilon schemes, respectively.
To compare with data these must be corrected for non-perturbative effects. The leading
non-perturbative correction is of order 1/m2

b in the HQET expansion, and is given, as
a fraction of the total rate, in terms of the non-perturbative matrix elements in HQET,
λ1,2 , by −(0.12λ1 + 0.28λ2)GeV−2, in the meson and Upsilon schemes [32, 33]. Using
λ1 = −0.27 ± 0.14GeV2 and λ2 = 0.12GeV2, this gives 0.071 ± 0.001 ps−1 in the meson
and Upsilon schemes, where the range indicates only the uncertainty in λ1, exclusive of
uncertainties in the perturbative calculation (discussed below).

Similarly, the PDG’s D0 inclusive semileptonic width is 0.158±0.003 ps−1. The sum of
perturbative contributions to c→ seν and c→ deν table 4 are 0.145 ps−1, 0.146 ps−1 and

18In the following the results will be shown with a two decimal precision, whereas in table 3 and table 5
three decimal places were kept for a better illustration of numerical round-off in the sums.

19The b quark decay width also requires a calculation of QCD corrections to the decay b → cūs, which
is, however, Cabibbo suppressed.
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Mode BB [6] MS meson Upsilon
b̄→ c̄u(s̄+ d̄) 0.310 0.205 0.266
b̄→ c̄c(s̄+ d̄) 0.137 0.093 0.122
b̄→ c̄eν 0.075 0.053 0.066
b̄→ c̄τν 0.018 0.010 0.015∑
b̄→ c̄ 0.615 0.414 0.535

c→ (s+ d)u(d̄+ s̄) 0.905 0.752 0.770 1.290
c→ (s+ d)eν 0.162 0.161 0.162 0.250∑

c→ s 1.229 1.075 1.095 1.790
WA: b̄c→ c(s̄+ d̄) 0.138 0.079 0.126 0.157

WA: b̄c→ τν 0.056 0.039 0.042 0.042
PI −0.124 −0.023 −0.024 −0.017

ΓBc
1.914 1.584 1.774 2.506

Table 3. Results for the partial decay rates in ps−1. The results from BB in [6] in the second
column are compared to the results in this paper given in the MS, meson and Upsilon schemes. The
hadronic WA and PI contributions of our results include the QCD penguin contributions, which
were neglected in BB.

Mode MS meson Upsilon
c→ sud̄ 0.632 0.646 1.095
c→ sus̄ 0.033 0.032 0.057
c→ dud̄ 0.037 0.037 0.063
c→ seν 0.142 0.143 0.221
c→ deν 0.008 0.008 0.013∑
c→ s 1.005 1.021 1.685
ΓBc

1.513 1.699 2.402

Table 4. Results for the partial decay rates in ps−1 including the effects of non-vanishing strange
quark mass in all three schemes: MS, meson and Upsilon schemes. The “Total” row gives the full
decay width.

0.238 ps−1 for the MS, meson and Upsilon scheme, respectively. Using (λ1 − 9λ2)/2m2
c for

the fractional non-perturbative correction, we obtain 0.108±0.005 ps−1, 0.103±0.005 ps−1

and 0.169 ± 0.009 ps−1 in the three different schemes, where the range indicates only the
uncertainty in λ1.

7.2 Uncertainties

There are various sources of uncertainty in the calculated width. Use of quark-hadron
duality in the formulation of the OPE method introduces an irreducible uncertainty that
is, moreover, difficult to quantify. We have little to say about this other than to remind
the reader that for semileptonic decays the situation is much more favourable since one
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parameter p ∆p/p MS meson Upsilon
mb(mb) 0.2% 1.815 — —
mc(mc) 0.3% 2.798 — —

µ 10% −0.359 −0.204 −0.112
T 10% −0.029 −0.034 −0.057

MB∗
c
−MBc

6% 0.012 0.015 0.016
BBc

30% −0.004 0.021 0.042
B′Bc

30% 0.065 0.060 0.030
λ1 50% — −0.011 0.017
fBc

1% 0.122 0.164 0.147
Vcb 1% 0.644 0.769 0.575

Table 5. Error budget, varying individually the parameter p in the range ∆p, leading to a change
in the total rate of ∆ΓBc

. The three last columns show the quantity ∆ΓBc

∆p
p

ΓBc
in the three different

mass schemes.

may compute the width in terms of an OPE for Euclidean momentum region (that is,
for imaginary time) [44]. In effect, in absence of new physics effects, this calculation can
provide a test of the validity of the assumption of quark-hadron duality. Similarly, in the
meson and Upsilon schemes we have neglected the nonperturbative correction to the pole
mass, and again the calculation may be used to provide a test of this assumption.

7.2.1 Perturbative expansion and QCD-scale uncertainty

The leading contributions to the width of the Bc are from the perturbatively calculated b̄
and c quark decays. For example, for b̄ decays, the perturbative calculation of the partial
widths gives

(MS) (meson/Upsilon)
Γb→cū(s+d) : 0.21 = 0.16 + 0.05 0.27 = 0.26 + 0.01
Γb→cc̄(s+d) : 0.10 = 0.09 + 0.01 0.13 = 0.12 + 0.01

Γb→ceν : 0.06 = 0.05 + 0.01 0.07 = 0.08− 0.01
Γb→cτν : 0.01 = 0.01 + 0.00 0.02 = 0.02 + 0.00

where the first number on the right of each equality is the LO calculation and the second
the order αs(mb) correction. These corrections are seen to be roughly of the expected
magnitude, and a smaller correction is seen in the meson and Upsilon schemes, as expected
from the general considerations presented in section 2. The improvement is more dramatic
for c decays, where we find (for ms 6= 0)

(MS) (meson) (Upsilon)
Γc→(s+d)u(s̄+d̄) : 0.76 = 0.43 + 0.33 0.78 = 0.52 + 0.27 1.35 = 1.15 + 0.20

Γc→(s+d)eν : 0.16 = 0.11 + 0.04 0.15 = 0.13 + 0.02 0.25 = 0.30− 0.05
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Figure 1. Scale dependence of Γ(b → cud) (left panel) and Γ(c → sud) (right panel) in the MS
scheme. The solid-blue and dashed-orange lines show the result of the NLO and LO calculations,
respectively. The line in dot-dashed-green shows the LO calculation to which the term with the
explicit factor of αs ln(µ) in the NLO decay rate is added, displaying cancellation of scale dependence
to order αs. The dotted-red line shows the difference between the blue and green lines, that is, the
NLO decay rate sans the term with an explicit factor of ln(µ).

The uncertainty from omitting higher order terms in the perturbative expansion is
readily estimated as order (αs(µb))2 ∼ 4% and (αs(µc))2 ∼ 10% for b̄ and c decays,
respectively. This is reflected in the uncertainty introduced by the arbitrary choice of
renormalization scale µ in the calculations. For example, the fractional change in the
width for a fractional change in scale, (∆Γ/Γ)/(∆µ/µ), centered at µ = µb and µ = µc
for b̄ and c decays, respectively, is −0.36, −0.20 and −0.11 for the MS, meson and Up-
silon schemes. It is dominated in all cases by the µ-dependence of hadronic decays, and
among these, of c decays. The scale dependence formally cancels out to order αs, so the
residual dependence is of order α2

s. The variation with respect to ln(µ) of the leading
order is of order αs, and this is canceled exactly by the terms involving αs ln(µ) at NLO.
This is shown in figure 1 that displays the scale dependence of the NLO calculations of
Γ(b → cud) and Γ(c → sud) in the MS scheme. The dashed (orange) line shows the re-
sult of the leading order calculation, displaying stronger scale dependence than the result
of the NLO calculation, displayed in the solid (blue) line. The latter is the sum of the
dashed-dot (green) line and the dotted (red) line. This split is intended to demonstrate
the approximate cancellation of the µ dependence that comes in at LO from the Wilson
coefficients and through the running mass and NLO terms with an explicit αs ln(µ): this
combination is shown with the dashed-dot (green) line. Both green and red line should
be flat up to corrections of order α2

s. We can estimate the uncertainty due the scale de-
pendence from the range of variation in the figures, about ±17% and ±35% for b̄ and
c decays, respectively. Since these hadronic decays dominate the total width of the Bc,
one can estimate the total uncertainty by weighing these by their relative importance to
the total width, [(0.202)17% + (0.743)35%]/(0.202 + 0.743) = 31%. This can be compared
with the fractional change in scale, (∆Γ/Γ)/(∆µ/µ), using ∆µ/µ ≈ ∆ lnµ which gives
∆Γ/Γ = −0.37 ln 2 = −0.26.

Repeating this calculation for the other schemes we infer an uncertainty from order
α2
s/scale dependence of 26%, 14% and 8% in the MS, meson and Upsilon schemes.
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7.2.2 Non-relativistic expansion and Non-perturbative uncertainties

Additional uncertainties are introduced by the truncation of the non-relativistic expan-
sion. As already explained we take into account QCD corrections truncated to order αs
while carrying out the non-relativistic expansion up to relative order v4. Since the power
counting in NRQCD has v ∼ αs this is not fully consistent. However, WA and PI come in
first at order v6 and need to be retained because they are numerically important because
the 2-body phase space gives an amplification by a factor of 16π2. Corrections to 3-body
decays of relative order v2 and v4 are included, so their numerical effect can be estimated
and analyzed. We do not include any QCD corrections to WA and PI, since they would
correspond to higher-order velocity terms which we are neglecting. Furthermore, to have a
fully consistent calculation at O(v3), three-loop corrections to the rate are required, con-
sisting of three-loop corrections to the matrix elements, a three-loop matching calculation
as well as four-loop running. Such corrections are however not available at present and are
expected to be smaller than the WA and PI contributions, since they are not enhanced by
16π2 from the 2-body phase space.

Table 5 shows the fractional change in the width per fractional change in individual
parameters. This table can be used to adjust the estimated partial widths in table 3 by
a change in the input parameters in table 2. The second column in table 5, “∆p/p”,
gives our best guess of the fractional uncertainty in the parameter p, so the fractional
uncertainties ∆Γ/Γ are estimated by taking the product of the second column with the
entries in column 3–5. It is seen that the uncertainty introduced by the poor knowledge
of the matrix elements that go into the non-relativistic expansion is ≤ 2% for all entries.
The reason is that, in fact, the non-relativistic corrections arising from non-perturbative
matrix elements (that is, other than from the QCD-perturbative expansion of the free
quark decays) are small.

We have already seen in (7.1) that the non-relativistic corrections are small, of order
4% for Γb̄→c̄u(s̄+d̄). The corrections are slightly larger for the other b̄ decay modes, up
to ∼ 10% for the semileptonic modes, but since the width is dominated by the hadronic
modes, the non-relativistic correction to Γb̄→c̄ is 4% and 5% in the MS and meson/Upsilon
schemes, respectively. Similarly, we find the non-relativistic correction to Γc→(s+d) is 6%,
7% and 10% in the MS, meson and Upsilon scheme. The small magnitude of the correc-
tions both suggest the error from truncating the expansion is small, and the uncertainty
introduced from the limited knowledge of the matrix elements is small, as expected from
the previous paragraphs.

The rate of convergence of the non-relativistic expansion can also be seen by estimating
the matrix element of the bilinear Q̄Q, that enters at leading order in the OPE, expressed
in terms of NRQCD fields, as given in (5.5). We find, in the Upsilon scheme, the expansion:

1− 0.017− 0.007 + 0.0005
1− 0.180 + 0.014 + 0.051

where the first line is for b̄b and the second for c̄c, and the first, second and third corrections
correspond to the terms ~D2, gs~σ · ~B and gs ~D · ~E, and ~D4, respectively. As expected the
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non-relativistic expansion converges faster for b quark decay than for c quarks. We remind
the reader that for the coefficient of the correction terms we have not included radiative
corrections to the coefficient C(3)

q in the OPE; see the discussion at the end of section 5.1.
This truncation represents a correction ∼ 6% in the c̄c case.

7.2.3 Parametric and numerical uncertainties

Additional uncertainties are introduced parametrically, from the uncertainty in the input
parameters. The parametric uncertainty from αs is subsumed into the scale uncertainty
discussed in section 7.2.1 above. Except for |Vcb| and the non-perturbative parameters
that enter the non-relativistic expansion, the input parameters in table 2 have negligible
uncertainties compared to those that have already been discussed. The uncertainty from
|Vcb| can be read-off table 5 that gives a fractional uncertainty in ΓBc slightly smaller than
the fractional error in |Vcb|: ∆Γ/Γ . ∆|Vcb|/|Vcb|.

For the MS scheme there are additional parametric uncertainties from the input value
of the quark masses. The resulting uncertainty is largely due to the fifth power dependence
of the partial widths on the mass of the decaying quark. The conservative estimate of the
uncertainty assumes that both quark masses deviate in the same direction from the central
value quoted in table 2. In table 5 we show the result of varying mb(mb) and mc(mc)
independently, and in the final result we (over)estimate the uncertainty by adding these
linearly, rather than by varying them together.

Additional uncertainties are introduced in the numerical integration of various QCD
corrections and the need to compute at non-zero but sufficiently small gluon mass. We
have verified that the error introduce by the numerical integration and zero gluon mass
extrapolation is much below a percent.

7.2.4 Strange quark mass

The non-vanishing of the strange quark mass reduces the c quark decay rate, relative to
the rate for ms = 0, by 7%, 7% and 6% in the MS, meson and Upsilon schemes. A naive
estimate of the effect of the strange mass on the b̄-quark decay is obtained as this fraction
times (mc/mb)2 ∼ 0.1 of the b̄-quark width, or ∆Γb . 0.003 ps−1. More dramatic is the
uncertainty derived from the lesser well determined input, ms(2 GeV), listed in table 2.
Estimating this as ±10% of the 6-7% reduction in the rate for c-quark decay, this results
in an uncertainty ∆Γc ∼ 0.01 ps−1.

8 Conclusions

The result for the decay rate of the Bc meson, displaying the contributions by decay
channel and for each of the three mass schemes introduced in section 2, is presented in
table 3 for ms = 0, and in table 4 for ms 6= 0 in decay channels involving c-quark decay.
In section 7.2 we gave a detailed accounting of uncertainties in those calculated partial
widths. We summarize our results: neglecting light quark masses, including that of the
strange quark, our final result for the total width of the Bc meson in the MS-, meson- and
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Upsilon-schemes is:

ΓMS
Bc = (1.58± 0.40|µ ± 0.08|n.p. ± 0.02|m ± 0.01|Vcb) ps−1 ,

Γmeson
Bc = (1.77± 0.25|µ ± 0.20|n.p. ± 0.01|Vcb) ps−1 ,

ΓUpsilon
Bc

= (2.51± 0.19|µ ± 0.21|n.p. ± 0.01|Vcb) ps−1 ,

(8.1)

where we indicate the uncertainties due to scale dependence (µ), non-perturbative effects
(n.p.), the value of |Vcb|, and for the MS scheme the input values of the masses (m). As
discussed above, for ms 6= 0, the central values of the c-decay widths get reduced by about
7%, leading to the following total decay rates:

ΓMS
Bc = (1.51± 0.38|µ ± 0.08|n.p. ± 0.02|m ± 0.01|ms ± 0.01|Vcb) ps−1 , (ms 6= 0)

Γmeson
Bc = (1.70± 0.24|µ ± 0.20|n.p. ± 0.01|ms ± 0.01|Vcb) ps−1 , (ms 6= 0)

ΓUpsilon
Bc

= (2.40± 0.19|µ ± 0.21|n.p. ± 0.01|ms ± 0.01|Vcb) ps−1 , (ms 6= 0)
(8.2)

For the scale uncertainty we have used table 5 with ∆µ/µ = ln(2). The uncertainty due to
non-perturbative effects captures the result of the non-relativistic truncation as well as the
uncertainty in the matrix elements. We add linearly the absolute values of the errors from
rows 4 — 9 (parameters T through fBc) using for ∆p/p the values indicated on the second
column, and to this we add linearly the absolute value of the estimate of a non-relativistic
truncation error. The latter is estimated as a fraction, equal to the quark velocity vb ≈ 0.19
or vc ≈ 0.60, of the non-relativistic correction to the b̄ and c decays, respectively, that
has been included in the partial widths recorded on tables 3 and 4. Linearly adding these
uncertainties is the most conservative way to proceed. Adding them instead in quadratures
leads to the smaller uncertainties ±0.05 ps−1, ±0.11 ps−1 and ±0.12 ps−1 for both massless
and massive strange quarks in the MS, meson and Upsilon scheme, respectively.

For either massless or massive strange quarks the three different schemes are consistent
with each other within their respective uncertainties. The difference between the values
in the meson and Upsilon scheme can mainly be traced back to the different charm mass
used in the charm decays. The wide range spanned by the widths calculated in the three
schemes, i.e., the strong scheme dependence, however calls for an improvement of the SM
prediction. The main uncertainty, from scale dependence, can be reduced by going one
order higher in the perturbative expansion, i.e., using NNLL Wilson coefficients, as well as
computing the matrix elements up to two loops. While one should see convergence of the
various schemes on a single value for the perturbative partial widths of the underlying b̄
and c decays as the calculation is carried out to higher order in αs, we expect the Upsilon
scheme to converge fastest. Evidence for this was presented in section 2.6 using the known
2-loop results for the semileptonic decays of b and c quarks. This is also substantiated by
the milder scale dependence of the result in the Upsilon scheme compared to the other
schemes. The non-perturbative uncertainty is dominated by our estimate of the order
v3 corrections. These arise solely from order αs corrections to the Wilson coefficients of
order v2 operators. Additional perturbative corrections to Wilson coefficients will have a
marginal effect on the overall precision. More precise determinations of the relevant non-
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Br(process) MS meson Upsilon
b→ cu(d+ s) 13.6 15.7 11.1
b→ cc(d+ s) 6.2 7.2 5.1
b→ ceν 3.5 3.9 2.7
b→ cτν 0.6 0.9 0.6
b→ c 27.3 31.4 22.2
c→ sud̄ 41.8 38.0 45.6
c→ sus̄ 2.1 1.9 2.4
c→ dud̄ 2.4 2.2 2.6
c→ seν̄ 9.4 8.4 9.2
c→ deν̄ 0.5 0.5 0.5
c→ s 66.4 60.1 70.2
bc→ cs 3.7 6.0 5.8
bc→ τν 2.6 2.5 1.8

Table 6. Branching fractions in per-cent for Bc semi-inclusive decays in the MS, meson, and
Upsilon schemes. The WA into cs and the PI have been combined into a single bc→ cs branching
fraction.

perturbative parameters (for example from lattice QCD) might however become important
in the future.

It is interesting to note that branching fractions predicted by the three schemes are in
good agreement with each other, as shown in table 6. This may be interpreted as evidence
that the dominant factor in the differences between scheme predictions is from the sensitive
dependence on masses of the b̄ and c quarks, which differ vastly among the schemes. We
have not attempted to estimate uncertainties in the branching fractions, which however
are expected to be significantly smaller in the ratios than in the individual partial widths
because of cancellation of correlated uncertainties.

Previous calculations of the lifetime of Bc mesons yield results closer to the experi-
mentally measured value than we present here. Since the total width depends sensitively
on the choice of masses for the b and c quarks we could have chosen masses to yield a result
close to the experimental value. We have, instead, computed systematically, eliminating
the pole mass in favour of well defined masses and truncating the perturbative expansion
consistently. This guarantees cancellation of renormalon ambiguities, that remain present
if calculating in terms of ad hoc values for the on-shell masses. We find it is interesting to
note that the Upsilon scheme results have at once the smallest uncertainty and give partial
widths that are seemingly too large. In particular the semileptonic partial width Γc→(s+d)eν
is much larger than in both the two other schemes and the result of BB. However, as we
have remarked earlier, it is this higher value that gives excellent agreement with the decay
width for inclusive semileptonic decays of D mesons. Similarly, the Upsilon and meson
schemes give excellent agreement with the inclusive width for semileptonic B meson decay.

The calculations presented depend on the assumption that quark-hadron duality val-
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idates the OPE method. Similarly, for the Upsilon scheme, and to lesser extend for the
meson scheme, the nonperturbative contribution to the pole masses have been neglected.
These assumptions need to be validated through other means. Were the predictions to fail
the conclusion could well be that one or both of these assumptions are not valid.

Finally, the initial motivation for this computation, namely to distinguish NP contribu-
tions in the Bc life-time remains challenging, and further progress on the theory side has to
be made before clear-cut conclusions concerning new-physics effects in ΓBc can be drawn.

Note added: we would like to thank Matteo Fael for bringing our attention to the
publication [79], where the α3

s corrections to the decay b→ c`ν were computed.
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